Table of contents 目次

  1. About 11...1101 11...1101 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 11...1101 11...1101 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 11...1101 11...1101 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 11...1101 11...1101 について

1.1. Classification 分類

Near-repdigit of the form AA...AABA AA...AABA の形のニアレプディジット (Near-repdigit)

1.2. Sequence 数列

1w01 = { 1, 101, 1101, 11101, 111101, 1111101, 11111101, 111111101, 1111111101, 11111111101, … }

1.3. General term 一般項

10n-919 (2≤n)

2. Prime numbers of the form 11...1101 11...1101 の形の素数

2.1. Last updated 最終更新日

December 27, 2014 2014 年 12 月 27 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 103-919 = 101 is prime. は素数です。
  2. 108-919 = 11111101 is prime. は素数です。
  3. 1012-919 = (1)1001<12> is prime. は素数です。
  4. 1017-919 = (1)1501<17> is prime. は素数です。
  5. 1086-919 = (1)8401<86> is prime. は素数です。
  6. 10146-919 = (1)14401<146> is prime. は素数です。 (Makoto Kamada / PPSIQS / August 16, 2004 2004 年 8 月 16 日)
  7. 101428-919 = (1)142601<1428> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Makoto Kamada / PFGW / June 4, 2005 2005 年 6 月 4 日)
  8. 101949-919 = (1)194701<1949> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Maksym Voznyy / Primo 3.0.9 / December 16, 2010 2010 年 12 月 16 日)
  9. 104809-919 = (1)480701<4809> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Maksym Voznyy / Primo 3.0.9, PFGW 3.4.4 / December 31, 2010 2010 年 12 月 31 日)
  10. 1016922-919 = (1)1692001<16922> is PRP. はおそらく素数です。 (Paul Bourdelais / August 2007 2007 年 8 月)
  11. 1033102-919 = (1)3310001<33102> is PRP. はおそらく素数です。 (Serge Batalov / LLR / December 25, 2014 2014 年 12 月 25 日)
  12. 10125792-919 = (1)12579001<125792> is PRP. はおそらく素数です。 (Serge Batalov / LLR / December 25, 2014 2014 年 12 月 25 日)
  13. 10211610-919 = (1)21160801<211610> is PRP. はおそらく素数です。 (Serge Batalov / LLR / December 25, 2014 2014 年 12 月 25 日)

2.3. Range of search 捜索範囲

  1. n≤20000 / Completed 終了 / Ray Chandler / December 12, 2010 2010 年 12 月 12 日
  2. n≤30000 / Completed 終了 / Ray Chandler / July 11, 2011 2011 年 7 月 11 日
  3. n≤221000 / Completed 終了 / Serge Batalov / December 25, 2014 2014 年 12 月 25 日
  4. n≤250000 / Completed 終了 / Serge Batalov / December 27, 2014 2014 年 12 月 27 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

  1. 103k+1-919 = 3×(101-919×3+10×103-19×3×k-1Σm=0103m)
  2. 104k+3-919 = 101×(103-919×101+103×104-19×101×k-1Σm=0104m)
  3. 1016k+5-919 = 17×(105-919×17+105×1016-19×17×k-1Σm=01016m)
  4. 1018k+7-919 = 19×(107-919×19+107×1018-19×19×k-1Σm=01018m)
  5. 1022k+11-919 = 23×(1011-919×23+1011×1022-19×23×k-1Σm=01022m)
  6. 1028k+22-919 = 29×(1022-919×29+1022×1028-19×29×k-1Σm=01028m)
  7. 1030k+6-919 = 241×(106-919×241+106×1030-19×241×k-1Σm=01030m)
  8. 1033k+15-919 = 67×(1015-919×67+1015×1033-19×67×k-1Σm=01033m)
  9. 1035k+30-919 = 71×(1030-919×71+1030×1035-19×71×k-1Σm=01035m)
  10. 1044k+36-919 = 89×(1036-919×89+1036×1044-19×89×k-1Σm=01044m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 16.68%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 16.68% です。

3. Factor table of 11...1101 11...1101 の素因数分解表

3.1. Last updated 最終更新日

September 6, 2018 2018 年 9 月 6 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=194, 196, 199, 200, 201, 205, 206, 212, 214, 217, 218, 219, 221, 223, 224, 226, 230, 232, 233, 235, 236, 237, 238, 240, 244, 245, 248, 250, 251, 253, 255, 256, 259, 261, 262, 263, 266, 268, 270, 271, 272, 273, 277, 278, 279, 281, 282, 285, 286, 287, 288, 290, 291, 292, 294, 295, 296, 297, 298, 299, 300 (61/300)

3.4. Factor table 素因数分解表

102-919 = 1
103-919 = 101 = definitely prime number 素数
104-919 = 1101 = 3 × 367
105-919 = 11101 = 17 × 653
106-919 = 111101 = 241 × 461
107-919 = 1111101 = 3 × 19 × 101 × 193
108-919 = 11111101 = definitely prime number 素数
109-919 = 111111101 = 59 × 1093 × 1723
1010-919 = 1111111101<10> = 34 × 3607 × 3803
1011-919 = 11111111101<11> = 23 × 101 × 1931 × 2477
1012-919 = 111111111101<12> = definitely prime number 素数
1013-919 = 1111111111101<13> = 3 × 370370370367<12>
1014-919 = 11111111111101<14> = 139 × 79936051159<11>
1015-919 = 111111111111101<15> = 67 × 101 × 16419552403<11>
1016-919 = 1111111111111101<16> = 3 × 863 × 22039 × 19473031
1017-919 = 11111111111111101<17> = definitely prime number 素数
1018-919 = 111111111111111101<18> = 113 × 983284169124877<15>
1019-919 = 1111111111111111101<19> = 32 × 101 × 187573 × 6516633293<10>
1020-919 = 11111111111111111101<20> = 563 × 1873 × 10536862634399<14>
1021-919 = 111111111111111111101<21> = 17 × 213771167 × 30574505459<11>
1022-919 = 1111111111111111111101<22> = 3 × 29 × 55763 × 5325809 × 43003769
1023-919 = 11111111111111111111101<23> = 101 × 149 × 3826967 × 192927941747<12>
1024-919 = 111111111111111111111101<24> = 663563 × 214644571 × 780109237
1025-919 = 1111111111111111111111101<25> = 3 × 19 × 313 × 62278522006115750861<20>
1026-919 = 11111111111111111111111101<26> = 174388679 × 63714635461577819<17>
1027-919 = 111111111111111111111111101<27> = 101 × 25345883 × 145405223 × 298502989
1028-919 = 1111111111111111111111111101<28> = 32 × 163 × 773 × 567992851 × 1725063210361<13>
1029-919 = 11111111111111111111111111101<29> = 483200593619<12> × 22994820904280879<17>
1030-919 = 111111111111111111111111111101<30> = 71 × 8122440221683<13> × 192669343720057<15>
1031-919 = 1111111111111111111111111111101<31> = 3 × 101 × 138010751 × 26570635573192895917<20>
1032-919 = 11111111111111111111111111111101<32> = 251 × 636137 × 69587800968448276580623<23>
1033-919 = 111111111111111111111111111111101<33> = 23 × 229646423 × 342749969 × 61375146980701<14>
1034-919 = 1111111111111111111111111111111101<34> = 3 × 1078088663<10> × 343543516485684786734809<24>
1035-919 = 11111111111111111111111111111111101<35> = 101 × 1920713 × 1665459498961<13> × 34390585129057<14>
1036-919 = 111111111111111111111111111111111101<36> = 89 × 241 × 102251 × 923546544793<12> × 54855994062743<14>
1037-919 = 1111111111111111111111111111111111101<37> = 33 × 17 × 827 × 628253797 × 4659122973633441080881<22>
1038-919 = 11111111111111111111111111111111111101<38> = 1453 × 7215451 × 348892680107<12> × 3037641633995081<16>
1039-919 = 111111111111111111111111111111111111101<39> = 101 × 1100110011001100110011001100110011001<37>
1040-919 = 1111111111111111111111111111111111111101<40> = 3 × 97 × 3818251240931653302787323405880106911<37>
1041-919 = 11111111111111111111111111111111111111101<41> = 47 × 4947519993566538761<19> × 47782852761131217403<20>
1042-919 = 111111111111111111111111111111111111111101<42> = 39367 × 2630129059<10> × 1073119559514328740645015017<28>
1043-919 = 1111111111111111111111111111111111111111101<43> = 3 × 19 × 61 × 101 × 105121071700111<15> × 30098277796491050904283<23>
1044-919 = 11111111111111111111111111111111111111111101<44> = 523 × 1087 × 381791 × 51191820117374613635225363241911<32>
1045-919 = 111111111111111111111111111111111111111111101<45> = 605491739 × 67769771089<11> × 2707779211053166853110231<25>
1046-919 = 1111111111111111111111111111111111111111111101<46> = 32 × 6053 × 20395967309343596584083395031134444097713<41>
1047-919 = 11111111111111111111111111111111111111111111101<47> = 101 × 181 × 493928376319907653717<21> × 1230533849293963023713<22>
1048-919 = 111111111111111111111111111111111111111111111101<48> = 67 × 9522523 × 174152878675446718491111650424262735661<39>
1049-919 = 1111111111111111111111111111111111111111111111101<49> = 3 × 640933 × 9821621879<10> × 118897936610263<15> × 494841454628005187<18>
1050-919 = 11111111111111111111111111111111111111111111111101<50> = 29 × 24781 × 5714747 × 330768385573<12> × 452510296339<12> × 18075536547361<14>
1051-919 = 111111111111111111111111111111111111111111111111101<51> = 101 × 25932427 × 42422177106720482044006181916949424020363<41>
1052-919 = (1)5001<52> = 3 × 277 × 33199 × 2333641789<10> × 23484811033<11> × 734869463429888612181017<24>
1053-919 = (1)5101<53> = 17 × 169539735949<12> × 3855112594008290821296902078868098166497<40>
1054-919 = (1)5201<54> = 888644353855505197653449<24> × 125034397201805584893533412949<30>
1055-919 = (1)5301<55> = 32 × 23 × 101 × 1548922643<10> × 34311210698385687726195850571849490333901<41>
1056-919 = (1)5401<56> = 359 × 4363 × 7093781853297328134158737414655597245711507383953<49>
1057-919 = (1)5501<57> = 853 × 130259215839520646085710564022404585124397551126742217<54>
1058-919 = (1)5601<58> = 3 × 293 × 67189 × 5684521 × 8668873 × 5896819090913<13> × 64743491759402512916599<23>
1059-919 = (1)5701<59> = 101 × 709 × 3217 × 2766228297971<13> × 28199968651795487<17> × 618304169850611069321<21>
1060-919 = (1)5801<60> = 139 × 36288769887673<14> × 22027765450993247439339114196184779164359183<44>
1061-919 = (1)5901<61> = 3 × 19 × 93787 × 101159 × 10995287 × 1525742904401<13> × 122475024355194411347982391183<30>
1062-919 = (1)6001<62> = 661 × 84229 × 284311 × 251008081 × 2796488386720837541813627629824513690019<40>
1063-919 = (1)6101<63> = 101 × 10979 × 121063 × 3304546117<10> × 250466751359226528666182377855476264972689<42>
1064-919 = (1)6201<64> = 33 × 1451 × 1553 × 8369 × 3277905769<10> × 42524596427<11> × 491421700711<12> × 31855930447433996513<20>
1065-919 = (1)6301<65> = 71 × 311 × 641094519543777961<18> × 784904264222873588309502279442357173031861<42>
1066-919 = (1)6401<66> = 2412 × 753292366573<12> × 4367528902903<13> × 581465632889403385247324511740910359<36>
1067-919 = (1)6501<67> = 3 × 59 × 101 × 1519153 × 76720603 × 59930671573<11> × 8898159430854586527783782843165213359<37>
1068-919 = (1)6601<68> = 14566351 × 762793036575262473842015142372383523581925982087834565507251<60>
1069-919 = (1)6701<69> = 172 × 151 × 223 × 872078030589316897094467<24> × 13092497257214518138255051868477341799<38>
1070-919 = (1)6801<70> = 3 × 240931317541<12> × 4990146072173<13> × 13231753311043<14> × 550707797649127<15> × 42275728530585379<17>
1071-919 = (1)6901<71> = 101 × 8597 × 835247107187<12> × 45280634925313<14> × 21594384679199561<17> × 15668263563114520832863<23>
1072-919 = (1)7001<72> = 683 × 68018546853765484155419<23> × 2391715055937407127761364913388088715093275413<46>
1073-919 = (1)7101<73> = 32 × 4943 × 2277571 × 89315887276125239<17> × 122778897523609272758205043424129693135336767<45>
1074-919 = (1)7201<74> = 25248551 × 3228001823<10> × 91404155462351989315657<23> × 1491493344297436889277042928754941<34>
1075-919 = (1)7301<75> = 101 × 80369 × 2684893 × 137487061 × 7213038853<10> × 615538772867<12> × 8351895568454087350363374810823<31>
1076-919 = (1)7401<76> = 3 × 233 × 69757231902148267074278099<26> × 22787205880715226542188773629919510294421839901<47>
1077-919 = (1)7501<77> = 23 × 13693 × 365357 × 143824481 × 671399167342836221617850947008705062339418206175117065027<57>
1078-919 = (1)7601<78> = 29 × 306121 × 67329563919833228779<20> × 185891943359616573013646520802529795325098424567691<51>
1079-919 = (1)7701<79> = 3 × 19 × 101 × 571 × 2029 × 23087 × 429075893 × 11119333949<11> × 1512386228796185083409441373813765263031834353<46>
1080-919 = (1)7801<80> = 89 × 199 × 48679 × 10963879 × 1463011939121<13> × 803453330375490252930569493334644968637944923122931<51>
1081-919 = (1)7901<81> = 67 × 21019 × 911327 × 350375677063290449<18> × 247094142485502683035117533053298939308234055962819<51>
1082-919 = (1)8001<82> = 32 × 251 × 1039 × 1163 × 17851 × 22802551610390657031898141558665304461920354976348256133114846330777<68>
1083-919 = (1)8101<83> = 101 × 182804821 × 1915589059<10> × 5338012316836570523<19> × 58852721757726914922210089627816114965540933<44>
1084-919 = (1)8201<84> = 6553 × 18803 × 1111931811664483<16> × 221270360796429341<18> × 3665124884450714263815453254951072366037713<43>
1085-919 = (1)8301<85> = 3 × 17 × 3929 × 1027269379<10> × 2390088614359901151839586369973<31> × 2258431589486990779520449604019904595257<40> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P31 x P40 / November 30, 2014 2014 年 11 月 30 日)
1086-919 = (1)8401<86> = definitely prime number 素数
1087-919 = (1)8501<87> = 47 × 101 × 649189246274407553250745495989733<33> × 36055119694408822159990623451797873053448663671051<50> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P33 x P50 / November 30, 2014 2014 年 11 月 30 日)
1088-919 = (1)8601<88> = 3 × 26849 × 6134435969815640090322169777<28> × 2248710165769798247584551232810846917187854284963510479<55>
1089-919 = (1)8701<89> = 243682013 × 4056057959134854517021<22> × 11241644951692706568531435816087005104432215316009114870037<59>
1090-919 = (1)8801<90> = 144563 × 6272515439507189<16> × 476279727254290636301<21> × 257274357984145143344890353243096805194803706943<48>
1091-919 = (1)8901<91> = 36 × 101 × 1301 × 2734633336459<13> × 723118590619759<15> × 5865738005492380546843370993676937147657217768335413049<55>
1092-919 = (1)9001<92> = 283 × 439 × 39679 × 2253957985367144592742057114623804961283693023765716070486702478616358723744468687<82>
1093-919 = (1)9101<93> = 467 × 468276920199745662751338225024877200896794693<45> × 508086734996450209468930017381393664287206371<45> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P45(4682...) x P45(5080...) / November 30, 2014 2014 年 11 月 30 日)
1094-919 = (1)9201<94> = 3 × 10337 × 12829675337<11> × 357907289629125577427<21> × 7802890443274669497818458734685244532807950616990332162909<58>
1095-919 = (1)9301<95> = 101 × 109 × 1951 × 13814221 × 37447769062848977670702926071217251698633329932547900004847401914497103007971759<80>
1096-919 = (1)9401<96> = 241 × 11909 × 2015303 × 6018241 × 5990634967<10> × 179364671685292864395797<24> × 2970608793187650131650769707552607109911077<43>
1097-919 = (1)9501<97> = 3 × 19 × 1990249 × 980764603950015070002177243109173427829<39> × 9986434016963102882657633529981163978400864146633<49> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P39 x P49 / November 30, 2014 2014 年 11 月 30 日)
1098-919 = (1)9601<98> = 20329569596116486098988836937<29> × 546549254699107980098230298386908742466524642012474796622994428233173<69>
1099-919 = (1)9701<99> = 23 × 101 × 431 × 1170720607242744957319<22> × 24226563950786917232059<23> × 3912784460670049748591704213626835727952475947637<49>
10100-919 = (1)9801<100> = 32 × 71 × 1076051 × 1851391 × 872821888254057926682701523137180043766295017289670665410678091843379385300309463599<84>
10101-919 = (1)9901<101> = 17 × 4373 × 161683 × 2608763 × 810768978631<12> × 187314471772134309239889068412017<33> × 2333252024360674269818328334496101500367<40> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=636361756 for P33 x P40 / November 25, 2014 2014 年 11 月 25 日)
10102-919 = (1)10001<102> = 131 × 2113 × 119768493289<12> × 3351537721792405148412164161307436430523160378208154725024308094283722090285656417703<85>
10103-919 = (1)10101<103> = 3 × 61 × 101 × 34437773 × 1007106713<10> × 36809860233197<14> × 47088006941524598708175834018188467223090870664461686514523137476399<68>
10104-919 = (1)10201<104> = 586567 × 16153776520799<14> × 89246328360707448219151<23> × 13139397037160203050686001768229773783084534431524100374098347<62>
10105-919 = (1)10301<105> = 1913 × 4710371 × 12330690752209253360146032697095105306045238441898643151217882262945319572315944023889583742487<95>
10106-919 = (1)10401<106> = 3 × 29 × 139 × 499 × 2671 × 1250021 × 38207913464067241899917181119<29> × 1443372323369358144314805648467157792832232733492986759702767<61> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P29 x P61 / November 30, 2014 2014 年 11 月 30 日)
10107-919 = (1)10501<107> = 101 × 110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001<105>
10108-919 = (1)10601<108> = 2957 × 2930760347<10> × 9350411089<10> × 160977085770473522166062339<27> × 8517871679656689962948821016290192227862189595166124494289<58>
10109-919 = (1)10701<109> = 32 × 163 × 1833451 × 7582935407<10> × 3094432210822387<16> × 17605150389219811999437005997196834593645652559864362492269017707965367417<74>
10110-919 = (1)10801<110> = 409 × 2588703025609<13> × 3324200403913342937<19> × 115291794394674898757688487<27> × 27382074942393880360642889716488587214280297997459<50>
10111-919 = (1)10901<111> = 101 × 1541318473361249624203<22> × 713746075204056552280853312044481620646788375916978582408856843492598430622704956009867<87>
10112-919 = (1)11001<112> = 3 × 96757 × 472405477 × 60537988001<11> × 133847706657741492663565280323815272828573775484056687745835163014590591999320424520903<87>
10113-919 = (1)11101<113> = 29287 × 198599 × 133611680264947<15> × 2960302478752697499428996566380145351<37> × 4829754230470712020989486151082980851928398030619241<52> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P37 x P52 / November 30, 2014 2014 年 11 月 30 日)
10114-919 = (1)11201<114> = 67 × 1658374792703150912106135986733001658374792703150912106135986733001658374792703150912106135986733001658374792703<112>
10115-919 = (1)11301<115> = 3 × 19 × 101 × 8126153616963708042070019<25> × 8072214228048759975287299889<28> × 2942276980729459510573275211597364613442542166236488485723<58>
10116-919 = (1)11401<116> = 4327 × 4691 × 3525637 × 203019803130948346367159<24> × 764767044314548690570894799768132212844069893621665728849584839231248287903171<78>
10117-919 = (1)11501<117> = 17 × 5100460400369839<16> × 1281442693280075886748333788838150442134010384952334044383921112300507179898842620256961326148085027<100>
10118-919 = (1)11601<118> = 33 × 8387 × 1535350177<10> × 4532373809<10> × 43993795569354791<17> × 379222425059635825013<21> × 42263793449902917769066316862846740931563469591048221071<56>
10119-919 = (1)11701<119> = 101 × 110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001<117>
10120-919 = (1)11801<120> = 41077 × 36186131 × 84279155792939476023451987<26> × 886944499555350441645102675841652000185331098292295641705708312235047748598768129<81>
10121-919 = (1)11901<121> = 3 × 23 × 277 × 265873 × 18565247 × 72913049873<11> × 10378032485241407637042641657379787253953<41> × 15564435449963279180679198861661910037643466120584043<53> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P41 x P53 / November 30, 2014 2014 年 11 月 30 日)
10122-919 = (1)12001<122> = 28956502571<11> × 383717304390168753958083493684611360073741797576397338842524232796826570561704563637479598679089769384121493431<111>
10123-919 = (1)12101<123> = 101 × 929 × 5711 × 14905871 × 11968866778238916263<20> × 1162245440773057995745361112652527657312519413600368724902923745483327232406121065825823<88>
10124-919 = (1)12201<124> = 3 × 89 × 337891 × 91981315065517<14> × 136376307601236097<18> × 981818165042584794584548738350848377933754635456367853024482886291828296390986976017<84>
10125-919 = (1)12301<125> = 59 × 631 × 298453117492038763090899865994550246074595372185960168446939512506677888503884367324158884501628061755919071452660858769<120>
10126-919 = (1)12401<126> = 241 × 6074041 × 16925281 × 68304161789<11> × 65656794384381101716227160383730604485227133897975143121237257203988825029934336049694780430613369<98>
10127-919 = (1)12501<127> = 32 × 101 × 1617144073<10> × 1093690375667<13> × 85518749415760524179<20> × 8081447617181284094360436610038182239710182179374526772153751678638172624903200801<82>
10128-919 = (1)12601<128> = 70019 × 1012470554735254134316991<25> × 156732544742947588299783815882628779944411043968843385204918850319193492328141452944712977652487169<99>
10129-919 = (1)12701<129> = 269 × 1109 × 1740711122808542935871<22> × 89443181630419999549157<23> × 2085567883760138896161663920819<31> × 1147031620316984141200760968263772286318606987917<49> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=537844281 for P31 x P49 / November 25, 2014 2014 年 11 月 25 日)
10130-919 = (1)12801<130> = 3 × 113 × 1215451 × 240477791 × 136361723030420655199696832181377<33> × 82234277852159348234210962338186167064454167144191984352295334797931928754306787<80> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=3913454350 for P33 x P80 / December 6, 2014 2014 年 12 月 6 日)
10131-919 = (1)12901<131> = 101 × 421 × 15572800526653<14> × 1863815645312522081<19> × 9002939822478448710206310681335201426655065253890366090842814243402753937989730623121100460617<94>
10132-919 = (1)13001<132> = 251 × 1507853377<10> × 2371026331<10> × 10553261753<11> × 12927350533945259<17> × 713513146699293218974380796913<30> × 1272008649068783049137595022915936931119983872458420823<55> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P30 x P55 / November 30, 2014 2014 年 11 月 30 日)
10133-919 = (1)13101<133> = 3 × 17 × 19 × 47 × 1117 × 486629510199927691580849258803608903460136431<45> × 44883244200129132043396830137879889731344206390078338205671314427128332529822841<80> (Dmitry Domanov / Msieve 1.50 snfs for P45 x P80 / December 8, 2014 2014 年 12 月 8 日)
10134-919 = (1)13201<134> = 29 × 14447219716597<14> × 26520103519430324824471347170456833798764661785495763406294584996880046449609729059232792629737986749376568317199150077<119>
10135-919 = (1)13301<135> = 71 × 101 × 457 × 6116138814645321136613<22> × 8868875988354436342447783936748729629486766009<46> × 625051284356030702781346288574884011886443437716938101514899<60> (Dmitry Domanov / Msieve 1.50 snfs for P46 x P60 / December 9, 2014 2014 年 12 月 9 日)
10136-919 = (1)13401<136> = 32 × 97 × 229 × 27818008898509387529239<23> × 355230952599637369941157039865754220488163<42> × 562433165693960536725691947938823469408926426558892326468597914429<66> (Dmitry Domanov / Msieve 1.50 snfs for P42 x P66 / December 11, 2014 2014 年 12 月 11 日)
10137-919 = (1)13501<137> = 6871421 × 37884557 × 14394187590145934963533671015419038374699605801<47> × 2965251684158765090986443501363917769089558115377125909979992464887367028733<76> (Dmitry Domanov / Msieve 1.50 snfs for P47 x P76 / December 11, 2014 2014 年 12 月 11 日)
10138-919 = (1)13601<138> = 13169748527510827668286095273425099<35> × 273998244120326708407452994785459401<36> × 30791598024411913940781401918550008647861321841270848096568562223199<68> (Dmitry Domanov / Msieve 1.50 snfs for P35 x P36 x P68 / December 8, 2014 2014 年 12 月 8 日)
10139-919 = (1)13701<139> = 3 × 101 × 167 × 5226887 × 14088872058913<14> × 24308852338755334382063<23> × 12266328716072955861894108628136977062253908918541122685901940039042810206194878320551809517<92>
10140-919 = (1)13801<140> = 65864541217448774615097759853487365104027056108259730462351<59> × 168696401823073286925474529615264524547688861400739752611333926865851887559211251<81> (Erik Branger / GGNFS, Msieve snfs for P59 x P81 / December 8, 2014 2014 年 12 月 8 日)
10141-919 = (1)13901<141> = 208363559 × 185868613075303197860095628695932259<36> × 2868994167590840232645830381301650206902614098729495266023375402235011370888720129783035122899721<97> (Ignacio Santos / GMP-ECM 7.0 B1=43000000, sigma=1:4269670952 for P36 x P97 / December 10, 2014 2014 年 12 月 10 日)
10142-919 = (1)14001<142> = 3 × 3209 × 247913 × 15480464503695917815309699019518077831941962014827572317794081<62> × 30073448422325068069475835039824985590882975397090457167837145449283471<71> (Dmitry Domanov / Msieve 1.50 snfs for P62 x P71 / December 12, 2014 2014 年 12 月 12 日)
10143-919 = (1)14101<143> = 23 × 101 × 8108215541<10> × 376710785969567892453978462824790102003621689<45> × 1565939361307805836940551221434697122852227490428101433689045734815867766889707373163<85> (Cyp / yafu v1.34.3 for P45 x P85 / December 13, 2014 2014 年 12 月 13 日)
10144-919 = (1)14201<144> = 151 × 379 × 1941517606652415927433837933759302296232873387812317376000124257126825754619355765627760595346958903896819988312064007952456116848295638769<139>
10145-919 = (1)14301<145> = 33 × 3821 × 49747 × 57752099 × 321718218357001747517<21> × 11652157996891356620196053217612734719028681127577555417611397243887224939991003239361494911158833654295703<107>
10146-919 = (1)14401<146> = definitely prime number 素数
10147-919 = (1)14501<147> = 67 × 101 × 2231461 × 3620711807<10> × 74604722185009860199511797<26> × 27240290669945890105998388472745084444053430747629042471989831032032892866146366543295303455823348837<101>
10148-919 = (1)14601<148> = 3 × 66875293 × 261776597161<12> × 472583997966604350896058178732419390364546028333959740469<57> × 44767279997609641591237797737992111708603423518276289591725677879402791<71> (Cyp / yafu v1.34.3 for P57 x P71 / December 14, 2014 2014 年 12 月 14 日)
10149-919 = (1)14701<149> = 17 × 391511273917<12> × 4544889835433081<16> × 20004550447515164197<20> × 18361668391549869496712945902946842509614407554697323519675624055650766945529360520693955518844034437<101>
10150-919 = (1)14801<150> = 268729 × 23418407028277068618476137985838038221040088551<47> × 17655726979320910990024988232343326129685373853434144952718677026150431743359646688762295373964819<98> (Dmitry Domanov / Msieve 1.50 snfs for P47 x P98 / December 15, 2014 2014 年 12 月 15 日)
10151-919 = (1)14901<151> = 3 × 19 × 101 × 977 × 17047 × 411613991 × 25525794833433476156901061865493441565144870249<47> × 1102933514631105145545263422687432876214042200393460166769884992579513544082511353033<85> (Cyp / yafu v1.34.3 for P47 x P85 / December 18, 2014 2014 年 12 月 18 日)
10152-919 = (1)15001<152> = 139 × 34528929490825621<17> × 2315045741001378245359076068093078870766995624503853896381216127383372277817988306229107587587192772712265216938993912645510474965179<133>
10153-919 = (1)15101<153> = 263 × 4549 × 2559083 × 15326670503<11> × 753213354877<12> × 398001556269913<15> × 18393736612393010637343987166734867427812121<44> × 429418615345225579310716827876738626674697145366200341917287<60> (Dmitry Domanov / Msieve 1.50 gnfs for P44 x P60 / December 7, 2014 2014 年 12 月 7 日)
10154-919 = (1)15201<154> = 32 × 103748964267083994310910886246771453074098893192233705123071502777<66> × 1189956844346304634693401777753761796609775697503791998995127060296150625404529940330557<88> (Dmitry Domanov / Msieve 1.50 snfs for P66 x P88 / December 9, 2014 2014 年 12 月 9 日)
10155-919 = (1)15301<155> = 101 × 22901 × 58237 × 1449209 × 3657637 × 15561485442352479613835412881434871901726876426071772884831155864031665435197503308073982265294704492045994289586434321842570739981<131>
10156-919 = (1)15401<156> = 241 × 89274046001146199<17> × 39035779841180955206506456266275321884928651777561325813587<59> × 132297723172744369355595577258490656060109391911990720692812198458073784898297<78> (Cyp / yafu v1.34.3 for P59 x P78 / December 17, 2014 2014 年 12 月 17 日)
10157-919 = (1)15501<157> = 3 × 179 × 2237 × 2837 × 27689 × 289193 × 9596316167<10> × 4242855967936912446744913004087353741195879242091850532333028055614461444739682079093291821525754275183276770640861895319814563<127>
10158-919 = (1)15601<158> = 3543177883237<13> × 25128660643719209821601187743113<32> × 166918153772422382852182573752509<33> × 747638436091132082565699322066868013578060736380118872470984736301231172661494469<81> (Serge Batalov / GMP-ECM B1=3000000, sigma=101995281 for P32, B1=3000000, sigma=314401 for P33 x P81 / December 10, 2014 2014 年 12 月 10 日)
10159-919 = (1)15701<159> = 101 × 9728910013<10> × 354144464275059118832873777<27> × 85288860457625820806436139281529<32> × 3743683806554873102483947464701614748793823680804767901851052358125278945070330944981669<88> (Serge Batalov / GMP-ECM B1=3000000, sigma=2964080683 for P27, B1=3000000, sigma=14132585 for P32 x P88 / December 10, 2014 2014 年 12 月 10 日)
10160-919 = (1)15801<160> = 3 × 2297 × 22921 × 68531 × 926293 × 8790770239037<13> × 207757625877017009146259646340293057383<39> × 60676752022772228549430167094088269211546863998547726636158918821399636305977346872755187<89> (Serge Batalov / GMP-ECM B1=3000000, sigma=3669482769 for P39 x P89 / December 17, 2014 2014 年 12 月 17 日)
10161-919 = (1)15901<161> = 5226289543<10> × 825825723681534144720580354080657215533<39> × 2574397573652397456762572896372900548852976456837168739585614149943721388652438730330134226773168400175579951079<112> (Cyp / yafu v1.34.3 for P39 x P112 / December 14, 2014 2014 年 12 月 14 日)
10162-919 = (1)16001<162> = 29 × 1489 × 4445093221<10> × 49243742687<11> × 11012907149810415681592358650500479339952338328958628146731292399<65> × 1067409074520522397576631309318418604906643382107026347511229122941028877<73> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P65 x P73 / January 3, 2015 2015 年 1 月 3 日)
10163-919 = (1)16101<163> = 32 × 61 × 101 × 1404985897785655528563635917770358423537578755723257020057324546800261<70> × 14262373556523834868153296046209746036356389367688723297452363596353351778360646728332609<89> (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs for P70 x P89 / January 5, 2015 2015 年 1 月 5 日)
10164-919 = (1)16201<164> = 389 × 509 × 5419 × 943140461903<12> × 6123752566920840433<19> × 1792986189217591743314110256148898189229793929733210954239308535981801181711578167152593386639919469043805959949380795988921<124>
10165-919 = (1)16301<165> = 17 × 23 × 4973 × 217053554530067563409597<24> × 626375519145083063737708409336797<33> × 420301167012480090441972831823944840645629248960879137697282293410198894739757017842494436671636764623<102> (Serge Batalov / GMP-ECM B1=3000000, sigma=1595597348 for P33 x P102 / December 11, 2014 2014 年 12 月 11 日)
10166-919 = (1)16401<166> = 3 × 5869 × 51349 × 227471 × 3622039 × 204434173 × 7296380654525796527205278403142118990021954193947318232297324120016876093784341984877562474408564720143221671696808171020652888182414611<136>
10167-919 = (1)16501<167> = 101 × 3993733 × 1642309091<10> × 7395947459380612409<19> × 2267818927822738577108494431720659269508522220621121003640728717518948592365764972569537418013247101321922940136748798080088288463<130>
10168-919 = (1)16601<168> = 89 × 373 × 1945088191<10> × 296103789409<12> × 5811328016514977434449192054696484264248514173382935167551203889940403592371471659559606392989316819885518370969274776739213882960034489149007<142>
10169-919 = (1)16701<169> = 3 × 19 × 7568734236071<13> × 10624674045663294943<20> × 633249568966243452722928259697<30> × 382797295581880862255228939636369452067999336891857496931881608308502866619628134581057664449978699754973<105> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2612898348 for P30 x P105 / November 25, 2014 2014 年 11 月 25 日)
10170-919 = (1)16801<170> = 71 × 40559825679579552316517<23> × 3858362802838555740060814751805090692610769398442168674339066991534432684280966351636340749283355423399718609802971126764369311877474707612302143<145>
10171-919 = (1)16901<171> = 101 × 149 × 2617 × 4909 × 39547507 × 3644117174064155351739015353996651305013<40> × 21465296788246906435464106048473077026898613457<47> × 185782478082691596629434047732445046581242376743344671359820286959<66> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=1950917233 for P40 / February 8, 2015 2015 年 2 月 8 日) (Dmitry Domanov / Msieve 1.50 gnfs for P47 x P66 / February 8, 2015 2015 年 2 月 8 日)
10172-919 = (1)17001<172> = 34 × 13717421124828532235939643347050754458161865569272976680384087791495198902606310013717421124828532235939643347050754458161865569272976680384087791495198902606310013717421<170>
10173-919 = (1)17101<173> = 383 × 5903 × 4914574618256730595944758412043931775678566375335597871025933669657332759114434936216930503147760470120344663049638039122078082663243370570573758402755385747173345549<166>
10174-919 = (1)17201<174> = 727 × 2647 × 311390363 × 1186892133839<13> × 35867517738863941561997702906445079<35> × 4355634181247802586422358062683952143151392104008358947805764501375532183246262577151912142294598602933954666543<112> (Serge Batalov / GMP-ECM B1=3000000, sigma=4150216259 for P35 x P112 / December 11, 2014 2014 年 12 月 11 日)
10175-919 = (1)17301<175> = 3 × 101 × 1583 × 8581 × 10241507 × 39857464760747536387607<23> × 1268334326463556942266401<25> × 23048363298331602735729439<26> × 714926332424773214330922257780989<33> × 31643708669437419028177288455447380683323080219785751<53> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P33 x P53 / November 30, 2014 2014 年 11 月 30 日)
10176-919 = (1)17401<176> = 901835446675497024289996390238122723<36> × 15766845637537107321104855543466418769132222465635400074934527<62> × 781421531160620530322236377953059863736892820697256316302075281942848433704481<78> (Serge Batalov / GMP-ECM B1=3000000, sigma=370267036 for P36 / December 8, 2014 2014 年 12 月 8 日) (Ben Meekins / Msieve 1.53 snfs for P62 x P78 / August 22, 2015 2015 年 8 月 22 日)
10177-919 = (1)17501<177> = 1213665847<10> × 232611843677401<15> × 393574122773700722786024796538715745366628368389543646527732211906665803598226579343718826967299354261019272132244578552646615427761681569800371572277283<153>
10178-919 = (1)17601<178> = 3 × 4075609 × 10847115545092142953415027<26> × 9522864386016270731785957096021709<34> × 879755229845353083884924431794070293294886358071237866877016440718208461902857655427817714055301388939731093441<111> (Serge Batalov / GMP-ECM B1=3000000, sigma=426727452 for P34 x P111 / December 11, 2014 2014 年 12 月 11 日)
10179-919 = (1)17701<179> = 47 × 101 × 199 × 22264687 × 4870767311<10> × 11002122938470596015628146597539712692308574454667946064807740441273<68> × 9858133885451458519178069014802523267275336158777792339268675516373795869330375518311097<88> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P68 x P88 / December 5, 2015 2015 年 12 月 5 日)
10180-919 = (1)17801<180> = 67 × 15418409 × 1256936971<10> × 11530491097<11> × 37232843426114197<17> × 815380210759632902324263<24> × 4526066669435898863271158422264540064817479<43> × 54010040478729795432098839025242820406417630589737099294348072014489<68> (Ignacio Santos / GMP-ECM 7.0 B1=1000000, sigma=1:2800959406 for P43 x P68 / December 8, 2014 2014 年 12 月 8 日)
10181-919 = (1)17901<181> = 32 × 17 × 1009333261<10> × 2887512549583<13> × 2491767943468015066100606178195794925852291060335936599686532243738373977258023806725323298807226116880297705260962406953063113439888266683445656719681582359<157>
10182-919 = (1)18001<182> = 251 × 5107 × 494749 × 2367015853<10> × 503157594751373476813<21> × 126366821661183706223941<24> × 24633983565175347871300678951510725980433841<44> × 4725633944418838840572741256400308096470908610717364093334478001906329173<73> (Cyp / yafu v1.34.3 for P44 x P73 / December 12, 2014 2014 年 12 月 12 日)
10183-919 = (1)18101<183> = 59 × 1012 × 58567 × 12461125164904402736830862449433888617521558599902712302268979239843<68> × 252960373893615638449051434396249603611753246470878642029313027572698769756819444366328908090286653126819<105> (Dmitry Domanov / Msieve 1.50 snfs for P68 x P105 / December 10, 2015 2015 年 12 月 10 日)
10184-919 = (1)18201<184> = 3 × 632713 × 422028678674997742609<21> × 1387035299799597910384236484701029594971273360551111434667698501881307198234568658600214575016372622726992001525888515193568272761221581729082120460799388951<157>
10185-919 = (1)18301<185> = 1789 × 2377 × 832211509 × 74810960119054252278943818670588343<35> × 31037877163512923404955805431177656901349284388795155378619412271<65> × 1352156661937602995018921530628789336139646532842751913015264351730621<70> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=3003495610 for P35 / February 8, 2015 2015 年 2 月 8 日) (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P65 x P70 / July 26, 2016 2016 年 7 月 26 日)
10186-919 = (1)18401<186> = 241 × 11179577 × 322678969661939581003<21> × 2844191763339178071730147<25> × 1412744597676133058806893592394159663<37> × 153497799073160789451159667214330978564431<42> × 207214304533728355268160407937807591441285441117943541<54> (Cyp / GMP-ECM 6.4.4 B1=3000000, sigma=3265535621 for P37 / December 9, 2014 2014 年 12 月 9 日) (Dmitry Domanov / Msieve 1.50 gnfs for P42 x P54 / December 10, 2014 2014 年 12 月 10 日)
10187-919 = (1)18501<187> = 3 × 192 × 23 × 101 × 441651616283712758445140752382677345979409053354650973548115580757963387169340403469067449520655626524553776185358710105223055927978280986796339114420495002248227552692239796864989<180>
10188-919 = (1)18601<188> = 2521964253625705198197991<25> × 6140392518005439402198932571977<31> × 91831462562209917782601409320749432311283395444983546927511<59> × 7813235757109806763860466937452463895988294414914732001728680310479845013<73> (Cyp / GMP-ECM 6.4.4 B1=3000000, sigma=2398832069 for P31 / December 8, 2014 2014 年 12 月 8 日) (Jo Yeong Uk / GGNFS/Msieve v1.39 gnfs for P59 x P73 / September 23, 2016 2016 年 9 月 23 日)
10189-919 = (1)18701<189> = 3643 × 31247830046009<14> × 197464712724611<15> × 151178332351081751399392507<27> × 63559878304740008642376781546869361<35> × 26056549992190293423142477952054403029560105319<47> × 19742376857233870976154925445226377351465548824361<50> (Serge Batalov / GMP-ECM B1=3000000, sigma=846730737 for P35 / December 9, 2014 2014 年 12 月 9 日) (Dmitry Domanov / Msieve 1.50 gnfs for P47 x P50 / December 9, 2014 2014 年 12 月 9 日)
10190-919 = (1)18801<190> = 32 × 29 × 163 × 277 × 9272819 × 11984440333<11> × 6609356760438810006121095747901658240686269143774019781055084251<64> × 128369211815537857672505760497257067252414061724829967995963512165670887413981885925866919486213479683<102> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P64 x P102 / August 11, 2018 2018 年 8 月 11 日)
10191-919 = (1)18901<191> = 101 × 482988827 × 800385401 × 3633655337297248073976267065803512652505875949144932400982585510161313300709015357091<85> × 78317018035116940076080070147209938617840536494961907565362919541092423223809978570193<86> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P85 x P86 / August 28, 2018 2018 年 8 月 28 日)
10192-919 = (1)19001<192> = 2731641772331<13> × 40675579146784073418220367882732820261589757093714886094182734519237914913992375891438679716838401065730078591855145747568784018677630472598006318919760251619358553221415384767671<179>
10193-919 = (1)19101<193> = 3 × 4418407487261<13> × 10344949858653695574349351<26> × 826072613079616815589484972044961<33> × 9808980146410523328018646662882534931247893610377680786021468211436907981915598378448244849338807778005314481926861917277<121> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3931697842 for P33 x P121 / November 8, 2015 2015 年 11 月 8 日)
10194-919 = (1)19201<194> = 218819 × 5525831 × [9189139891732725749344585336879006071224424829966140120703314087034680681940369788453760550999637915923750725814271976985093426973802348846825318793726218157285748690124450493939209<181>] Free to factor
10195-919 = (1)19301<195> = 101 × 10892816213<11> × 111352378121203<15> × 14336247516789023663<20> × 96727160399307280282500341974068902890880317<44> × 654052357028307034818561816743840358772951736572088029769840233128346476816118879212212792037517514145229<105> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3297015347 for P44 x P105 / November 25, 2014 2014 年 11 月 25 日)
10196-919 = (1)19401<196> = 3 × 2010061 × 1168518431471<13> × 20597343510817<14> × [7655617376221851448785670524923385210582055705949927064203444572080121271003230117799598576839610329795538419255502456654775886171502214285443874752874258122692821<163>] Free to factor
10197-919 = (1)19501<197> = 17 × 653594771241830065359477124183006535947712418300653594771241830065359477124183006535947712418300653594771241830065359477124183006535947712418300653594771241830065359477124183006535947712418300653<195>
10198-919 = (1)19601<198> = 139 × 9133 × 696628665554273004622318607<27> × 125639989489937102917686638605057651304264540999982764260330980239760683071507609846115856742307179200307834572243008732425906725087627926517426570787353524185120189<165>
10199-919 = (1)19701<199> = 33 × 101 × 193 × 63667 × 170647 × 361871 × [536967769830016703277941459780344444082103420515447591870470185807015701017608976016199401537848534219818498198440920248595495221753236970181525077214999883441658640333868531329<177>] Free to factor
10200-919 = (1)19801<200> = 309445139 × 31390794119<11> × 944201301767<12> × 4350177378747749474195551<25> × [278483816800919273906832071224882040072645557479086825376849283212636630146850880735091642345768645276955740892015034589961241037943488702698433<144>] Free to factor
10201-919 = (1)19901<201> = 366646603 × [303046885480379348042428504679507725075284854367275049078011261735625874900335872227107777434149883862720831238987672036637173237661528562180926877730027983134241969537928900737997867420882967<192>] Free to factor
10202-919 = (1)20001<202> = 3 × 13667501 × 99263759401<11> × 26080166112652191949<20> × 4413386196638941689286787068808107879<37> × 229927365956204818512727542293830967172688137885708176233<57> × 10315337756101322776935246108488870957500596834975681024016847336420369<71> (Cyp / GMP-ECM 6.4.4 B1=3000000, sigma=4254771178 for P37 / December 7, 2014 2014 年 12 月 7 日) (Erik Branger / GGNFS, Msieve gnfs for P57 x P71 / February 12, 2015 2015 年 2 月 12 日)
10203-919 = (1)20101<203> = 101 × 109 × 83663 × 11236751 × 4636100212412419<16> × 19222131088817677<17> × 195552896845962646382382563163467476717483<42> × 61605122376814761237927264161049195633738977183575772247393689376209503830924765044426593069295224624553002914257<113> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=1525463773 for P42 x P113 / December 27, 2015 2015 年 12 月 27 日)
10204-919 = (1)20201<204> = 293 × 1662631 × 17265947 × 7613539547<10> × 82529604263<11> × 21023606655723375141508604830270239420090500935885794153980837723368476328288077701966141601719042674542675245116992786191440986965406236918871879425330025246437790641<167>
10205-919 = (1)20301<205> = 3 × 19 × 71 × 241811 × 8485271 × [133808134464989858065163602630124827916041949309332247023401956291779696524766219403046638840052684072667437118627179936393455071682630502903443415419122554237301153329306127212553098995143<189>] Free to factor
10206-919 = (1)20401<206> = 15527 × 756597737778089<15> × [945812172710561435700546859304357756105320482762034642279428489714144988301290031706449301518825705369178911822693692961626772250310611623758004668357798659748547815972528166724628747267<186>] Free to factor
10207-919 = (1)20501<207> = 101 × 2239883599<10> × 5058938340712987<16> × 5817129678652953739659691004367926495347<40> × 571425821736964925807244461311163086559711<42> × 29206712382963332579663896977507484325166046231889896855319411868340039446394218800537787203996681<98> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=3656691595 for P42, B1=11000000, sigma=4102981659 for P40 x P98 / June 13, 2015 2015 年 6 月 13 日)
10208-919 = (1)20601<208> = 32 × 170464021643608290060836020035435349<36> × 14577611010543182172898392995077188312553727<44> × 49681636569344395169200820540169350144663292424180679169264086634921149618401587068920113582395326645098882584982588981867130943<128> (Serge Batalov / GMP-ECM B1=3000000, sigma=2510502276 for P36 / December 9, 2014 2014 年 12 月 9 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2857173264 for P44 x P128 / December 6, 2015 2015 年 12 月 6 日)
10209-919 = (1)20701<209> = 23 × 13759 × 15697645189<11> × 67533359357<11> × 2913368570279399<16> × 31016720757830233<17> × 51967183035870653811937<23> × 7052927750315941494619419283683431574431330350805440200374980274111489411242632909174819636015520820394076352899845296620656779<127>
10210-919 = (1)20801<210> = 74257 × 115553 × 5873635051001113894658173935737229829999<40> × 2204610679736662088509901058627357842807742299908681492332058928656852946418513387425492380865412861519390359475429957700801906053892361031138741876408334263619<160> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1730619472 for P40 x P160 / December 6, 2015 2015 年 12 月 6 日)
10211-919 = (1)20901<211> = 3 × 101 × 4001 × 512311 × 793043 × 3654492041797908368557853252955982592797217<43> × 617289476589777857061384561520614957039932415506632253518574292907087528041202642657471222881531699954261158208872281135409881033701882932899023746887<150> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=2106520677 for P43 x P150 / May 12, 2015 2015 年 5 月 12 日)
10212-919 = (1)21001<212> = 89 × 3383293551983<13> × 3461669072257985858431<22> × [10659633055703036412444814186967589163006254254988929559548033832972809891730430674210703423863863859603467307978767228039830805038560113578036016939945220179929572376416260533<176>] Free to factor
10213-919 = (1)21101<213> = 17 × 67 × 338107890262533745297555848052149131151693876846461<51> × 17724937341088054234895742004566850886127032776716100659006899<62> × 16277726684836932701498034779151066430005982050759267693905884699780463221050028303776480810195481<98> (Serge Batalov / snfs for P51 x P62 x P98 / December 12, 2014 2014 年 12 月 12 日)
10214-919 = (1)21201<214> = 3 × 206749 × 1166280939569776802674363774757<31> × [1535994427678890217249025172022609062092210514504409800578268551579848620262121157904700745298594691548042935957167106754601425620997791501687972163492291142016722328402868513519<178>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3390834826 for P31 / November 25, 2014 2014 年 11 月 25 日) Free to factor
10215-919 = (1)21301<215> = 101 × 4764209365779752017<19> × 23091134888045511408235005915327431005443965319560791607380280022817522562045136288718140399132573740341549974174664181417858132971005822284450363899143500618023295439444987495675681677500797353<194>
10216-919 = (1)21401<216> = 241 × 1115713 × 59221001743<11> × 6977698583397565229232242876140274105101076801751246250914347431662720010291981350952919927879142044672455085345953749386393065841920790758352663625740862046095148609362919015132592714233438532579<196>
10217-919 = (1)21501<217> = 32 × 19739 × [6254460211938638741752712403032412489156329607551385081486234871242554846925213542907786114973240291983220534143411019983625823165144643774091398928861144103388729087430473856669037107086991410749790944667415951<211>] Free to factor
10218-919 = (1)21601<218> = 29 × 23071 × 92237 × 7549637 × [23848542034342280127067494412116332973186671996970983308419673369931162448963947619307663113658990858451439539801003957226720447239203317922798281492865716056273160863036349729821253286588108909208831<200>] Free to factor
10219-919 = (1)21701<219> = 101 × 151 × 497381358989980575336034351565785691<36> × [14647707699362032331543567028650740909275274615941494529312399729625337178600865182981894529071956017454552815153938274828625073616011850205771164182870297150139209762281403323261<179>] (Serge Batalov / GMP-ECM B1=3000000, sigma=560559806 for P36 / December 9, 2014 2014 年 12 月 9 日) Free to factor
10220-919 = (1)21801<220> = 3 × 311 × 914293 × 2628480957979<13> × 4705782439572460063<19> × 95349957100010580443110709304332338087349030561086494531566523641797652102337924047375341<89> × 1104417476096138575875955537489219297448880009188006313718524751977354085247460084624368597<91> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P89 x P91 / December 21, 2017 2017 年 12 月 21 日)
10221-919 = (1)21901<221> = 773 × 30466963 × 501194003 × [941332310271278043817300401096470820771016417487067600061653420409532131485436850412006768603766736827445036365136437000175446024757089306594385134695005155532667031554629152376893421210725686996974833<201>] Free to factor
10222-919 = (1)22001<222> = 2239 × 113327 × 52072063931<11> × 258605666840831<15> × 32518250751997899394185872619760603396449763954538651622479124240849853150619553062020108974117852713813443985766366602464465795422518031470985061162127773782799070406163585693782351263497<188>
10223-919 = (1)22101<223> = 3 × 19 × 61 × 101 × 1126030534454174413<19> × [2809837852068972600581617194724522421338986643010795611362447709502452558466578302804798909042804117512196313117897030400995592091209709570014823714816857176266433583373166704614431544308206527577001<199>] Free to factor
10224-919 = (1)22201<224> = 12163 × 32938012845847<14> × 414479816100900722989717520514477563<36> × [66913847563567406285352254997941434386795927975910042502078695409157881246200642810998399001678553851837324347989051254939472943876491684453456835341539499159034035062907<170>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3074334250 for P36 / November 25, 2014 2014 年 11 月 25 日) Free to factor
10225-919 = (1)22301<225> = 47 × 59399235367372306765544142269197039853935182383650705182688498024940364266347743187725320633<92> × 39799606497156986091817300801444941796933232059882607866976408248371434863491378851299793992843698554563715596085618017998127503851<131> (Bob Backstrom / Msieve 1.54 snfs for P92 x P131 / September 6, 2018 2018 年 9 月 6 日)
10226-919 = (1)22401<226> = 33 × 315068483 × 18003146592362893405313<23> × [7255048945520063885262671802772658392447468198937952008276065435825999884885370241353912179118748740326355970996380686228599590313202615511509255457065505013806018739171362810057702628922873197<193>] Free to factor
10227-919 = (1)22501<227> = 101 × 181 × 11098078604969<14> × 100169858519321<15> × 546729723077236850798310248141756000605841713084703042117866919239952275258307488001004038070303089372954204667486051246963947804408597787202075569082835023646940302878836130997389555240071394229<195>
10228-919 = (1)22601<228> = 3138731866858964711158809589181877903016066883057647980304758622657579393<73> × 35400000963543204269504058843898777589030165843769860381894774822156997938472890990363669674509213300193440729142719451637572271805547069622875875265424957<155> (NFS@Home + Rich Dickerson / ggnfs-lasieve4I14e on the NFS@Home grid + msieve for P73 x P155 / March 28, 2016 2016 年 3 月 28 日)
10229-919 = (1)22701<229> = 3 × 17 × 33613 × 130012328560494161<18> × 4985348261979006611771955626101509549441901333587951924402450746515434820276858760249195996575646511970720902269929976924034718590846739628447048148651848348190434868730441793362553361337900991351487018907<205>
10230-919 = (1)22801<230> = 35041649465573<14> × 14246875141240354899414697727<29> × [22256318694181275768051716156849042876939904239371601582301710669873688006383400023343174237571058758064232461787043528604346015062369864209101615389099513592975379579432953450861099143431<188>] Free to factor
10231-919 = (1)22901<231> = 23 × 101 × 7469179 × 7109231719<10> × 971077235867<12> × 4332391788656707218811<22> × 13004665621274883965623648806083<32> × 75663802837721101299166855152599131<35> × 217592484421996587058739566270844008145010522353979823028264908050198610486123846476164891578381517032546409987<111> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3123123193 for P35 / November 26, 2014 2014 年 11 月 26 日) (Serge Batalov / GMP-ECM B1=3000000, sigma=1783260583 for P32 x P111 / December 9, 2014 2014 年 12 月 9 日)
10232-919 = (1)23001<232> = 3 × 97 × 1312 × 251 × 28351 × 4572806717<10> × 11383521707588162605433<23> × [600648396060799079409456272370074326216467828317922282953553376124758749289911586905842093162012587801894699999778601796077683683037721549361519783640198073921886736937925129392004211791<186>] Free to factor
10233-919 = (1)23101<233> = 257 × 283 × 15073 × 27397 × 126781 × [2917971527105875101729097013940008529770371363307840818958396804324890700614475291593805359606084390822765209960305030278799493248070267584825749148244580903765911115230922953984149198487078084896968159504125103511<214>] Free to factor
10234-919 = (1)23201<234> = 5545831 × 1136651485371989<16> × 5720231235453483941376057577579<31> × 3081413284714532768722317909959377011602662296309620472870407196832723548474775410785575240748554239181683028975225347380709749740199338717090150722797782037377199931800152672295341<181> (Cyp / GMP-ECM 6.4.4 B1=3000000, sigma=3098672959 for P31 x P181 / December 9, 2014 2014 年 12 月 9 日)
10235-919 = (1)23301<235> = 32 × 101 × 359 × 107033 × 9962358697869608855645611189522563929<37> × [3193149747110653751308819901065978262090816502558557654696708175393996620764046430592480417720716561782931574372020605635453508433561715046105857260221813388310007853256009927131713550103<187>] (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=3801761429 for P37 / July 7, 2015 2015 年 7 月 7 日) Free to factor
10236-919 = (1)23401<236> = 1297 × 6529927 × 1058763747893540620597<22> × [1239110752586226561769251197977941302327266798943348917231997699214277501776180544063911478749535803660584373980966984291718054494947154954010868061850858572333175502708159893676596572047468724889604431007<205>] Free to factor
10237-919 = (1)23501<237> = 587078118628016938357020907<27> × [189261203212230556547502093081539667049466829606474519226769370407321666771758312854396269091811409529287470217872090814364558008097609767515586215550208609573466316033111503980000648712521387631732248496420343<210>] Free to factor
10238-919 = (1)23601<238> = 3 × 46727 × 127169011 × 16423627675227654321604120433<29> × [3795053931609851470041186872588608489548889747397684687468426486343996903695656004554574489841758542953475427149249025341448072423383275002778901335768473582046360784546481887435586056265308550467<196>] Free to factor
10239-919 = (1)23701<239> = 101 × 185125725816630877<18> × 1018386708270908285168381028010966069<37> × 5194647466065378759801042873736624013<37> × 112331236788225987467994170408569527974483554571964225564482234332330599173130326444176747891490055750720634092801675174201830917798938531657262429<147> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=3283578568 for P37(5194...) / January 8, 2015 2015 年 1 月 8 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=239633508 for P37(1018...) x P147 / December 7, 2015 2015 年 12 月 7 日)
10240-919 = (1)23801<240> = 71 × 10391 × 99663887 × 258217093 × 113145855890230280063<21> × [51722598620105758381748274384658319190933473513116902212853224449079212408355595862122690465649611492202070214455639666089267002834732488178029452942983778760136743187394110140652787174381038848777<197>] Free to factor
10241-919 = (1)23901<241> = 3 × 19 × 59 × 719 × 2821665853<10> × 12135503043726002384574844779004337201<38> × 6407700312836070034236719456754770581993187520755569<52> × 103946083170152552426299478491154723338157670251135392896045611<63> × 20147819248060369335606640771187865190089449906902816877079267692819884079<74> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=405460149 for P38 / June 29, 2015 2015 年 6 月 29 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3876228601 for P52 / December 7, 2015 2015 年 12 月 7 日) (Erik Branger / GGNFS, Msieve gnfs for P63 x P74 / January 17, 2016 2016 年 1 月 17 日)
10242-919 = (1)24001<242> = 113 × 1621 × 90127 × 40703767619500353733<20> × 6759943181066778056581<22> × 4103775699132991212329138213<28> × 749015974734069137663964402158481016749734280349199<51> × 5522813820727931529237568291935355780291111382375180969<55> × 144088182230762085207613251244143387907533583969243785349<57> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=988044807 for P51, Msieve 1.50 gnfs for P55 x P57 / December 27, 2015 2015 年 12 月 27 日)
10243-919 = (1)24101<243> = 101 × 26561 × 1147039 × 155653784731<12> × 38563931797717<14> × 276623711583199073<18> × 21746186845368878651675461596912944495375599177173211602084080479557646050810692944412190785643160192108483786185913913224376166901163638540203622816309294944100729921082175599354847032689<188>
10244-919 = (1)24201<244> = 32 × 139 × 560761 × 47570020321<11> × [33295768429392953867674616927003901442946398644598792881090632297348432945863247017593383103405348168567272602328420617536120542794256940500513272525581501899323599307113531059840453690710456879574022299734530290732826356471<224>] Free to factor
10245-919 = (1)24301<245> = 17 × 12408837596581<14> × 328275798792489126074443<24> × [160449586328851667174635079259804129283253154141829422177688303379298084145096482912515042554622254039531003527368433974303681312695758916403336425657951634604608073148435146080210294805355583522147191609691<207>] Free to factor
10246-919 = (1)24401<246> = 29 × 67 × 241 × 237283558835763472901149804941050459060637101609802848209470129203270621661568629405080288451385463107508197553748878538580052472886200940734397360267864663898516669288649991801853042224372011265274239286706639454988139381311594362807036027<240>
10247-919 = (1)24501<247> = 3 × 101 × 3023 × 12113 × 349043 × 13598936512540347863<20> × 145000865114902644648928083307003455503<39> × 145502523437414724313855228765750284871289586884015868110999950615493584337949350082983349800384180746865439488969211491459003901496692798870856838251305036498450549067415479<174> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=4247781429 for P39 x P174 / May 26, 2015 2015 年 5 月 26 日)
10248-919 = (1)24601<248> = 2152201 × 1985053648236947<16> × 161895389006780741051863<24> × 3659048047857968659153379800717<31> × [4390356848555969535058644136579306150744319032112556485905504161560915811717881905626078346104212104590493328699921583363560878783200360118362911515887321288342553092780773<172>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=211157407 for P31 / November 26, 2014 2014 年 11 月 26 日) Free to factor
10249-919 = (1)24701<249> = 25262606312201208942109<23> × 460439419524629757623435817915002922607<39> × 9552275479899011434725402327945602803512738121932539094298783236428879762663545497343769213882550015842868349626024857838842353913408585401709207285247838377584648216678473114916010338927<187> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=427443108 for P39 x P187 / December 8, 2015 2015 年 12 月 8 日)
10250-919 = (1)24801<250> = 3 × 647 × [572442612628084034575533802736275688362241685271051577079397790371515255595626538439521437975842921747094853740912473524529165951113400881561623447249413246322056213864560077852195317419428702272597172133493617264869196863014482798099490526074761<246>] Free to factor
10251-919 = (1)24901<251> = 101 × 820876618872933260538133<24> × 779883361762341786785067523<27> × [171841706121324711048627798188143335011786043975470752911495438866242882959032135689050407724366373365836455290770023442022267377833158407064373591134389002125185082908199237040776139887034276704839<198>] Free to factor
10252-919 = (1)25001<252> = 9203 × 5110586493482725907221<22> × 2362421169647060485266610876545142326181725885887855364700071285420947593803712805940460617170372106856515322968146724966244459869415610103031455880950386734777912348025169690177677319443318391050604760353965664583380801124627<226>
10253-919 = (1)25101<253> = 34 × 23 × 954971937836179<15> × 107300279767969250129<21> × 77242278319987638781541<23> × 3804218887624911702141869056972780571<37> × [19807633826717502266197721424950898513923187701795344034084308412243239003425500579387329832949903972023364153975522172293281971329628595654961531808781327<155>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1274826274 for P37 / October 29, 2015 2015 年 10 月 29 日) Free to factor
10254-919 = (1)25201<254> = 101780801 × 13672610183<11> × 7984361544801708876846782101950680408940142848492555411716505063651306511639216496252887352078814715225696105214210304347576558667241564595079201658977128667811255239210035470229015698473644957445020262780750671413158442835148111209947<235>
10255-919 = (1)25301<255> = 101 × [1100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001<253>] Free to factor
10256-919 = (1)25401<256> = 3 × 89 × 9829 × 11926501 × 150972244504097606941760850532799<33> × [235140118890827844991270153852785620885136832093716128482726810158557579744596637782047130437548211669826982020208277325808938667689040134520778413843522373882614241587754699790935184438671274767297876024430993<210>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2038603191 for P33 / October 29, 2015 2015 年 10 月 29 日) Free to factor
10257-919 = (1)25501<257> = 6037 × 248834461 × 2416734731<10> × 3060531162295569104215007257488438474185851697261339396069577276298541568330209383581827165982847940314396046301200381226074594038332706891415898710567230892463754394255990082664797506672275763231178152606066501418297003600635748677303<235>
10258-919 = (1)25601<258> = 103103530801<12> × 362269081921<12> × 6810022914924730301<19> × 12275544133788974111493484474350517<35> × 35584703925509174270700953517932596349654780827413116518741106638846991687270836777667780277202668830250411410923308684287576765817266358850951697376350564521937329484772627503405293<182> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=1369125029 for P35 x P182 / October 21, 2015 2015 年 10 月 21 日)
10259-919 = (1)25701<259> = 3 × 19 × 101 × 277 × 729472315124396255302333<24> × [955152414384869276863673013437588989399137309770479857872455587685091221126252820549685646766901546515892943348224441648975476947936348794024342709411798189777172022599492478821658384238267833749481299082205423879940876534580673<228>] Free to factor
10260-919 = (1)25801<260> = 6229 × 7622201477792954820743<22> × 234023104003740578211896728503566338095478477008095143708437182827387219183127357811485489547845153287879071993955939618590623444060061134773830824476682343782278265265027353023013677047532604946745547709921584492179304923634007956783<234>
10261-919 = (1)25901<261> = 17 × 372542367838916663<18> × 31367285295816671948777112361187<32> × [559314353488267233817075286228825184099379168875338636862550475418764615893501541494377565514292505186570529880549575669717428072588470178430392322661942449790506243269281899696665462672740211827165287067771913<210>] (Makoto Kamada / GMP-ECM 6.4.4 B1=5e4, sigma=2526020269 for P32 / October 18, 2015 2015 年 10 月 18 日) Free to factor
10262-919 = (1)26001<262> = 32 × 1559 × 825241 × 25735737364655397637818649<26> × 330892724348941004044265544109<30> × [11268451384397716339503497726030077924264708099833853120803146834762248393663733266577209673130226621532911858622585317721626773558186616270395083546037142428134841679859251590359593117084854186191<197>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=2490821588 for P30 / October 21, 2015 2015 年 10 月 21 日) Free to factor
10263-919 = (1)26101<263> = 101 × 269419 × 13683143 × 1091476499835589082503023723122298431<37> × [27340574856993976759784190146267213372948184337026891402697227536823647599011921352889823908007536340028583122260518092877733284194354000068497197334905110205879158251337567952349811184967477293431845998987636163<212>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4247682359 for P37 / November 9, 2015 2015 年 11 月 9 日) Free to factor
10264-919 = (1)26201<264> = 7883 × 20357 × 12814529363<11> × 84564941733420844191143<23> × 638938669164772211349796594604032363323490922079022611935197824613717008408766536149633897360570463955789739005264232690776221781104288613946892344855461677773571186021402670000847736227760642884072843419319678390485661519<222>
10265-919 = (1)26301<265> = 3 × 10987 × 115416187 × 586638887 × 2860749582815535989476904662924566133<37> × 174036242268636945002190040540404434956835559706260432967971330712109484739300561561339200119091555145650919253814807920744972645672950766133775235935255700924299918546331351185129762325375794456563635791133<207> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2830543135 for P37 x P207 / October 29, 2015 2015 年 10 月 29 日)
10266-919 = (1)26401<266> = 569 × 13216741 × [1477477393833089712226224547584827873829173403085776288944669992974197994147935467158627089698207416692582569433724597979254750580576370825539303400702665386021825293904585406232694809166635237878355853719789918835057283276996663027224231264881457317426369<256>] Free to factor
10267-919 = (1)26501<267> = 101 × 18917 × 499133 × 10022338157760517<17> × 7972807262153619190622909<25> × 7058413505444491873677651653644867<34> × 38861853512645909265932192612876952198659143101457<50> × 5315653257565200674506885352850637717746625146056101093891480138448955922662042353937709184502216870368031915372329554272219011363<130> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2511051134 for P34 / November 8, 2015 2015 年 11 月 8 日) (Erik Branger / GMP-ECM B1=43000000, sigma=512864269 for P50 x P130 / November 26, 2015 2015 年 11 月 26 日)
10268-919 = (1)26601<268> = 3 × 2287 × 3761 × 7333 × 10912520432970181466543<23> × 3199902004110374560319053<25> × 8921291464854196353500356117291<31> × [18849315173652835862485707476870737491715220832348638517121961123629615895031560890269726125566792984327344359173855410091683769108437772370294542789678880192020870229584923668813<179>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=1897915644 for P31 / October 22, 2015 2015 年 10 月 22 日) Free to factor
10269-919 = (1)26701<269> = 90704753 × 6698566008437197017966724949<28> × 736078925266295673265387478773<30> × 368508190349240258122507509921671<33> × 32611211288905281075858511460299819663<38> × 2067317331474237474905526794078709125857116574093302329449386899008348025959740150089891527306051411762209123896521935915992155905677<133> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=624840897 for P33, B1=25e4, sigma=2768211935 for P30 / October 22, 2015 2015 年 10 月 22 日) (Ignacio Santos / GMP-ECM 7.0 B1=3000000, sigma=1:3146398805 for P38 x P133 / November 5, 2015 2015 年 11 月 5 日)
10270-919 = (1)26801<270> = 853 × 632501041 × [205943085300820312935596518682100611948870375261156632644741510617365732989836551630337660181527159182230566080726302814681170572548937797984639790363817157544492166417097750736197464679674725532866665458622362963241762025557710735982346887587817559219475737<258>] Free to factor
10271-919 = (1)26901<271> = 32 × 47 × 101 × 163 × 421 × 53917 × 2508795873396856941331790183<28> × [2801786271310556375936839510906104752611877428015576172949672782810148552470011473113079191339275625106716524410102405928909511363751999487262323662319526827982626863671413407178430769701261390576350496977189905581075761822690579<229>] Free to factor
10272-919 = (1)27001<272> = 6421 × 568612543 × 25408550610668228354260267473749<32> × 3182726081141676374796100270179256459<37> × [37632167227331216658863775718833867497617299473312517749561211698484007370651979135329293742883787879861013765211802081480389383181924436188403892808311617597966697348965521141691279586874737<191>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=1001027293 for P37, B1=25e4, sigma=1181722732 for P32 / October 22, 2015 2015 年 10 月 22 日) Free to factor
10273-919 = (1)27101<273> = 491 × 471417433 × 20127868979<11> × 10666166119134479027602043<26> × 11099213504717108980304401<26> × 44950859886710475257779642213891<32> × [4481609480192522818668480746648848684323184474672128320470087700781605808541670350091196602209525162850768778749612563321311518026813570595981092005183691833690937525621<169>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1587321 for P32 / October 29, 2015 2015 年 10 月 29 日) Free to factor
10274-919 = (1)27201<274> = 3 × 29 × 6607 × 2827619436467918771298047803<28> × 683617186978282873562302555261956517264568058884833254676911176132466093067629965816143216928499558417888717451877263017554850402475855224164725368204523438390135302215066591275937470243703092504946097929634294608063386784367480834773724863<240> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2543399989 for P28 x P240 / October 29, 2015 2015 年 10 月 29 日)
10275-919 = (1)27301<275> = 23 × 71 × 101 × 171909589411381<15> × 14827131842356400297<20> × 25060459798309087495021908846857297<35> × 99010136386726429342976402822518669<35> × 302764057238098916248060584139887579955530662597<48> × 35181930756588166271627020234951980180192951094352176916520332506444966530183280434098593628535390607051902268165722301<119> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=4264105734 for P35(2506...) / October 22, 2015 2015 年 10 月 22 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1543485193 for P35(9901...) / November 8, 2015 2015 年 11 月 8 日) (Ignacio Santos / GMP-ECM 7.0 B1=11000000, sigma=1:2121944324 for P48 x P119 / January 10, 2016 2016 年 1 月 10 日)
10276-919 = (1)27401<276> = 241 × 2539 × 31550429243272714153215636001<29> × 5755359745769201230946775404211828286967173876817309902165494514065483341357173401865851360288909816200334661777499931646760768409262281230031402197590358412523053037741827502826977051681810698734338993468797859234287506326509849985302212999<241>
10277-919 = (1)27501<277> = 3 × 17 × 19 × 66431559661076257201339099<26> × [17260734194060655047318296946781867901248530234680206878370148332695001422225806337408656028421166062015396547776784379911938429800691078578308001281000603770710764645374495225041727110692947013876563978748463106552006395770696402736175224358269071<248>] Free to factor
10278-919 = (1)27601<278> = 199 × 503 × 1850573 × 692400139 × [86630946867206142528428238272139110602744966682053561538804772331749814693504100144966170797878955680374622010231120739668453831413811052258220031609658343762794732746232808009229783676191913690387931988659080915452212143907645715173506991703429917050703539<257>] Free to factor
10279-919 = (1)27701<279> = 67 × 101 × 4664264315604932547128565489130399<34> × [3520287722131792945120450757972611993652099877858495345583523053465357180176915758549264326363786718816237501515869921692657201070377619885813061809956903256868379071773251296661923666537741262525265953547522243521084098460483240013491616397<241>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1303340661 for P34 / October 29, 2015 2015 年 10 月 29 日) Free to factor
10280-919 = (1)27801<280> = 33 × 238321 × 1603545847<10> × 13078559590051<14> × 3377503800876758262632580994351513<34> × 315967019793251831807212789987827209<36> × 11852858235749269093223276067824919869<38> × 650922714000076933597614439244197714078917880272689065621439220032263659143124371709888964058760538904120809844148538137243628814107441989329863<144> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=2770152161 for P34 / October 22, 2015 2015 年 10 月 22 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1337548003 for P38 / October 29, 2015 2015 年 10 月 29 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2617152898 for P36 x P144 / November 8, 2015 2015 年 11 月 8 日)
10281-919 = (1)27901<281> = 3771780124537<13> × 5719010501607444480880061<25> × [515098433208554436860232407472790323173375372098419523639836376232059000795367635287605131643298184655860498200730503928723707322503408845827695535736744335024535008635660525717603118247709206706222617402638571541978792612140554645250961301193<243>] Free to factor
10282-919 = (1)28001<282> = 251 × 661 × 1093 × [612720128567652788674009594144560188563443144048295821072198499567640474837585770026466206992629620822186261555332560966524386864339959155843396031409398930824330677842897489225909345862214915240583391250243946094287443152584712652276737151373942140459598317092356089873487<273>] Free to factor
10283-919 = (1)28101<283> = 3 × 61 × 101 × 91771 × 74591035261<11> × 102385311683235703663355297545721<33> × 85773922555462724030955210678095786583207802471837727534737159574894527500883842708151178468295173573921464060589265868676430562616260073796976507769202910193958632038732502918074414721686063976708086826674934413070514767301023497<230> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2916519810 for P33 x P230 / November 3, 2015 2015 年 11 月 3 日)
10284-919 = (1)28201<284> = 277584100383870510936479<24> × 10213915316553556288290840120599015231<38> × 3918958378192670111293271040939056672801894605461615931491184633487360732506107379439472621779675140755735238947614458140022905944273809546730363186338206280120451465012856586460879662800653481031924197368185066906921214749<223> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3550590716 for P38 x P223 / November 12, 2015 2015 年 11 月 12 日)
10285-919 = (1)28301<285> = 43642007 × 48246898813<11> × 219267326743939<15> × [240663069130908032109361799003936830433560928025032906741499127842466039607549291458529404719872459389589966643830638255621187685290257245977006727035316614696398988141956833696993592628359741184306835895182372316081058561613256517300745870354187801549<252>] Free to factor
10286-919 = (1)28401<286> = 3 × 33525924784027144868795036819<29> × [11047282744809682841222496650474393122222497945202578977669590960750693894270597370115355071266505525123814670375189996535136596002895782155733968902212336327354328360964472728786797528104696316406922141794303363852225894596334897875170800686673043042489893<257>] Free to factor
10287-919 = (1)28501<287> = 101 × 457 × 81233 × 697841387 × 149915739600142165230143780529511<33> × 909644131120549936107776753243074883986653379<45> × [31139522459334931789701866218368918893191990212733723520935142254370240711691786042980333808344019648485194862465735378289676563022397446326430189935220867511088467411145784369800866893529207<191>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2553569739 for P33 / November 4, 2015 2015 年 11 月 4 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2114796345 for P45 / December 8, 2015 2015 年 12 月 8 日) Free to factor
10288-919 = (1)28601<288> = 914657 × 254378083 × 5851375762507926399209626469299<31> × [81613414782534697960341660382983489182254674805959262956937240606165661472294786720551953165308680006626483152172060422062814527718592286258213282361585635275462980864168690914286213176193586780425815192786862792191729636793544338676053180229<242>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3692642636 for P31 / November 4, 2015 2015 年 11 月 4 日) Free to factor
10289-919 = (1)28701<289> = 32 × 6007 × 248609532634337530319<21> × 52322977517243092783091<23> × 62260916205053420252129<23> × 148559600956310661835778017<27> × 2220131656174882912991846122229142121903<40> × 76939996292711624253443871709743118414740308977316752327577756915670164172227787021721045126389749216762728760598117534695236602174533939851739975872097<152> (Erik Branger / GMP-ECM B1=43000000, sigma=1:2738431437 for P40 x P152 / November 1, 2015 2015 年 11 月 1 日)
10290-919 = (1)28801<290> = 139 × 593 × 1951 × 240905997649478180203033<24> × 2952783054978073756394663<25> × 8847158684779151694101393865481<31> × [10978620126908455198438527072247009405427597384033677586698841371381700615797605295677290355678486099776696768355696341702479402945972633483463404797336541227415621822932778138941758123490696613547156287<203>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2013783620 for P31 / November 4, 2015 2015 年 11 月 4 日) Free to factor
10291-919 = (1)28901<291> = 101 × 2232 × 2521 × 3539 × 175403 × 77048902633<11> × [183471878541542850415285170828580655681431264967149887192742912882155830952138157588907122612207331769993142920507149035061921988552084138772058363900157617762837346447835191023776529608029287670219913060948287246588031040529240384253877956702263588813844757449<261>] Free to factor
10292-919 = (1)29001<292> = 3 × 1367 × 5928919 × 945973253 × 1603701317<10> × 392491816401881772809548811747<30> × 2111645426519310232291386606761<31> × [36344463225032211505049507095895136098544584942506848964441563923174613526683983619636385924365823127400729600972671483103982352216287316616027583054815245189285194073264026476804657674197109731073060837<203>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=3852380245 for P30 / October 22, 2015 2015 年 10 月 22 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=444628810 for P31 / October 30, 2015 2015 年 10 月 30 日) Free to factor
10293-919 = (1)29101<293> = 17 × 100987 × 29930511319799<14> × 1311277987626770033914258600349086551089<40> × 164905139518353284900026380782358968799471417499586975022376466302594915520041815746967643580069250773526660504251396218782576017005901672513378260802815978418792365447883141082541408222738768474528352215871967340023372459097267456529<234> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2997777558 for P40 x P234 / December 8, 2015 2015 年 12 月 8 日)
10294-919 = (1)29201<294> = 151 × 308949790898479<15> × 19448021531022215739582395088962894978551<41> × [122466473153391611162065197925102062370904307813199571442109894576576818604141423893628361234117892208044755610419781471822376044522682795699540110100275150937598924740876518349212741995144976538835372071814310947087820746656728206657219<237>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1272603552 for P41 / December 8, 2015 2015 年 12 月 8 日) Free to factor
10295-919 = (1)29301<295> = 3 × 19 × 101 × 72797 × 864052610849<12> × [3068369040388506117314823381348950806669366581501123776711486653339506661926273693688021786817865025350580147767021439095317790526851710915422160714929833467994962327591085206245036678250829296502387509430337163567468228945853520875476907056583449611951824378478742400396181<274>] Free to factor
10296-919 = (1)29401<296> = 1723 × 4723 × 16009327 × 342558268133<12> × [248969838620665580378922356573958723935496739701516863003080228615906915937790996929235061561734323438103342086008132388766657995117407548743591187278227411193019060010382148761166497828379025657079994155251896750992067417648740919016215057753173819486588681644509198359<270>] Free to factor
10297-919 = (1)29501<297> = 23 × 122586421251271896977256182381586191<36> × 419942834424491889445806904426885476510851<42> × [93841969251362150641963711103023260539684387040996500428712569660285036034183259479607399304621049598454940715637473585850589209527822692326089824876602446057558722327112845451206966095171535554526238051760556135202007<218>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3035987241 for P36 / October 28, 2015 2015 年 10 月 28 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3851270881 for P42 / October 29, 2015 2015 年 10 月 29 日) Free to factor
10298-919 = (1)29601<298> = 32 × 141691507 × [871306916959086264242053619511978160578507998531321924068863140283043147557579369407488835046809052030597642831597451521613007641006952685292493384637303091545141964343636513491172928641306097879177214600379142391294655767830343259671332712906522031628356220321119576984409212262266762327<288>] Free to factor
10299-919 = (1)29701<299> = 59 × 101 × 61673 × 1102727 × [27417068823193109789030128348660974761311833068389340340459035062017253916475990732234630396170091235922130842357318905707952228698463714994207253210179295320603837456571825029162326939968960737804980611779356520872728338071535112087936971568745972729394292225822997308870872237515909<284>] Free to factor
10300-919 = (1)29801<300> = 89 × 1833571 × [680878706462221369053967876800357942838313876301705528101402661133127290040631715968402709709056845174890848385632944276993561088717725378210435615363614309417978746998947949118133082660484059236744325329276636212112811625425982996384743098448488432283730142328277033417004679197968269378679<291>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク