Table of contents 目次

  1. About 155...551 155...551 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 155...551 155...551 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 155...551 155...551 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 155...551 155...551 について

1.1. Classification 分類

Plateau-and-depression of the form ABB...BBA ABB...BBA の形のプラトウアンドデプレッション (Plateau-and-depression)

1.2. Sequence 数列

15w1 = { 11, 151, 1551, 15551, 155551, 1555551, 15555551, 155555551, 1555555551, 15555555551, … }

1.3. General term 一般項

14×10n-419 (1≤n)

2. Prime numbers of the form 155...551 155...551 の形の素数

2.1. Last updated 最終更新日

February 19, 2012 2012 年 2 月 19 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 14×101-419 = 11 is prime. は素数です。
  2. 14×102-419 = 151 is prime. は素数です。 (Jean Claude Rosa / October 14, 2002 2002 年 10 月 14 日)
  3. 14×104-419 = 15551 is prime. は素数です。 (Jean Claude Rosa / October 14, 2002 2002 年 10 月 14 日)
  4. 14×1020-419 = 1(5)191<21> is prime. は素数です。 (Jean Claude Rosa / October 14, 2002 2002 年 10 月 14 日)
  5. 14×1032-419 = 1(5)311<33> is prime. は素数です。 (Jean Claude Rosa / October 14, 2002 2002 年 10 月 14 日)
  6. 14×10400-419 = 1(5)3991<401> is prime. は素数です。 (Patrick De Geest / November 20, 2002 2002 年 11 月 20 日)
  7. 14×10562-419 = 1(5)5611<563> is prime. は素数です。 (Patrick De Geest / November 20, 2002 2002 年 11 月 20 日)
  8. 14×107016-419 = 1(5)70151<7017> is PRP. はおそらく素数です。 (Patrick De Geest / November 21, 2002 2002 年 11 月 21 日)
  9. 14×1037684-419 = 1(5)376831<37685> is PRP. はおそらく素数です。 (Patrick De Geest / October 11, 2004 2004 年 10 月 11 日)

2.3. Range of search 捜索範囲

  1. n≤100000 / Completed 終了

2.4. Prime factors that appear periodically 周期的に現れる素因数

  1. 14×102k+1-419 = 11×(14×101-419×11+14×10×102-19×11×k-1Σm=0102m)
  2. 14×103k-419 = 3×(14×100-419×3+14×103-19×3×k-1Σm=0103m)
  3. 14×1013k+5-419 = 79×(14×105-419×79+14×105×1013-19×79×k-1Σm=01013m)
  4. 14×1015k+8-419 = 31×(14×108-419×31+14×108×1015-19×31×k-1Σm=01015m)
  5. 14×1016k+6-419 = 17×(14×106-419×17+14×106×1016-19×17×k-1Σm=01016m)
  6. 14×1018k+12-419 = 19×(14×1012-419×19+14×1012×1018-19×19×k-1Σm=01018m)
  7. 14×1021k+7-419 = 43×(14×107-419×43+14×107×1021-19×43×k-1Σm=01021m)
  8. 14×1022k+19-419 = 23×(14×1019-419×23+14×1019×1022-19×23×k-1Σm=01022m)
  9. 14×1028k+18-419 = 29×(14×1018-419×29+14×1018×1028-19×29×k-1Σm=01028m)
  10. 14×1032k+26-419 = 449×(14×1026-419×449+14×1026×1032-19×449×k-1Σm=01032m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 8.63%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 8.63% です。

3. Factor table of 155...551 155...551 の素因数分解表

3.1. Last updated 最終更新日

April 20, 2017 2017 年 4 月 20 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=202, 203, 206, 207, 208, 209, 213, 215, 217, 218, 221, 224, 227, 228, 231, 233, 234, 237, 238, 239, 240, 241, 244, 248, 251, 252, 253, 255, 257, 258, 259, 261, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 276, 278, 281, 282, 283, 284, 286, 287, 290, 291, 292, 293, 294, 297, 299, 300 (58/300)

3.4. Factor table 素因数分解表

14×101-419 = 11 = definitely prime number 素数
14×102-419 = 151 = definitely prime number 素数
14×103-419 = 1551 = 3 × 11 × 47
14×104-419 = 15551 = definitely prime number 素数
14×105-419 = 155551 = 11 × 79 × 179
14×106-419 = 1555551 = 33 × 17 × 3389
14×107-419 = 15555551 = 11 × 43 × 32887
14×108-419 = 155555551 = 31 × 61 × 82261
14×109-419 = 1555555551<10> = 3 × 112 × 229 × 18713
14×1010-419 = 15555555551<11> = 1709 × 9102139
14×1011-419 = 155555555551<12> = 11 × 14141414141<11>
14×1012-419 = 1555555555551<13> = 3 × 19 × 733 × 2081 × 17891
14×1013-419 = 15555555555551<14> = 11 × 2311 × 611917531
14×1014-419 = 155555555555551<15> = 19037 × 8171222123<10>
14×1015-419 = 1555555555555551<16> = 32 × 11 × 2347 × 6694794367<10>
14×1016-419 = 15555555555555551<17> = 3782533 × 4112470547<10>
14×1017-419 = 155555555555555551<18> = 11 × 71 × 199174847062171<15>
14×1018-419 = 1555555555555555551<19> = 3 × 29 × 79 × 226328467271287<15>
14×1019-419 = 15555555555555555551<20> = 11 × 23 × 1063 × 4091 × 14138464999<11>
14×1020-419 = 155555555555555555551<21> = definitely prime number 素数
14×1021-419 = 1555555555555555555551<22> = 3 × 11 × 3697 × 18492883 × 689473397
14×1022-419 = 15555555555555555555551<23> = 17 × 107 × 113 × 263 × 2728603 × 105457697
14×1023-419 = 155555555555555555555551<24> = 11 × 31 × 45413 × 356453 × 28180499099<11>
14×1024-419 = 1555555555555555555555551<25> = 32 × 172839506172839506172839<24>
14×1025-419 = 15555555555555555555555551<26> = 11 × 389 × 3635324972085897535769<22>
14×1026-419 = 155555555555555555555555551<27> = 449 × 578210099 × 599174762576101<15>
14×1027-419 = 1555555555555555555555555551<28> = 3 × 11 × 1206243607<10> × 39078380904568921<17>
14×1028-419 = 15555555555555555555555555551<29> = 43 × 97 × 3729454700444870667838781<25>
14×1029-419 = 155555555555555555555555555551<30> = 11 × 643 × 17791 × 22787 × 39129203 × 1386415337<10>
14×1030-419 = 1555555555555555555555555555551<31> = 3 × 19 × 27290448343079922027290448343<29>
14×1031-419 = 15555555555555555555555555555551<32> = 112 × 79 × 1627320384512559426253327289<28>
14×1032-419 = 155555555555555555555555555555551<33> = definitely prime number 素数
14×1033-419 = 1555555555555555555555555555555551<34> = 36 × 11 × 72931 × 11016959 × 241430098238873801<18>
14×1034-419 = 15555555555555555555555555555555551<35> = 59968257277<11> × 259396491775686048932363<24>
14×1035-419 = 155555555555555555555555555555555551<36> = 11 × 111611 × 118583 × 15648953 × 68277580403406169<17>
14×1036-419 = 1555555555555555555555555555555555551<37> = 3 × 600569 × 863378760006791090646567702493<30>
14×1037-419 = 15555555555555555555555555555555555551<38> = 11 × 653 × 43711 × 613066240547<12> × 80813053342946341<17>
14×1038-419 = 155555555555555555555555555555555555551<39> = 17 × 31 × 89 × 443 × 1481 × 25694131 × 196739781906284227729<21>
14×1039-419 = 1555555555555555555555555555555555555551<40> = 3 × 11 × 167 × 46867 × 6022654646502817189416764287123<31>
14×1040-419 = 15555555555555555555555555555555555555551<41> = 941 × 188575312897<12> × 87661937627561813312175163<26>
14×1041-419 = 155555555555555555555555555555555555555551<42> = 11 × 23 × 78439 × 1986991 × 186197449 × 21186700635473950267<20>
14×1042-419 = 1555555555555555555555555555555555555555551<43> = 32 × 5795191 × 29824643600675026271410123699605329<35>
14×1043-419 = 15555555555555555555555555555555555555555551<44> = 11 × 119183 × 57022566594157<14> × 208080684093757837790111<24>
14×1044-419 = 155555555555555555555555555555555555555555551<45> = 79 × 5881 × 503638598378879<15> × 664795772282880689967431<24>
14×1045-419 = 1555555555555555555555555555555555555555555551<46> = 3 × 11 × 17581 × 2681192602129977705883513289235375578587<40>
14×1046-419 = 15555555555555555555555555555555555555555555551<47> = 29 × 6173 × 86894292472533645159708606196928535030503<41>
14×1047-419 = 155555555555555555555555555555555555555555555551<48> = 11 × 69220300415176003<17> × 204295763765765863251654714047<30>
14×1048-419 = 1555555555555555555555555555555555555555555555551<49> = 3 × 19 × 223 × 29423 × 4159286684615254322301236280497430021767<40>
14×1049-419 = 15555555555555555555555555555555555555555555555551<50> = 11 × 43 × 47 × 59 × 65127131 × 24576175607<11> × 7409659778918033484998407<25>
14×1050-419 = 155555555555555555555555555555555555555555555555551<51> = 191 × 33409 × 24377472909619073951693355907569746866584929<44>
14×1051-419 = 1(5)501<52> = 32 × 11 × 233 × 2267 × 22283 × 4492591 × 297147682485567017511253269003403<33>
14×1052-419 = 1(5)511<53> = 71 × 42787 × 23254267 × 70709869 × 402873204834169<15> × 7729729030804549<16>
14×1053-419 = 1(5)521<54> = 112 × 31 × 541 × 302687599 × 287133222596279281<18> × 881988907808009197219<21>
14×1054-419 = 1(5)531<55> = 3 × 17 × 149 × 433627 × 4803805700846509154159<22> × 98271442860649403942893<23>
14×1055-419 = 1(5)541<56> = 11 × 66883 × 4736789 × 651028223 × 6856354123961512238423552686082941<34>
14×1056-419 = 1(5)551<57> = 163 × 269 × 487073011 × 128611685479<12> × 147265430773<12> × 384565512256940178209<21>
14×1057-419 = 1(5)561<58> = 3 × 11 × 79 × 113116417850798215347433<24> × 5274956123300963471574715918121<31>
14×1058-419 = 1(5)571<59> = 449 × 140200012103095489<18> × 247110462824118099380270556362297290591<39>
14×1059-419 = 1(5)581<60> = 11 × 727 × 4273 × 4552244054882257524419643428641098344115046991075771<52>
14×1060-419 = 1(5)591<61> = 33 × 421 × 2083 × 78238487 × 55878464303677<14> × 1634581499688211<16> × 9193458325767619<16>
14×1061-419 = 1(5)601<62> = 11 × 37747072789<11> × 37463604715688412090240648995014555946158069495369<50>
14×1062-419 = 1(5)611<63> = 691 × 539600789240021825837169757<27> × 417190972876572267579059461773673<33>
14×1063-419 = 1(5)621<64> = 3 × 11 × 23 × 538683139 × 3804611954542493239735264137713621020210534849928051<52>
14×1064-419 = 1(5)631<65> = 8101 × 15277 × 87221 × 193327 × 232556718077<12> × 32052827937970455603454356426447857<35>
14×1065-419 = 1(5)641<66> = 11 × 509 × 170341 × 5240551 × 20167519 × 515757301 × 3779629289<10> × 791647508771159469788729<24>
14×1066-419 = 1(5)651<67> = 3 × 19 × 257 × 28819249 × 406445261741658960296796799<27> × 9065522139920878166264096249<28>
14×1067-419 = 1(5)661<68> = 11 × 131 × 2579 × 4185720289660215485066231997553386694689466045900429308401509<61>
14×1068-419 = 1(5)671<69> = 31 × 61 × 554849 × 33219917 × 36285021307<11> × 122996644716121062065025162771199031246731<42>
14×1069-419 = 1(5)681<70> = 32 × 11 × 3240781225603872443181641<25> × 4848424279680038013167985423458834899881389<43>
14×1070-419 = 1(5)691<71> = 17 × 43 × 79 × 797 × 519492917 × 650583592057174744216392811229878404235603754729695651<54>
14×1071-419 = 1(5)701<72> = 11 × 1901139203893<13> × 2462393135239<13> × 3020796933112294231444803667086067237366703183<46>
14×1072-419 = 1(5)711<73> = 3 × 541092673691<12> × 958280427235330062026002421323769884763886884394519756141487<60>
14×1073-419 = 1(5)721<74> = 11 × 733 × 1229984293<10> × 65495808087806309<17> × 23948360998977118777903171993690899492034121<44>
14×1074-419 = 1(5)731<75> = 29 × 157820655205693393772738592999751<33> × 33987849482302717655410502667297191862269<41>
14×1075-419 = 1(5)741<76> = 3 × 112 × 107 × 5272116148812481<16> × 4135477017735572017<19> × 1836895889582795889720628613529747143<37>
14×1076-419 = 1(5)751<77> = 15423013611743<14> × 1008593777270068596002090021674039918569306376789824705394323457<64>
14×1077-419 = 1(5)761<78> = 11 × 151 × 59957 × 39863146518291740034161<23> × 39183608039213453318794227340014222153375054383<47>
14×1078-419 = 1(5)771<79> = 32 × 12497 × 22157 × 238141 × 15066497 × 1224411523164491<16> × 783295968817451951<18> × 181395507592888581863363<24>
14×1079-419 = 1(5)781<80> = 11 × 144842497 × 265158923376209<15> × 36820577087596050937283067430846174580039979330130907117<56>
14×1080-419 = 1(5)791<81> = 109 × 1213 × 2153 × 1302253 × 31460011057<11> × 436209051701654941<18> × 30577733185636558115195304284332734791<38>
14×1081-419 = 1(5)801<82> = 3 × 11 × 37628816590605829<17> × 29462816474464072008931034459<29> × 42518385544011827488724277463904777<35>
14×1082-419 = 1(5)811<83> = 89 × 593 × 661 × 4271 × 104402234844779835279182514864514539877575905948853883419127468923690373<72>
14×1083-419 = 1(5)821<84> = 11 × 31 × 79 × 331 × 9521 × 45944918766793<14> × 6781300525502819<16> × 5838870780411600779<19> × 1007196374119541294552863<25>
14×1084-419 = 1(5)831<85> = 3 × 19 × 8695009 × 1535860037<10> × 2043567534075007625399237000159947024714806084053958307342667040971<67>
14×1085-419 = 1(5)841<86> = 11 × 232 × 18646987 × 28539037 × 19347877823257<14> × 486303176971104645781<21> × 533886259202804900582934747561823<33>
14×1086-419 = 1(5)851<87> = 17 × 13259 × 4912073 × 123426839 × 21240996471683<14> × 53589108019631861169764957600862532614048014686494017<53>
14×1087-419 = 1(5)861<88> = 33 × 11 × 71 × 8387 × 8467 × 1038806181844921778861790340608327216301173773842691471580221567873911627337<76>
14×1088-419 = 1(5)871<89> = 82339 × 56108370403<11> × 218032950080976257398649<24> × 15442945957669597268720543128798027489605850828447<50>
14×1089-419 = 1(5)881<90> = 11 × 1699 × 6361 × 12539 × 60679 × 4743620081911<13> × 362545776678282925927618926814390812287004414623857408389109<60>
14×1090-419 = 1(5)891<91> = 3 × 449 × 577 × 132492827 × 808914983 × 33887524942171<14> × 551070319589114912147377843336507748353310078434249339<54>
14×1091-419 = 1(5)901<92> = 11 × 43 × 181 × 200029 × 41910201131<11> × 21673702198723202764970346754670596013054335974223725357489093700846373<71>
14×1092-419 = 1(5)911<93> = 2521 × 2683 × 3167 × 360886857194749801<18> × 484620519761370826257377<24> × 41521313079880959511711015123598959807123<41>
14×1093-419 = 1(5)921<94> = 3 × 11 × 434249 × 69912995260548362837625789974420854507<38> × 1552654586278967637479729880401768891524233587029<49> (Tetsuya Kobayashi / for P38 x P49 / February 8, 2003 2003 年 2 月 8 日)
14×1094-419 = 1(5)931<95> = 174653793620444323<18> × 89065088327601491742018140985286356868419164004029544693881772301170906137237<77>
14×1095-419 = 1(5)941<96> = 11 × 47 × 5987 × 233879 × 33592346597<11> × 40109121822991057027<20> × 159481753037558100133510263868798532057061116701337369<54>
14×1096-419 = 1(5)951<97> = 32 × 79 × 517258246079<12> × 31065662350534601311899385579<29> × 136153210035740912274963977657831743175077396755149701<54> (Tetsuya Kobayashi / for P29 x P54 / February 8, 2003 2003 年 2 月 8 日)
14×1097-419 = 1(5)961<98> = 112 × 6581 × 30836359 × 6562855157<10> × 9164906537<10> × 10532326462618256487333624483559162429851940695439020851723520721<65>
14×1098-419 = 1(5)971<99> = 31 × 1109 × 9376271 × 399283986617<12> × 1208593466113180222697972309433281093553178439241779444683905657939247059467<76>
14×1099-419 = 1(5)981<100> = 3 × 11 × 3784331 × 1471240363<10> × 27371414135063<14> × 14688745996244845891<20> × 30303351661183433550469<23> × 694906249760643260898131887<27>
14×10100-419 = 1(5)991<101> = 182159 × 624419 × 1655321 × 13519139 × 223144048924091449743509<24> × 27386858393620942536962326214721207182547544776402061<53>
14×10101-419 = 1(5)1001<102> = 11 × 2467 × 8014777 × 715207810171192330354502398483090723951942549300936118735554430804233270857781966496390999<90>
14×10102-419 = 1(5)1011<103> = 3 × 17 × 19 × 29 × 709 × 135589 × 14916180381085158167<20> × 1016806449202273173850721956001<31> × 37966200736968452315336535898292714003053<41>
14×10103-419 = 1(5)1021<104> = 11 × 601 × 1049 × 12359617 × 3124166561979367967<19> × 58090309187160468935467758709595363694757429488264836017654281243078931<71>
14×10104-419 = 1(5)1031<105> = 11353950069029999<17> × 25361324712303182527115678190901789<35> × 540214966076731372611417792308797898924239652711079941<54> (Robert Backstrom / PPSIQS Ver 1.1 for P35 x P54 / June 11, 2003 2003 年 6 月 11 日)
14×10105-419 = 1(5)1041<106> = 32 × 11 × 98500709231<11> × 1535399950789<13> × 103893757062647486860468392505477040540750049837388282530585379384094527298376511<81>
14×10106-419 = 1(5)1051<107> = 2803 × 4831 × 30234255896924311<17> × 19571826449417267298239505349<29> × 1941309368508793569060016599001691283292124192574263513<55>
14×10107-419 = 1(5)1061<108> = 11 × 23 × 59 × 1248193 × 138842107 × 114270282540167443<18> × 6229981927858218288339676750961<31> × 84467563506632693861407237176382777714081<41>
14×10108-419 = 1(5)1071<109> = 3 × 211501 × 5766669199<10> × 362872725020411<15> × 66437026704076065794823770242878233413<38> × 17634465193915672601734493876156492798881<41>
14×10109-419 = 1(5)1081<110> = 11 × 79 × 11587 × 13859 × 14413583 × 7733763635620942854840598678818624406453783670505669647050968283587650975199169211633127061<91>
14×10110-419 = 1(5)1091<111> = 1249 × 10139 × 12283665026946544358915917075750001761389824399656271465978823540580609713576605879283211996606304122541<104>
14×10111-419 = 1(5)1101<112> = 3 × 11 × 227 × 13379081 × 63193388129<11> × 1127535975881281<16> × 217829852631778332327076069231287403170419999244491323344573600326456113069<75>
14×10112-419 = 1(5)1111<113> = 43 × 142988346476777<15> × 444041746758322217737<21> × 967301650382115524022817<24> × 5890208871873293079827035044146475476849999916278029<52>
14×10113-419 = 1(5)1121<114> = 11 × 31 × 32895982626767573<17> × 177861487880695051<18> × 77966199095957572144604314544261275411542541404539580615573752703873793158757<77>
14×10114-419 = 1(5)1131<115> = 34 × 5635781046661<13> × 6526932635813<13> × 255063255812932351<18> × 2046865781625560402999968641938844245189825446822791845204932492423897<70>
14×10115-419 = 1(5)1141<116> = 11 × 10369 × 46466524496926128879574985912211013<35> × 2935051840053975809848422293985162002045522340493755443079932957809370305753<76> (Robert Backstrom / NFSX v1.8 for P35 x P76 / June 17, 2003 2003 年 6 月 17 日)
14×10116-419 = 1(5)1151<117> = 19113579151<11> × 202588934120781827<18> × 34986258037246472849<20> × 1148233709206328282305019553315287722860762316923839002157796527230987<70>
14×10117-419 = 1(5)1161<118> = 3 × 11 × 8623 × 5791811 × 954223456868901903899359<24> × 989119424303012983777538087944617698542120513130386827527762866813316297596565861<81>
14×10118-419 = 1(5)1171<119> = 17 × 996143 × 918575625927765482971087458182418739404681241168100395906750900314014421597959539092606982517189715766390707521<111>
14×10119-419 = 1(5)1181<120> = 112 × 2377339 × 1424791796778527073701903033783<31> × 379540071373116310966111346670982816152191696611148960552360487432527221507298963<81> (Tetsuya Kobayashi / GMP-ECM 5.0.1 B1=1000000 for P31 x P81 / May 26, 2003 2003 年 5 月 26 日)
14×10120-419 = 1(5)1191<121> = 3 × 192 × 1180122327311<13> × 16202690166626269<17> × 2094144001380378569<19> × 35870412672708067980414297866747794761829530661356322000164451889512807<71>
14×10121-419 = 1(5)1201<122> = 11 × 17699639589781<14> × 44629127209399776442724461336326538915165832098739<50> × 1790234920842165099733687864882759545337310948973886871699<58> (Robert Backstrom / NFSX v1.8 for P50 x P58 / June 30, 2003 2003 年 6 月 30 日)
14×10122-419 = 1(5)1211<123> = 71 × 79 × 449 × 47338927 × 188918657 × 6906539274782464503307613211969440844112093654740481478609668746234044391409592531928068273989574249<100>
14×10123-419 = 1(5)1221<124> = 32 × 11 × 15712682379349046015712682379349046015712682379349046015712682379349046015712682379349046015712682379349046015712682379349<122>
14×10124-419 = 1(5)1231<125> = 97 × 313 × 35117 × 233437 × 626224193948971336867<21> × 99805048753000520460912585046168792892256763496868147167929058090121411271847627787571237<89>
14×10125-419 = 1(5)1241<126> = 11 × 340586168978515835742791344275715643050997039<45> × 41520811557988373126642861369897988059702626431767914855418478768735838553673619<80> (Robert Backstrom / NFSX v1.8 for P45 x P80 / June 13, 2003 2003 年 6 月 13 日)
14×10126-419 = 1(5)1251<127> = 3 × 89 × 739 × 32803268433583384663275830281538838808136833141<47> × 240332613168172760561448869683184117218681016200922946728974055017809742147<75> (Robert Backstrom / NFSX v1.8 for P47 x P75 / July 23, 2003 2003 年 7 月 23 日)
14×10127-419 = 1(5)1261<128> = 11 × 1542955218662988341<19> × 916514878096595194173070633219140631870473299226962607721555333162667577265306058905851900468379236822533801<108>
14×10128-419 = 1(5)1271<129> = 31 × 61 × 107 × 4679 × 2110753 × 77843034845148344682435299056870031124515829932850931528429499170788163511131595409111814807349069926406466860329<113>
14×10129-419 = 1(5)1281<130> = 3 × 11 × 23 × 34132199459<11> × 60045363112674161384955933809097035788636235445718114067232370499843605765984630201538483034993848142982147025599571<116>
14×10130-419 = 1(5)1291<131> = 29 × 461 × 277259 × 1638481861227371772514062343546797909551<40> × 2561293294607810670847077894236899989078004698899523697080345406159857424137292331<82> (Robert Backstrom / NFSX v1.8 for P40 x P82 / August 4, 2003 2003 年 8 月 4 日)
14×10131-419 = 1(5)1301<132> = 11 × 4919 × 24822865297770311<17> × 115814812379185546242740131353035157009872719819620601952201291077515305148049356625671030888301105751412431549<111>
14×10132-419 = 1(5)1311<133> = 32 × 1512307 × 40874814668579<14> × 51801711911292691<17> × 1322979278395645503815258950864723373<37> × 40799054972583454882210861529853229852145559701166649830841<59> (Robert Backstrom / GMP-ECM 5.0c for P37 x P59 / June 23, 2003 2003 年 6 月 23 日)
14×10133-419 = 1(5)1321<134> = 11 × 43 × 24882953 × 1321668277522996475028732091498885538423837109968806001268326444438257885166137836615810310361121353952937403140308888113279<124>
14×10134-419 = 1(5)1331<135> = 17 × 113 × 733 × 110472501145560382414766322647407206452667228340426062451525258314298526841306331013331900347175616635801438935890992679855347307<129>
14×10135-419 = 1(5)1341<136> = 3 × 11 × 79 × 42556313 × 165334303 × 393165524085748067707<21> × 3889641026014294543155194555253264730553653<43> × 55453962080526364684910458706133503394098354348503697<53> (Robert Backstrom / PPSIQS Ver 1.1 for P43 x P53 / June 27, 2003 2003 年 6 月 27 日)
14×10136-419 = 1(5)1351<137> = 643 × 626011 × 260476501 × 143407133656251300066862588222645798936927642468080221<54> × 1034554285396402082799815611297526052935300961261023086074054317647<67> (Robert Backstrom / NFSX v1.8 for P54 x P67 / September 16, 2003 2003 年 9 月 16 日)
14×10137-419 = 1(5)1361<138> = 11 × 163 × 88920796317638411687463231951204881856777214882567741<53> × 975667622925422126960632146695785317083089191200444881132941766852849468937342027<81> (Greg Childers / GGNFS for P53 x P81 / November 9, 2004 2004 年 11 月 9 日)
14×10138-419 = 1(5)1371<139> = 3 × 19 × 55837 × 5268174347<10> × 92774464185476060714860803528812403221503248785590282132304338109602767339072958706309263063390689810088537941783978904937<122>
14×10139-419 = 1(5)1381<140> = 11 × 2099 × 2741898126287923955302448597913250770643<40> × 245713539354369828297831585227405025854316047634215987451649126813861768951334373772077456329813<96> (Greg Childers / GGNFS for P40 x P96 / November 9, 2004 2004 年 11 月 9 日)
14×10140-419 = 1(5)1391<141> = 262957 × 185149963951<12> × 293696979540157<15> × 611167735359721131651023938164092454793426939<45> × 17799887559676111000753968199524325003033331268272810906175016891<65> (Greg Childers / GGNFS for P45 x P65 / November 10, 2004 2004 年 11 月 10 日)
14×10141-419 = 1(5)1401<142> = 33 × 112 × 47 × 149563 × 30175081941677<14> × 10017764176574071428617<23> × 224075876513624803746284384025364463762668916048885708819226881511397109032196976551905795559197<96>
14×10142-419 = 1(5)1411<143> = 8410613263005468667<19> × 103048328807554259953<21> × 3208575455963340840609017188290959<34> × 5593770606504081591781688355108376739598003343692424102607859680039539<70> (Tetsuya Kobayashi / GMP-ECM 5.0.1 B1=250000 for P34 x P70 / May 3, 2003 2003 年 5 月 3 日)
14×10143-419 = 1(5)1421<144> = 11 × 31 × 193 × 1245971999279760959<19> × 545608510739544970658511479<27> × 4446767371043771838513244408951802651563<40> × 781879829019386733321596159087535375974673755112160289<54> (Tetsuya Kobayashi / GMP-ECM 5.0.1 B1=250000 for P27 / May 3, 2003 2003 年 5 月 3 日) (Robert Backstrom / PPSIQS Ver 1.1 for P40 x P54 / June 24, 2003 2003 年 6 月 24 日)
14×10144-419 = 1(5)1431<145> = 3 × 2381 × 78233 × 4931879 × 8162857 × 3723365485668482261<19> × 46482155785947920862800841779437<32> × 10414605398180561780272599780966739<35> × 38361496442197297167612795075649674341<38> (Tetsuya Kobayashi / GMP-ECM 5.0.1 B1=250000 for P32 / May 22, 2003 2003 年 5 月 22 日)
14×10145-419 = 1(5)1441<146> = 11 × 191 × 209123844719422628301444797<27> × 35404292415172124269611756403290163548901064300515320347584768128782060484292877818128056559881863530403599375209983<116>
14×10146-419 = 1(5)1451<147> = 462781533101<12> × 493231383009790687144135213331307371354879<42> × 681488927382207827202832096409483809732888791409873843538464019986605749494194438375808835269<93> (Greg Childers / GGNFS for P42 x P93 / November 10, 2004 2004 年 11 月 10 日)
14×10147-419 = 1(5)1461<148> = 3 × 11 × 101009 × 2380471 × 14630422164437<14> × 13399597765901106362367714078198064538992305821398120036286687393255900809641441511796016882493289265023866663741572191429<122>
14×10148-419 = 1(5)1471<149> = 79 × 991 × 12756319 × 2543935573407834519525836717<28> × 6122845500480509606562651074980357114946219005976447912905952647619843797787438977668026340230698428318454933<109> (Tetsuya Kobayashi / GMP-ECM 5.0.1 B1=250000 for P28 x P109 / May 11, 2003 2003 年 5 月 11 日)
14×10149-419 = 1(5)1481<150> = 11 × 18998356943<11> × 3999108564076926645585486580231372705261<40> × 186128811395368234492735785938231473220397460114617889789160782030306604837429036014673317126470367<99> (Robert Backstrom / GMP-ECM 5.0c for P40 x P99 / August 14, 2003 2003 年 8 月 14 日)
14×10150-419 = 1(5)1491<151> = 32 × 17 × 29616779 × 74675593 × 33001170953<11> × 231410458354395103591661311<27> × 13055926524112452266155457543<29> × 137572019963949031819011988991<30> × 335140911866153557255397199532186788259<39> (Tetsuya Kobayashi / GMP-ECM 5.0.1 B1=250000 for P29 / May 3, 2003 2003 年 5 月 3 日)
14×10151-419 = 1(5)1501<152> = 11 × 23 × 2640598420091389<16> × 23284271035945079741546676964394623990422118151151285680632614077302276974550306091825514394201254242458814838134598090027895981748903<134>
14×10152-419 = 1(5)1511<153> = 151 × 973057 × 847196941648551132106333324010269<33> × 108123011159930669845571642420238883<36> × 11557603368746529230971013510751174250574322894480256454543811212283540578959<77> (anonymous / GMP-ECM 6.0.1 B1=250000, sigma=3067084609 for P33 / January 20, 2007 2007 年 1 月 20 日) (Tyler Cadigan / GGNFS-0.77.1-20060722-pentium4 for P36 x P77 / 47.63 hours on Pentium 4 3.20 GHz, 1 Gig RAM, Windows XP and Cygwin / January 27, 2007 2007 年 1 月 27 日)
14×10153-419 = 1(5)1521<154> = 3 × 11 × 88256925209<11> × 9297581956571547150667<22> × 5869281371990934517896039538832558131<37> × 24106869046755270050566332204861288659<38> × 406000940317690411891991058441288457615883581<45> (Tyler Cadigan / GGNFS-0.77.1-20060722-pentium4 for P37 x P38 x P45 / 34.66 hours on Pentium 4 3.20 GHz, Windows XP and Cygwin / October 9, 2006 2006 年 10 月 9 日)
14×10154-419 = 1(5)1531<155> = 43 × 449 × 12334289053<11> × 840619760834431082676742801<27> × 77706439992072659966519815062943781869616696137044424309594314955129193160698458676543902372658988095941544888881<113> (Makoto Kamada / GMP-ECM 5.0.3 B1=4000000, sigma=4108860677 for P27 x P113 / February 25, 2005 2005 年 2 月 25 日)
14×10155-419 = 1(5)1541<156> = 11 × 33287 × 859709 × 36841748777<11> × 13413017000561336715255908402432178631790351456359682995729885552043367523796987902804879897302252942055478118340169752393400231032351<134>
14×10156-419 = 1(5)1551<157> = 3 × 19 × 1093 × 56633 × 1919321978500255112680979149073<31> × 229706404554227575881050953912992750721970586230677319515972406160550922439917765063028600524700241223343578439937939<117> (Makoto Kamada / GMP-ECM 5.0.3 B1=400000, sigma=1867076086 for P31 x P117 / December 11, 2004 2004 年 12 月 11 日)
14×10157-419 = 1(5)1561<158> = 11 × 71 × 41893 × 4009117163<10> × 1367055426296824724730956100096423270901258669<46> × 86747738019244962078804322447103067350502553941506493682108511037049165854640129475050452781201<95> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp for P46 x P95 / 30.51 hours on Cygwin on AMD 64 3200+ / April 15, 2007 2007 年 4 月 15 日)
14×10158-419 = 1(5)1571<159> = 29 × 31 × 32117 × 16890701960639836030505223027599141408171380796039886568589214265562803591<74> × 318965097991281408955651198675474281172186567241455132017352484669834254010167<78> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp for P74 x P78 / 33.67 hours on Cygwin on AMD 64 3200+ / April 25, 2007 2007 年 4 月 25 日)
14×10159-419 = 1(5)1581<160> = 32 × 11 × 5783 × 6871 × 6031459152120337884517237707176687<34> × 65562393470958923411536676667369852579711360794342128936197039393056889008855481635744308817305722437678656721468939<116> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp for P34 x P116 / 38.14 hours on Cygwin on AMD 64 3200+ / May 28, 2007 2007 年 5 月 28 日)
14×10160-419 = 1(5)1591<161> = 401 × 5351 × 7249469092898269909022787618673161776718526779461156283070848181152219225602390750630224828302797274965993517214045597814264355722334770229889467862559801<154>
14×10161-419 = 1(5)1601<162> = 11 × 79 × 2411 × 2528269 × 298614421769978987<18> × 1237731289012386762849485097499340001383842403737<49> × 79452599632851028607355803437954089119988633926215410442037070045079459127725856399<83> (Robert Backstrom / GGNFS-0.77.1-20050930-k8 snfs, Msieve 1.32 for P49 x P83 / January 11, 2008 2008 年 1 月 11 日)
14×10162-419 = 1(5)1611<163> = 3 × 214219 × 10324063 × 110021344519261749564662722162683047<36> × 34504949858484862052592280714802542174189<41> × 61758578210491351731564901830521726152917416595997540856609496672738529267<74> (Robert Backstrom / GMP-ECM 5.0 B1=203500, sigma=809407629 for P36, B1=1024000, sigma=622108743 for P41 x P74 / June 20, 2007 2007 年 6 月 20 日)
14×10163-419 = 1(5)1621<164> = 114 × 10391 × 7547738429963131409<19> × 69820298945640076667172658783<29> × 194025537721179509372087750926446591187166239134891726117935940369908211980099654843266616376983843967687143<108> (Makoto Kamada / GMP-ECM 5.0.3 B1=1000000, sigma=1932469426 for P29 x P108 / February 3, 2005 2005 年 2 月 3 日)
14×10164-419 = 1(5)1631<165> = 7394276783<10> × 241913548612846605274086927369517<33> × 86962022362460490445785055865229214136443842893085986014021798676035510354833177041605490276301765124099002836589234876341<122> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P33 x P122 / 74.48 hours on Cygwin on AMD 64 3200+ / September 28, 2007 2007 年 9 月 28 日)
14×10165-419 = 1(5)1641<166> = 3 × 11 × 59 × 58451 × 5169785550529046037137<22> × 145830821819731044721528535735047502903441900884043243247216827<63> × 18130332859509736343289311799201732135771943135308657063773868356166511517<74> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 for P63 x P74 / 35.95 hours on Cygwin on AMD 64 X2 6000+ / May 28, 2008 2008 年 5 月 28 日)
14×10166-419 = 1(5)1651<167> = 17 × 2011 × 35081134283933574559653611257097<32> × 2728630078335383137189177941861782066861<40> × 126411714129835466690844912764467931579339687<45> × 37602690897693034145575177417896418231525935887<47> (Robert Backstrom / GMP-ECM 6.0.1 B1=396500, sigma=40752660 for P32, GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.29 for P40 x P45 x P47 / November 19, 2007 2007 年 11 月 19 日)
14×10167-419 = 1(5)1661<168> = 11 × 1551762673453065953013392460694176562588480360498237956375794389510177<70> × 9113129464537192620276698738976018093378747212696395351751862940975801863458685343597372761347933<97> (Samuel Chong / GGNFS-0.77.1 for P70 x P97 / 97.14 hours on dual Athlon MP 2600+ (2.0GHz Bartons), 3GB RAM / July 18, 2005 2005 年 7 月 18 日)
14×10168-419 = 1(5)1671<169> = 33 × 37656643141339<14> × 16981226766391967119183913630606464339<38> × 90097159217599722569381430542429490640646635539748578844942039627166323665820109863974364446625831381931678300595853<116> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 for P38 x P116 / 81.62 hours on Cygwin on AMD 64 3200+ / July 6, 2008 2008 年 7 月 6 日)
14×10169-419 = 1(5)1681<170> = 11 × 711054521 × 8794759544243<13> × 49542180236949196543<20> × 4564475223644696628798703449356239328394768099930669855480338817096143825461871458371850994658638668562026933316814240200126329<127>
14×10170-419 = 1(5)1691<171> = 89 × 23562871960702446576109209737209512980072163311<47> × 74176663773255644917317906830538807621668868770340406914332112105118853831007147436387613726854741316452945435326628021369<122> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon for P47 x P122 / 101.58 hours on Cygwin on AMD 64 3200+ / June 4, 2007 2007 年 6 月 4 日)
14×10171-419 = 1(5)1701<172> = 3 × 11 × 144264311 × 8422572196437277344165892625074975797910517101552896422569<58> × 38794301624236914293793808123357843854869719962248434313381337905654704362886863912964954781426002751633<104> (Robert Backstrom / GGNFS-0.77.1-20060513-pentium-m, Msieve 1.39 snfs for P58 x P104 / 55.33 hours, 1.27 hours / June 19, 2009 2009 年 6 月 19 日)
14×10172-419 = 1(5)1711<173> = 33226961 × 1658289973768368749<19> × 282315309314870107449664689070590719115909192038083294590990193732948662150707387144392431379907127363787473265364748517843249864381201137342210059<147>
14×10173-419 = 1(5)1721<174> = 11 × 23 × 31 × 57157558155189347<17> × 23080100935767937552807262322325734205629659558792838583<56> × 15034602163631261212715734728010325972403035090978675640483615735970342078121418262955553225997457<98> (Markus Tervooren / Msieve 1.44 for P56 x P98 / March 28, 2010 2010 年 3 月 28 日)
14×10174-419 = 1(5)1731<175> = 3 × 19 × 79 × 379 × 1399 × 228413047 × 972903877050095322201729952570985360045293<42> × 2931809943598363724639189406254713941279726209214477444932991429078165303110719735541116020713833296683821829860087<115> (Ignacio Santos / GGNFS, Msieve snfs for P42 x P115 / September 2, 2010 2010 年 9 月 2 日)
14×10175-419 = 1(5)1741<176> = 11 × 43 × 1971848954400133691125566917937107287858416479<46> × 16678260045126227226173832334535265219726130696522534014568395028983269564908150799866271813714347853920132775969907902330680553<128> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 for P46 x P128 / 390.89 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / January 29, 2007 2007 年 1 月 29 日)
14×10176-419 = 1(5)1751<177> = 2259105661271087<16> × 80720351480358203<17> × 6253487942641704767889353221<28> × 1019051608417910918330923759093085376287866529<46> × 133858958754694373843982955055938024720353027482661337116522058059690599<72> (Serge Batalov / GMP-ECM 6.2.1 B1=1000000, sigma=1412173085 for P28 / August 8, 2008 2008 年 8 月 8 日) (Serge Batalov / Msieve-1.36 gnfs for P46 x P72 / 31 hours on Opteron-2.2GHz; Linux x86_64 / August 11, 2008 2008 年 8 月 11 日)
14×10177-419 = 1(5)1761<178> = 32 × 11 × 571 × 30557 × 1135247 × 13524707579712638416918639<26> × 58652329050482204926580668886768307652706317108596492167614142279064516720797658449067595876337940743938315692091834512743153093843973499<137> (Makoto Kamada / GMP-ECM 5.0.3 B1=400000, sigma=890781119 for P26 x P137 / January 14, 2005 2005 年 1 月 14 日)
14×10178-419 = 1(5)1771<179> = 18077 × 970583 × 1735406205257<13> × 1745824177303<13> × 390328319148709270682251559<27> × 82809502531065408728209262767741242648467<41> × 9053460294396930637785159619418341915179225744274958113717340351294912094247<76> (Makoto Kamada / GMP-ECM 5.0.3 B1=400000, sigma=2278975581 for P27 / December 17, 2004 2004 年 12 月 17 日) (Sinkiti Sibata / GGNFS-0.77.1 gnfs for P41 x P76 / 90.52 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / March 3, 2006 2006 年 3 月 3 日)
14×10179-419 = 1(5)1781<180> = 11 × 4208178866231<13> × 15619110457642458343<20> × 351430029612999360197<21> × 20107693569497065346641840555374563<35> × 30446770005100168171382797846562982573356796889366415814698830439233930405861605026830253107<92> (Robert Backstrom / GMP-ECM 6.0 B1=1086000, sigma=616903093 for P35 x P92 / January 28, 2008 2008 年 1 月 28 日)
14×10180-419 = 1(5)1791<181> = 3 × 6043 × 207721 × 283721 × 38700101258601324551693<23> × 377792798387183521521767477672641<33> × 99580433913950252411989798540909150574762318664033411196238101031586466398615937104293186061775420154935452443<110> (Ignacio Santos / GMP-ECM 6.3 B1=11000000, sigma=1059588015 for P33 x P110 / September 25, 2010 2010 年 9 月 25 日)
14×10181-419 = 1(5)1801<182> = 11 × 107 × 87421938076707307<17> × 45675311350624366066456907382414462817794805137268093686527314438719307<71> × 3309840888110480166167154996700718752489184274272528640641948515171493403268046966540185487<91> (Dmitry Domanov / Msieve 1.40 snfs for P71 x P91 / October 29, 2012 2012 年 10 月 29 日)
14×10182-419 = 1(5)1811<183> = 172 × 967 × 2341 × 509659 × 2646493 × 115557116007355063964093261<27> × 1525501552045539214499988771267300288449853635311853392119844387813629307247764608575870953524071455952121760501486395500295950991259271<136> (Makoto Kamada / GMP-ECM 5.0.3 B1=4000000, sigma=2762019809 for P27 x P136 / February 8, 2005 2005 年 2 月 8 日)
14×10183-419 = 1(5)1821<184> = 3 × 11 × 179 × 263341045463950491883452777307525910877866185128754961157195794067302447190715347139928145514737693508643229313620375072889039369486296860598536576190207475123676240994676748866693<180>
14×10184-419 = 1(5)1831<185> = 20929 × 17371678817737883255230168039<29> × 42785366556838430246573566392270286004993328047506165841237292491301300920837322535751779758585092429112204141986401859762838397123109374626247100611721<152>
14×10185-419 = 1(5)1841<186> = 112 × 49169 × 604047911 × 43284997174247697327286849171235066015765429900970831472466756719999240893502306185579474268418060107663339135955718079606821103641385977472615879789011474443492576135809<170>
14×10186-419 = 1(5)1851<187> = 32 × 29 × 449 × 7534276176716793611<19> × 32588984944879249360239874831<29> × 54061278057400452561143167961063501861872785250750941089820142488320368986133543167855544550220331678923941602572569248399536665621399<134> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=319754870 for P29 x P134 / November 14, 2008 2008 年 11 月 14 日)
14×10187-419 = 1(5)1861<188> = 11 × 47 × 79 × 223207 × 3689731686791057511182493254095616953<37> × 462450544960333618227622623208059861475009706651116695284225242264765051852021894512774787633648215514948788708010551378932007874192315440467<141> (Ignacio Santos / GMP-ECM 6.3 B1=11000000, sigma=478754712 for P37 x P141 / September 26, 2010 2010 年 9 月 26 日)
14×10188-419 = 1(5)1871<189> = 31 × 61 × 109 × 7360698565990127<16> × 131456931873872480857924922991230434748690395524856259<54> × 779946789311843779118706893173113999653152352396773863425234903444320946522719838551521514375849686893027305254253<114> (apo / GGNFS-0.77.1-VC8 for P54 x P114 / November 4, 2012 2012 年 11 月 4 日)
14×10189-419 = 1(5)1881<190> = 3 × 11 × 5519159 × 239520538881060197905744372643280941<36> × 2002403664239885757046178465165412553631040634691159646468491732802599<70> × 17807554789009568483347101192272315973838652529738302758061791566306292912187<77> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=324657124 for P36 / June 19, 2010 2010 年 6 月 19 日) (apo / GGNFS-0.77.1-VC8 for P70 x P77 / October 24, 2012 2012 年 10 月 24 日)
14×10190-419 = 1(5)1891<191> = 35979232514979028691658608275491778123813<41> × 432348176106296870587027279656162097057836779149603113487443591832639183538536761174932277931864748203116574693057107906194995991781437958621511650227<150> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 for P41 x P150 / 1349.01 hours on Core 2 Duo E6300 1.86GHz,Windows Vista and Cygwin / August 5, 2007 2007 年 8 月 5 日)
14×10191-419 = 1(5)1901<192> = 11 × 4507 × 6733 × 32693 × 1513429 × 692659106326086370144243932616122488217213337<45> × 2539618455185799085486796485203664599969880932717451374977<58> × 5354165852117185252135914375321320153508853934084562766957505865511187<70> (apo / GGNFS-0.77.1-VC8 / October 17, 2012 2012 年 10 月 17 日) (apo / GGNFS-0.77.1-VC8 for P45 x P58 x P70 / October 18, 2012 2012 年 10 月 18 日)
14×10192-419 = 1(5)1911<193> = 3 × 19 × 71 × 888499 × 1423659297182882545031785117937981624522356875754080374233<58> × 303871038360287564571164152498014867302528978346549869257661231794260296209831899355347630315789010531288693036209286587096899<126> (Robert Backstrom / Msieve 1.44 snfs for P58 x P126 / March 10, 2012 2012 年 3 月 10 日)
14×10193-419 = 1(5)1921<194> = 11 × 331 × 62526939757042506698769902098831<32> × 5488210472850165760816428615594143417399<40> × 12449930168276569958522089984705967423870346402837080988629159287297661389498138542354436477159569871368343980563746319<119> (matsui / GMP-ECM 6.0 B1=34782088, sigma=3772883920 for P32 / January 15, 2008 2008 年 1 月 15 日) (apo / GMP-ECM 6.4.2 [configured with MPIR 2.5.1] B1=11000000, sigma=85931928 for P40 x P119 / October 18, 2012 2012 年 10 月 18 日)
14×10194-419 = 1(5)1931<195> = 1084570892146078895828767943<28> × 265226968457979428288586070906929307<36> × 124483856359675894502614351089777451500106499101<48> × 4344070517154856217773971182492603248742872623377195897054574166612610989370060330951<85> (Makoto Kamada / GMP-ECM 5.0.3 B1=7000000, sigma=353042248 for P28 / March 11, 2005 2005 年 3 月 11 日) (Pawel Apostol / GMP-ECM 6.4.2 B1=3000000, sigma=2108643891 for P36 / October 3, 2012 2012 年 10 月 3 日) (Erik Branger / GGNFS, Msieve gnfs for P48 x P85 / October 13, 2012 2012 年 10 月 13 日)
14×10195-419 = 1(5)1941<196> = 34 × 11 × 23 × 733 × 2497423954786642973860786832895298814702978735865761670081297693784718741907640129361669<88> × 41465197518688776105915699806998452805026785191311770592220943494392203591081015105473183899056981291<101> (Ignacio Santos / GGNFS, Msieve snfs for P88 x P101 / August 19, 2010 2010 年 8 月 19 日)
14×10196-419 = 1(5)1951<197> = 43 × 12991941439670998826484083573<29> × 31549870079323557671928299889097<32> × 9066926448394133632569682408595490287284175174922766475773<58> × 97338656666147204198058713229311734186191430359290834526675518894586306371989<77> (matsuix / GMP-ECM 6.0 B1=6700417, sigma=1028308536 for P29 / November 11, 2007 2007 年 11 月 11 日) (Serge Batalov / GMP-ECM 6.2.1 B1=1000000, sigma=1933614541 for P32 / July 12, 2008 2008 年 7 月 12 日) (Erik Branger / GGNFS, Msieve gnfs for P58 x P77 / December 6, 2011 2011 年 12 月 6 日)
14×10197-419 = 1(5)1961<198> = 11 × 131 × 39877707349400686903<20> × 49128498089045289229261<23> × 750457255821884523130598577814932184632912548356261079022859<60> × 73422964442128919638964497419330013227626433313870429164198871373341032307608541285834881463<92> (apo / GGNFS-0.77.1-VC8 for P60 x P92 / October 31, 2012 2012 年 10 月 31 日)
14×10198-419 = 1(5)1971<199> = 3 × 17 × 492629 × 2105064979<10> × 4148518189<10> × 80363644691962579882145527<26> × 772452140518292796536508293<27> × 114210403360535334882307260798118852699240064132154723795457367288939258602287596404942450030093312247774208562043299309<120> (Makoto Kamada / GMP-ECM 5.0.3 B1=400000, sigma=446078675)
14×10199-419 = 1(5)1981<200> = 11 × 9905209 × 49424550329263117<17> × 93342682385042014936376105033<29> × 824789929518275606354968148456179<33> × 35935157536142967989605044657709419838606709311522126889<56> × 1044102873369402095385581358668033655912741249962371480339<58> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=3253425714 for P29 / October 21, 2008 2008 年 10 月 21 日) (Pawel Apostol / GMP-ECM 6.4.3 B1=3000000, sigma=2606282689 for P33 / October 2, 2012 2012 年 10 月 2 日) (Pawel Apostol / GGNFS-0.77.1-VC8 for P56 x P58 / October 12, 2012 2012 年 10 月 12 日)
14×10200-419 = 1(5)1991<201> = 79 × 421 × 263167 × 37009174883<11> × 4877097562737991821538593892177796992063947325757979053800763353284653<70> × 98463226604508586379055660475243392593618405451073303028847639624158258692336070291158185670651352528292002533<110> (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs for P70 x P110 / September 23, 2012 2012 年 9 月 23 日)
14×10201-419 = 1(5)2001<202> = 3 × 11 × 4487595935769585276123410306176624361461<40> × 10504075637095735112689582825029595511637956613355484445782226998159322056607575172227934330401636195206933515257550099369321483206005339916052803948831310782627<161> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=487747711 for P40 x P161 / October 30, 2012 2012 年 10 月 30 日)
14×10202-419 = 1(5)2011<203> = 149 × 5393 × 3699205259<10> × 2473242123634150426508661466391<31> × [2115893347084780478520704579444794725489172820416404142979788609676390712523803315231680632768685112118529858948795206523930676439865988697232738011531996847<157>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=900751127 for P31 / October 27, 2012 2012 年 10 月 27 日) Free to factor
14×10203-419 = 1(5)2021<204> = 11 × 31 × 57838436283223<14> × 11055045869657519809722384960461<32> × [713434415409093892095989425128467439060502542067377499874346865286594617775655879454999908680815170848397420422895649137868643306672712157586988377825021737<156>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=1719024382 for P32 / October 27, 2012 2012 年 10 月 27 日) Free to factor
14×10204-419 = 1(5)2031<205> = 32 × 6712828761677<13> × 25747641167247756806381728409907680652563573768041476595603482952842739468438672355507524168194838347519051307373146388792247350405361355621667188105356987891766585767192072468108819643194307<191>
14×10205-419 = 1(5)2041<206> = 11 × 167 × 3361 × 66361 × 809383 × 46907345550063366551610776091562198522786315984718064631643205525499160689677093473320598980227039706469618171459781829752894779322234790038509663878030695020145047010000326732544218387861<188>
14×10206-419 = 1(5)2051<207> = 563 × 1187 × 70529 × 793279 × 1605547 × [2591252327449328928078162018919917291587631397255314171084358812607798397357341696658854713327983473186273073969605836349661099021858576636153361739720898500662478224168655660776588923<184>] Free to factor
14×10207-419 = 1(5)2061<208> = 3 × 112 × 69722588261<11> × 80714207281<11> × 6633300740123758176303009869<28> × [114795728096964659542139088162053816936429947671799954407727681892758503597593245862875515949865683900295760673045217597136989460096026595365218498929280013<156>] Free to factor
14×10208-419 = 1(5)2071<209> = 23558114207207123<17> × 50314735166899655641663203240997573<35> × [13123504130130197958251635508777340457005039080776157069462739413754519935064582894541192899070840869809381504587741473795286359345192196640156406258666845569<158>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3234712473 for P35 / October 30, 2012 2012 年 10 月 30 日) Free to factor
14×10209-419 = 1(5)2081<210> = 11 × 1013271851<10> × 252369966119291<15> × 241149777122397701<18> × [229320208945872852578380762895851593076529879422642464668362153513918765022076593378856393164802000083731530053534858395109212207060484034550289803299465533382954418801<168>] Free to factor
14×10210-419 = 1(5)2091<211> = 3 × 19 × 222067 × 765358280761<12> × 482219929348106642461<21> × 332978892551372532934685368940264513505653584767564778877307103917903709026268993804192120155647519579534963421982693555235609779150281777799328921298134702171649420597049<171>
14×10211-419 = 1(5)2101<212> = 11 × 10861 × 15631877 × 8380710911<10> × 206329051387<12> × 8849936802274721<16> × 3923592355893754937<19> × 3122847338131986196349<22> × 1666246096025686174232277799<28> × 6670726681136226336895976223083512566929<40> × 3996534458528509347769645510551792943821797033715524563<55> (Warut Roonguthai / GMP-ECM 6.3 B1=3000000, sigma=2382856706 for P40 x P55 / October 27, 2012 2012 年 10 月 27 日)
14×10212-419 = 1(5)2111<213> = 292980227851544247686627839893207364843593338181149782003<57> × 530942161852563558071454855473582374879404560297280976602900684569545608810130064867052447195504909836540244344965450420488823095517847238792740951559420517<156> (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs for P57 x P156 / December 15, 2014 2014 年 12 月 15 日)
14×10213-419 = 1(5)2121<214> = 32 × 11 × 79 × 1628633 × [122123715817281211972021253946000127416889139459398033606864863994769225197246319804019892334748690647652076620510687194153951101607503910218391165876049013824617361306064340726831781138641645385230277907<204>] Free to factor
14×10214-419 = 1(5)2131<215> = 17 × 29 × 89 × 829 × 692863 × 268080445387<12> × 34504921563746329<17> × 85244470840054508447706215281532774441<38> × 782770228879902179667242803306669800466829126775548985693557110289850588116149253262092334883222737705891185969858828248110532528545683<135> (Makoto Kamada / GMP-ECM 6.4 B1=1e6, sigma=3851498234 for P38 x P135 / October 22, 2012 2012 年 10 月 22 日)
14×10215-419 = 1(5)2141<216> = 11 × 357587 × 420089633 × 1301717743<10> × [72318986422833039654480870695389692390009560597898969905138619224333422740995255134985289851231538360784402049750285027879260725244251956977390109853201725548059610923943457642571609570179297<191>] Free to factor
14×10216-419 = 1(5)2151<217> = 3 × 226453 × 2289740116132347632923911445282325774083445653263672896885969797346551021706572748069217535287757364744642457898630261107243085843501823859778932133902039357034433275419263681728740703450687420871079290265611489<211>
14×10217-419 = 1(5)2161<218> = 11 × 23 × 433 × 52134903123229<14> × 33949162016103283<17> × 5697213340134448537<19> × [76690139204036875949571915416047648605183985788539694848173230349134198988750926218673006430156509096259470986808884034173866750388875122492301527504523497115559<161>] Free to factor
14×10218-419 = 1(5)2171<219> = 31 × 163 × 449 × [68563011832065872599247775607758453292892910011585679792222731057717175911091012353928339801029160191747236775945823075204857708977733819092477447544031288632502403500866563009187492559076706975351058536993638283<212>] Free to factor
14×10219-419 = 1(5)2181<220> = 3 × 11 × 42169 × 1504609 × 742941518052209674682355488191716571519250150372579170429220353367577820054295843630093128187377617259003244358580991039225112665930246291149400115103174361590948953622375384298727417974835683845871518747607<207>
14×10220-419 = 1(5)2191<221> = 97 × 1259 × 667724760945904601<18> × 790018934533344305731741<24> × 241464383431491130241668655245389363267587583621259705966605501015345725326300357259304981035712324050895210111637068778743629444319748162237444343588182717156594963450115657<174>
14×10221-419 = 1(5)2201<222> = 11 × 295702493 × 5494408229<10> × 125000453996958415251650726013413<33> × [69631434261560048681554464451895882318787128702942130989346336631226967891676972955840601563401694145911571462361824645605073574993632678519266908786664016625662384455881<170>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2788910512 for P33 / October 27, 2012 2012 年 10 月 27 日) Free to factor
14×10222-419 = 1(5)2211<223> = 33 × 16304648357<11> × 786511820042365525329403256869651208867994286035479<51> × 4492675709973457406292805970211749164013838766719041814311895500864734815638344867118106159834722583727598557376487197179061906425763834272764864480927026179871<160> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=1181201120 for P51 x P160 / November 16, 2012 2012 年 11 月 16 日)
14×10223-419 = 1(5)2221<224> = 11 × 59 × 92818198931<11> × 275276032483<12> × 28448047823824453861<20> × 649182107271598133243376362936623886681<39> × 40921120452795828193602217949313952715920673<44> × 1241288594681199268820991359830705124023182641650804313261408513555814443603458562487221323626091<97> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=3841120287 for P39 / October 27, 2012 2012 年 10 月 27 日) (Erik Branger / GGNFS, Msieve gnfs for P44 x P97 / September 11, 2016 2016 年 9 月 11 日)
14×10224-419 = 1(5)2231<225> = 227 × [685266764561918746940773372491434165442976015663240332843857072931962799804209495839451786588350465002447381302006852667645619187469407733724914341654429760156632403328438570729319627998042094958394517865883504650024473813<222>] Reserved
14×10225-419 = 1(5)2241<226> = 3 × 11 × 1642481327237711<16> × 11389316008792374900966025113186791<35> × 2519843113992818189742370043494612359309090730388817148466950498393808093869094127711488949254573140526971835294724952852690332801025745335715010214055161557177478078529514247<175> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=4187493853 for P35 x P175 / October 27, 2012 2012 年 10 月 27 日)
14×10226-419 = 1(5)2251<227> = 79 × 173841361 × 712278221 × 22543629906622213<17> × 70539407927942218839326584922281279007915039851092518480591215626963252053310398196226166371281085204122325829803905759908139989106752227581139492802030362793278977829216579329175849010093473<191>
14×10227-419 = 1(5)2261<228> = 11 × 71 × 151 × 919 × 297166502357380593400485071188250539<36> × [4829944951951054944785577488885004229379690478109856007075799174138759116132328459572087313679705746663046772009931411818049286340741917540369738263851391635845500608119529050642700481<184>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2216187166 for P36 / October 27, 2012 2012 年 10 月 27 日) Free to factor
14×10228-419 = 1(5)2271<229> = 3 × 19 × 69198514993207<14> × 30321004160064199615325659<26> × [13006795617517976006243969253823956780537266045492535654231954999208789760025095172792362455780810960765620581603647731219943684827437944942991084908436810240185802964344479027072031786611<188>] Free to factor
14×10229-419 = 1(5)2281<230> = 112 × 225347 × 8294173 × 15151513866413835941<20> × 1549935489928217664121141<25> × 2928907358689835759793465498726516437279754580572563935894601880609273025864605538940720237154557769350216579868883770989422153544489055597404527086415210075934703394266521<172>
14×10230-419 = 1(5)2291<231> = 17 × 3911 × 4100798381<10> × 3958375743401<13> × 922013184555649<15> × 915543435579343232267<21> × 170744715154327185934013113107044316312019745172939291664742272352108977610685666845168573738726033285112301739811377549841468499759318215476546442294297582705451064351<168>
14×10231-419 = 1(5)2301<232> = 32 × 11 × [15712682379349046015712682379349046015712682379349046015712682379349046015712682379349046015712682379349046015712682379349046015712682379349046015712682379349046015712682379349046015712682379349046015712682379349046015712682379349<230>] Free to factor
14×10232-419 = 1(5)2311<233> = 557 × 7818366755879983<16> × 58916374529033907409<20> × 60628702993979667766187169184956656408464609635023358263734286791746952444063349393188007970498257834504386492586392143698951722178618358522411109823564687098769192390599527761379247478769176869<194>
14×10233-419 = 1(5)2321<234> = 11 × 31 × 47 × 69106613 × 1059965961119309<16> × [132501795159122220019113560794849168640664061238430890509050372491653798795429830871823216446348777935460754273748693172453945080001473021907141001171831088984960145615229385497666510252546546587559753994589<207>] Free to factor
14×10234-419 = 1(5)2331<235> = 3 × 107 × 100368209 × 1734585013807<13> × 146415787634287<15> × 3647699813012263<16> × 152886923285977735606556967940004407<36> × [340887745700144956504475017344424883100767674566392189408880951845135365430573666413822458389237538161356596705359315417007409694838571119800676911<147>] (Makoto Kamada / GMP-ECM 6.4 B1=1e6, sigma=2412485401 for P36 / October 24, 2012 2012 年 10 月 24 日) Free to factor
14×10235-419 = 1(5)2341<236> = 11 × 2732519 × 798434303 × 13777412218356529<17> × 47046011547277062885255348337556851792638332651070326084657873511833485908225990257005400330104028457755329017003961270319529368615651280488158827095996420524563547471038885962588352347725553965221486997<203>
14×10236-419 = 1(5)2351<237> = 6430883 × 7707937253<10> × 273152116237590028580454386531106597397<39> × 11488734092026124430004646388765926119405240035420199189957370600714723250188566806420071181215740818253418698238236541454537424648123769510269269402474372043237745192620442280311917<182> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=1709323484 for P39 x P182 / October 27, 2012 2012 年 10 月 27 日)
14×10237-419 = 1(5)2361<238> = 3 × 11 × 229 × 1409879 × 5423557 × 9156479 × 31827661 × 224243355963186242371247231869228993<36> × [411924138083327901465095405522935517879284050494035637032474363726675511918407117954003146719662702546949228180598015394536195041688549978104326813690730500460459731793243<171>] (Serge Batalov / GMP-ECM B1=2000000, sigma=2580349337 for P36 / October 27, 2012 2012 年 10 月 27 日) Free to factor
14×10238-419 = 1(5)2371<239> = 43 × 2467 × 9439 × 47470039 × 974860103825789<15> × 185725649268747310593439658618479<33> × [1807541029108099103968877958194744864912060375535501212268083337509693082469883338652212275905141598359077472993422973624738267517600195290989476852186389692587355048167032221<175>] (Makoto Kamada / GMP-ECM 6.4 B1=1e6, sigma=2331298112 for P33 / October 24, 2012 2012 年 10 月 24 日) Free to factor
14×10239-419 = 1(5)2381<240> = 11 × 23 × 79 × 433 × [17974218525593085338675168369319452049785658086018678371375060712737593010001022091097730332517008521538486801126916740171591390703675120416672171271090129549051635936979770748856913524455509886917900279009942554525979479682065346581<233>] Free to factor
14×10240-419 = 1(5)2391<241> = 32 × 191 × 367 × 4231 × [582774526210827899271307919450118989730968661637987118187613472972405443400849828130553162848817272588204068965484649067999647639702329266948191128618641934898640060331113419908099906409212570942038571143730923666532606921353954577<231>] Free to factor
14×10241-419 = 1(5)2401<242> = 11 × 9817 × 114195085626445854234043512546413<33> × [1261440108422945974718739761310862303178595485798570723923141069684801572603146172621751575071357293425744393738717912283596603292280374410121233484995560387581608803956669440757236828865549079078773163321<205>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=549781686 for P33 / October 27, 2012 2012 年 10 月 27 日) Free to factor
14×10242-419 = 1(5)2411<243> = 29 × 69249137 × 257606241247<12> × 225634962513377<15> × 12501239103293671<17> × 106600029556370984684186379389039300842874966447619173567272942956735478213689298524983091626729875244464189882730442128431726565144529593406390137873465893905478676481791985394342001258422163<192>
14×10243-419 = 1(5)2421<244> = 3 × 11 × 643 × 24697 × 548543 × 868369 × 5559523 × 6357991 × 3105965295413<13> × 126824990371012815467147<24> × 2886972502628495702915397923<28> × 68551815113603138645786557856064831847<38> × 2261418498331599622168678754381448319386753156538389562374372266058317600217556218865068041619756634764075517<109> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=3846359381 for P38 x P109 / October 27, 2012 2012 年 10 月 27 日)
14×10244-419 = 1(5)2431<245> = 677 × 2311 × 6323 × 3394225169171319977322181<25> × [463268830048090095427786308522431051723378029530313808978071582857280220153377416630581617928148972578025954668682950475783938603791366310986618624346480507191799289034537436885183000568178278043833194164658891<210>] Free to factor
14×10245-419 = 1(5)2441<246> = 11 × 619 × 294890033 × 5764816933649<13> × 737077410249217529339<21> × 18232384718812661039227345510316358058265734494217639406170400311593259533801080716872202033397778882546589231862632855697652259094530628392043795343874234594022240088383946604629310709454038656937653<200>
14×10246-419 = 1(5)2451<247> = 3 × 17 × 19 × 113 × 6737527267697920053932641382164447<34> × 2108544494152684315583512497636132157796205703313855897177019508753270779491080999327296504990149374229885188176679783061174504141853883762017513612326281807113424624078799785697992746691292995409643640631689<208> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=3648350481 for P34 x P208 / October 27, 2012 2012 年 10 月 27 日)
14×10247-419 = 1(5)2461<248> = 11 × 25194380213<11> × 56129240020428604199144758462942155703274390929404449462578308281935672850923225612012166445673597096373792881052184275909900963839257359921233376289422680445683143590392165104305414418785493836833104323105506886562338398628426756534057<236>
14×10248-419 = 1(5)2471<249> = 31 × 61 × 1901 × 330375864045679<15> × 2197767777519551<16> × 50271346306525277927796529840686277<35> × [1185499160355561983840194223978284897041693701107045646589607972306813940584854138542774585091124677151102323302104850279347007332650434050996261492146671643256625283181795577317<178>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=4261158317 for P35 / October 27, 2012 2012 年 10 月 27 日) Free to factor
14×10249-419 = 1(5)2481<250> = 33 × 11 × 87323 × 242603337349<12> × 247231417247826750227529307027567608354472304195561124329469320830154449548514338827902210889038976435599727215572510899766363137909965142001392511829671933644182962555058690266153986785930903595612572793218546429728737860512856129<231>
14×10250-419 = 1(5)2491<251> = 449 × 1468673 × 3547963 × 279905033 × 7412769137<10> × 69039408839<11> × 217817656834586051003<21> × 59108348596734089361496117525008048667<38> × 3023507213725411702541336445782868156091<40> × 1344499096665215170127917227005493088088917784991083<52> × 886815579639241291722346417859445521710355103108594646243<57> (Makoto Kamada / GMP-ECM 6.4 B1=1e6, sigma=3388774308 for P40 / October 26, 2012 2012 年 10 月 26 日) (Warut Roonguthai / GMP-ECM 6.3 B1=3000000, sigma=1395421991 for P38, Msieve 1.49 gnfs for P52 x P57 / October 28, 2012 2012 年 10 月 28 日)
14×10251-419 = 1(5)2501<252> = 112 × 134179879056772867<18> × 3077933816266402471786459<25> × [3112816233863202994985946197989475651544320285181123972044227916119433371937731602072185648858556790977499165360974816540577975558565693466491846484393507480001230827534919273873377110254876736838021295858727<208>] Free to factor
14×10252-419 = 1(5)2511<253> = 3 × 79 × 426392509721<12> × [15393153963145396186577758917537701541707621120472528036740272655468325791458366516199909621636632421592066460578842130845643853765765384627422140411518061565802515451611063313990295147473113887839076489073341516882376842428943528768086963<239>] Free to factor
14×10253-419 = 1(5)2521<254> = 11 × 383 × 42743 × 59649143289557031029<20> × 188834745255469739218397762416031<33> × [7669074367925960660474656733957583672960868433132962546909226433652687373862174799195161063771705885821468654353353545263262287322501563787101274846555874276399306361360108616634330686087933311<193>] (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=3875532521 for P33 / November 20, 2015 2015 年 11 月 20 日) Free to factor
14×10254-419 = 1(5)2531<255> = 77781337 × 139858253 × 175170325411<12> × 299662516706510658941855145511<30> × 3551945501683063669259441201441<31> × 76694243867991285768361761232446977939335010417332475285876009938248043150150658945131009036781747075481946437188419814869062988566664602430078366480639560888145393831<167> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=669803707 for P30, B1=25e4, sigma=3679933170 for P31 x P167 / November 8, 2015 2015 年 11 月 8 日)
14×10255-419 = 1(5)2541<256> = 3 × 11 × 1748143 × 14912071 × 14456377196754795948907<23> × 30456777501723792062213<23> × [4106891657937826208116065517463322220632870346297613477831948876624687189573837596457031439533279559488337696741074985363410408593358917723218030995905018140985250015604486371494806906276508305489<196>] Free to factor
14×10256-419 = 1(5)2551<257> = 733 × 16615799171<11> × 1135353805762151<16> × 9635059205406282119<19> × 286134591205873665035310291611393<33> × 408041509989563263439104959983333592314834871250397614962269381726297072534886981872314225410839098800673279421059874236579228251298880728651185979804288846049496525118513015721<177> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2901009947 for P33 x P177 / November 21, 2015 2015 年 11 月 21 日)
14×10257-419 = 1(5)2561<258> = 11 × 147377 × 4633790220325189664639<22> × 1136126963133274811515370193587<31> × [18226357891127660067316820749341995462622287743279825746842507529216059282556615272694205337956264302335786567672115022063145014449901827047393523235180842326758219087634808017375895831208609549961281<200>] (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=118141309 for P31 / November 20, 2015 2015 年 11 月 20 日) Free to factor
14×10258-419 = 1(5)2571<259> = 32 × 89 × [1942016923290331530031904563739769732279095574975724788458870855874601192953252878346511305312803440144264114301567485088084339020668608683589956998196698571230406436398945762241642391455125537522541267859619919545013177971979470106810930780968234151754751<256>] Free to factor
14×10259-419 = 1(5)2581<260> = 11 × 43 × 443 × [74237042056875118978116510795391576534943640828464178771281506333215084330628453679532476319709245322138387391156565391433363505388283591863832296400935174624082178284498616274562518459835904321179138754864514746923272305182116720780167680267423036072309<254>] Free to factor
14×10260-419 = 1(5)2591<261> = 569 × 4597 × 719123024381047831249131589<27> × 3768746033502721644348592013<28> × 21943135745937917316019891756038560543592213487645633028609096115449247433158024568355537749259817793397487808134851152598083366573228403277325036151030895633051032291126848232906769591482868786356251<200>
14×10261-419 = 1(5)2601<262> = 3 × 11 × 23 × 10301 × 336251 × 78464273 × 3724723738959737<16> × [2024579133856333260349679379697995092914275824489059473872456991412273719672942587800946079421101733944537191688579688074948133324055810151525080908790491883381918556981112864741358517920358506114796417540589332851711976879839<226>] Free to factor
14×10262-419 = 1(5)2611<263> = 17 × 71 × 49197830789<11> × 58126701719<11> × 62795997389819007608014394229649<32> × [71766977888581900810103015328426004395464874652545415585928501816952225361699309585321538218126629174966697175924360964061153246243451814473229410358570325346026359277273759343723146277464024628165448270227<206>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=2840221957 for P32 / November 8, 2015 2015 年 11 月 8 日) Free to factor
14×10263-419 = 1(5)2621<264> = 11 × 31 × 786547552031<12> × 1799003377579<13> × 30523597587524175628050870611891<32> × [10561812794232025406048464695744154984967121005252918376443776335373911366295255896446476490029936317272530936444326469387399154659586370482599784979385012983206369432803056455591466405889623331904984264429<206>] (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=2157278795 for P32 / November 20, 2015 2015 年 11 月 20 日) Free to factor
14×10264-419 = 1(5)2631<265> = 3 × 19 × 124412251 × 30968737572007807401283636159346833<35> × [7083110561188048656289760877917901575552852277880967971793341057725659448035796375721168430466536356934449797356617801523409001610907762515986406370240197351146794723727295490409844741719041207709125352227021569086373221<220>] (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=3282559747 for P35 / November 20, 2015 2015 年 11 月 20 日) Free to factor
14×10265-419 = 1(5)2641<266> = 11 × 79 × 95401 × 90038191437277805628385986131<29> × [2083944074273421498008758636237254305317306820953947140066550157892492230400845888599706603986490060149756051619591892445634434978381339328827759264566353434633944116653478278774577111042197932310080908489094616308543290104556409<229>] Free to factor
14×10266-419 = 1(5)2651<267> = 2441 × 9277 × 327585948743<12> × 96077053377319269222146303<26> × 283773982734976295944310316245921753<36> × 769117467048752930074407996810548360226830245239432703514449484209614788978311666276005063294714744368964671235611953787689846355522489208157145949100445698847183182466940975923778022339<186> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=2177997359 for P36 x P186 / April 19, 2017 2017 年 4 月 19 日)
14×10267-419 = 1(5)2661<268> = 32 × 11 × 1103 × 66382725219627173779062836893<29> × 16229286225392152597841858896001<32> × 13222705396731323101459185609237153799354605243831628473337173528425264252750635666434708422067243083922934348266795504564760188406591422485919075374888056938736928323882713625662486335229483482527867031<203> (Makoto Kamada / GMP-ECM 6.4.4 B1=5e4, sigma=2178303412 for P32 x P203 / October 20, 2015 2015 年 10 月 20 日)
14×10268-419 = 1(5)2671<269> = [15555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555551<269>] Free to factor
14×10269-419 = 1(5)2681<270> = 11 × 797 × 1301 × 1973 × 664973 × 1220777 × 8515100685052686986251114291720794590251149714159342945512240526464264234849576314133573532009262262665663631470872030392998920454220983469721476822038744294310387262921221492254175654454608126697232406307719918714925231168709794919969270954720741<247>
14×10270-419 = 1(5)2691<271> = 3 × 29 × 223 × 337 × 7879 × 151433 × 291077 × 48406059469<11> × 2877360987408851<16> × [4918559301848812959482329259737821397831503921188597817503107329449481212544866833115503012703263273646878650150540631999337421948256128665204708447021582660472874230222953607293615113401813554800658989851148774974648892403<223>] Free to factor
14×10271-419 = 1(5)2701<272> = 11 × 181 × [7812935989731569842067079636140409621072604498018862659746637647190133377978681846085161002288074111278531168033930464869691389028405602991238350354372453819967632122328254924940007812935989731569842067079636140409621072604498018862659746637647190133377978681846085161<268>] Free to factor
14×10272-419 = 1(5)2711<273> = 1022503 × 38479927 × 199723501 × 650263541 × 46463332342438787<17> × 20721846677491592485866274211<29> × [31617629848920798175010622290862827182295841089884624210315321610504554547892271316665002898263285608795083102388022497754016432886271856551254586963637140541526965728377244693376682117170474400183<197>] Free to factor
14×10273-419 = 1(5)2721<274> = 3 × 112 × 325624557690875069226195448426433<33> × [13160177607420748696515718411707278667582297009739017492205305213036002657216629204168855319864304085231090908508928117220227821764638911607131182389511091701912410669590995778849158287155779449701460808644221786644408553792428723986355869<239>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1232731321 for P33 / November 15, 2015 2015 年 11 月 15 日) Free to factor
14×10274-419 = 1(5)2731<275> = 92353 × 1684667894699<13> × 5516917747769<13> × 41530346787931<14> × 49196290275440731000577<23> × 2457056766140667794567749963<28> × 3610028303731519382448089141304067772911868629239177659647377785993984894056328144127075533308179493585912406934159675661094519011744554442300639069322259943014536106961361495070397<181> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=239827847 for P28 x P181 / November 20, 2015 2015 年 11 月 20 日)
14×10275-419 = 1(5)2741<276> = 11 × 1757809 × [8044909396535198883463114673672817361921240670297023973674849850816636741614938904860619904745859272204284660131683329311740589643934091482147044497675311375775988256638884778802141837602459319608338642829875950197896438927176623934349034175010717399566244918612553549<268>] Free to factor
14×10276-419 = 1(5)2751<277> = 35 × 9337079539635560302222318093000993<34> × [685595872286690055257430214439247525964680959273226819105161586223954115103867870296080258976931336639263632595051607921018947509055817014595937597488089766829632286660456043922124707031906188843003259361375108740325566461025459646688798149<240>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1787102003 for P34 / November 15, 2015 2015 年 11 月 15 日) Free to factor
14×10277-419 = 1(5)2761<278> = 11 × 1414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141<277>
14×10278-419 = 1(5)2771<279> = 17 × 31 × 79 × 18880297 × 165483033007782428685904153013<30> × [1195874280932312208330622218397355635561604274394348465052310111959378113296617464574170790037738035748868667578701424946330878243983518724123150802678946883037524195229235388137689498351285394851505858212827703533363596315210244890928427<238>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=223351313 for P30 / November 9, 2015 2015 年 11 月 9 日) Free to factor
14×10279-419 = 1(5)2781<280> = 3 × 11 × 47 × 419 × 2393644804653792619059465146907385266192964359825681107354798514093695122487079019857164375521152040727524401926473728636933836751030677806689587525417515769417460373637695528722797295386540295898951258723766721532425081909670342108264212565233232475399742956742905963441179<274>
14×10280-419 = 1(5)2791<281> = 43 × 4320231786191329817251<22> × 83735578053804759894408231676788114680861343599347313374523961324081514987468162323358790280756966668421872571836979665403999153162926073173712206966528646295872292767468678879607919510566411791734582228927517842117828376325688375070527082660590693551891007<257>
14×10281-419 = 1(5)2801<282> = 11 × 59 × 23725921333621439<17> × [10102241429421137720857911549942254946822872575785570836757201986096680905073304952087317193078778598707129243002621680622409920994270677666538502278873611994189231603395438870871288128755169622505899642808775955765186177560333055118751568403205742656985880473241<263>] Free to factor
14×10282-419 = 1(5)2811<283> = 3 × 19 × 449 × 1213 × 96906847 × 94866642671269508651208144263<29> × 116562361801642231987212231482059939<36> × [46760289955867878052804013277556232561191260348496508896746503619132154898579508477786469316555715895535488621825938717467857424416026536332844056303651024121195586898152320097128467042105436324928267241<203>] (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=1111111111 for P29 / November 20, 2015 2015 年 11 月 20 日) (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=1683676770 for P36 / April 19, 2017 2017 年 4 月 19 日) Free to factor
14×10283-419 = 1(5)2821<284> = 11 × 23 × 233 × 3209 × 8887718761<10> × [9252286309071406621050107799846263667808462372213990705837000693097233208843047712660826623948191092136795894501439729615915351071780071725507286890765699011700132339611804113701267416436077935598474600626855121245870852577667144609722736419094309888866262835146051<265>] Free to factor
14×10284-419 = 1(5)2831<285> = 263 × 587 × 1085632210363<13> × 34185908678809<14> × [27149499520364171926494265386326048081925064872022576138802935375657281627117938310181134266412855070739764980771725055323132927595757478410810381407981380567708956688509929231100504945426606811647324504935025905387975814302555117591783704599698401744713<254>] Free to factor
14×10285-419 = 1(5)2841<286> = 32 × 11 × 499 × 96626049394598681<17> × 29320105063394118446442929079671237<35> × 11114502817604221186881790288576271629784876820983595467868088552723978517608727132386326065790549446387173157361124885559831348393316866090561086224744898956778838017275508467404918711348399172409102090207322610386410530199043683<230> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1228472304 for P35 x P230 / November 25, 2015 2015 年 11 月 25 日)
14×10286-419 = 1(5)2851<287> = 2782163 × 21676199 × [257940671539919528229674943764168773547868772570264982552363310158906655736966747874098643010881666706534478747938277748267278864878421437616394920791050963049741145738021069997647421137028957863175495831629941410030676342785979080126821253168907724548632703046012185769523<273>] Free to factor
14×10287-419 = 1(5)2861<288> = 11 × 107 × 947 × 1646747 × 106279279 × 188309915682408603928991<24> × [4234580712376618455262452410381470965168430116465395248198006061208940611183387357459790543303650568447588600400622233305806764022627199777972534050745643474425516310992960620819364033424101899991465597793935605571008384698494631654599570656263<244>] Free to factor
14×10288-419 = 1(5)2871<289> = 3 × 518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518517<288>
14×10289-419 = 1(5)2881<290> = 11 × 3229 × 3511 × 292867 × 12701481519589667054267156719693516463<38> × 33532748171211497887735910941781162553022528585334826352582581717557542438294418189335472841788554383210827771538397385955993428793651349773046794263839275535715462647187205005215208326276490674619491423723105166810053920993505889197849859<239> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=2076019466 for P38 x P239 / April 18, 2017 2017 年 4 月 18 日)
14×10290-419 = 1(5)2891<291> = 312410627 × 927339110965493<15> × 381994026431576960046054525742898059<36> × 7909613819786497592916141503753952440293<40> × 1014268708012921978316106475265432579646613<43> × [175208944202315455779551271697609420005592888019094524786760710186180442358883118890653871898924092620415546779536327033515688084062105080983942252811<150>] (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=1188496405 for P36 x P43 / April 18, 2017 2017 年 4 月 18 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3785126025 for P40 / April 20, 2017 2017 年 4 月 20 日) Free to factor
14×10291-419 = 1(5)2901<292> = 3 × 11 × 79 × [596684140987938456292886672633508076546051229595533393001747432127178962622000596684140987938456292886672633508076546051229595533393001747432127178962622000596684140987938456292886672633508076546051229595533393001747432127178962622000596684140987938456292886672633508076546051229595533393<288>] Free to factor
14×10292-419 = 1(5)2911<293> = 691 × 1072147 × [20996801579262072666695858519902314726295173918766886854830634846965928269460937698294403396739698208348605375709153869085733732720515103290856562275267998814771944545197971765418844101167855406812128485620520336038757568900224876089861351314708649311894400903399506101804993452242663<284>] Free to factor
14×10293-419 = 1(5)2921<294> = 11 × 31 × 257431652243<12> × 59268456524471<14> × 1101658762491994247167007<25> × 540644499510751614689592659509<30> × [50198033461053618901414634779631927059274077161687913901931115543562208759765901061475667529776063988007503567882597626322608693341559073443818806711644490181527738248674313467847236423451988931896018594670230149<212>] (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=3825366648 for P30 / November 20, 2015 2015 年 11 月 20 日) Free to factor
14×10294-419 = 1(5)2931<295> = 32 × 17 × 105601 × [96277779328537723391010393825838049758240650669439686774824161186552659746893832986674873384576631222208516392636381102028059099729729705567352678166208415383491896990450832873967978712047720603974991791803538424327628826769227808953554271993955515966132695660843697172081614370949494967<287>] Free to factor
14×10295-419 = 1(5)2941<296> = 112 × 189389 × 2226941 × 6279467 × 4502707081<10> × 40142403233<11> × 268557228895530544182707683599211140861629212562479014341531225439630451069657520371407134146641326751537572169103929615498652830407199240776141148520532542569118943526287825093085799931583086078337242770445964194649318251316386120913962395799764525091909<255>
14×10296-419 = 1(5)2951<297> = 109 × 32609 × 389713963 × 112298920413447270394650613262698944621621354523218575815907768520713267842328127761359519851163682671588869903340439739569854065928020283215215573819488139394261935959892913460449051889172579323902935231687368220168903614365797389284629699518594473368440991662556746376519000774417<282>
14×10297-419 = 1(5)2961<298> = 3 × 11 × 71 × 1290963371<10> × 2847418619885573<16> × 31308433469441344861<20> × [5768815625540571644572137620822833052858122992566403180289250152591571506107115744749798681912116970194216881600792303402542343646140770183178442303720157909750880714435308020324015174593507679887932266678003456098387568383888571325134527993804218539<250>] Free to factor
14×10298-419 = 1(5)2971<299> = 29 × 421823225386056773<18> × 1765489955755402304720807<25> × 2067526277385077977489001329<28> × 3712363073172194657383683779<28> × 216973557808762754045022283996411909886481269801<48> × 432497395713289434916494867661000862923369071795206227008664798138705028451123453069993850631366473953469973511515429378691729335520566261512513478191819<153> (Serge Batalov / GMP-ECM B1=11000000, sigma=725542522 for P48 x P153 / November 21, 2015 2015 年 11 月 21 日)
14×10299-419 = 1(5)2981<300> = 11 × 163 × 5437514659<10> × 5450923628094408913<19> × 409254695040428500563637<24> × 3830052039703566584610473<25> × [1867395695458633729242852523684446028116277733060220597832780785146623193534123636879784022505945564436428793449286766055054815238592704994802396833971337566236442288914998836388085102644047944839610289525100765807159721<220>] Free to factor
14×10300-419 = 1(5)2991<301> = 3 × 19 × 1181 × 16363 × [1412205317881466122780280159704390904599695443861668768068024038614198729330559354163420882964692825710176349271212517112419374687955015043694178756095156705897214942472768822368034700996353893766027208306815534496029630595013184933399871162229146803551252013981435053466399480930862426295881<292>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク