Table of contents 目次

  1. About 100...007 100...007 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 100...007 100...007 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 100...007 100...007 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 100...007 100...007 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

10w7 = { 17, 107, 1007, 10007, 100007, 1000007, 10000007, 100000007, 1000000007, 10000000007, … }

1.3. General term 一般項

10n+7 (1≤n)

2. Prime numbers of the form 100...007 100...007 の形の素数

2.1. Last updated 最終更新日

January 30, 2016 2016 年 1 月 30 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 101+7 = 17 is prime. は素数です。
  2. 102+7 = 107 is prime. は素数です。
  3. 104+7 = 10007 is prime. は素数です。
  4. 108+7 = 100000007 is prime. は素数です。
  5. 109+7 = 1000000007<10> is prime. は素数です。
  6. 1024+7 = 1(0)237<25> is prime. は素数です。
  7. 1060+7 = 1(0)597<61> is prime. は素数です。
  8. 10110+7 = 1(0)1097<111> is prime. は素数です。 (Makoto Kamada / PPSIQS / July 8, 2004 2004 年 7 月 8 日)
  9. 10134+7 = 1(0)1337<135> is prime. は素数です。 (Makoto Kamada / PPSIQS / July 8, 2004 2004 年 7 月 8 日)
  10. 10222+7 = 1(0)2217<223> is prime. は素数です。 (Makoto Kamada / PPSIQS / July 8, 2004 2004 年 7 月 8 日)
  11. 10412+7 = 1(0)4117<413> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / July 8, 2004 2004 年 7 月 8 日) (certified by: (証明: Julien Peter Benney / December 6, 2004 2004 年 12 月 6 日)
  12. 10700+7 = 1(0)6997<701> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / July 8, 2004 2004 年 7 月 8 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / June 3, 2006 2006 年 6 月 3 日)
  13. 10999+7 = 1(0)9987<1000> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / July 8, 2004 2004 年 7 月 8 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / June 3, 2006 2006 年 6 月 3 日)
  14. 101383+7 = 1(0)13827<1384> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / July 8, 2004 2004 年 7 月 8 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / September 6, 2006 2006 年 9 月 6 日)
  15. 105076+7 = 1(0)50757<5077> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 20, 2004 2004 年 12 月 20 日)
  16. 105543+7 = 1(0)55427<5544> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 20, 2004 2004 年 12 月 20 日)
  17. 106344+7 = 1(0)63437<6345> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 22, 2004 2004 年 12 月 22 日)
  18. 1014600+7 = 1(0)145997<14601> is PRP. はおそらく素数です。 (Patrick De Geest / January 2005 2005 年 1 月)
  19. 1015093+7 = 1(0)150927<15094> is PRP. はおそらく素数です。 (Thomas Masser / February 2004 2004 年 2 月)
  20. 1021717+7 = 1(0)217167<21718> is PRP. はおそらく素数です。 (Thomas Masser / February 2004 2004 年 2 月)
  21. 1023636+7 = 1(0)236357<23637> is PRP. はおそらく素数です。 (Jason Earls / November 2007 2007 年 11 月)
  22. 1030221+7 = 1(0)302207<30222> is PRP. はおそらく素数です。 (Jason Earls / November 2007 2007 年 11 月)
  23. 1050711+7 = 1(0)507107<50712> is PRP. はおそらく素数です。 (Jason Earls / December 2007 2007 年 12 月)

2.3. Range of search 捜索範囲

  1. n≤100000 / Completed 終了 / Bob Price / March 4, 2011 2011 年 3 月 4 日
  2. n≤200000 / Completed 終了 / Bob Price / January 29, 2016 2016 年 1 月 29 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

  1. 1013k+3+7 = 53×(103+753+9×103×1013-19×53×k-1Σm=01013m)
  2. 1016k+1+7 = 17×(101+717+9×10×1016-19×17×k-1Σm=01016m)
  3. 1018k+3+7 = 19×(103+719+9×103×1018-19×19×k-1Σm=01018m)
  4. 1021k+14+7 = 43×(1014+743+9×1014×1021-19×43×k-1Σm=01021m)
  5. 1022k+10+7 = 23×(1010+723+9×1010×1022-19×23×k-1Σm=01022m)
  6. 1028k+6+7 = 29×(106+729+9×106×1028-19×29×k-1Σm=01028m)
  7. 1032k+11+7 = 353×(1011+7353+9×1011×1032-19×353×k-1Σm=01032m)
  8. 1033k+20+7 = 67×(1020+767+9×1020×1033-19×67×k-1Σm=01033m)
  9. 1035k+34+7 = 71×(1034+771+9×1034×1035-19×71×k-1Σm=01035m)
  10. 1046k+15+7 = 47×(1015+747+9×1015×1046-19×47×k-1Σm=01046m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 29.23%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 29.23% です。

3. Factor table of 100...007 100...007 の素因数分解表

3.1. Last updated 最終更新日

September 12, 2018 2018 年 9 月 12 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=194, 196, 202, 206, 210, 214, 218, 219, 221, 227, 228, 229, 230, 232, 233, 235, 236, 237, 239, 247, 249, 250, 252, 253, 254, 255, 257, 258, 260, 261, 262, 263, 266, 267, 268, 269, 270, 272, 273, 275, 276, 277, 279, 284, 285, 286, 288, 290, 291, 293, 294, 295, 298, 299, 300 (55/300)

3.4. Factor table 素因数分解表

101+7 = 17 = definitely prime number 素数
102+7 = 107 = definitely prime number 素数
103+7 = 1007 = 19 × 53
104+7 = 10007 = definitely prime number 素数
105+7 = 100007 = 97 × 1031
106+7 = 1000007 = 29 × 34483
107+7 = 10000007 = 941 × 10627
108+7 = 100000007 = definitely prime number 素数
109+7 = 1000000007<10> = definitely prime number 素数
1010+7 = 10000000007<11> = 23 × 2293 × 189613
1011+7 = 100000000007<12> = 353 × 283286119
1012+7 = 1000000000007<13> = 34519 × 28969553
1013+7 = 10000000000007<14> = 167 × 619 × 6959 × 13901
1014+7 = 100000000000007<15> = 43 × 1103 × 2083 × 1012201
1015+7 = 1000000000000007<16> = 47 × 59 × 360620266859<12>
1016+7 = 10000000000000007<17> = 53 × 113 × 277 × 1117 × 5396507
1017+7 = 100000000000000007<18> = 17 × 9920467 × 592951213
1018+7 = 1000000000000000007<19> = 1370531 × 729644203597<12>
1019+7 = 10000000000000000007<20> = 191 × 786407 × 66576239711<11>
1020+7 = 100000000000000000007<21> = 67 × 166909 × 8942221889969<13>
1021+7 = 1000000000000000000007<22> = 19 × 223 × 236016049091338211<18>
1022+7 = 10000000000000000000007<23> = 947 × 1429 × 7389546599589289<16>
1023+7 = 100000000000000000000007<24> = 80683 × 50048543 × 24764326603<11>
1024+7 = 1000000000000000000000007<25> = definitely prime number 素数
1025+7 = 10000000000000000000000007<26> = 544667 × 18359841885041686021<20>
1026+7 = 100000000000000000000000007<27> = 21267247 × 4702066045501799081<19>
1027+7 = 1000000000000000000000000007<28> = 8325465851<10> × 120113398805171557<18>
1028+7 = 10000000000000000000000000007<29> = 823 × 339943 × 51888587 × 688846121749<12>
1029+7 = 100000000000000000000000000007<30> = 53 × 827 × 2281490269444000821336497<25>
1030+7 = 1000000000000000000000000000007<31> = 251897 × 387727 × 10238844796821566353<20>
1031+7 = 10000000000000000000000000000007<32> = 900821 × 11100984546319413068745067<26>
1032+7 = 100000000000000000000000000000007<33> = 23 × 101641 × 56258959 × 760346485574342311<18>
1033+7 = 1000000000000000000000000000000007<34> = 17 × 6323 × 77144051 × 120593932070712940927<21>
1034+7 = 10000000000000000000000000000000007<35> = 29 × 71 × 109 × 84473369 × 6372506597<10> × 82772685629<11>
1035+7 = 100000000000000000000000000000000007<36> = 43 × 9257 × 12889 × 24917 × 1491273401<10> × 524552586889<12>
1036+7 = 1000000000000000000000000000000000007<37> = 51907 × 19265224343537480493960352168301<32>
1037+7 = 10000000000000000000000000000000000007<38> = 4897469621215687<16> × 2041870756416805351361<22>
1038+7 = 100000000000000000000000000000000000007<39> = 751 × 133155792276964047936085219707057257<36>
1039+7 = 1000000000000000000000000000000000000007<40> = 19 × 347 × 389513 × 157034976251<12> × 2479696758123328573<19>
1040+7 = 10000000000000000000000000000000000000007<41> = 163 × 375019 × 4136239 × 39550638490383277927569929<26>
1041+7 = 100000000000000000000000000000000000000007<42> = 317 × 141767 × 1287620401<10> × 1728135292692949031248613<25>
1042+7 = 1000000000000000000000000000000000000000007<43> = 53 × 3581 × 1685581 × 3125864743784529412677270651779<31>
1043+7 = 10000000000000000000000000000000000000000007<44> = 353 × 385475552424539<15> × 73490035152262032777717221<26>
1044+7 = 100000000000000000000000000000000000000000007<45> = 51307 × 770079071609<12> × 2530976179152124569699760189<28>
1045+7 = 1000000000000000000000000000000000000000000007<46> = 2891430803<10> × 345849535448834325778606571758238269<36>
1046+7 = 10000000000000000000000000000000000000000000007<47> = 463 × 709447 × 30578069 × 995609417807293390276684651123<30>
1047+7 = 100000000000000000000000000000000000000000000007<48> = 7288639 × 753465466566673841<18> × 18209172382065743133193<23>
1048+7 = 1000000000000000000000000000000000000000000000007<49> = 16421358727<11> × 60896300764430648443260209158696128641<38>
1049+7 = 10000000000000000000000000000000000000000000000007<50> = 17 × 572087 × 195064635387888028937<21> × 5271211709451252581209<22>
1050+7 = 100000000000000000000000000000000000000000000000007<51> = 61667 × 338431 × 4791561222662000618218057876214535883891<40>
1051+7 = 1(0)507<52> = 509 × 1153 × 1703934555281600744278613747003205100898484691<46>
1052+7 = 1(0)517<53> = 117811 × 84881717326904957941109064518593340180458531037<47>
1053+7 = 1(0)527<54> = 61 × 67 × 21766629220203201120889<23> × 1124098020085901924594283449<28>
1054+7 = 1(0)537<55> = 23 × 7547 × 132425107049<12> × 43503828813726591306830113960650855403<38>
1055+7 = 1(0)547<56> = 53 × 107 × 1763357432551578204902133662493387409627931581731617<52>
1056+7 = 1(0)557<57> = 43 × 151 × 585979598036407187<18> × 26282828523910528396787943758753377<35>
1057+7 = 1(0)567<58> = 19 × 3448704696439<13> × 15261259974422793526378511530663179312894827<44>
1058+7 = 1(0)577<59> = 331 × 1523 × 4901509213157<13> × 260979078361033<15> × 15507314203445365718492819<26>
1059+7 = 1(0)587<60> = 12899 × 50203883 × 1263160177<10> × 14675685658973113<17> × 8330092463363640717071<22>
1060+7 = 1(0)597<61> = definitely prime number 素数
1061+7 = 1(0)607<62> = 47 × 269 × 2141 × 369430880276576645104340764817235339625012140422303089<54>
1062+7 = 1(0)617<63> = 29 × 1471 × 306453751 × 425262142469155824407<21> × 17987369870242149109221908189<29>
1063+7 = 1(0)627<64> = 401 × 3821 × 652647366143656822351344877795043926430978298822428357267<57>
1064+7 = 1(0)637<65> = 3708293 × 5679251 × 474826441626236922367511018946545258778381566069849<51>
1065+7 = 1(0)647<66> = 17 × 5443 × 393267619 × 6514752349927141<16> × 421819491972117134549511440606255443<36>
1066+7 = 1(0)657<67> = 1156037 × 865024216352936800465729038084421173370748514104652359742811<60>
1067+7 = 1(0)667<68> = 229 × 563119 × 359063102831429<15> × 4415721756351945449<19> × 48909346199665901052406217<26>
1068+7 = 1(0)677<69> = 53 × 43579 × 228127 × 189788625599363643721455487439493789301150655535822173743<57>
1069+7 = 1(0)687<70> = 71 × 17659 × 556741 × 420868727 × 3403891302803017794336323438013206591447057106209<49>
1070+7 = 1(0)697<71> = 1621 × 252073541474195849351629035309353<33> × 24473141552192478478666014277117939<35>
1071+7 = 1(0)707<72> = 11287 × 36140807609<11> × 226363095374702698851667<24> × 1082973919115276579648545938076387<34>
1072+7 = 1(0)717<73> = 115293091 × 5372421398843<13> × 1614457611983951335374834756708804091444506754620439<52>
1073+7 = 1(0)727<74> = 59 × 27015003713387111<17> × 278824004063548316844248009<27> × 22501568757400682059342981627<29>
1074+7 = 1(0)737<75> = 4229 × 5355107 × 22349693 × 30991321 × 2080946115710760061<19> × 3063526751093061922029152613193<31>
1075+7 = 1(0)747<76> = 19 × 353 × 359 × 1837733 × 31251527 × 1368595001<10> × 5283827601906631758986390846830446819963379729<46>
1076+7 = 1(0)757<77> = 23 × 71463614513<11> × 16116777139971953<17> × 377493071537975277241900786321944008706352458481<48>
1077+7 = 1(0)767<78> = 43 × 3347 × 694825633507271350254653594680414949868330542450372079126743143808061367<72>
1078+7 = 1(0)777<79> = 127807 × 125899794639864538168006679843<30> × 62147024116017580740997565247314296303569907<44>
1079+7 = 1(0)787<80> = 660379 × 7638279815981<13> × 38846395610063<14> × 51034099148412313466511563318558605051782945911<47>
1080+7 = 1(0)797<81> = 116867 × 180667 × 4494266833499<13> × 1056486986025697<16> × 997484752171645015775263336129054232568821<42>
1081+7 = 1(0)807<82> = 17 × 53 × 71947 × 70223139552341<14> × 1862421970704879690389<22> × 117951696274875864624789516490456411769<39>
1082+7 = 1(0)817<83> = 20143 × 36551 × 769331809 × 1173249363341235979<19> × 9526396354259776718449<22> × 1579588345205842288802941<25>
1083+7 = 1(0)827<84> = 22359956791<11> × 135729753588999110363<21> × 239248256617510929989587<24> × 137722595126645589394954272817<30>
1084+7 = 1(0)837<85> = 3498797 × 102002419 × 67620528593<11> × 569594086178141537<18> × 72748953505157770520443636467206432671489<41>
1085+7 = 1(0)847<86> = 277 × 2530587053<10> × 358671455847747967157<21> × 39774262310469937924673555024134954172879441950067771<53>
1086+7 = 1(0)857<87> = 67 × 551245361 × 16944619927<11> × 1873020741091404907<19> × 40158891139755938047<20> × 2124340448837114285181275167<28>
1087+7 = 1(0)867<88> = 857 × 12163 × 14206442989174944729833<23> × 6752943537074783237302201020284867657038227662896721613869<58>
1088+7 = 1(0)877<89> = 193 × 4967 × 361484840539<12> × 5768906405621<13> × 3306359826874757<16> × 36175847124706321<17> × 41821164700096111345283179<26>
1089+7 = 1(0)887<90> = 315854039 × 22166194031<11> × 14283098613807347029376226073723340426091520801542608580551718984565823<71>
1090+7 = 1(0)897<91> = 29 × 10797786248872070191273834198413131<35> × 3193502614880128967730033301894584325285713008357654393<55>
1091+7 = 1(0)907<92> = 11974903 × 301641018479897<15> × 3720398580997636724051<22> × 744128823808368173368786850986962005612481283427<48>
1092+7 = 1(0)917<93> = 197 × 52049946331111<14> × 61193815899703<14> × 873568280885195149<18> × 9895785600733281643<19> × 18435665443597818279362101<26>
1093+7 = 1(0)927<94> = 19 × 1301 × 3760044565066636541027038033<28> × 11048399433722230283900740231<29> × 973815635390716707817395312226111<33>
1094+7 = 1(0)937<95> = 53 × 76739238676700977661741<23> × 2458706243854153841420674823156663541866462868102150084298757640198359<70>
1095+7 = 1(0)947<96> = 105883 × 232819 × 61327361110376429<17> × 3976750807753714043<19> × 1323019050634342903217<22> × 12572064179381084857682579209<29>
1096+7 = 1(0)957<97> = 10105868194993<14> × 98952408709966622205779695146265506767380104203642016798481062528600430399508114999<83>
1097+7 = 1(0)967<98> = 17 × 1787 × 3228439 × 48942980175949<14> × 24104169386389878177319<23> × 86427382465368422414190487214776508500293000108137<50>
1098+7 = 1(0)977<99> = 23 × 43 × 308140697 × 6476827169369<13> × 134391773986849<15> × 376981165511067479806490526999577154002708973983412509531459<60>
1099+7 = 1(0)987<100> = 257 × 1439 × 2703996236037239436162704861514832771352782276927070517517839615167255687180083445323844109209<94>
10100+7 = 1(0)997<101> = 557 × 294001 × 6908913964859<13> × 8838655616713081384235006409051132181948832801178384207854273111302870957443689<79>
10101+7 = 1(0)1007<102> = 97 × 13417 × 208393 × 59084797 × 192791912398527408681511782390747682559<39> × 32368692741544925952914518644950256152604637<44> (JMB / for P39 x P44 / November 13, 2006 2006 年 11 月 13 日)
10102+7 = 1(0)1017<103> = 389 × 1449289 × 498527471947531416654783534317<30> × 3558002976800022444178113761172468284358678581157818108450599151<64> (JMB / for P30 x P64 / November 13, 2006 2006 年 11 月 13 日)
10103+7 = 1(0)1027<104> = 131 × 118431019896445073<18> × 644559828407648315662693708497422076683569340950851428881694233528734103706639175389<84>
10104+7 = 1(0)1037<105> = 71 × 373753 × 442677616305188658936140826719<30> × 8512740628922820150439828442180740157608051624359399571513032580631<67> (JMB / for P30 x P67 / November 13, 2006 2006 年 11 月 13 日)
10105+7 = 1(0)1047<106> = 181 × 661 × 811 × 2702707747424593<16> × 142956756972200652797234209<27> × 26674441641708475621214009942131770425308420404049025261<56>
10106+7 = 1(0)1057<107> = 242076839 × 928356231910219361<18> × 44497140512023251931092029323078257767648233005341592494081588914139749396916033<80>
10107+7 = 1(0)1067<108> = 47 × 53 × 353 × 61681 × 197289371 × 185936965927<12> × 991885479174220754764258963<27> × 50672134692468052900414696842295894082122003641059<50>
10108+7 = 1(0)1077<109> = 107 × 1031 × 1642831 × 17001050216011<14> × 680734153602854328896656807621084241<36> × 476772697097921113957742275140170533984662810391<48> (JMB / for P36 x P48 / November 13, 2006 2006 年 11 月 13 日)
10109+7 = 1(0)1087<110> = 991 × 24961345831969<14> × 3406661504740308863<19> × 152315136803637196709237<24> × 779087614571255424032135958007066179100782481002443<51>
10110+7 = 1(0)1097<111> = definitely prime number 素数
10111+7 = 1(0)1107<112> = 19 × 367 × 2383 × 114659 × 8274073 × 40776615064609<14> × 1555670524064668239244798009876623157732185603870898527043940949752566760037271<79>
10112+7 = 1(0)1117<113> = 149 × 179 × 29789 × 12250160123147<14> × 288694982464645806415645265022344527<36> × 3558965473706154484170941109613878570588410175290934137<55> (JMB / for P36 x P55 / November 13, 2006 2006 年 11 月 13 日)
10113+7 = 1(0)1127<114> = 172 × 61 × 5923 × 957702430496493913652610318054222181045274166119635019220656813970909424746745408705114773597182140646321<105>
10114+7 = 1(0)1137<115> = 191 × 233 × 28278094931<11> × 20172336772520594486903449504690499066853073<44> × 39391666429257807544886005207518985271589064610453705563<56> (JMB / for P44 x P56 / November 13, 2006 2006 年 11 月 13 日)
10115+7 = 1(0)1147<116> = 607 × 1830106976690231<16> × 11398833100939120376755667571553829474421791<44> × 789722364974578368524272664338609565529807497805336881<54> (JMB / for P44 x P54 / November 13, 2006 2006 年 11 月 13 日)
10116+7 = 1(0)1157<117> = 11971261 × 487230906110243<15> × 27353067858608527026293<23> × 324595641998845058527107684033731<33> × 1930974524623294721222470049318007649423<40> (JMB / for P33 x P40 / November 13, 2006 2006 年 11 月 13 日)
10117+7 = 1(0)1167<118> = 7829 × 232109 × 48485699 × 834517199452780415383816001<27> × 13600434193728840528772435098864021148003939126471349543184056089826580413<74>
10118+7 = 1(0)1177<119> = 29 × 18379 × 334528230260497338438209<24> × 514336524559934242935949598191<30> × 109043550881457076625147810912968860602444116735165979386583<60> (JMB / for P30 x P60 / November 13, 2006 2006 年 11 月 13 日)
10119+7 = 1(0)1187<120> = 43 × 67 × 33889 × 71228768478114939483002560133<29> × 14379459180536288126660265003946859013731655180736723250849699113580330085073167931<83>
10120+7 = 1(0)1197<121> = 23 × 53 × 317 × 2207 × 8807 × 10297966731764081519<20> × 12928710718825223383112285365437227061797295437030548227506045450497288809673399297463639<89>
10121+7 = 1(0)1207<122> = 163 × 360863 × 324423407999107<15> × 807680987593123978401029381<27> × 648810692121095705605589318276190175776120883788474943158501987674021309<72>
10122+7 = 1(0)1217<123> = 491 × 673 × 4517 × 6369287837321109670435482703<28> × 10518709892379965800362059862829955576975469809028736028292854022674502538395168597599<86>
10123+7 = 1(0)1227<124> = 475313543505412075717774904569<30> × 1339277674841208459687347740884607<34> × 1570902321163733274755768379513557979962780323845804178131329<61> (JMB / for P30 x P34 x P61 / November 13, 2006 2006 年 11 月 13 日)
10124+7 = 1(0)1237<125> = 421 × 1499 × 15803 × 2284367 × 97734361 × 2992549724933472764477<22> × 2163519302639634467330466581<28> × 693683598143786526350641638911188895911413261208069<51>
10125+7 = 1(0)1247<126> = 4793 × 5454089 × 2936967806893<13> × 144974481166020112494608537648926050406620151<45> × 8984203928864228821357451827539212749804728442768686746837<58> (JMB / for P45 x P58 / November 13, 2006 2006 年 11 月 13 日)
10126+7 = 1(0)1257<127> = 1033 × 1087 × 89209 × 848379710677<12> × 43146299051262857457736770997<29> × 272726689198661927864882673838739941003868203810622169486295349820908942177<75>
10127+7 = 1(0)1267<128> = 20807 × 91723365768464744537526619507581938393<38> × 5239749804622823599715059822066862301958866917743463557859703623678405153997813580457<85> (JMB / for P38 x P85 / November 13, 2006 2006 年 11 月 13 日)
10128+7 = 1(0)1277<129> = 113 × 4447 × 79915218623<11> × 300070258637217881041049<24> × 12601058884299495661810298688299<32> × 658559382547561979384587555934254351343066307305180520269<57> (JMB / for P32 x P57 / November 13, 2006 2006 年 11 月 13 日)
10129+7 = 1(0)1287<130> = 17 × 19 × 653 × 49477 × 33641948449<11> × 1679790042991<13> × 7843360541641<13> × 31302454541106019827154891<26> × 6906598684696433160010946998095509511690048673988436847841<58>
10130+7 = 1(0)1297<131> = 977 × 1354127281053891787<19> × 9240769333641108435061369<25> × 817970834815078379910976550518358157682186556552042039843185356695024391615419261197<84>
10131+7 = 1(0)1307<132> = 59 × 151 × 569 × 5417773 × 19919827 × 57056847374929213139<20> × 1658121551485478098382061499<28> × 1932094091009817906325501352047464017918456988660627007678324957<64>
10132+7 = 1(0)1317<133> = 116558513 × 70281700175274529<17> × 193633093979043858980340590655783929870117051<45> × 630426060826041856187488546625589130148448880923736330632965141<63> (JMB / for P45 x P63 / November 13, 2006 2006 年 11 月 13 日)
10133+7 = 1(0)1327<134> = 53 × 3467 × 313517 × 7326818644065560723142863817729535163437183781<46> × 23691565115303358026220558793705439640025910320126905387653154142448478946241<77> (JMB / for P46 x P77 / November 13, 2006 2006 年 11 月 13 日)
10134+7 = 1(0)1337<135> = definitely prime number 素数
10135+7 = 1(0)1347<136> = 7451 × 26738363 × 802350763 × 11709010829<11> × 2165262539131<13> × 467903660987723<15> × 527350228470935298927070887635602070092557679007274334548834664729287881883689<78>
10136+7 = 1(0)1357<137> = 104287 × 675551 × 33762755218034283379<20> × 4204107420630390361064985936189073577454891417742041007476912068818054473013049164538574908419010246722909<106>
10137+7 = 1(0)1367<138> = 2003 × 1762335749656180799<19> × 105535232069660905201221506508452429252591484471923<51> × 268431161191091827039594786102407926007133040780685720154460461297<66> (JMB / for P51 x P66 / November 13, 2006 2006 年 11 月 13 日)
10138+7 = 1(0)1377<139> = 659 × 207547 × 85194523 × 3979854869478230107<19> × 21563498069251741111233652567644683506194487404033392272584122796484561200843610463595618311229672523519<104>
10139+7 = 1(0)1387<140> = 71 × 353 × 53961672106207<14> × 112581990484599907251089<24> × 1260408514933364560647557<25> × 18256532538697042786614079<26> × 2854190789830433431946240825870240279599385993981<49>
10140+7 = 1(0)1397<141> = 43 × 21097217 × 11152788365662753030393414548412492484668726951178006559050563<62> × 9883776434573520258949630206067934444680142552606548152157173397538119<70> (JMB / for P62 x P70 / November 13, 2006 2006 年 11 月 13 日)
10141+7 = 1(0)1407<142> = 2099 × 321892883659540929471862859<27> × 1480049313842955703989719555399474708621257701391462853273708368907986154489092692806533844295393957539152055927<112>
10142+7 = 1(0)1417<143> = 23 × 109 × 10770257 × 4903830845551957768645529<25> × 129043597808774240694306005868924581179<39> × 585258399739259769722113606750730854898851508482157676530983353260023<69> (JMB / for P25 x P39 x P69 / November 13, 2006 2006 年 11 月 13 日)
10143+7 = 1(0)1427<144> = 148316317 × 674234649448583597177645666592435679211209107896065137593728139837776581251002881901389177564326924326202086045596722847426153388099571<135>
10144+7 = 1(0)1437<145> = 3194941 × 53776875551665051818900193<26> × 5820249355242859895321049902324715234694048541392726301391883070689298187610428383947727611032346068582231850739<112>
10145+7 = 1(0)1447<146> = 17 × 1009 × 3929 × 39394891777<11> × 477416931910651<15> × 511390429922741889025302365045693788161936117991<48> × 15427215916891142825802140743634380478178369335569660478004794123<65> (JMB / for P48 x P65 / November 13, 2006 2006 年 11 月 13 日)
10146+7 = 1(0)1457<147> = 29 × 532 × 446764495587903373420029428557682142369844793<45> × 2747714531245314819750438969866350692194547651755077751108349381732372279040585603754440632263459<97> (JMB / for P45 x P97 / November 13, 2006 2006 年 11 月 13 日)
10147+7 = 1(0)1467<148> = 19 × 419291 × 11001099610565459<17> × 339679370808868900702877062291603908053272610389<48> × 33591205449430429955981360140563738199896223498438992375604540419696297381833<77> (JMB / for P48 x P77 / November 13, 2006 2006 年 11 月 13 日)
10148+7 = 1(0)1477<149> = 443 × 1549 × 25111 × 49807 × 323243 × 943577753311<12> × 8567745445225073<16> × 956576808850295162408479453929199<33> × 4661194656138496317369114488348681290344876286749360613207805996803<67> (JMB / for P33 x P67 / November 13, 2006 2006 年 11 月 13 日)
10149+7 = 1(0)1487<150> = 176399696072558200334817209<27> × 566894400763973893133474722120391339958034565686875933978135700406312866202167420731995229801550327823681573466175605093823<123>
10150+7 = 1(0)1497<151> = 337 × 1327 × 536561 × 6837287 × 13486791026708371<17> × 94051618766309367759260417124514097<35> × 480530944918907032745728484488519068607873407655990750149792075397600426342561477<81> (JMB / for P35 x P81 / November 13, 2006 2006 年 11 月 13 日)
10151+7 = 1(0)1507<152> = 6358752311<10> × 44904040161911122007937154117942613828250379<44> × 762772608306515365541484787018631102006011845959<48> × 45914259561857045215912890899078634274639825553717<50> (JMB / for P44 x P48 x P50 / November 13, 2006 2006 年 11 月 13 日)
10152+7 = 1(0)1517<153> = 67 × 1492537313432835820895522388059701492537313432835820895522388059701492537313432835820895522388059701492537313432835820895522388059701492537313432835821<151>
10153+7 = 1(0)1527<154> = 47 × 3659 × 1181099 × 23723081 × 1119041815669955131946733550491753601061331849636641<52> × 185453922645773960739971312810254989052909263532552456274018125952258731518588092521<84> (JMB / for P52 x P84 / November 13, 2006 2006 年 11 月 13 日)
10154+7 = 1(0)1537<155> = 277 × 599 × 6899 × 7394599 × 250787753861<12> × 806918680621<12> × 1465503261259<13> × 304501661092766082691<21> × 953387170137531028574690036516267823107<39> × 13721790417426365420565042720066283334024483<44> (JMB / for P39 x P44 / November 13, 2006 2006 年 11 月 13 日)
10155+7 = 1(0)1547<156> = 433 × 809 × 1023259 × 2629091 × 12500748752773<14> × 8488605758541879098940744324255173024856089364890700060455615064083379108920141650106241111904099195959405839501955318868163<124>
10156+7 = 1(0)1557<157> = 375046807493<12> × 2666333854924666535081684879414876219566018125716113786357221015684823679267803834738346964447013533773725282907297049796513944059037477897777499<145>
10157+7 = 1(0)1567<158> = 97089257 × 10463198973605353<17> × 9843835288526746968128351109749239754003035432160310955806955470152899593259265561534318564428709907409881431279890161155171595023767<133>
10158+7 = 1(0)1577<159> = 431 × 102253 × 8638632266830955762913949170992827<34> × 262664683666466193638482427563399076567628422896524576161491458531460876219777548927549200236785416264226533302463287<117> (JMB / GGNFS for P34 x P117 / November 14, 2006 2006 年 11 月 14 日)
10159+7 = 1(0)1587<160> = 53 × 112071623517499016299<21> × 742724173649744073677<21> × 354663760028666201445811359498151123731853622090995334671<57> × 639122480641374580716319914410982978520319328839614482642443<60> (anonymous / GGNFS snfs for P57 x P60 / November 16, 2006 2006 年 11 月 16 日)
10160+7 = 1(0)1597<161> = 5189 × 13931 × 122227155285903457182666321837042118481<39> × 1131791252435748089591200016536616025548232549159948520144370768984943188816711312258317968241365841533122026175233<115> (anonymous / GGNFS for P39 x P115 / November 15, 2006 2006 年 11 月 15 日)
10161+7 = 1(0)1607<162> = 17 × 43 × 107 × 1358873743<10> × 4576218744241<13> × 59933263251581444373037<23> × 4586022103718784119737201<25> × 393087460187748598353908179543701451<36> × 1902916380316718616693332081947116382356450315966191<52>
10162+7 = 1(0)1617<163> = 373 × 2897560744807<13> × 284650192636237<15> × 10547001703389742749894012224851142970616143003250831<53> × 308189700406341423181147659113543127355444178794088410677400174480962049420222271<81> (anonymous / GGNFS for P53 x P81 / November 17, 2006 2006 年 11 月 17 日)
10163+7 = 1(0)1627<164> = 751 × 65793577 × 27552936913<11> × 41544031117073918433594752857<29> × 176807234786569338582523829881595287129675124275481575083841952162459544421538630230247564397123546438974833341401<114> (anonymous / ECM B1=1000000, Sigma=719715719 for P29 x P114 / November 15, 2006 2006 年 11 月 15 日)
10164+7 = 1(0)1637<165> = 23 × 379 × 7309 × 12698886469366937367312361817<29> × 89521774571891440725766027916492942543621141376778475868817<59> × 1380640691183467041940805484295021196494682231216695693196237567677271<70> (anonymous / GGNFS for P59 x P70 / November 18, 2006 2006 年 11 月 18 日)
10165+7 = 1(0)1647<166> = 19 × 1631633 × 796012396450780297<18> × 40523233076391853015111867619989065631500514110767811102263447875923811916089505757018637402782526409683979020037283558004919427707816666053<140>
10166+7 = 1(0)1657<167> = 48353 × 1984051008811<13> × 104237441251810653156289791770042208122535450993180979394311123750778111635815466599284223433865770704290757966095192565622487208877211417796809240629<150>
10167+7 = 1(0)1667<168> = 383 × 829 × 11591207077<11> × 73347288818135303<17> × 141440849542595046487975537469003983<36> × 2767384195308432800998826640296194868680403<43> × 946432516737087044441832532380571281421477140914013266779<57> (anonymous / ECM B1=1000000, sigma=3323369264 for P36 / November 15, 2006 2006 年 11 月 15 日) (anonymous / GGNFS gnfs for P43 x P57 / November 17, 2006 2006 年 11 月 17 日)
10168+7 = 1(0)1677<169> = 331 × 41180911 × 953501297989<12> × 76940458115377537859708051345585965360827238354427788323471927961877436392629760725478898894798002662202474582471232876343540327921030637435010143<146>
10169+7 = 1(0)1687<170> = 4561 × 16091 × 503609 × 128461468467379650847<21> × 2106155962695505093001715069346360184315221207513236700386114795002819476321142773526016312440391660256716403971286359994414261419856259<136>
10170+7 = 1(0)1697<171> = 1010658819109<13> × 98945359313403424459544568357355462851849170426274626337116112108308178509244679675122223334016815873242943591052282846181052490045372352888016913980153134523<158>
10171+7 = 1(0)1707<172> = 353 × 16139676313<11> × 2503433995697<13> × 18280520184492143617094205240248705703843689<44> × 3835356858729892849185282132443271335225604500851042024555355541432430314460970459178772287450451105111<103> (matsui / GGNFS-0.77.1-20060513-prescott snfs for P44 x P103 / March 12, 2008 2008 年 3 月 12 日)
10172+7 = 1(0)1717<173> = 53 × 191938429 × 331415043556425612418268467<27> × 29849566288772955116003809849<29> × 519653203407133915489828689837558457<36> × 191222214126927932611849860371304656786463312566330254859420091542285581<72> (anonymous / ECM B1=250000, Sigma=1467982943 for P27 / November 15, 2006 2006 年 11 月 15 日) (anonymous / GGNFS gnfs for P36 x P72 / November 15, 2006 2006 年 11 月 15 日)
10173+7 = 1(0)1727<174> = 61 × 668699 × 890122807220353933<18> × 175995929972916819043387<24> × 15649012511309825472505388316361746099363635800698193677652818205000702309186144895813370088566261098434719438165593830590103<125>
10174+7 = 1(0)1737<175> = 29 × 71 × 487 × 11125843 × 11284673357060483641065406171245055689125329700802610659045727<62> × 7943150153899727308211547689503218266715542847275764169224019083630803802075842027404310615659484239<100> (matsui / GGNFS-0.77.1-20060513-pentium-m snfs for P62 x P100 / 154.34 hours / July 17, 2008 2008 年 7 月 17 日)
10175+7 = 1(0)1747<176> = 1201 × 5441 × 28901 × 70441799 × 375154925917<12> × 1333564043806310437711<22> × 1502485976925603847583984580101155149231222208011130140616598690193963689557628714059465168838561289886441284220486423176079<124>
10176+7 = 1(0)1757<177> = 99015776744790713698105723<26> × 1009940064983240834357757158578233262841047471471785102581870740639733380128726755594775261433006081562347396788976352206388738371634774705760239169509<151>
10177+7 = 1(0)1767<178> = 17 × 9342353 × 5041134919<10> × 1249011636987693163394754759959015301303932999255646251007083125960769664549193537874447651365609866382657290806834927276430091829975689577352474252115039214753<160>
10178+7 = 1(0)1777<179> = 9779956187<10> × 15061360829503<14> × 28611712108180931576351076849383<32> × 14520779712977015969339895588943857520182395580183706784454421<62> × 163404906987574736909472325954343135617120818034514302156773209<63> (anonymous / ECM B1=1000000, sigma=1041472518 for P32 / November 16, 2006 2006 年 11 月 16 日) (Sinkiti Sibata / Msieve 1.40 gnfs for P62 x P63 / 62.63 hours / September 30, 2009 2009 年 9 月 30 日)
10179+7 = 1(0)1787<180> = 167 × 60950560869098197619847712489744585923674505423726671<53> × 9824395160130058065900701752890082125561413858734478820643602889430506537378449350699284748319422251954897604377774555118351<124> (Alexander Mkrtychyan / GGNFS-0.77.1-20060513-pentium4 for P53 x P124 / 409.50 hours on Core 2 Duo 6300, Windows XP / June 9, 2007 2007 年 6 月 9 日)
10180+7 = 1(0)1797<181> = 2381 × 5114567122042767896236640437<28> × 62749865949626149309304656462244166924665040795418063<53> × 1308636169647099234562410617205429696324248369505300568597234296816003400048786121573821895464537<97> (Wataru Sakai / for P53 x P97 / June 17, 2012 2012 年 6 月 17 日)
10181+7 = 1(0)1807<182> = 2812775664288307<16> × 22120990989063401023849849790830253221112198562672365020829751141235969<71> × 160716447891261535188504101212700236839353740194435303529215846624303769803432292481872724760029<96> (Andreas Tete / factmsieve.py V076 via msieve 1.52 (svn 927) for P71 x P96 / July 26, 2013 2013 年 7 月 26 日)
10182+7 = 1(0)1817<183> = 43 × 344129236057839480607207<24> × 2153399248296943364081081501878494018763<40> × 3138234676598828470656798168356886902908874488845033576645328253801437377333071455484868309926538288560396376798471689<118> (Justin Card / gmp-ecm 6.2 B1=3000000, sigma=3220181386 for P40 x P118 / June 23, 2010 2010 年 6 月 23 日)
10183+7 = 1(0)1827<184> = 19 × 16981 × 5830459 × 2453944411670261110607727796210709636041092454366547624825304790291181755293899611<82> × 216628539016432370064885058723648726018729564291598142943289732340076269222686684670112337<90> (Robert Backstrom / Msieve 1.44 snfs for P82 x P90 / February 27, 2012 2012 年 2 月 27 日)
10184+7 = 1(0)1837<185> = 3623 × 14947 × 87049 × 81831577 × 27032969027<11> × 82572781465758823<17> × 13812625427379003182132914528083742520447<41> × 840787078677037174391304726181032112104649288083138093961703021109819735570348848562966541610497<96> (anonymous / ECM B1=1000000, sigma=2468406548 for P41 x P96 / November 16, 2006 2006 年 11 月 16 日)
10185+7 = 1(0)1847<186> = 53 × 67 × 2273 × 12389389082941136897421929193898027646426163019829341121138119015692771894125732228381538174867058757792770865806438344267175688846935664256476212434907698431862634383057361756409<179>
10186+7 = 1(0)1857<187> = 23 × 1674321589150079<16> × 5169259926503910472517<22> × 10519579813202962164191587968549958338845129<44> × 477536446524351969730209842702002079292017485236107832937025486800606023755171179378285725378006234337547<105> (suberi / GMP-ECM 6.2.1 B1=3000000, sigma=2883945777 for P44 x P105 / July 2, 2008 2008 年 7 月 2 日)
10187+7 = 1(0)1867<188> = 1433 × 16217 × 17259661 × 24931650574780565860884190272571988275598164848466515388744762368530918217454924712055507704711123517169838415763345101005312652213714284245609685829394958435266467854717267<173>
10188+7 = 1(0)1877<189> = 919 × 546994870962230793373065729931284587933779712219<48> × 198930436022901655488560388986742823483843042807587457103337590796061445066460085353325337124807905412409771088506395458055122523822016387<138> (Wataru Sakai / GGNFS-0.77.1-20060722-nocona snfs for P48 x P138 / 842.87 hours / August 19, 2008 2008 年 8 月 19 日)
10189+7 = 1(0)1887<190> = 59 × 2131 × 3159054500600988812343025556881597237<37> × 104007034403290234476642512982355682437682886170729566725236338801<66> × 24207208275600717848274358311705933431960902722820265989752982045472004104095733659<83> (anonymous / ECM B1=1000000, sigma=3073689678 for P37 / November 18, 2006 2006 年 11 月 18 日) (Andreas Tete / for P66 x P83 / July 21, 2013 2013 年 7 月 21 日)
10190+7 = 1(0)1897<191> = 197 × 8317 × 127747 × 2829317 × 72279887 × 142368179 × 32918013164986911675034336901<29> × 539949550351081895686956255135631<33> × 1228769056329366897148936730013579567923<40> × 75135865542155053300373496564980174488903912122130011293<56> (anonymous / ECM B1=1000000, sigma=3780869432 for P33, GGNFS gnfs for P40 x P56 / November 15, 2006 2006 年 11 月 15 日)
10191+7 = 1(0)1907<192> = 4595914723<10> × 17403535733743918820391382007460264326230173218462003234619548812297065504167508402593<86> × 1250231822501455070658189609089228994703202422266443329180927891486570572341791417530482388981613<97> (Robert Backstrom / Msieve 1.44 snfs for P86 x P97 / February 18, 2012 2012 年 2 月 18 日)
10192+7 = 1(0)1917<193> = 1877 × 452165051027<12> × 12614234731445029<17> × 7407231610479614810330350785180080211429941943189980696711116367767<67> × 12610197922018043260375021954870963034573331436479499568236804139579640768733779411192636025331<95> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P67 x P95 / September 12, 2018 2018 年 9 月 12 日)
10193+7 = 1(0)1927<194> = 17 × 11779 × 30559 × 1559059 × 2156599 × 47383631 × 4255479583<10> × 676504403777<12> × 5026193424803063823643<22> × 708899865151793063035980340873387757883359765893272465927787778548700453408173030293939047176424265987933108875733561157<120>
10194+7 = 1(0)1937<195> = 9437 × 8859860882718486861679<22> × [1196021928444236450550753786430362575544844621007096187075714114164279482592336776308221565048294022938965690271911864597915619420798934822860053817688946100169380272509<169>] Free to factor
10195+7 = 1(0)1947<196> = 190543 × 1104797 × 5902139 × 10164501892429640531<20> × 13622959367558799889<20> × 5812427106473466514394901002406324593256169786794054156068785244634520230141898972559505267593847379033896149614813478857709466158217657517<139>
10196+7 = 1(0)1957<197> = 2877137281<10> × 501356191012638341<18> × [6932550363000318709754932234972722366676860410997691268742602798936711837758410095374539958904460874936401337968805513417786101973895319318666898645641909469000212615067<169>] Free to factor
10197+7 = 1(0)1967<198> = 97 × 84191 × 912053 × 593828378448230781517711808413<30> × 22609011424272050791430188377238035125604042617270740914321372779804218175409127633969761514872892428799758990731527036690765549758397284421796429484418169<155> (Makoto Kamada / GMP-ECM 5.0.3 B1=45440, sigma=242252855 for P30 x P155)
10198+7 = 1(0)1977<199> = 53 × 571 × 2311139052889<13> × 8981676309068044990065102914772467010071<40> × 5897735181786967354733539005628770048383222949309633766704431<61> × 269910188436995436718025248557227940984472439959960151522901343856764314395724001<81> (anonymous / ECM B1=1000000, sigma=630057262 for P40 / November 17, 2006 2006 年 11 月 17 日) (anonymous / for P61 x P81 / February 5, 2013 2013 年 2 月 5 日)
10199+7 = 1(0)1987<200> = 47 × 317 × 937 × 144005207 × 587449319 × 5608841823272429120820467701914407536001449<43> × 934364184631996846294326967848916114178561917<45> × 1615717068709532430145896501253765383628874159285960360066928691775683386616729502357201<88> (Justin Card / GMP-ECM 6.2 B1=1000000, sigma=2636417384 for P43 / June 21, 2010 2010 年 6 月 21 日) (Wataru Sakai / GMP-ECM 6.2.3 B1=11000000, sigma=136693547 for P45 x P88 / July 19, 2010 2010 年 7 月 19 日)
10200+7 = 1(0)1997<201> = 263 × 463 × 953 × 174931 × 2960414563<10> × 19969809437<11> × 973940411159<12> × 2309829632384958335206600397482978789162477<43> × 10034126404470982163736977259256493408517138292673<50> × 3691350006437895308817766464678820345952749210658401279037424769<64> (Serge Batalov / GMP-ECM 6.2.3; msieve B1=11000000, sigma=4285910462 gnfs for P43 x P50 x P64 / October 17, 2010 2010 年 10 月 17 日)
10201+7 = 1(0)2007<202> = 192 × 3583 × 1468559763126161071<19> × 526446648346862422269104831968500691620801733320731731230760062794528265386826604642152777008378396718547954557811672148355030862050491683297367233459040085179909441894381770559<177>
10202+7 = 1(0)2017<203> = 29 × 163 × 18570999623927887361<20> × 20233632608976505476603031<26> × [5629959315217569282847505551972326965777164829224200641207254169807845357748444152859568405323204354975313393612974139830595560977511466003952168602368951<154>] Free to factor
10203+7 = 1(0)2027<204> = 43 × 353 × 683 × 196120616983025723<18> × 2053220475431421762366889<25> × 23953958784402152871170998487296071386680275570988219751268189956620854053706734320200057799309354444607465672472866668615677851776764610039524099781111333<155>
10204+7 = 1(0)2037<205> = 42962859041<11> × 40858960740140339207509067<26> × 569664963298880234085557948196922156601497033840715415090661355133877993299300653156012415776882023828978698215738775106499902109180687321612098239678646751641563426581<168>
10205+7 = 1(0)2047<206> = 270287 × 15194369 × 1486076065950419<16> × 1638517684978658897556992988567815635152630174656601180175914441939539705374318303217837964949878924991839462698839042757625894664733363149815744407480136687458587215902626302451<178>
10206+7 = 1(0)2057<207> = 151 × 34791459143266383251<20> × 31408304500395906223930119929<29> × [606046457041058640781079026946324505813205051852927563788825033697178448561484283321656746739639878149385996999890598499907394673464075073790533739074512483<156>] Free to factor
10207+7 = 1(0)2067<208> = 831983 × 2619217841<10> × 25829228162079208729<20> × 32955737165024168359<20> × 366112124065376188587097<24> × 1472506962817856405446755984671971989261567251851806931248765546031070057902799389376302610352831383278837072865305109190148659407<130>
10208+7 = 1(0)2077<209> = 23 × 9613622488452110532923<22> × 10168127682803818923811163<26> × 4447788307493213128083614554724175787702615365036225293019714551661805830260490054811075944840566606060530559517121643214167362513035987624544236691188983274841<160>
10209+7 = 1(0)2087<210> = 17 × 71 × 191 × 1493 × 41579 × 680056477 × 30070570156808906987653480926496114448629<41> × 7456882173840152191377136361021010932740801<43> × 2318392573254822330363257973518206792072186135649<49> × 19764899624371309198299681990468439729630758580131168089<56> (Serge Batalov / GMP-ECM B1=11000000, sigma=1485612391 for P43 / May 27, 2014 2014 年 5 月 27 日) (Erik Branger / GGNFS, Msieve gnfs for P41 x P49 x P56 / October 6, 2016 2016 年 10 月 6 日)
10210+7 = 1(0)2097<211> = 23857 × 1598527160097730545488924204773371978329<40> × [26221899575748783281424409289016801948345631107038299515733348260827329786457001053283432730167475583904103992921232905373848380516875078578749666416155002537972370319<167>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3058236195 for P40 / August 18, 2012 2012 年 8 月 18 日) Free to factor
10211+7 = 1(0)2107<212> = 53 × 727 × 1031 × 1217 × 695120047 × 442410099562958249<18> × 19241648982932603748773327<26> × 4871943891991599798290065099<28> × 2664151603090833109263995628418596441837247738901125571<55> × 2693097825703169521041419024146585690373784529409077433522129509139<67> (Warut Roonguthai / Msieve 1.49 gnfs for P55 x P67 / August 18, 2012 2012 年 8 月 18 日)
10212+7 = 1(0)2117<213> = 347 × 9479 × 176369 × 916057 × 988229561621<12> × 4750130094230663<16> × 45297798864345509687<20> × 884958301435046664022620123313123737367127687837500146988791106542611306321529207495507843124558410190355936921089508813828731421575331604693258383<147>
10213+7 = 1(0)2127<214> = 175961 × 621387249124418601889<21> × 17092149564919270373453075286547<32> × 9887424371435131481601848738042421079<37> × 888760529453929323955390238573982849294481<42> × 60891493075416382475414314350635809376802761811450985676950378414665155037811<77> (Makoto Kamada / GMP-ECM 6.4 B1=1e6, sigma=1835401332 for P32 / August 12, 2012 2012 年 8 月 12 日) (Dmitry Domanov / GMP-ECM 6.4.3 B1=3000000, sigma=3721628230 for P37, yafu 1.32.1 for P42 x P77 / August 19, 2012 2012 年 8 月 19 日)
10214+7 = 1(0)2137<215> = 107 × 9857 × 446062277016547<15> × 3517964019280859<16> × 3253760182616531249<19> × [1856944976278395667123192070487946069156447093010621783209793294555579312288239284711997737207228340795451643962992701085385021345472128898919265440869570229109<160>] Free to factor
10215+7 = 1(0)2147<216> = 18850583 × 190039772759<12> × 283862380874857899509<21> × 98338339373345944708705151285132482852408296637818666273259747675999862136798460151717673880100852517416668632152985266433292062638731602405267551616433053462510954090621615259<176>
10216+7 = 1(0)2157<217> = 1798055373082340300941661966269<31> × 113455382572206536142518188966027499711<39> × 154238541829341266823050790864600342294839<42> × 31781831622626009581695546063359518462468028005943060801364420591661885368234231588458901008598930145582907<107> (Makoto Kamada / GMP-ECM 6.4 B1=1e6, sigma=1146544553 for P31 / August 12, 2012 2012 年 8 月 12 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3336176692 for P39 / August 18, 2012 2012 年 8 月 18 日) (suberi / GMP-ECM 6.4.3 B1=1000000, sigma=2663209420 for P42 x P107 / August 20, 2012 2012 年 8 月 20 日)
10217+7 = 1(0)2167<218> = 4474044491849324153299<22> × 4823464818973949690791<22> × 11799485926099981556090153<26> × 1760027559974334135939378172426433<34> × 22313003375927907784441241203174219885382546232493597522286650252867793468269306677140539845119807841909009431729027<116> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=137252661 for P34 x P116 / August 18, 2012 2012 年 8 月 18 日)
10218+7 = 1(0)2177<219> = 67 × 29611493 × 12694596640213230134611389284009141863<38> × [3970507185418286281169702855869950032070484656674285177545536482714021926227359166638837641054185911137047837605120569571768992052494501997088369091813517136300711705375919<172>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=554361282 for P38 / August 17, 2012 2012 年 8 月 17 日) Free to factor
10219+7 = 1(0)2187<220> = 19 × 1777 × 2121607 × [13960276870145580159016114271940468683858653418995777643356378245811503948595607218060926504955324011972212212792509200154118703679808412247130543584488347609375076819259159215303145955968929563916840633649227<209>] Free to factor
10220+7 = 1(0)2197<221> = 183383 × 61878853 × 7550963806992358321<19> × 116706832795938518859432016077679852850831943488373282472653406752885041915050153615474536048747243482045234868709347606553095739806796315539837790424841059873891589365582406865329344447533<189>
10221+7 = 1(0)2207<222> = 6410119146611<13> × 421904179539677<15> × [36976012110099209828503425953965578455715624235204004173628050423736032762429077798145699564852588350058731454274457476343916284533277152774659380547089291557133009043342301660392089355776258881<194>] Free to factor
10222+7 = 1(0)2217<223> = definitely prime number 素数
10223+7 = 1(0)2227<224> = 277 × 6521585787459797321<19> × 23608631583440984968143928125793<32> × 154831267666812370374197199595087577<36> × 135208833217523044778509513488652316131<39> × 11200372582398659757242356085117408795296701536981641593627856934032594452887405119499842206197081<98> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=257754221 for P32, B1=3000000, sigma=2329292815 for P39, B1=3000000, sigma=3049764589 for P36 x P98 / August 18, 2012 2012 年 8 月 18 日)
10224+7 = 1(0)2237<225> = 43 × 53 × 2053 × 25453 × 244813 × 38837282895702714479696738029<29> × 195373415167509611477165496726227430917<39> × 452042184940625699529132389337841585889009252782965391126275899046421180084120105694675787295311498304502491783893067536729288305217106445093<141> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2727197454 for P39 x P141 / August 22, 2012 2012 年 8 月 22 日)
10225+7 = 1(0)2247<226> = 17 × 1097 × 3694593766569019637<19> × 3024741680222468129025596184654851<34> × 4798322865303586755458374904420412240347855307014486989043166588086773144805586388896429121582198108053397673156778728147963096034113752110283818455566908128712502098689<169> (Serge Batalov / GMP-ECM B1=2000000, sigma=2319470202 for P34 x P169 / August 18, 2012 2012 年 8 月 18 日)
10226+7 = 1(0)2257<227> = 89917 × 100813062531644703227533067374103481627811759<45> × 1103167308289519722265743388103169549571636407081628900530816960584054418468092100012792593274233423431242369532433355651407775269040555579105879762845827125892291376480279384669<178> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4209918557 for P45 x P178 / August 22, 2012 2012 年 8 月 22 日)
10227+7 = 1(0)2267<228> = 2306559803<10> × 374437682122381<15> × 651269506121803<15> × [177784947821169995532239859537945919334259528868111708188310836787795582821436743077246580613241539204859433554239766835390696428829806758460997040460436002702521994230961314880665753019083<189>] Free to factor
10228+7 = 1(0)2277<229> = 8606621 × [116189617272562600351520068096410891103488814018881509944495057932724120186075348269663553210952358655040113884415265874958360545909945378099023995595948746900787196275983338873641583613359993428315247063859324118024948467<222>] Free to factor
10229+7 = 1(0)2287<230> = 306511 × 13830567536408332607180069<26> × [2358923914741377835075411602186199053139018059180471195313458425288326117760088604313648071747189252552395384585651686678643998614136074042606206886061950455701727171526840754957846901471564725109973<199>] Free to factor
10230+7 = 1(0)2297<231> = 23 × 29 × 959750037439525397759484661369<30> × [156212588312304457146729276408887960630437718470666379805091796322189943358929157846254044448018999455683226725561008850427794848520498671497023876969517507033894416429629181938023463364140710755309<198>] (Serge Batalov / GMP-ECM B1=2000000, sigma=2054716733 for P30 / August 18, 2012 2012 年 8 月 18 日) Free to factor
10231+7 = 1(0)2307<232> = 47339 × 888090547 × 632253708115157<15> × 37621169149062896568925777722382192030744338082297642493737070860721210701060001664230707958978145623727506354493460113368944825712462602331686576611437843174169883628943711570570260928730330097225661947<203>
10232+7 = 1(0)2317<233> = 2557 × 569213 × [6870596784385779513324725817619069834958735721313633013755104466080904914430080207601073000612312394842209740273158892174283837040406998598475893728964538590256502607448849157552946565669709247014121599962111681796697555727<223>] Free to factor
10233+7 = 1(0)2327<234> = 612 × 131 × [205148825215252404857103585796315937396784497313576133806269758396228543997242799789107007678720527806897513801387216356105536761643734447154688368677056770834401816797996106275297414509355812173941585923508209030240988324980357<228>] Free to factor
10234+7 = 1(0)2337<235> = 984703357325437251752936096672493187710742553841186000937<57> × 1015534264771991957179510651659935907652673752027010248780674926537475753133199751946144672133097705428028391936104849029250003634685021826518074055207474254522135526632807208111<178> (Youcef Lemsafer / GGNFS (SVN 440), msieve 1.53 (SVN 965M) for P57 x P178 / June 30, 2014 2014 年 6 月 30 日)
10235+7 = 1(0)2347<236> = 353 × 3479489178536824951<19> × [8141600805302571547118833052839637698494132592361753247395753745760190091795686916470408372364956457745617541463939116079377188402622227585331643780839370666841109216432224787859316174156029298690290107691496839569<214>] Free to factor
10236+7 = 1(0)2357<237> = 284763241834485695803469973689075429844141721921<48> × [351168919681436550706639691350830523008589466749679249724568460421524488492082724180746474525452751729974385283201466582956436925397979941925041577525330888871230635507120823429547234455367<189>] (Polybius / GMP-ECM B1=260000000, sigma=3046722851 for P48 / May 12, 2013 2013 年 5 月 12 日) Free to factor
10237+7 = 1(0)2367<238> = 19 × 53 × 35787743 × 28442001201736319629<20> × [975609608928684116081475294054601386962662295325820947600168346181775986984108159187562986021878113053168198199610838767816804409957034706995201379252645401804140614390190994117143745115646109044126528537683<207>] Free to factor
10238+7 = 1(0)2377<239> = 121149569 × 363571499 × 6244741374710587595814503<25> × 36355811161363965297454726945418790815694390351904689083479961079601432405761220631247482092813413317878063172802416143537865718085652718468283982738501330496786285458742586631913597431925215704099<197>
10239+7 = 1(0)2387<240> = 2111 × 751605145940875491128943989759874534529280881<45> × [63026330400313135539742790154239175277903353880088382458511131520940297482746932010039043155723308072711305349377137461027980594344835671821685339354112008498799840178437299235785735725327177<191>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3738880862 for P45 / August 21, 2012 2012 年 8 月 21 日) Free to factor
10240+7 = 1(0)2397<241> = 113 × 2027 × 348649933 × 2548903157623<13> × 4912752512521310145717290699621260555281827579297386147764504435324541446192775693313070522363556951711274569016237144223965810507392746834347290449186893836512505560568382384727142719847555760379078158328592831823<214>
10241+7 = 1(0)2407<242> = 17 × 577 × 1723 × 510359539269161<15> × 225733244339550108373<21> × 5135919734183317320187323003300559764720137081751500971460249813646570009841373099173305399527388240879753388458552501873456977898835564989222193278682379733944567665426845585285955645155935774041817<199>
10242+7 = 1(0)2417<243> = 1601867 × 1296501918262629932336916762401<31> × 48150453488568016744216397608115306014855977095231407234474339496783556372115764249615910777658877054723338780120776863804276173471550556479935199709896560000792162287504532403958207923580668768608812832021<206> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=582819795 for P31 x P206 / August 18, 2012 2012 年 8 月 18 日)
10243+7 = 1(0)2427<244> = 223 × 1160778913145587<16> × 1312103532376461827968123<25> × 322587771842457339671504825737<30> × 9127033013347591207897317526117723692717171900966408365856348787659772361393820927175279259017775562492111563316217915057237657443638325379935731637964931519466661190864657<172> (Makoto Kamada / GMP-ECM 6.4 B1=1e6, sigma=2516489218 for P30 x P172 / August 16, 2012 2012 年 8 月 16 日)
10244+7 = 1(0)2437<245> = 71 × 56081 × 352457527 × 731094454574171<15> × 516839746675286521<18> × 366705209552896303541<21> × 51424803165033478609401796923340380551593412550306671895800764976608899747139487240128411250750900258037467841932205445092964734599203053740679371324711547444476516335589461961<176>
10245+7 = 1(0)2447<246> = 43 × 47 × 1487 × 5179 × 87719 × 209148671429<12> × 9585271833983<13> × 6372113694757314971141508664643<31> × 18719993955682779090894401305867<32> × 2314976817016370033066928900744259<34> × 132308493489887499583840408395800897454315310688442636330101006353638482645741002200148915151384736946174947497<111> (Serge Batalov / GMP-ECM B1=2000000, sigma=3161508023 for P32, B1=2000000, sigma=2768259145 for P31 / August 18, 2012 2012 年 8 月 18 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1821267549 for P34 x P111 / August 19, 2012 2012 年 8 月 19 日)
10246+7 = 1(0)2457<247> = 60165844998490249229875772005850193896086858292743579409020446596677606993520932226579989079718232269908449<107> × 16620725596475760512784333837955342706476327308083513172242469232231446977901981919077023860933002718387640889541806766973201100566876698343<140> (NFS@Home + Dmitry Domanov / ggnfs-lasieve4I14e on the NFS@Home grid + msieve for P107 x P140 / April 10, 2016 2016 年 4 月 10 日)
10247+7 = 1(0)2467<248> = 59 × 1697 × 2671 × 4457 × 859751 × 23850904699657319<17> × [409140128459620503477968910783226760740407704555391877386205359093562872660951857179992335825091521186336584016783801696798926097110612232577823070435136318019391947943186963864372246562476165994436831992039684163<213>] Free to factor
10248+7 = 1(0)2477<249> = 131333845273<12> × 761418351774691359759620673449586099822654204241225117882945883583593960731743205418482226883362411728995382705686112527564324945903619053933218800349835699278391294315636435161334484655921599561281429929734940975666714955638333874339359<237>
10249+7 = 1(0)2487<250> = 19427 × 1355807 × 374970359 × 2057745329048470643303453<25> × [49204840105445152255928549433609915772821141162168137636551042827812782086027794457239925858591939644882845362789634450448361125534202405309477346949346407437404500016719070844215715271583601170489256597769<206>] Free to factor
10250+7 = 1(0)2497<251> = 53 × 109 × 521667152507<12> × 2724751732734922986275124654575904700579<40> × [1217803459341462110542580636789102035067754434822297349743887834574550369801059114598804620868627145926806135676315886305115074832555994626098921934709350898486787403667348240314512249092818851047<196>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=438731613 for P40 / August 21, 2012 2012 年 8 月 21 日) Free to factor
10251+7 = 1(0)2507<252> = 67 × 1730831 × 1115352281117<13> × 773140586535089327995726948914346409373384785801978543094260108605896263205591417456474191858182038349495648821532465029211512973874435261004706965344534268344298335791546196701392782862388271421884158891905436569048121415530105823<231>
10252+7 = 1(0)2517<253> = 23 × 4614820753<10> × 47375924795691641<17> × [198865582357731982296995956694606562772809372476216518468936823508345668821873990623619898855861368090522469759832248763171807733898045093548767929230947008444391655283523093715420478950948793727047429664850404928589961189833<225>] Free to factor
10253+7 = 1(0)2527<254> = 338040037218406183<18> × [29582294695876642360835017608029415496403182590201676795527029749110073488630641708569827329626832409698028517897604563274962020228785993452787559735457248125594935599906189548469591436721630233214483724678520223263794921276282871632929<236>] Free to factor
10254+7 = 1(0)2537<255> = 359 × 6693492333719<13> × 15128334358221270520941692841781<32> × [2750816791073911802687531587560387779570684079392449290310118802715723161216555073131825476907550158302230997391222084588611447110518430880094728087147074557247617404532711537364472695259615101061752624826507<208>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3773388108 for P32 / March 11, 2016 2016 年 3 月 11 日) Free to factor
10255+7 = 1(0)2547<256> = 19 × 2749 × 10133 × 13997 × 35521631284169<14> × 2218775128374043<16> × 125418604028175277<18> × [13656219870462416587108883573965475773662886595743175852003044523601920338724097549149255875716050600038661535379999582220855309493260186802430008199478751633225689210585181452326755607006826584183<197>] Free to factor
10256+7 = 1(0)2557<257> = 905143 × 2513452389651392939248132589<28> × 4395539020267142949113320754754791277104592740310345539040334429496645356488634470876421276650089499668672975893380182509689181204997871075078792481708473111463059248662768359135168892122348624924285162564610931455583869141<223>
10257+7 = 1(0)2567<258> = 17 × 103681 × 2671577 × [21236561780631839990249169084651544169000899204869671681940612808992230549387820571332712344107209537292922785595501421609483662900174563574949846029091591171988260225883523224794257853229768106420590762599242545303182370672050868231560194899183<245>] Free to factor
10258+7 = 1(0)2577<259> = 29 × 1257622944969436144187808787<28> × 2054652468153464138151137947<28> × [13344833991558939087610561989623183726355295659944828462238172139576346904584755728200332622819887046264961868873896814878768669912661927774697930480136191428338056226341926099904756642035022461554108147<203>] Free to factor
10259+7 = 1(0)2587<260> = 32143 × 302681 × 654167 × 8512901 × 22997844485509<14> × 8025555157249548619753249563440686776879912199975786803290951372215746539131281920197795869749547546244176778898905428844954276552726143607913238389921143974590874899317636059087525654365994281992796724002251807032954353743<223>
10260+7 = 1(0)2597<261> = 149 × 710175419 × 89657383592542053343269989786818818378161<41> × [10540519945693234448723920550258485060899155747319239995305980081611741559992817405951907258077232671066320046244168907540302180715154859494003879719394320239674559008104940689226554034317662376057530968930977<209>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3430630776 for P41 / March 11, 2016 2016 年 3 月 11 日) Free to factor
10261+7 = 1(0)2607<262> = 131278067 × 225288857 × [33811786266988293780284224167484495608154186581245586412795345880370661981772579697351624925382148790137768151326144772377063285376167285106032687437901871134140986576252942053587572822512287097258292193625930644166847008479644073834127125113253<245>] Free to factor
10262+7 = 1(0)2617<263> = 208695986713<12> × [47916589856383109507428872739331046534153099720609096426060222587218621901588095633845529798872783558969386801981075046587113044825828126081852604983207931210391104728727951329245837542116012870852642192562659622513408998426732482155836673460928241439<251>] Free to factor
10263+7 = 1(0)2627<264> = 53 × 401 × 36473 × 1014019254023<13> × 11625070002142853<17> × 71963667076974503<17> × [152073382994904755146396235671730349449471918974624764073578433367470617360189282504414888361513591192563908564352640604755767582292341609882877648729864784624944556774977119414160478198940017296266586860117479<210>] Free to factor
10264+7 = 1(0)2637<265> = 421 × 541 × 4957 × 29244769 × 932112116092764019281096683751659536774717<42> × 32492667893162092933115760533928611419304344722994603826546039234474842236400086147050657805936319274979902970864913465236360338859211224893818308689745714921619865714327921784338285830709629844148384101567<206> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3296325513 for P42 x P206 / October 7, 2016 2016 年 10 月 7 日)
10265+7 = 1(0)2647<266> = 232174488404563594032177746901483692347933<42> × 43071054312285247587869139171876015093238076516345641159433247767711241289342280802545716685717664666985745750980552384147968633591356965510316007465528206219653650171701698328376625801521851750047692286334333941231182840179<224> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1563071807 for P42 x P224 / February 9, 2016 2016 年 2 月 9 日)
10266+7 = 1(0)2657<267> = 43 × 1121737 × [2073196654250361010916396250988733399370175295618665827049664317327128725671736966242823033737274278381922255913280340077227819288818497873242310187080912366578651866972673257096225619025941308507605034724903700533709234293633186123240636080782605200062336877<259>] Free to factor
10267+7 = 1(0)2667<268> = 107 × 353 × 3049 × 548107445591073043387633<24> × 6972750484418574201745078367773928410037<40> × [2272031071778238771854904315869341640054354756749720926008208467477699743184354975437125086818152933819985593392992137393348366745172406682781706144678389739201855064943128642297542535320183084073<196>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2524399395 for P40 / March 11, 2016 2016 年 3 月 11 日) Free to factor
10268+7 = 1(0)2677<269> = 2834308577667425395468539846381207182807833<43> × [3528197345480915676388381951211440307964386074805515662098556579754497326674396950266724112565873673173082167784133779681866289176224772359344656940282843613062598657305992628404697278712764559259221587267318773573607210856479<226>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=83780972 for P43 / October 29, 2015 2015 年 10 月 29 日) Free to factor
10269+7 = 1(0)2687<270> = [100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007<270>] Free to factor
10270+7 = 1(0)2697<271> = 1583240722995397<16> × 588787962715795550129<21> × [1072739137083893038618808271368777881530122564863759770216992328965726042760283724603569937049751140611510091716036405534696003304354673512126728344663833654103087165234627620513582206389156771461028711158068429869461155364293587732939<235>] Free to factor
10271+7 = 1(0)2707<272> = 631 × 29207 × 2759819 × 196608862193165302790297055024185196394298483649646834242180426656431888561964875524708654405145298259459794055914169214004890061870231597034900280389966259902513177828015354619515149095381740401638777614077623856698538358186996009814738707279157766563480709<258>
10272+7 = 1(0)2717<273> = 6199 × 281733091751269<15> × [57258570635996889619582329931720371645692611945678218590272313792450435477903044893825442209504482923751249514998838332194259485260570774582707417001669560347085362951555756891456580925920124221732306951022636318781761933069217908801598581894069214901597<254>] Free to factor
10273+7 = 1(0)2727<274> = 17 × 19 × 98663 × 1534969 × 52678039651<11> × 11069745574083451365647<23> × [35057125869540929151446264470989150222398813114170214795073041123091454026306554794731517119218070639754729300326286404331836336354787710335732193055862558280732050935923727367686870953998543909038163137790136940827473236546351<227>] Free to factor
10274+7 = 1(0)2737<275> = 23 × 3396229 × 2035403687<10> × 222286097423671<15> × 69982809985681126493<20> × 4043160328916230942429459202654792380936928506437092185965324185904932549299329812550250902189102979343235989710643611224663960999762315960775273766019381824574897069642622251268971307217739431797539280031252766577948164961<223>
10275+7 = 1(0)2747<276> = 419 × 1069 × 7930233863<10> × 2051701894000548959998679<25> × 37942008616382475136206463<26> × [361649358653691881715446271729276894283863227345803429343554374095393870361201959710958408727227716549244340970751592621865955495092727473443937964804629788866430320161119648440634627302605645874738022778589887<210>] Free to factor
10276+7 = 1(0)2757<277> = 53 × 7145881237389991027<19> × [2640391562845694936810003210769008198530429194902669205153147117973817748807671588365105714905063377295364054653652160725752430083338304562545220998116552737758645324712906507564351128557559697630347867679742835825242223312547985757910369952600915767924297<256>] Free to factor
10277+7 = 1(0)2767<278> = 32381 × 745687509764851<15> × [414145431184128757774447961755189176040853272860687775883544201399787225679625017566278782601198726227694824743519522770584686900829807574749120516838945560721903934978060631904874481429095106062090971293591211167404145756940790657030717303839042549152289697<258>] Free to factor
10278+7 = 1(0)2777<279> = 317 × 331 × 319897 × 2599591 × 4425165622103429851<19> × 258981070784598780379681685181218007654641528226937154576357150544975160075047024430053845103330099200472279956011866335724831890335848968792364393731496905864423733848001769770311374222347382803825218326376450780128141524806165497831938692533<243>
10279+7 = 1(0)2787<280> = 71 × 313 × 1553527 × 359427697 × [80587367271422666729615493620102203107186779182905657081306526883243824558634825124826703235618201374073865874559687680427714460296488127533900346088896013876445474811659183545964944724600490351503683562562609781497073317939331515520256009215300791092330670511<260>] Free to factor
10280+7 = 1(0)2797<281> = 193 × 124777 × 1783154521<10> × 325406629624870524000467<24> × 127116613554811557937834410527313612679<39> × 5629767518005703230535579359073273221357731394288265918822246778529749055760973357347290891698074714956495266734489364043213399186602736263867088231850100806040787543782489369365635353370344312375741979<202> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3741025497 for P39 x P202 / October 7, 2016 2016 年 10 月 7 日)
10281+7 = 1(0)2807<282> = 151 × 13120608155150698808262422393<29> × 50474158499212697303039162922493398094552529359888145248176426665407462428720621712796735816024210670981635151999350246205904180699565894128161815583936975733707302422361811070337345919844910401692174632357759251106844444880129087154910615105422639449<251> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=4242791153 for P29 x P251 / October 29, 2015 2015 年 10 月 29 日)
10282+7 = 1(0)2817<283> = 221957 × 41421861671<11> × 10790823489289<14> × 10079684790509331453500219512790079585347668505681116838289914482375064518260399065570307265849435135238655703495513305505502734260646910061396362549745115048091066693845767296287079766165142785128111441565057253307267501786224525704726031698728760297029<254>
10283+7 = 1(0)2827<284> = 163 × 3023 × 38550235163047<14> × 191464256904499<15> × 2749536607107370279493752630222514114168312243433482993365626434965731172185124938128936415055633702255612982786474442827558646570338883965257530220673771177089223799811517991461444062303227528737814407572577357470564189562893365444243507477681935431<250>
10284+7 = 1(0)2837<285> = 67 × 2179 × 7406682991<10> × 20222368763<11> × 4021551203247712347088840648953189590653<40> × [1137152162849427076175055396277117716712771685316234338221072353715908863017709031093120397840374269974895704962615494578491035907688898931941320539938676903910506093481160695989828600545642371800203421364279227439462351<220>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2092481795 for P40 / October 3, 2016 2016 年 10 月 3 日) Free to factor
10285+7 = 1(0)2847<286> = 181 × 205873891 × 8063095323809157744159257092782624719<37> × 197105360319560471697426868587924369199<39> × [16885733202937274603989367107279078992009703677300261708828922011274460855433795559325177200509259810997663295438691223649867293883937345929658860754406334391572571147125355499246639080976330964020857<200>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1234554811 for P39, B1=11000000, sigma=1607881376 for P37 / October 3, 2016 2016 年 10 月 3 日) Free to factor
10286+7 = 1(0)2857<287> = 29 × 56450227 × 1053466877<10> × 31830798153493521499<20> × [182166240548637781807809475307393757776306077069649394257359971664384523813919277131757321701457432767398690712234427282591582876462513238378605406243731321572655093485417472043532548284673685174358298436330625179909092633038731267299199514338607823<249>] Free to factor
10287+7 = 1(0)2867<288> = 43 × 467008441 × 4979741673124998632096085778019907004655837314044170239820588815279211185283131122896182472631900109936775908470989176054762792447217020107003182202279682981894618922535332892185023347809900347350242752544186460059254893315380587098051149348173852834712093740068712884804800189<277>
10288+7 = 1(0)2877<289> = 197 × 751 × 10487 × 6180007186457895995108200320929<31> × [104292622627446002008996073802858390631718230617875219651786788445198075441914017904502504597846580226014089690159837155338604831559446158303714028496037114413737349816959651752636087711067362681044973798433988639226591963394984842259105092571741747<249>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=2934631076 for P31 / October 17, 2015 2015 年 10 月 17 日) Free to factor
10289+7 = 1(0)2887<290> = 17 × 53 × 24883824018587<14> × 119567786327378028067<21> × 413059313437139599616825460052243<33> × 139318505896914982289766090704255740190998823<45> × 64822036610941699055451909565787926907033578862748025860381044383864788723919226773991703761953511572710849748542532769947211182236512142523363072878775206041737025378065996847<176> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3495843492 for P33 / March 11, 2016 2016 年 3 月 11 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=57325460 for P45 x P176 / October 1, 2016 2016 年 10 月 1 日)
10290+7 = 1(0)2897<291> = 179 × 18439 × 410029 × 297937999 × 490953604368950944132152476015421061<36> × [505159682077368953835676914859984145758595357122164359262717382960076944744337536314094304399604942380151197979126138907796228497341590874722924233579545523040176188873018730379332665018221652534163006497933951684899401800391895245237<234>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=610982677 for P36 / March 10, 2016 2016 年 3 月 10 日) Free to factor
10291+7 = 1(0)2907<292> = 19 × 47 × 36277137549915276667<20> × 10278516393325336345010658136943<32> × [3003205817358967737414693280501613468104491224098355833719343544173192183141873988107158972975887163593634341908663063063150499789451060694109677976606433221157904007793523406498971329373919412932545566637748015577932230179992641624127879<238>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=601765879 for P32 / October 17, 2015 2015 年 10 月 17 日) Free to factor
10292+7 = 1(0)2917<293> = 277 × 905587 × 6244495541<10> × 4427985363991671326406573932281656437<37> × 1441738563037211443127637457787338484164212652999514567084733511433319497404479885159746836821761434383476392874334395307925341735031947926533472366130971331412251454919868542103809831170960070584210977482671284302042053635545976114590129<238> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2160355896 for P37 x P238 / October 3, 2016 2016 年 10 月 3 日)
10293+7 = 1(0)2927<294> = 61 × 97 × 243612952411<12> × 303667240867<12> × 53751100053318008951<20> × 656251843244704730980072705031028407<36> × [6476527576801624808042760561462553925741134824216111920393003434073485977793067971721995520729844631865675988005354469439987903584196770717410496128056935224968177771959314309515565163508569579723374066792495219<211>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1454017237 for P36 / October 7, 2016 2016 年 10 月 7 日) Free to factor
10294+7 = 1(0)2937<295> = 32831 × 9528771357512543257680843383633<31> × 693141915694047362220688884010433<33> × [4611655109517394275037994080600468933149887937739865866444565163525498432932912120125433421131794878485008715506666326117464039260067727359881582320020637162389692204901039159289575570444734650198382812079683755870374764732073<226>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=191098936 for P33 / October 17, 2015 2015 年 10 月 17 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2648019042 for P31 / March 11, 2016 2016 年 3 月 11 日) Free to factor
10295+7 = 1(0)2947<296> = 229 × 23687 × 87223 × 284659301 × [74250273729116773443754730267431746086377906238637005469806075806290493089732892320908571699593105245685474689772496780372451923905549623378124862088769707419404417148880632033664359968108951452038078249461394211615306941128525859078046873923792218108540351304354470133487583<275>] Free to factor
10296+7 = 1(0)2957<297> = 23 × 280739713 × 21407975929<11> × 95025755625721<14> × 7612921873002437833395497792792940797717135226392693072102832910495223190536077619867438319311224894573841418002615476526545574312109752623060624261427801150552407322167795164287118031309771168378150925110634276061985513425243992921732440842803194902802409470177<262>
10297+7 = 1(0)2967<298> = 5589297353<10> × 22050849401197<14> × 87670540662146812169<20> × 92547305119569763095645153942718436831677427692379748089578646618778386363563034085668273370897212429225228912699924281816876189439328242581196688376916264083489370782310585946100551592899780378276289219363533799163644746593289489613890429059232229089683<254>
10298+7 = 1(0)2977<299> = 203652101 × 79226218413349426729<20> × 415882427366484001151<21> × 477796674140237856713162753<27> × [3119094161103169181109845738846973062869205374943519365587540219044090865710532383200404106025079974244613797872396497996255799163070934662768336382154240694375319847384973641546460837093516285933164432399147345465067072861<223>] Free to factor
10299+7 = 1(0)2987<300> = 353 × 4397 × 267739 × 2732951110217<13> × 629176656913882789<18> × 771376113695445259156857125835701039<36> × [181420575978226236461745953412934609124961112090553314359672413049309497571823909219215511486471779883499839535733917979948110835759770452299245886238531171869215359012288442479245248541904454358545019685767481626154031699<222>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1839912160 for P36 / December 28, 2015 2015 年 12 月 28 日) Free to factor
10300+7 = 1(0)2997<301> = 42476743 × 186230868979<12> × [126414566990696551235364876640931274570219280548984935332378883186860216243350941329261641028453438136304719102418539466066574614831431743567067649846077491636256705875687939563033176898452336919040109559406318614921386944188244042297489112062517800418299601970223016120490951819131<282>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク