Table of contents 目次

  1. About 11...1141 11...1141 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 11...1141 11...1141 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 11...1141 11...1141 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 11...1141 11...1141 について

1.1. Classification 分類

Near-repdigit of the form AA...AABA AA...AABA の形のニアレプディジット (Near-repdigit)

1.2. Sequence 数列

1w41 = { 41, 141, 1141, 11141, 111141, 1111141, 11111141, 111111141, 1111111141, 11111111141, … }

1.3. General term 一般項

10n+2699 (2≤n)

2. Prime numbers of the form 11...1141 11...1141 の形の素数

2.1. Last updated 最終更新日

December 31, 2014 2014 年 12 月 31 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 102+2699 = 41 is prime. は素数です。
  2. 108+2699 = 11111141 is prime. は素数です。
  3. 1056+2699 = (1)5441<56> is prime. は素数です。
  4. 10675470+2699 = (1)67546841<675470> is PRP. はおそらく素数です。 (Serge Batalov / LLR / December 27, 2014 2014 年 12 月 27 日)
  5. 10718580+2699 = (1)71857841<718580> is PRP. はおそらく素数です。 (Serge Batalov / LLR / December 27, 2014 2014 年 12 月 27 日)

2.3. Range of search 捜索範囲

  1. n≤11000 / Completed 終了 / Ray Chandler / October 15, 2010 2010 年 10 月 15 日
  2. n≤20000 / Completed 終了 / Ray Chandler / December 12, 2010 2010 年 12 月 12 日
  3. n≤30000 / Completed 終了 / Ray Chandler / July 11, 2011 2011 年 7 月 11 日
  4. n≤221000 / Completed 終了 / Serge Batalov / December 25, 2014 2014 年 12 月 25 日
  5. n≤700000 / Completed 終了 / Serge Batalov / December 27, 2014 2014 年 12 月 27 日
  6. n≤1000000 / Completed 終了 / Serge Batalov / December 31, 2014 2014 年 12 月 31 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

  1. 103k+2699 = 3×(100+2699×3+103-19×3×k-1Σm=0103m)
  2. 105k+2+2699 = 41×(102+2699×41+102×105-19×41×k-1Σm=0105m)
  3. 106k+4+2699 = 7×(104+2699×7+104×106-19×7×k-1Σm=0106m)
  4. 106k+5+2699 = 13×(105+2699×13+105×106-19×13×k-1Σm=0106m)
  5. 1013k+6+2699 = 53×(106+2699×53+106×1013-19×53×k-1Σm=01013m)
  6. 1015k+1+2699 = 31×(101+2699×31+10×1015-19×31×k-1Σm=01015m)
  7. 1016k+11+2699 = 17×(1011+2699×17+1011×1016-19×17×k-1Σm=01016m)
  8. 1018k+14+2699 = 19×(1014+2699×19+1014×1018-19×19×k-1Σm=01018m)
  9. 1022k+21+2699 = 23×(1021+2699×23+1021×1022-19×23×k-1Σm=01022m)
  10. 1028k+19+2699 = 29×(1019+2699×29+1019×1028-19×29×k-1Σm=01028m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 5.96%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 5.96% です。

3. Factor table of 11...1141 11...1141 の素因数分解表

3.1. Last updated 最終更新日

December 27, 2017 2017 年 12 月 27 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=191, 200, 202, 205, 206, 207, 208, 209, 213, 215, 217, 218, 219, 221, 222, 223, 224, 228, 233, 235, 236, 237, 239, 240, 241, 242, 244, 247, 248, 250, 252, 254, 256, 260, 262, 265, 266, 270, 272, 273, 274, 276, 277, 279, 280, 281, 282, 283, 284, 285, 286, 287, 290, 291, 293, 295, 297, 298, 299, 300 (60/300)

3.4. Factor table 素因数分解表

102+2699 = 41 = definitely prime number 素数
103+2699 = 141 = 3 × 47
104+2699 = 1141 = 7 × 163
105+2699 = 11141 = 13 × 857
106+2699 = 111141 = 32 × 53 × 233
107+2699 = 1111141 = 412 × 661
108+2699 = 11111141 = definitely prime number 素数
109+2699 = 111111141 = 3 × 37037047
1010+2699 = 1111111141<10> = 7 × 158730163
1011+2699 = 11111111141<11> = 13 × 17 × 50276521
1012+2699 = 111111111141<12> = 3 × 41 × 2521 × 358327
1013+2699 = 1111111111141<13> = 89417 × 12426173
1014+2699 = 11111111111141<14> = 19 × 89 × 6570733951<10>
1015+2699 = 111111111111141<15> = 32 × 12345679012349<14>
1016+2699 = 1111111111111141<16> = 7 × 31 × 71 × 179 × 402889897
1017+2699 = 11111111111111141<17> = 13 × 41 × 12347 × 1688374691<10>
1018+2699 = 111111111111111141<18> = 3 × 107 × 2339 × 147986546839<12>
1019+2699 = 1111111111111111141<19> = 29 × 53 × 1742903 × 414772931
1020+2699 = 11111111111111111141<20> = 2689 × 12250019 × 337310551
1021+2699 = 111111111111111111141<21> = 3 × 23 × 883 × 3779 × 482581650377<12>
1022+2699 = 1111111111111111111141<22> = 7 × 41 × 349 × 11093029473070007<17>
1023+2699 = 11111111111111111111141<23> = 13 × 83 × 743 × 13859489446899653<17>
1024+2699 = 111111111111111111111141<24> = 33 × 20809 × 197761850038375687<18>
1025+2699 = 1111111111111111111111141<25> = 709 × 26383901 × 59398058078549<14>
1026+2699 = 11111111111111111111111141<26> = 3821 × 2907906598040070952921<22>
1027+2699 = 111111111111111111111111141<27> = 3 × 17 × 41 × 121591 × 29437357 × 14845786573<11>
1028+2699 = 1111111111111111111111111141<28> = 7 × 1193 × 9733 × 13670118632720694527<20>
1029+2699 = 11111111111111111111111111141<29> = 13 × 18731 × 33903602099<11> × 1345883075753<13>
1030+2699 = 111111111111111111111111111141<30> = 3 × 7889603 × 4694410737401747215549<22>
1031+2699 = 1111111111111111111111111111141<31> = 31 × 4397 × 3448120451<10> × 2364051333957613<16>
1032+2699 = 11111111111111111111111111111141<32> = 19 × 41 × 53 × 269118877881926783518083443<27>
1033+2699 = 111111111111111111111111111111141<33> = 32 × 523 × 82106338090459<14> × 287499179146357<15>
1034+2699 = 1111111111111111111111111111111141<34> = 7 × 31547 × 5031545273089635469576509929<28>
1035+2699 = 11111111111111111111111111111111141<35> = 13 × 216577 × 3946406380644549979243875641<28>
1036+2699 = 111111111111111111111111111111111141<36> = 3 × 1359733 × 27238463019605346812232281659<29>
1037+2699 = 1111111111111111111111111111111111141<37> = 41 × 479 × 34673 × 327479 × 28465861 × 175040651437537<15>
1038+2699 = 11111111111111111111111111111111111141<38> = 223 × 26267 × 1236329 × 1534292270045766832570169<25>
1039+2699 = 111111111111111111111111111111111111141<39> = 3 × 11743 × 4688693 × 1510417109<10> × 445357203286939217<18>
1040+2699 = 1111111111111111111111111111111111111141<40> = 72 × 421 × 1165576847<10> × 46210259000147047030432607<26>
1041+2699 = 11111111111111111111111111111111111111141<41> = 132 × 1109 × 59284237684737095155351380640969321<35>
1042+2699 = 111111111111111111111111111111111111111141<42> = 32 × 41 × 11621143 × 253657483 × 102149113134772945193881<24>
1043+2699 = 1111111111111111111111111111111111111111141<43> = 172 × 23 × 4201 × 254083 × 156604241963844458051683441241<30>
1044+2699 = 11111111111111111111111111111111111111111141<44> = 10921069 × 129400797591049493<18> × 7862404553739902773<19>
1045+2699 = 111111111111111111111111111111111111111111141<45> = 3 × 53 × 227 × 3078467046549500210874992688640764444937<40>
1046+2699 = 1111111111111111111111111111111111111111111141<46> = 7 × 31 × 196428120850470583<18> × 26067182635579316494686331<26>
1047+2699 = 11111111111111111111111111111111111111111111141<47> = 13 × 29 × 41 × 311 × 467 × 8389373 × 589963998010649613681059825413<30>
1048+2699 = 111111111111111111111111111111111111111111111141<48> = 3 × 59 × 1301 × 1493 × 5813 × 51539 × 354779 × 3040555281696770233655177<25>
1049+2699 = 1111111111111111111111111111111111111111111111141<49> = 47 × 6959 × 3397134924347503802243264075943630660773317<43>
1050+2699 = 11111111111111111111111111111111111111111111111141<50> = 19 × 467021 × 1903721273<10> × 101483150618413<15> × 6481420158066522791<19>
1051+2699 = 111111111111111111111111111111111111111111111111141<51> = 33 × 71 × 57960934330261403813829478931200370949979713673<47>
1052+2699 = (1)5041<52> = 7 × 41 × 3871467286101432442895857530003871467286101432443<49>
1053+2699 = (1)5141<53> = 13 × 659 × 428153017 × 11429909846362351<17> × 265025040843968909342869<24>
1054+2699 = (1)5241<54> = 3 × 10163 × 3644301587822201814133330417892063075571882026669<49>
1055+2699 = (1)5341<55> = 1009 × 6779 × 14827 × 22571 × 485396457089877687558450429742640185543<39>
1056+2699 = (1)5441<56> = definitely prime number 素数
1057+2699 = (1)5541<57> = 3 × 41 × 1941721 × 18481783 × 46040219 × 1153495501<10> × 473989148452724980376351<24>
1058+2699 = (1)5641<58> = 7 × 53 × 61 × 89 × 4407927285928823<16> × 125149557274107425888963128408864013<36>
1059+2699 = (1)5741<59> = 13 × 17 × 1463047 × 7851624550795909529<19> × 4376706405446189045432357068967<31>
1060+2699 = (1)5841<60> = 32 × 14543 × 561713 × 184257559 × 1089051055190363<16> × 7531352038540512838395983<25>
1061+2699 = (1)5941<61> = 31 × 226256431 × 158414475771563973102244801209808892874770087908981<51>
1062+2699 = (1)6041<62> = 41 × 2689 × 3671 × 4927733609<10> × 24268784723<11> × 229563689391379241284806159899297<33>
1063+2699 = (1)6141<63> = 3 × 94500293 × 391925102677057700096623372766019223210631072191882379<54>
1064+2699 = (1)6241<64> = 7 × 83 × 7230199 × 148168231608812450632327<24> × 1785155325449348683449039660257<31>
1065+2699 = (1)6341<65> = 13 × 23 × 39317 × 945161297304578615572532353745480935732746267187061135027<57>
1066+2699 = (1)6441<66> = 3 × 821 × 45112103577389813687012225380069472639509180313077998827085307<62>
1067+2699 = (1)6541<67> = 41 × 3541939 × 26651966227<11> × 111391120298889376009<21> × 2577227343114036998989273613<28>
1068+2699 = (1)6641<68> = 19 × 1733 × 70009225515921499<17> × 751609225859716129<18> × 6412951438868916524175156673<28>
1069+2699 = (1)6741<69> = 32 × 1722334087<10> × 1161991971661272091<19> × 6168711461176466431027773361261951055297<40>
1070+2699 = (1)6841<70> = 7 × 84067 × 795533 × 1656587 × 104634217 × 13692656826415830422440734291345809655695527<44>
1071+2699 = (1)6941<71> = 13 × 53 × 107 × 1051 × 1661435126633<13> × 18256570196902343<17> × 4727692217796573951129599468353043<34>
1072+2699 = (1)7041<72> = 3 × 41 × 97 × 313 × 69146989 × 430291764219215788679007377646354224021083706001642606323<57>
1073+2699 = (1)7141<73> = 113 × 937 × 70289 × 12359933 × 12079138890160932711191195491823285991817936806101549153<56>
1074+2699 = (1)7241<74> = 174473459 × 273649877604511834308861386113<30> × 232719546069906455571085138058807623<36> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1171980145 for P30 x P36 / November 28, 2014 2014 年 11 月 28 日)
1075+2699 = (1)7341<75> = 3 × 17 × 29 × 3257 × 79538689 × 489315591838453872229<21> × 592657896108205974743753656207559066287<39>
1076+2699 = (1)7441<76> = 7 × 31 × 8087 × 1001534926774209265171<22> × 632185039927885726942209711770322627706388185049<48>
1077+2699 = (1)7541<77> = 13 × 41 × 983 × 17806022519<11> × 1190994745430629873348513449850675774766975748799703647216801<61>
1078+2699 = (1)7641<78> = 34 × 55411 × 53716998649<11> × 460855467868064165746443985249887834092386664773541247769999<60>
1079+2699 = (1)7741<79> = 653 × 16054891704013451745352075133<29> × 105983175746173309564054468540648686226274870509<48>
1080+2699 = (1)7841<80> = 21841 × 42899 × 543859 × 630155230032113<15> × 6583343189002595836297<22> × 5256025248130599058532670101<28>
1081+2699 = (1)7941<81> = 3 × 38231 × 465581899 × 994149449 × 2093017282472844695719398915582702874399781630093107354987<58>
1082+2699 = (1)8041<82> = 72 × 41 × 49037 × 2132032682285453725819<22> × 5290050319477596579122701587793876826383696866502483<52>
1083+2699 = (1)8141<83> = 13 × 7151 × 8210903521<10> × 12762010649030314711357<23> × 1140610350763072460796918790414211155042265731<46>
1084+2699 = (1)8241<84> = 3 × 53 × 21523 × 388234489 × 1696139711361241650732464933<28> × 49306233118509562374937519489827681711149<41>
1085+2699 = (1)8341<85> = 163 × 6816632583503749147920927062031356509884117246080436264485344239945466939331970007<82>
1086+2699 = (1)8441<86> = 19 × 71 × 4357 × 16351007 × 33286327 × 47563779326389<14> × 323979672963610619<18> × 225399777483336058508568315751363<33>
1087+2699 = (1)8541<87> = 32 × 23 × 41 × 22937 × 35642303641119810822283<23> × 16014039968898782904401855364139905010352684681949932033<56>
1088+2699 = (1)8641<88> = 7 × 433 × 322807 × 1062492371<10> × 9929747383<10> × 107637744832434048478405000482098585110468768145708913489761<60>
1089+2699 = (1)8741<89> = 13 × 11771662551629<14> × 936983872382229159175909972970507<33> × 77489742628172859107132236627148744092919<41> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P33 x P41 / November 30, 2014 2014 年 11 月 30 日)
1090+2699 = (1)8841<90> = 3 × 1867907 × 3568121699<10> × 129141055653349017009318408049<30> × 43030559744615039216550521602057893820800271<44> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3209842614 for P30 x P44 / November 28, 2014 2014 年 11 月 28 日)
1091+2699 = (1)8941<91> = 17 × 31 × 953 × 35566374731<11> × 174693114522593<15> × 2151126470762801299<19> × 165528447767089531710667642643246035952083<42>
1092+2699 = (1)9041<92> = 41 × 271002710027100271002710027100271002710027100271002710027100271002710027100271002710027101<90>
1093+2699 = (1)9141<93> = 3 × 3643 × 7751819879729<13> × 1794371534793195983<19> × 730905147539349616431876374670450809957372434135482147947<57>
1094+2699 = (1)9241<94> = 7 × 3291752309161<13> × 9179367273171399474491537857583<31> × 5253147013005701627830594724519106542064319002101<49> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P31 x P49 / November 30, 2014 2014 年 11 月 30 日)
1095+2699 = (1)9341<95> = 13 × 47 × 181 × 75656155448852871355206529672158630843949<41> × 1327985818009961082545947509910029364246334224999<49> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P41 x P49 / November 30, 2014 2014 年 11 月 30 日)
1096+2699 = (1)9441<96> = 32 × 32843105617809530529793<23> × 6967518914703333532805370418309<31> × 53950143952668376619384671020656577463577<41> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3999376641 for P31 x P41 / November 28, 2014 2014 年 11 月 28 日)
1097+2699 = (1)9541<97> = 41 × 53 × 26393 × 40039 × 82037170234511976302366654496233<32> × 5898140487707701993874454012339849220046618126231887<52> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=4009366694 for P32 x P52 / November 28, 2014 2014 年 11 月 28 日)
1098+2699 = (1)9641<98> = 63867870569<11> × 310962483113<12> × 68892779081281468593758972713<29> × 8120697895575780851762442229418303631625461581<46> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P29 x P46 / November 30, 2014 2014 年 11 月 30 日)
1099+2699 = (1)9741<99> = 3 × 33923 × 2928581 × 9446759055638068367317<22> × 238842344200626221107754539<27> × 165230637841003125811516881202275748063<39>
10100+2699 = (1)9841<100> = 7 × 6668461 × 271308409 × 872924800257552238312860103044259<33> × 100506407110286381660388408468904881813095849226493<51> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P33 x P51 / November 30, 2014 2014 年 11 月 30 日)
10101+2699 = (1)9941<101> = 13 × 210599 × 1618471 × 3396979743332801<16> × 738176056689628341978516715582581395830965734847452507660374647806225033<72>
10102+2699 = (1)10041<102> = 3 × 41 × 89 × 3673 × 118956317 × 23230252725183918490149604195274938418779969194625724246435375072388855465286222310683<86>
10103+2699 = (1)10141<103> = 29 × 109 × 131 × 491 × 12541283 × 353816389933<12> × 373173666840017<15> × 1881039354824671<16> × 1754492112228048187590574322098583704793348357<46>
10104+2699 = (1)10241<104> = 19 × 2689 × 4301372701<10> × 47127205841<11> × 100327013977006483<18> × 24490285298720088031305427<26> × 436639067203828728266627579850174571<36>
10105+2699 = (1)10341<105> = 33 × 83 × 193209617 × 11964848364805820735940089520622107436231<41> × 21447649088991304299030613653956659265352191423724163<53> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P41 x P53 / November 30, 2014 2014 年 11 月 30 日)
10106+2699 = (1)10441<106> = 7 × 31 × 59 × 1826485021345891<16> × 228273874699564613284828037<27> × 897443732482661901935441831<27> × 231934946648653420020886267900511<33> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P27(8974...) x P33 / November 30, 2014 2014 年 11 月 30 日)
10107+2699 = (1)10541<107> = 13 × 17 × 41 × 1226256606457467289605022747060049786018222173171957963923530638021312339820230781493335295343903665281<103>
10108+2699 = (1)10641<108> = 3 × 14051 × 2635900436768702372573983135509005553842220271655899013382466517474701945558112378979221196856952319197<103>
10109+2699 = (1)10741<109> = 23 × 147116701701362733185853157357723284666983<42> × 328373177112316049369463544553202731981672485365764563741235555749<66> (Dmitry Domanov / Msieve 1.50 snfs for P42 x P66 / December 6, 2014 2014 年 12 月 6 日)
10110+2699 = (1)10841<110> = 53 × 293 × 9988628513814193451081<22> × 163985269076794377780661947878283421478867<42> × 436820792253289518064290580098443349218327<42> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P42(1639...) x P42(4368...) / November 30, 2014 2014 年 11 月 30 日)
10111+2699 = (1)10941<111> = 3 × 39439 × 1134849517<10> × 3862002921125335841<19> × 289266001534860450015585458330327<33> × 740733649116264820140251275063814687968179467<45> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P33 x P45 / November 30, 2014 2014 年 11 月 30 日)
10112+2699 = (1)11041<112> = 7 × 41 × 6848213 × 34971901973<11> × 262986107131977847<18> × 61467602661910865799063035845836444354253898243927180639542373645697226181<74>
10113+2699 = (1)11141<113> = 13 × 40603129414747006072054773816837215190005503669<47> × 21050122663462201367146985548209542998249532758009242254355345653<65> (KTakahashi / Msieve 1.51 snfs for P47 x P65 / December 6, 2014 2014 年 12 月 6 日)
10114+2699 = (1)11241<114> = 32 × 424476256327<12> × 18776854126269700607<20> × 21819986979779718849347<23> × 26580472483830929185547101<26> × 2670678208375755667574730640592803<34>
10115+2699 = (1)11341<115> = 443 × 162499 × 27922217630639<14> × 10265970796226843<17> × 53845961878233842458997576379810720593109533056619062607978161699199555733569<77>
10116+2699 = (1)11441<116> = 70199 × 24643430243<11> × 11046945485311<14> × 343704681454537693005099091<27> × 12788351174997174900566444819<29> × 132276651833168323828989652067527<33>
10117+2699 = (1)11541<117> = 3 × 41 × 11703053 × 23864467547688594246758157797429410009793202101<47> × 3234457568883066518464866173456495767663716916257590977404239<61> (KTakahashi / Msieve 1.51 snfs for P47 x P61 / December 6, 2014 2014 年 12 月 6 日)
10118+2699 = (1)11641<118> = 7 × 61 × 4201 × 25999 × 47711 × 206233523532737457059<21> × 2421266029476849261894823710590581539756722112911622228767327092845539649086077933<82>
10119+2699 = (1)11741<119> = 133 × 257 × 14537438421536003824283<23> × 1353650107770154678903720508740649262536664508937445147613714414698281260882484548231156163<91>
10120+2699 = (1)11841<120> = 3 × 230301657761014220973863<24> × 3045725834942668373708089<25> × 52801755839537686464135787489965769103591247006518197266501767215723321<71>
10121+2699 = (1)11941<121> = 31 × 71 × 12433 × 155750939 × 960650138298112886304415147331<30> × 6171371815231893479896863774391<31> × 43972775481348386688970347782195640151336283<44> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=211033135 for P30, Msieve 1.51 for P31 x P44 / December 6, 2014 2014 年 12 月 6 日)
10122+2699 = (1)12041<122> = 19 × 41 × 1481519303468756216166318371<28> × 9627482068135549267959906624738159277981036202120672092933340386574753178884847185713141349<91>
10123+2699 = (1)12141<123> = 32 × 17 × 53 × 26505467 × 107155549350334228478328389615801<33> × 4824363939070342037668232009922059970182569574756805421356422996691774603051347<79> (Dmitry Domanov / Msieve 1.50 snfs for P33 x P79 / December 6, 2014 2014 年 12 月 6 日)
10124+2699 = (1)12241<124> = 72 × 107 × 167 × 421081 × 48721091710809041858938499640539<32> × 28943654923814767727727142862503623623<38> × 2137101421531720041427646911780427013474373<43> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=3951968499 for P32, Msieve 1.51 for P38 x P43 / December 6, 2014 2014 年 12 月 6 日)
10125+2699 = (1)12341<125> = 13 × 11549 × 810174929 × 257920068661067972399538124510358167217<39> × 354165147743258781185406326205562621237782986385370127388050649084429901<72> (Dmitry Domanov / Msieve 1.50 snfs for P39 x P72 / December 6, 2014 2014 年 12 月 6 日)
10126+2699 = (1)12441<126> = 3 × 7823 × 32293861 × 146603025790633372672393255238324318313739508084905624161132028303718765168955342405169943270459015270196824960549<114>
10127+2699 = (1)12541<127> = 41 × 1024421 × 930821689989337735451<21> × 28420300561003109487924118285034484387008663282569319645180568766734576577247622705514063494975131<98>
10128+2699 = (1)12641<128> = 149 × 383 × 1616988326993050447549915282242663158371211<43> × 120410833715131574628740907839821480211364386004074038038920542703418654155861293<81> (Dmitry Domanov / Msieve 1.50 snfs for P43 x P81 / December 7, 2014 2014 年 12 月 7 日)
10129+2699 = (1)12741<129> = 3 × 519703 × 317568594443349701591<21> × 329383543758953333694359495092823<33> × 681304986338007975805935439484561845399112583530926996449463478078993<69> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=3853614653 for P33 x P69 / December 6, 2014 2014 年 12 月 6 日)
10130+2699 = (1)12841<130> = 7 × 968678029531<12> × 8302357345836101435121199669996562699021<40> × 19736883550785783449247210706854071683022908198334690513374763016304216991213<77> (Dmitry Domanov / Msieve 1.50 snfs for P40 x P77 / December 8, 2014 2014 年 12 月 8 日)
10131+2699 = (1)12941<131> = 13 × 23 × 29 × 469673713 × 1521203827521337964518352549<28> × 13579163329020712276864752330006919654380103<44> × 132078348186138689330084586935958842496824763961<48> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P44 x P48 / November 30, 2014 2014 年 11 月 30 日)
10132+2699 = (1)13041<132> = 33 × 41 × 1381 × 12115387 × 3150907915027<13> × 1903895856319271523443792112030532775263794198078087212755646637358342667343240747217299467108906483773627<106>
10133+2699 = (1)13141<133> = 1966793 × 4340065643945879009363<22> × 7129573885905752309636089<25> × 18257401414065286642805842120958767733254724641913861804455871454178922252057191<80>
10134+2699 = (1)13241<134> = 2399 × 14505527645411809863772649<26> × 73539918402495875063730827<26> × 4341807533424339300759160123962105092736386493669390133217939547726444397664233<79>
10135+2699 = (1)13341<135> = 3 × 193 × 263 × 13417969 × 815383183 × 11828133344913104966541299<26> × 4957035202951428241888089809<28> × 1137460775104953442115179749206118831613053250185315236055269<61>
10136+2699 = (1)13441<136> = 7 × 31 × 53 × 739 × 3019 × 45040374271<11> × 5596940409647<13> × 171775674277552166170190339984729700388421498447463441642992368387529239658252562130354872100690632073<102>
10137+2699 = (1)13541<137> = 13 × 41 × 839 × 41819362769<11> × 338731842734308033<18> × 31637736120569648879828186534618081<35> × 55440799645820478998774783958182501542231086991378928332757692497239<68> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=2328914735 for P35 x P68 / December 6, 2014 2014 年 12 月 6 日)
10138+2699 = (1)13641<138> = 3 × 349 × 626203411 × 1391128179163<13> × 91337494579089622833855837883<29> × 1333764449516340461494747375989198868456604409373214153424660058076338137324850945337<85>
10139+2699 = (1)13741<139> = 17 × 19273 × 5072897 × 7081259724951990511<19> × 94404496355992155711149918503045443684217023876908509517809646496518455667370784815629509931298156777887203<107>
10140+2699 = (1)13841<140> = 19 × 415841936698267<15> × 3214686195453787296679<22> × 437458661230081098170569916949068124564345443402552809353143828043727173949331524508705349152662434323<102>
10141+2699 = (1)13941<141> = 32 × 47 × 113415432478796771<18> × 34205150920710884385281453929<29> × 67710100597447028098838669666378201624328029179361655689492927675860494207617497981983380713<92>
10142+2699 = (1)14041<142> = 7 × 41 × 1033 × 3851 × 113371 × 981769 × 3420360245879299<16> × 1396321548337925438693<22> × 1830767403009343633042976962810101268125083904699653028113515697347531836945658743197<85>
10143+2699 = (1)14141<143> = 13 × 92519003808656023<17> × 4863944431314815109127201427451262631434617913347575021<55> × 1899304449730077162804903745969166002927656382234369177239171285603979<70> (Cyp / yafu v1.34.3 for P55 x P70 / December 13, 2014 2014 年 12 月 13 日)
10144+2699 = (1)14241<144> = 3 × 18688091445707660377928899<26> × 2391645323376088694991395813749374023132549787169447<52> × 828656440755098189833391576146141972864010192699230657446295010299<66> (Cyp / yafu v1.34.3 for P52 x P66 / December 14, 2014 2014 年 12 月 14 日)
10145+2699 = (1)14341<145> = 10453 × 63462560584165579<17> × 1715901969338988511685531<25> × 419817081483792798914820483228069829<36> × 2325125351035881329955839467644753625192078110182349230899799957<64> (KTakahashi / Msieve 1.51 gnfs for P36 x P64 / December 6, 2014 2014 年 12 月 6 日)
10146+2699 = (1)14441<146> = 83 × 89 × 2689 × 1402582611467827<16> × 130314702322436872913<21> × 3060389636191409256824659429186509693202238525239341719237870382920521148327708846023752385153479747637<103>
10147+2699 = (1)14541<147> = 3 × 41 × 118399 × 2113692533<10> × 3609628704632316753263968324346315048355793890500841682400388258063388128336577223683450489228946746418939521758703912625746983101<130>
10148+2699 = (1)14641<148> = 7 × 1097 × 436180861 × 1247252970461<13> × 17584773929423<14> × 754877166269041<15> × 2812274363698621<16> × 14574802288741628906852007418742267267<38> × 488830428969412379467515684687497020904299<42> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P38 x P42 / November 30, 2014 2014 年 11 月 30 日)
10149+2699 = (1)14741<149> = 13 × 53 × 10586071 × 117520009 × 13927126097<11> × 984888720383257153641953057903<30> × 945024306195177782822430762705448904037181063224110606795487938726078664508028432387982181<90> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=693651334 for P30 x P90 / November 28, 2014 2014 年 11 月 28 日)
10150+2699 = (1)14841<150> = 32 × 615607 × 778360341100368347223247<24> × 25765034712026245601591645836247037321714337540374039813045898820893627837439935544266801679343145440770939597539634981<119>
10151+2699 = (1)14941<151> = 31 × 1369187875481257191500576115006745116157831889201465250101835601<64> × 26177776292542608693503429649018435193598228246469528278137611093638552063904224595211<86> (Dmitry Domanov / Msieve 1.50 snfs for P64 x P86 / December 9, 2014 2014 年 12 月 9 日)
10152+2699 = (1)15041<152> = 41 × 1523 × 2247168263620971950893<22> × 112321613594607255573375076241948179357<39> × 704976765618478442766990534394302648361916334453829940614811853152229523730111147375687<87> (Dmitry Domanov / Msieve 1.50 snfs for P39 x P87 / December 19, 2014 2014 年 12 月 19 日)
10153+2699 = (1)15141<153> = 3 × 23 × 1610305958132045088566827697262479871175523349436392914653784219001610305958132045088566827697262479871175523349436392914653784219001610305958132045089<151>
10154+2699 = (1)15241<154> = 7 × 15593807 × 354076259997320853371417<24> × 354106006521398799664831<24> × 10616128757026606584172824839<29> × 7647350854559377941928343689326613017122323639435610712466607720650253<70>
10155+2699 = (1)15341<155> = 13 × 17 × 100867893314536399<18> × 498439287395235471969088097430959837210556691118903119260850310382694398373369948942975401238555773395260589330973775482256965141699079<135>
10156+2699 = (1)15441<156> = 3 × 71 × 359 × 18481 × 13567289207828507<17> × 223267277451702318011<21> × 14295008592950093154246029<26> × 1815747234707793163717119314374506245896501988417981236875732091565128244175259891051<85>
10157+2699 = (1)15541<157> = 41 × 36513599 × 373790733417737<15> × 178769957422190007593<21> × 3783063038326334787209598053<28> × 2935974955314161567110073564668650273612037210257283449680002076998752438978033699863<85>
10158+2699 = (1)15641<158> = 19 × 227 × 3539 × 2556292710403<13> × 284765182529318137712723626360416956733518174770560346577992787910247583390785501375222668699579508380459804301466277519930709935280812821<138>
10159+2699 = (1)15741<159> = 34 × 29 × 971 × 5281 × 5194024559<10> × 1775967760201274645857142617304098821004229255614368313082145372973375285125105665873629920068200560475311630410394851690901120105521369701<139>
10160+2699 = (1)15841<160> = 7 × 431 × 28287169 × 82263183231548246536448508711800964436965832777532699987939129606441<68> × 158265839015830687557374498640073949624085424433091749113417619129171610243190837<81> (Cyp / yafu v1.34.3 for P68 x P81 / December 15, 2014 2014 年 12 月 15 日)
10161+2699 = (1)15941<161> = 13 × 487 × 6594421 × 8698860183781045771250843556621189989<37> × 30594697016353652950016005846762861735512424575491153747947922948851712988562996533645121440800895433865300344519<113> (Cyp / yafu v1.34.3 for P37 x P113 / December 15, 2014 2014 年 12 月 15 日)
10162+2699 = (1)16041<162> = 3 × 41 × 53 × 888179 × 154763281 × 6296908158096821109784172671<28> × 19691587141178377909756195102933526552304744212792154965226290274928618416116483432934179283103176009646460011668191<116>
10163+2699 = (1)16141<163> = 1353319567<10> × 16109806788791<14> × 61508327855371811<17> × 729031741245487103603887<24> × 1136544486803691168168936815423805005336803539522811844076527950213590478762838642907446288911079329<100>
10164+2699 = (1)16241<164> = 59 × 102533 × 4272796441<10> × 10618309055023180120997<23> × 40483145507379922491862459442780310918637223979574929908626748969734331047090174409943700203652778103786167526864071293501039<125>
10165+2699 = (1)16341<165> = 3 × 315943327657587708838252469<27> × 4004966656008082220476122169937942552526439838986704151332709<61> × 29270365342053289946910661134699671689309742816487677159863453713467301389407<77> (Kai Inouye / for P61 x P77 / February 18, 2015 2015 年 2 月 18 日)
10166+2699 = (1)16441<166> = 73 × 31 × 163 × 2953 × 344079650927760459448218202191894652943120676719<48> × 630945193631630359147531773677515865462507820564435285746534571420781798605535373651875131741969773965249097<108> (Cyp / yafu v1.34.3 for P48 x P108 / February 26, 2015 2015 年 2 月 26 日)
10167+2699 = (1)16541<167> = 13 × 41 × 6607 × 786719 × 76547783786921802794399088387351564235081359491819<50> × 52393054001686535255879992815271493318284562697836987852318056819059118142303180213253417164011832016451<104> (Cyp / yafu v1.34.3 for P50 x P104 / March 4, 2015 2015 年 3 月 4 日)
10168+2699 = (1)16641<168> = 32 × 97 × 9311 × 13669320305486891142331018529624841266726617571662471073838702047733895295494276266012463932302308446107617984653645463514144130980958131049605457623760624940547<161>
10169+2699 = (1)16741<169> = 229 × 61519 × 7962310312782448471859<22> × 9905437034926321357277821094007562962874370512183151010184311911750348059609677365047206057361560035358308340669164404413776609401732627349<139>
10170+2699 = (1)16841<170> = 1249 × 288255131 × 1136155324329566473<19> × 27163160363201816708480562298075016796738714289231136617559734488996203108880611748133178189431265078584723178582736851413142880076249467943<140>
10171+2699 = (1)16941<171> = 3 × 17 × 2178649237472766884531590413943355119825708061002178649237472766884531590413943355119825708061002178649237472766884531590413943355119825708061002178649237472766884531591<169>
10172+2699 = (1)17041<172> = 7 × 41 × 2777251 × 3702119 × 24799847290016831<17> × 251596581883203973752811<24> × 60347091599977382804203613351639738823206293441387439577263134977345753395057513045175150043106589764456825723208467<116>
10173+2699 = (1)17141<173> = 13 × 10377683 × 185662753809852018052907<24> × 533722262490466470856354477505087683<36> × 2775685363309408463179901443490375162450580647287<49> × 299435575090009996008628688084152229213307313971146515157<57> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=1244670198 for P36 / February 2, 2015 2015 年 2 月 2 日) (KTakahashi / Msieve 1.51 gnfs for P49 x P57 / February 4, 2015 2015 年 2 月 4 日)
10174+2699 = (1)17241<174> = 3 × 27092652679<11> × 182559388679303491647525930656813164692385382600494993979644651<63> × 7488253420730839526970474482705066961412477854766195557992061224874911198976089981800860162183680243<100> (Cyp / yafu v1.34.3 for P63 x P100 / April 30, 2015 2015 年 4 月 30 日)
10175+2699 = (1)17341<175> = 23 × 53 × 6301 × 38273 × 3779651865936588185622903839717786973675673589618819089767758340337438418183452344683948409912338369091207213184134514967658859533095991888007841739765700692211043<163>
10176+2699 = (1)17441<176> = 19 × 128411 × 1347953 × 175705719220895657<18> × 14880979328245681235969897746515970313267<41> × 28006719384565409019213346307026495803449<41> × 46136777854944011662853718928506244235653469316789126840149525143<65> (Ignacio Santos / GMP-ECM 7.0 B1=3000000, sigma=1:168043383 for P41(1488...) / March 29, 2015 2015 年 3 月 29 日) (Dmitry Domanov / Msieve 1.50 gnfs for P41(2800...) x P65 / March 30, 2015 2015 年 3 月 30 日)
10177+2699 = (1)17541<177> = 32 × 41 × 107 × 100089957978509<15> × 908583296083615734547130324171966253573405826117701479863134776238707<69> × 30945114329112677427661972694615342044889839572657162399283827726078909990322397612655929<89> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P69 x P89 / October 15, 2015 2015 年 10 月 15 日)
10178+2699 = (1)17641<178> = 7 × 61 × 367 × 13001 × 735781 × 9629606447178302748675588735135627858897748057930428478382157320034199<70> × 76971453166835607060911819066318665311175250926216210696428955969814981528939430551847119171<92> (Jo Yeong Uk / GGNFS/Msieve 1.39 snfs for P70 x P92 / November 10, 2015 2015 年 11 月 10 日)
10179+2699 = (1)17741<179> = 13 × 42187 × 841909734962699417851693091399<30> × 24064118859922604268186911747493370980241818970634186072128402902962451223244906291305827068731449720289255671828311463648403072134788659948189<143> (Serge Batalov / GMP-ECM B1=3000000, sigma=1348562953 for P30 x P143 / December 11, 2014 2014 年 12 月 11 日)
10180+2699 = (1)17841<180> = 3 × 421 × 14938196443282431805609506527604448641518564476019663191<56> × 5889195529189035825480199222525972895526387754502803512547772766441851717601638120565552008818345910613201463569930910477<121> (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs for P56 x P121 / December 24, 2014 2014 年 12 月 24 日)
10181+2699 = (1)17941<181> = 31 × 72949087 × 53509290323<11> × 519517805519<12> × 196633957559560444477<21> × 393895414065267879724121506035518690131<39> × 400266385393234291398932785401643982166767<42> × 570108799092437218017169732755313164154417200161<48> (Pierre Jammes / GMP-ECM 6.4.4 B1=11000000, sigma=1109520273 for P39 x P42 x P48 / January 7, 2015 2015 年 1 月 7 日)
10182+2699 = (1)18041<182> = 41 × 1010846905777871<16> × 268094711947064990346618943245768931457031641986963445906834950809602980462263296631319148627261071314517280139681642375644117813906186617825862301577160854362906131<165>
10183+2699 = (1)18141<183> = 3 × 110323 × 587920478071<12> × 33140265226646483834441538958959253<35> × 498079542514412743842018354244247520154937073392159<51> × 34593690932103813815535141348813893207390481957153532280269847814295842301721617<80> (KTakahashi / GMP-ECM 6.4.4 B1=11000000, sigma=3806423843 for P35 / May 22, 2015 2015 年 5 月 22 日) (Jo Yeong Uk / GGNFS/Msieve v1.39 gnfs for P51 x P80 / April 7, 2016 2016 年 4 月 7 日)
10184+2699 = (1)18241<184> = 7 × 905010393858931<15> × 275957536449687240939924612741251791194324530582753472095075908189<66> × 635570343524743575830085158989336190418663518789541869273626051611857374568286471485732095795166789557<102> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P66 x P102 / May 31, 2016 2016 年 5 月 31 日)
10185+2699 = (1)18341<185> = 13 × 113 × 1873 × 458491493 × 68943601279393<14> × 76643132815309<14> × 16041075923534574214214251<26> × 103912053527423306575990323776672863306615010202551452978652275959428249970748585030094813771363794362132652895207723<117>
10186+2699 = (1)18441<186> = 33 × 360862764078969141722679281<27> × 1494668231234586859469124613979<31> × 216546806533664114592353219080095724834934446931459<51> × 35233441654994506906585663937527768206225854612887140684965706078176200568063<77> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1832391431 for P31 / November 28, 2014 2014 年 11 月 28 日) (Erik Branger / GGNFS, Msieve gnfs for P51 x P77 / February 9, 2015 2015 年 2 月 9 日)
10187+2699 = (1)18541<187> = 17 × 29 × 41 × 47 × 83 × 83529976557680016410528828229475567<35> × 255349073984900270757288751001551203612587<42> × 660654074042634044854247403557115664076583779199288447889447037166592590009824199785324600040439057633<102> (Serge Batalov / GMP-ECM B1=3000000, sigma=3063200519 for P42 / December 11, 2014 2014 年 12 月 11 日) (Pierre Jammes / GMP-ECM 6.4.4 B1=11000000, sigma=384980501 for P35 x P102 / March 3, 2015 2015 年 3 月 3 日)
10188+2699 = (1)18641<188> = 53 × 2689 × 1136483 × 104835902645609809<18> × 654361645941602637535430286933041534787384791189178099084121581685312042504644647633004793842332625783457868841113850260187708168839161999727629413141454143659<159>
10189+2699 = (1)18741<189> = 3 × 2658827 × 7226431661<10> × 1932166878449360936328311575145810734831<40> × 997648657424566525113425404717250913926570828630993000518046963530044780504948617135479274913827078174040465680663564714238483429271<132> (Serge Batalov / GMP-ECM B1=3000000, sigma=4100662398 for P40 x P132 / December 11, 2014 2014 年 12 月 11 日)
10190+2699 = (1)18841<190> = 7 × 89 × 4597 × 2966321426804644603097830237015411<34> × 130790659993976297885619124869722336060972418878542355599315127143198493719218816204993164489869848292284752527567390893346748283860174371375247750501<150> (Serge Batalov / GMP-ECM B1=3000000, sigma=1056969007 for P34 x P150 / December 11, 2014 2014 年 12 月 11 日)
10191+2699 = (1)18941<191> = 13 × 71 × 11192021873<11> × 107027724677<12> × 4331983988051<13> × [2319872430818885133267710825525209983660568949698787243825955190499577147706546153219623425750567417829161618647219226315161133316598051145698029698441777<154>] Free to factor
10192+2699 = (1)19041<192> = 3 × 41 × 1319 × 23064065887<11> × 91601080723896563489<20> × 1014672424473047689070005066524647<34> × 319481164065056548920021302716365117070044065024178046943379196173548226359384078880155290378166158598081852062566879995633<123> (Cyp / GMP-ECM 6.4.4 B1=3000000, sigma=259102189 for P34 x P123 / December 8, 2014 2014 年 12 月 8 日)
10193+2699 = (1)19141<193> = 4201 × 47123 × 5612700621472506410233106755176104215372384722786361777562200682147764573568416427039569826190382927437220965535746724217300717824503184914900348237596597994427045156708388996660317967<184>
10194+2699 = (1)19241<194> = 19 × 179 × 1103 × 102562909 × 3614852393<10> × 7989037278501142049963057199042338286484219211507960222126499970107984405856027965821210483105938129472769187293289389139125351027106582466419181334709544574092790975031<169>
10195+2699 = (1)19341<195> = 32 × 12345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012349<194>
10196+2699 = (1)19441<196> = 7 × 31 × 16031445847<11> × 289471575067<12> × 22186922483867<14> × 49730413932738135801566396804883530526323218712978388003551475933914440093349111720848286139586752071532014401275206131047067126961866249875869692759354251731<158>
10197+2699 = (1)19541<197> = 132 × 23 × 41 × 1723 × 89708657 × 2977204469<10> × 1152583688149<13> × 1919723609351<13> × 68473042181065910991148082770849624904685933006206687703458700788949290458560321523595462356965149767076063352439754694581464753461517322778596503<146>
10198+2699 = (1)19641<198> = 3 × 13697348923<11> × 215605747817<12> × 1767270018821<13> × 3414763511699<13> × 188295392059569751708799945763139<33> × 11036621486819833810787524777313071224292994196756541287518867574960456970889512754611992973032812246704915823676906257<119> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=4090115298 for P33 x P119 / November 28, 2014 2014 年 11 月 28 日)
10199+2699 = (1)19741<199> = 1187 × 1582454403431494445686485137500295046367096450001059221627232123<64> × 591528353623022216524230163080913969494966563161569228755824411245203232665991746652976459427023770040460210836015355068520222381141<132> (Serge Batalov / for P64 x P132 / December 9, 2014 2014 年 12 月 9 日)
10200+2699 = (1)19841<200> = 6133 × 623953778447579327402201917<27> × [2903568704983182725415601739116734913038437616991213534006615426710369669023880187755118625394859452517635800811121340859698441812566474261157628929140223300868832869381<169>] Free to factor
10201+2699 = (1)19941<201> = 3 × 53 × 1481 × 114749 × 466409 × 9671300315553629<16> × 911600609276774934965647581889403996687414094241600739120789573601818055069856705589985480330027718412781274145979783259472151816516384203098851958027363085537257202611<168>
10202+2699 = (1)20041<202> = 7 × 41 × 311 × [12448447865277917822816262154353284460727014252227960956688115342338540519075379086358617375792499312223255443395040289401515971981033544832462564405157142981627335795636321085305478686389987464413<197>] Free to factor
10203+2699 = (1)20141<203> = 13 × 17 × 50276520864756158873805932629462041226747109100050276520864756158873805932629462041226747109100050276520864756158873805932629462041226747109100050276520864756158873805932629462041226747109100050276521<200>
10204+2699 = (1)20241<204> = 32 × 183527077 × 3163034796327262867<19> × 39498668007218010765560820669517829719<38> × 538428963164002113425861669682032273649605138722855901691844880235883821606172715312333838188654814027183282947464236622350443019244487669<138> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2873546421 for P38 x P138 / November 25, 2016 2016 年 11 月 25 日)
10205+2699 = (1)20341<205> = 227960371 × [4874141528358501886764832081761751085723189628916295767526677306167005277909076183733317011977977133188255388087217629204117724089469529381978024202772994746139938117187531297319704358224224468871<196>] Free to factor
10206+2699 = (1)20441<206> = 4715299037833<13> × 801897050709991<15> × 9668571584270987949395355745969<31> × [303925624009386786675389492427085360136695284080521384179148070975262478438371750118047735035338455256023458507045308183342775203081510217596659563<147>] (Cyp / GMP-ECM 6.4.4 B1=3000000, sigma=3163563664 for P31 / December 7, 2014 2014 年 12 月 7 日) Free to factor
10207+2699 = (1)20541<207> = 3 × 41 × 16468129 × 11110156653643<14> × 1927225411838541396686700163<28> × [2561860176576224220045295686073446982155595133043624697903792472513677442798941638024319061489843282133103292838357951364478692307421341633868721724154620447<157>] Free to factor
10208+2699 = (1)20641<208> = 72 × 145477775069894657625950657<27> × [155870798481463653618481779600882232068284415844471024419939052366601750782287858297691268968448048137651000910305513043800869010795052956718467184063704703969377480918859316490037<180>] Free to factor
10209+2699 = (1)20741<209> = 13 × 1117 × 252713 × 3401417 × 2107165355929<13> × 26771760100554481<17> × 37773691096786607197<20> × [417742380558674750616783968053169531566658648797843723399195881653976901731834042068545335621490516669441600189882523501073672930134190976564217<144>] Free to factor
10210+2699 = (1)20841<210> = 3 × 2571703 × 40287371 × 20256251137<11> × 3999116729859343<16> × 21715452418199456509849<23> × 3743736567965927780726319482248218869599<40> × 54281167415977736354135720675997846678600915692489205014148495827784016720204429428782356409130618496770859<107> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=619252126 for P40 x P107 / May 22, 2015 2015 年 5 月 22 日)
10211+2699 = (1)20941<211> = 31 × 109 × 3167 × 847822795761114631<18> × 122466172824278096777729517467752408295848892925656356113220523182186063113092276632944694952637223064980119788653804830345258658312904391456924264362044040497626165123644340844685380127<186>
10212+2699 = (1)21041<212> = 192 × 412 × 79420275833717475227182107857407901832869<41> × 230542598635103983450028688188120161502880823284620352800657345784912265723449705988926919160105794496266716361862005116647237913484716355704162913617556329176273929<165> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=1603035113 for P41 x P165 / February 10, 2015 2015 年 2 月 10 日)
10213+2699 = (1)21141<213> = 33 × 187477 × 78259427008247<14> × [280484629669273446899736742593361860314542241548067435827559162867221288398337090269029465159476743886930708118914225779378671251106034856727620195699465068918760351809908176877832442914607957<192>] Free to factor
10214+2699 = (1)21241<214> = 7 × 53 × 82670420141423<14> × 907473698771387654316095351<27> × 26027590522407869410333160809841237837093<41> × 1533788311389416669249725195261448593817871567740641428058836608842820939707214719461187118020107830918209680809367722904399906739<130> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=2027973294 for P41 x P130 / June 8, 2015 2015 年 6 月 8 日)
10215+2699 = (1)21341<215> = 13 × 29 × 4867314577<10> × 695676871119985691743<21> × [8704005559349698337646404044291114982845620550150088994738301906439705214929673140858500036752999214587284603701478682072695726177662160668940043737237850989659964163394606694980003<181>] Free to factor
10216+2699 = (1)21441<216> = 3 × 24151071084999937649<20> × 1533556706726787088823280574553400278619739776071211429521235035242780790960630782295680292115994322783424938993717383875002090173742661868876755039609756644115749442131773440479296382115005660903<196>
10217+2699 = (1)21541<217> = 41 × 829 × 9229909180522687<16> × 4753391676893910098159385253643<31> × [745106023301881272407501573564810448048776475749612005581123955478794246438695288199253273348896269935802656125309701682928936853621476806556348395678206345902984509<165>] (Cyp / GMP-ECM 6.4.4 B1=3000000, sigma=2938003946 for P31 / December 10, 2014 2014 年 12 月 10 日) Free to factor
10218+2699 = (1)21641<218> = 163867273 × [67805553285256117681967595269075546958733554509759316682539234732435628626779620059406926916463125075078970229223934855565156754095194536563204485078061383929365268140582965038486428654433708133478922976347517<209>] Free to factor
10219+2699 = (1)21741<219> = 3 × 17 × 23 × 21683 × 543029 × 2348110497401<13> × 16297782667823296012060526905349<32> × [210218064442856771350375696541600581689096897659622582713440723988958955682366544009500118585365672543530739742639394281620233289111547067729392042874433664467819<162>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1794276271 for P32 / November 29, 2014 2014 年 11 月 29 日) Free to factor
10220+2699 = (1)21841<220> = 7 × 3911 × 13033 × 97087196139076499634263397703<29> × 5907407600044812513347477220468115526818261945962871622603946699072299891409691<79> × 5429606336510389533538634165268773934453198206540668197201282339408159733004740199463112630020975042737<103> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P79 x P103 / December 26, 2017 2017 年 12 月 26 日)
10221+2699 = (1)21941<221> = 13 × 91639 × 929057 × 163907181562697927257<21> × 28713501952264166997569<23> × [2133080725335198849371691112120454401877570638375429790609248211156814654300446504824506170016535130988148089216623213479911695633924170507658423980686380760953694023<166>] Free to factor
10222+2699 = (1)22041<222> = 32 × 41 × 59 × 2287 × 20063 × 39671 × 2926026458079332494328747<25> × 2881630981715173573261470555634741<34> × [332527305597441222704673876407611456896968344471361918475183577150439923646527396045833301103477373183382677268550721648347766909063334801688397023<147>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=420755322 for P34 / November 29, 2014 2014 年 11 月 29 日) Free to factor
10223+2699 = (1)22141<223> = 24223 × 28239467 × [1624325513662634849717351689999159868857660377529824225073902885441336479071473345332706758338328572640511493847324495877487950778346547938899475855274644837552379846350379691064428189464799563088983240149422001<211>] Free to factor
10224+2699 = (1)22241<224> = 1192229627<10> × [9319606608896250077092834324533281465845598476400814279639698226616130812786043196619128398082587752293049760883950178090240590130135317557505313622868987058909173636154833712340811600306851887275831899043313332383<214>] Free to factor
10225+2699 = (1)22341<225> = 3 × 747841 × 49525282830223318910085214687396167149216259922947574467081955973311221285055295225906358486679704692624551257602935700285270581630369339253981845120870662396200578782170323687838774601869965724047006030743215519123767<218>
10226+2699 = (1)22441<226> = 7 × 31 × 71 × 39761 × 63353 × 2573807 × 1216747379<10> × 16019195501<11> × 447655118442444051639919<24> × 1274835859399716597523602350028134223142239997315972793286682585001518467352623454036320651662963356929949128630167457150168176909429025330819915875483962132249573<163>
10227+2699 = (1)22541<227> = 13 × 41 × 53 × 661 × 7603 × 35803 × 135085546630512301059533703170519<33> × 1618759371930770537403598131252621083<37> × 292305975118230264954202969668166270545041<42> × 34199493183949185512878533616419363450680616115941570961533656844357760750863810644620610796069072013<101> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=752328659 for P33 / November 29, 2014 2014 年 11 月 29 日) (Cyp / GMP-ECM 6.4.4 B1=3000000, sigma=2153121215 for P37 / December 7, 2014 2014 年 12 月 7 日) (Serge Batalov / GMP-ECM B1=3000000, sigma=3230261561 for P42 x P101 / December 9, 2014 2014 年 12 月 9 日)
10228+2699 = (1)22641<228> = 3 × 83 × 499 × 4355797 × 45685634409539626739<20> × 11947682363024232590174741<26> × [376120182553628023785896890653068499953144987007504838899595797271627700192316659103071169275574331643263788458684355170565922282200827059266952530323634614971848989225197<171>] Free to factor
10229+2699 = (1)22741<229> = 78339628770863<14> × 880383185052127<15> × 1626222093909950369821<22> × 250461075237728777195401<24> × 15647624869662228188953141159<29> × 2527759309153013003786837815329830262181753659937559963069504438330491964341001227495991702519646860368770469262653411420062119<127>
10230+2699 = (1)22841<230> = 19 × 107 × 2689 × 307533959 × 181807054119903053<18> × 69742246706577075624641<23> × 521230195433733062056974143066319059654930544703772265767456012658836316134693698892579601033860019113465041495775179808498897541938880050437786594161747310183224378077069999<174>
10231+2699 = (1)22941<231> = 32 × 2700433923383540779<19> × 43477082048179934299661<23> × 58216652889230486868489722326231<32> × 1806233133733831791238316400844438045978866402655916119405460286263640975023508781127771317978197424180057244805617183837818312350621701257370346655260165541<157> (Serge Batalov / GMP-ECM B1=3000000, sigma=1013460635 for P32 x P157 / December 11, 2014 2014 年 12 月 11 日)
10232+2699 = (1)23041<232> = 7 × 41 × 56909 × 466357 × 217243183 × 63056285191357<14> × 19231695961766706944122492042868113<35> × 932296807375506425746282653122460108347<39> × 1207247144737267653624355336907824035825422759344130204660033<61> × 491964349058067473160209364045545514578740231714224638005185787<63> (Cyp / GMP-ECM 6.4.4 B1=3000000, sigma=937094572 for P35, B1=3000000, sigma=1979005032 for P39 / December 8, 2014 2014 年 12 月 8 日) (Erik Branger / GGNFS, Msieve gnfs for P61 x P63 / December 16, 2014 2014 年 12 月 16 日)
10233+2699 = (1)23141<233> = 13 × 47 × 131 × 109229 × 171707 × 24554407 × [301432153562572103152454646408286668351513535299848861825106143501166739229936531199244914035368374933374797542876825593122561388414464338498639055754481911217168364011482640994387328150706261016888481214206981<210>] Free to factor
10234+2699 = (1)23241<234> = 3 × 89 × 39592603 × 2965225971541<13> × 31692135971456411371<20> × 111846620989774180694381053997587912964063721778929340442966718816132298984508745392560931491817628620461832632415609299583735229406063207782445572459615521831929141910875031003787055521531131<192>
10235+2699 = (1)23341<235> = 17 × 1571 × 3767 × 139267 × 126392459 × [627433033946373102086762018209904810984195026010407632483429659681355428014467225565142578023043679720450148168710641870914510925184397208013538952221195458255067132968438453279309504416153464420150155170849716913<213>] Free to factor
10236+2699 = (1)23441<236> = 825647 × 223953904100063<15> × 14175104018868827<17> × 2188279800538341577269103329587<31> × [1937203921877922978870489638950597060504513942824694090259125809670178174948339709445936303004548418684140828846864405905772847203523836205100384290578387039226258392469<169>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2693531721 for P31 / November 29, 2014 2014 年 11 月 29 日) Free to factor
10237+2699 = (1)23541<237> = 3 × 41 × 8287 × 392473 × [277744364177409705351265206955163248765353454370141317651754198908002857282326906229371278780623554349699158663648178788897099763786899274596512057324753973107594921416911755530037913359945438733485421028939288699513117888617<225>] Free to factor
10238+2699 = (1)23641<238> = 7 × 61 × 233 × 1999 × 56405143 × 1159560117137721333791051<25> × 688097292648683923397120273<27> × 124136380191610495649272911829963973738497968166125229971205585024511171488536455636442026577450905691510059408624733356254321609534484367333447648364497818515264273907741<171>
10239+2699 = (1)23741<239> = 13 × 328781 × 12375840941<11> × 129706840519<12> × 33710525177451403147<20> × [48040144836273533021422651477850423817376492342657524508634260484763933343389200217170741349855129497841889226613485521462753115274990469153443850955769229718213212784227184917875934987190069<191>] Free to factor
10240+2699 = (1)23841<240> = 35 × 53 × 1571681341<10> × 15679170259<11> × 105307646475992034329<21> × [3324511711268984986315918405723535439270820063251110923300949691263664981088898425436949677403992855303240349538537125973980226758789978132815589803133337955923757292553395613214127151245990465829<196>] Free to factor
10241+2699 = (1)23941<241> = 23 × 312 × 2557 × 941634456757361347<18> × 565524248021843458693<21> × [36918323060999876971437897432399167656932157189253463334444721729074139132394890551502906917415658308086619862646714059543598124508178659005771739156196014556366418879973292884078539335264404401<194>] Free to factor
10242+2699 = (1)24041<242> = 41 × 1828781 × 215940949711<12> × 9053386197911408707<19> × 99032883923151802318133891753953<32> × [765396466016541925664973929380544123292212371546139289086630939037478652473695476540826300340564921741088480024059706448111767611403179343464646275922725948704456319860341<171>] (Cyp / GMP-ECM 6.4.4 B1=3000000, sigma=107004667 for P32 / December 6, 2014 2014 年 12 月 6 日) Free to factor
10243+2699 = (1)24141<243> = 3 × 29 × 72803293 × 57960647561234719983061867230466690618421<41> × 302659273633958432010927761015205877272535082476629323751182607180859202508421646721183750109842810538677089076627566834113433411903210040309330586200028095279319580263760791975123897303388131<192> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=540012195 for P41 x P192 / June 6, 2015 2015 年 6 月 6 日)
10244+2699 = (1)24241<244> = 7 × 2377 × 3407 × 178697 × 36696241159<11> × [2988954421136943760948881264389984003107850120953300575607310914974477693549285127198889916364502549849110807397642234041957964402656868997254316685527252473985224181103339946351984240120504239227043600303373363832239179<220>] Free to factor
10245+2699 = (1)24341<245> = 13 × 107477107 × 1010732886928473502397<22> × 29730237418796153136517<23> × 264644818986534558854560061961669541299572945734557175190928614906805133725727774690008348902959019413012053427514906208657589641986937354125741494296221169782640573331713044255106604058772499<192>
10246+2699 = (1)24441<246> = 3 × 37037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037047<245>
10247+2699 = (1)24541<247> = 41 × 163 × 617231 × 1436344941481<13> × 661692995722868491423<21> × 43521659743135375304131681515479<32> × [6512047554735546776560262838594169667156900359668582054389313642456761625030132678070522684355039467385798885941198925499674008572622543923924953580581069538117185706601121<172>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1640549166 for P32 / November 29, 2014 2014 年 11 月 29 日) Free to factor
10248+2699 = (1)24641<248> = 19 × 305321305205893<15> × [1915343972616227957072705092990010739256479466769253373043435134346078176460297284696483633026467697636456738305020458423598455858117614050652281454988447176376912938681268579482188945707523780000682858209455909739351727097318977723<232>] Free to factor
10249+2699 = (1)24741<249> = 32 × 75080393 × 3413078113<10> × 2185800296429<13> × 10039150162123<14> × 2195506793403365061083206221326636863553614772089154569839413981816783099039070467307595737204726127813872378994128462405459855839504754414044699685346739508753540109137311052347161086832979709552411677083<205>
10250+2699 = (1)24841<250> = 72 × 2593 × 14664899898518383<17> × 38305947597341844852740786173<29> × [15567310245518051988001941379825651448033740774710698709153390834588416207245413165442004112442564105793384154977096755783474512622580013118725420406444231139162417901321937811182903010395438024059607<200>] Free to factor
10251+2699 = (1)24941<251> = 13 × 17 × 431029380638071207094653<24> × 40840434614933223045754411<26> × 2856064344044215491145506803278905667152588456711804541488984605974613205879897016098098186257991094607349924746650674981301752436367934137094324605387938388842192803781819563013943306191695286534487<199>
10252+2699 = (1)25041<252> = 3 × 41 × 571 × 11381962577904046764875128195252375027<38> × [138994980676479319268075320520104147061465694007908403743085012832809125432961846923665033503568491046447874094777916646834706203877416196199474224816665976121007202721881655451357299101404945943868556674168351<210>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2526363388 for P38 / October 29, 2015 2015 年 10 月 29 日) Free to factor
10253+2699 = (1)25141<253> = 53 × 683 × 3083 × 227753986027<12> × 4984165979672243316167<22> × 8770592021362609185514685426981389722002075304217098627405450258748652813726304691136746262391365582686290975750822158806809407617788569034776344531310600227121361576429749728684444641356843548505722802039615197<211>
10254+2699 = (1)25241<254> = 349 × [31836994587710920089143584845590576249602037567653613498885705189430117796879974530404329831263928685132123527539000318369945877109200891435848455905762496020375676536134988857051894301177968799745304043298312639286851321235275390003183699458771092009<251>] Free to factor
10255+2699 = (1)25341<255> = 3 × 419 × 26118997 × 32550822247<11> × 103968972955390990731627755446827603457806446500891843404637920757778612404030945771588038172508663823524777105365685885335295819089326116659635494991279862736579520504339162379370839567497535432703847549595870991581103489454793991407<234>
10256+2699 = (1)25441<256> = 7 × 31 × 293 × 18179321660417<14> × [961285656866970756717901061086755368559360436523817102993674654393023438768377891828623085259769699978030707148339313067746803875082337914255610420910335635635815670247032814346047013523227064402639095684390820055698980044370671843509033<237>] Free to factor
10257+2699 = (1)25541<257> = 13 × 41 × 1663 × 8443 × 27526412381772663943<20> × 53937601603616458525162489299136883012476896945620646222465357447751220192967822872517021093623147482161968406345032577178223211113987446215931685436946001384909672558694939359004219191680159166519181783249706044861978543101371<227>
10258+2699 = (1)25641<258> = 32 × 1091 × 15031 × 707579500520110771393<21> × 1063964440585846280844072835914506968384961552606103033121403463317561938655955111401827887278430308459256322058786436561115542810216825928726938010219438190360611155332394953737805296734003552454294335839990508534841164514336633<229>
10259+2699 = (1)25741<259> = 3761 × 11071 × 27050434322020873891<20> × 156258451106864710617892104271<30> × 6313200012914405576983041078514861548022080906776289111034949932151860476924100867326426320969687320039481694632529450006328650187914282275001779478159003942027166820435187614845022841680398736995439351<202> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=3210068193 for P30 x P202 / October 23, 2015 2015 年 10 月 23 日)
10260+2699 = (1)25841<260> = 223 × 37865603421517<14> × [1315854122515151112078891889635329304608037157921623236578192350085501855062300571647277708943290717457628493021803291643175571498947071860553931560995033169585890473130965919846542338765628602994987118615518938122981679686045325467046160621351<244>] Free to factor
10261+2699 = (1)25941<261> = 3 × 71 × 13732699 × 110070701888725423999857891615941<33> × 345104204286751874395424034689500933889214564628813857331416021598464892467996789532314969231075765350207870374428943838937017116279023718679048977674959441183393036325372751157079410951741418975177058875446780526040423<219> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2428691057 for P33 x P219 / April 11, 2016 2016 年 4 月 11 日)
10262+2699 = (1)26041<262> = 7 × 41 × 4349 × 944954173 × 5601090304982909819<19> × [168191043158550473510117957377419300729016546470483997460325930646094559587192451873164205842428702718460099765191165152903566620105749175537710196837991901833139490788849234795926008407372171111999083131623822294226905389178361<228>] Free to factor
10263+2699 = (1)26141<263> = 13 × 23 × 101111 × 53855071051651<14> × 6012044078994298057<19> × 132360951380479092258126533223523<33> × 90239950626462505221823877213119693032337<41> × 95034306136116726295874319387329168693201815843935230925457770792065080119699553488795461598849761079958307479417663423557828735913132770495959206217<149> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3777874302 for P41 / April 11, 2016 2016 年 4 月 11 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2474443196 for P33 x P149 / April 11, 2016 2016 年 4 月 11 日)
10264+2699 = (1)26241<264> = 3 × 97 × 579006379734253<15> × 149441632768257723222027641593535161<36> × 4412752286582730708292892190532582950485871337789393667785858410932244241972190560322181659188210133517902168964990392225640799137063619260442159010331752051621376285997095348808660278342739311130727842775994347<211> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3181633803 for P36 x P211 / April 12, 2016 2016 年 4 月 12 日)
10265+2699 = (1)26341<265> = 39191 × 993489812642965866745969951<27> × [28536961366492321940047981897322025661663122771201495685304206331342286074997502569799157452579403446153951413794321698742082388180784170558660883889502858567596510171173624927024328956384965971047819624342677229496832736562946301501<233>] Free to factor
10266+2699 = (1)26441<266> = 19 × 53 × 660241 × 15751811 × 1099162853<10> × 1091232230617<13> × 14072207754037<14> × 356441517956899266737<21> × 2004658435366030989902237310950207<34> × [87968037223997366081487454414731692768280017540942433252589719271368389535367989591145182730365829160672858541383038610535643242731404366694831531307123708434311<161>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2263584423 for P34 / April 12, 2016 2016 年 4 月 12 日) Free to factor
10267+2699 = (1)26541<267> = 33 × 17 × 41 × 88074901784888704023892963656932129047<38> × 67036106267324343011735020907588756270563370040595083555125572118051788906776711027445829563559187685626990159932859579220285730432973626514745353155839860775694749525144038564330798924804515257672992004300841098323268050337<224> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2464156040 for P38 x P224 / October 29, 2015 2015 年 10 月 29 日)
10268+2699 = (1)26641<268> = 7 × 4201 × 956261 × 39512119357976971853233537350780586193965408023222250297783851113100041276875617982267191685648495948524538139234998586801221741470770544674197452369214873239386923044107565775097588204616132577864928646354927246064896674204496842731577264981537379841101983<257>
10269+2699 = (1)26741<269> = 13 × 83 × 736376491 × 189131222187478296977<21> × 73938885789770317950250721337955476654470017348618304763385248528247037389674220617068225489018737875050162513758125510696354470036863138319969744547640628023085367620819702196067421906608755043321578655872374902209430141533834027587897<236>
10270+2699 = (1)26841<270> = 3 × 2527423 × 1807276039<10> × 1893489161<10> × 11536681376053<14> × [371184720088936052461747120979237938791726835551120733940270056105049773891024577682200782138993079524079810289031624086674465279469859942629018146366247483606467515635093709144323041288486428866598094525488042117294754129046890747<231>] Free to factor
10271+2699 = (1)26941<271> = 29 × 31 × 227 × 863 × 10501 × 3355969725786761207<19> × 235471223590532220405841<24> × 40562196035702919123399631<26> × 38727116357799148734002361366401971873<38> × 483991787460666089798878602380913906592562251994998725878655514776932026270164610659240319856557827633026495333451391981016532478452652143173682616556239<153> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2829370336 for P38 x P153 / January 11, 2017 2017 年 1 月 11 日)
10272+2699 = (1)27041<272> = 41 × 2689 × 641006759915990849873<21> × [157224499937202030186964476756379205155642949763936572333382873547494198240894236806414174048960682310383519374524114349137718695826732960416947174285372257803194182736010575244066883620322543754333570070806016454017090147907541778749171641501133<246>] Free to factor
10273+2699 = (1)27141<273> = 3 × 14891 × 53481283 × 391911529871<12> × 5469790630007334340189411<25> × [21694608213429224266521917804327287809603234408260691286413893541872065557125797305692491115236203482145810709706552258262259476492989313930852602331354743337222680978750478357635797204719818271733675176991627501335526312979<224>] Free to factor
10274+2699 = (1)27241<274> = 7 × 78317 × 162053 × [12506803662687180049448744539789323139911733365947826517213493250457206375423106041352608093988787731157769599360068723355693915458666872560302170485713920990126894782408452887030520277085520219922592513240521143362734857634533243141949998475892327618570998967763<263>] Free to factor
10275+2699 = (1)27341<275> = 132 × 181 × 1019 × 8635321 × 1793752947139<13> × 13302583461830753<17> × 5957873401910979224479<22> × 27430404078851943671014101190969<32> × 144528696692071830962688256226002982245885040177<48> × 73242533516648499678330748964045817073850354243274347851865803770766506217869564698642616928625327094309114587495053616377981753159<131> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=2225078704 for P32 / October 23, 2015 2015 年 10 月 23 日) (Erik Branger / GMP-ECM B1=43000000, sigma=4269429642 for P48 x P131 / November 30, 2015 2015 年 11 月 30 日)
10276+2699 = (1)27441<276> = 32 × 149 × 479 × 2559044354147<13> × 1038328084697237<16> × 1581461940528401815014345768916823<34> × [41164423767738487757545486208151210066783802073398323735893483976634625220945374693209028322764661843650618626952675307487585404225447441859736309507328650618290974425678573836529844422477927223145974553285727<209>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1798616359 for P34 / April 13, 2016 2016 年 4 月 13 日) Free to factor
10277+2699 = (1)27541<277> = 41 × 84919 × 539779458721<12> × 48544061346989561<17> × [12179130980400265809499657468256610161406596518672203980860313374904022073648718122007490220332307448814422533120254600902333651666588245399355709905701710768061338108973453433380058170151824273649915409388335136715560351690813789746594648259<242>] Free to factor
10278+2699 = (1)27641<278> = 89 × 10891717 × 2793624349<10> × 8368169800597<13> × 490312137395004006542999805899533002558896569596755441473946179080806461066352017045407738140733350491966754997802217629453572360817612615327454163324766367281041964905026496708829349427660152362297820123327474189637893563316463342904899392256169<246>
10279+2699 = (1)27741<279> = 3 × 47 × 53 × 433830980755200667<18> × [34272197010833740880268188698345318651306505003068575455369593402700973597754182941224938434605382315436755741433719779739107691844344481411710642058850671521313357360672709926503360745413720819599847229926053739077875323513801525750140831259182780017183151<257>] Free to factor
10280+2699 = (1)27841<280> = 7 × 59 × 467 × 1089713 × 40365633670336815044627<23> × 53792969093476797639312458407<29> × 7039698040071428975956183814096481863<37> × [345849462553180192541782895732783166681454392865089394798779736223504892239587203289547506229652575049047255705971432525413320991899071827011452470464960556632531103850410014754881<180>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2101025606 for P29 / April 12, 2016 2016 年 4 月 12 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2047515737 for P37 / April 12, 2016 2016 年 4 月 12 日) Free to factor
10281+2699 = (1)27941<281> = 13 × 337 × 46727 × 11860703 × 9799828040461091<16> × 37546063023585359259376450009<29> × [12437212292210457687287582799654403367663015485063443637404190170197573250705214194181562199536768093948337235911427514072600274318507267515241477029140319084377303159675434882530387288398098804769894217683312134161779699<221>] Free to factor
10282+2699 = (1)28041<282> = 3 × 41 × 719 × 440533043 × 710232151 × 53172575802673<14> × [75519129014705430142486338546008360058198242211326911207350620894878510909673010525688819245794070633787651809180003413245643671664947754885513313295384582799632831206352325689941099147240937512076766237120380491735286926393950868366863932512637<245>] Free to factor
10283+2699 = (1)28141<283> = 17 × 107 × 374641251929918787511306115587<30> × [1630456421066287228062024587457608505308510281691064671383969065004588872319738284581586999169545151255242135546632493575771662060472674680141755125350099961396508694272314480837220550206343198669455438062127013109320474346609430694765241212433139797<250>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=633434486 for P30 / October 23, 2015 2015 年 10 月 23 日) Free to factor
10284+2699 = (1)28241<284> = 19 × 1669 × 5958830123348513680694711171051126279087<40> × [58801248637244451211485962287584587751893164207219296732638055826303150497793019481099419264857342651376372476859523418449401797383202479250453955988689086314864904869677297227377486854841142875724024406541796971250976428310719687924857013<239>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3028295004 for P40 / January 22, 2016 2016 年 1 月 22 日) Free to factor
10285+2699 = (1)28341<285> = 32 × 23 × 657362921 × 9178132695323<13> × [88966726061853199108863630632356588785116210922603017669892442313243987572579936313181576630120973180799247059035575275467358254828260221765059614757333994554048307596567793782947647329216347878422847258239512337467280457289360011259477864147269929742635272361<260>] Free to factor
10286+2699 = (1)28441<286> = 7 × 31 × 977369 × 3824323 × 1163331617044984336602703<25> × [1177554725896129231238098712322026093766619114069231170346928951058019342877731892610685679524507635268543817597936201577697719554390607157648980513025845948697889972584144741488680965718905063000770372444619240478947151465522853951527455898833193<247>] Free to factor
10287+2699 = (1)28541<287> = 13 × 41 × 2211996891188359519<19> × 62096820971980018801<20> × 2122062400150555158451<22> × [71518476050466078408534422712260169442849100232607750468422764009814289320936837561533753943962325765963687323133076189548991330634171367538955482320313366396210718074678408626704093122611686414192774516863020855945837552133<224>] Free to factor
10288+2699 = (1)28641<288> = 3 × 5234690147<10> × 7075306464559885446269765054928099651098037959387367161588186556142505723182976590617491812555421732975599756551748589492404398666127398779356450233278160262622519849604583871282388825035652494569137873565343816526192765509839265952838647937080474734169024548576979419262852701<277>
10289+2699 = (1)28741<289> = 73673 × 22811237 × 192730611347883381132575523944280521137<39> × 3430438201103676314847305272768228197416166891455652230744623322608364368788608916455326564964768904118220753504839780942583324329201562708477149063311805586904132270767855732279349656792836662893940255892729135025152970478338254104558793<238> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3915360558 for P39 x P238 / April 12, 2016 2016 年 4 月 12 日)
10290+2699 = (1)28841<290> = 167 × 503 × 153475913 × 199599263 × [4317912878129804192872431449899120789230916602269013679900686566338419955153986782145453481766902152150134444149479394081218694956841346197295848033284417880075071877681293110146889529806249872671772926970156519872531963824034041287861469227394080082120292547692825539<268>] Free to factor
10291+2699 = (1)28941<291> = 3 × 50923 × 5003350174269414262743995924393641825177<40> × [145365503005949293564946924835095674852522746551970131369393521450167887299248247087649597513121489996183721241786826906008536976923497073065872815677857230539644531374722615441943350188233239054048038469753637194482356148567056457449442821646957<246>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2207856392 for P40 / January 2, 2016 2016 年 1 月 2 日) Free to factor
10292+2699 = (1)29041<292> = 72 × 41 × 53 × 10435221795421650789476704932624990477860111677743654602506748979696188952648094058915175212591556027227580708614171239902618510205125154832603389568743588860609437823296215249407018521475164693887986242203584916095599153912216827212553989228764062765772055102145168544484828752792726233<287>
10293+2699 = (1)29141<293> = 13 × 1210873 × 720259855544503<15> × [980000581188230887583773810831108898438805066138460779802891382931590232728140543299990822434589250164636635704390885257387338169344067584371172488022909442355138442053813578550280076036689781370531483487815861334897043388346492243008434192102288290429066845600555842503<270>] Free to factor
10294+2699 = (1)29241<294> = 33 × 523 × 7589 × 342825552262869541849<21> × 50940837374242557570109<23> × 59370160189858365448178793502096222877844501226065426755888264855761862413999442615105376857765317995200445586136236877348930024518616569218736468766419016663617213844807733086847501993304235737608224983902561162882313182245141104007112462229<242>
10295+2699 = (1)29341<295> = 21391 × 27997 × 21998987 × 491426951 × 107827839709<12> × 900525086598233791193<21> × 15787776391934041682039015184883<32> × [111945222816237264935820273227505625306767009220365764872317446557578099231818153575590147044234589407743873778259398595669971101552463444095542717877625456274229786522426012262801405052733190583097357254029<207>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2907664971 for P32 / April 12, 2016 2016 年 4 月 12 日) Free to factor
10296+2699 = (1)29441<296> = 71 × 1583 × 11414787557<11> × 8660648122836968809062911876818350207514693580516509735211108531395507100837836033394065668215611004581594666242570967919290694225466617607044009344932846740724484613893373492648274628146659369567058337745657095281268219410453907069367998767707546445685766715841231497999662781241<280>
10297+2699 = (1)29541<297> = 3 × 41 × 113 × 509 × 132244420822649<15> × 208513598456812276373269<24> × 12403320355836034763352400981829<32> × [45920483298986895105640784448080111267239595322775021336647481551000930968864588380830864231763916526440538326124583491506882401461075845585069145271921265670594067263523877481126090757548109000591773584120084665060974299<221>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3202910758 for P32 / April 12, 2016 2016 年 4 月 12 日) Free to factor
10298+2699 = (1)29641<298> = 7 × 61 × 35201 × 4106751997878251<16> × [18000150539676196707252881983900895258486686882773561774482911219119941152339846070956692218530303096103952682258176470477294893493604902884885093962645583368572755645831123367698204560108688726289251253620625469038714329483799732788883150175429548262260351209375723939600333<275>] Free to factor
10299+2699 = (1)29741<299> = 13 × 17 × 29 × 541 × 1979 × 512683 × 2126798825217928422486869<25> × 83751347884501881026268847421863<32> × [17731971545172105535917091638495191000064192992768061024396819772789050812816774827847770957283906384872306668255083973445201280436113120695685807308717742177774749612479692167183630706854724786000439251751157664220007535283491<227>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1928052327 for P32 / April 12, 2016 2016 年 4 月 12 日) Free to factor
10300+2699 = (1)29841<300> = 3 × 29347 × 981632119071303823<18> × 10005051495910501251622821562357<32> × 9523539224973487050418247968424673691<37> × [13492923575981030287230335363780317479989450095924436990467748494725837895552662447827535763989991165888010858446282772446328143386373952672653542150453563825158862933556273077469072070596155529745355033025701<209>] (KTakahashi / GMP-ECM 6.4.4 B1=3000000, sigma=2304530602 for P32, B1=3000000, sigma=2939979525 for P37 / October 28, 2015 2015 年 10 月 28 日) Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク