Table of contents 目次

  1. About 22...221 22...221 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 22...221 22...221 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 22...221 22...221 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 22...221 22...221 について

1.1. Classification 分類

Near-repdigit of the form AA...AAB AA...AAB の形のニアレプディジット (Near-repdigit)

1.2. Sequence 数列

2w1 = { 1, 21, 221, 2221, 22221, 222221, 2222221, 22222221, 222222221, 2222222221, … }

1.3. General term 一般項

2×10n-119 (1≤n)

2. Prime numbers of the form 22...221 22...221 の形の素数

2.1. Last updated 最終更新日

February 19, 2012 2012 年 2 月 19 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 2×104-119 = 2221 is prime. は素数です。
  2. 2×1018-119 = (2)171<18> is prime. は素数です。
  3. 2×10100-119 = (2)991<100> is prime. は素数です。 (Makoto Kamada / PPSIQS / May 4, 2003 2003 年 5 月 4 日)
  4. 2×10121-119 = (2)1201<121> is prime. は素数です。 (Makoto Kamada / pock 0.1.1a / May 4, 2003 2003 年 5 月 4 日)
  5. 2×10244-119 = (2)2431<244> is prime. は素数です。 (Makoto Kamada / pock 0.1.1a / May 4, 2003 2003 年 5 月 4 日)
  6. 2×10546-119 = (2)5451<546> is prime. は素数です。 (Makoto Kamada / pock 0.1.1a / May 4, 2003 2003 年 5 月 4 日)
  7. 2×10631-119 = (2)6301<631> is prime. は素数です。 (Makoto Kamada / pock 0.1.1a / May 4, 2003 2003 年 5 月 4 日)
  8. 2×101494-119 = (2)14931<1494> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / May 4, 2003 2003 年 5 月 4 日) (certified by: (証明: Phil Carmody / May 20, 2004 2004 年 5 月 20 日)
  9. 2×102566-119 = (2)25651<2566> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / May 4, 2003 2003 年 5 月 4 日) (certified by: (証明: Makoto Kamada / pock 0.2.1 / September 3, 2003 2003 年 9 月 3 日)
  10. 2×108088-119 = (2)80871<8088> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 30, 2004 2004 年 12 月 30 日)

2.3. Range of search 捜索範囲

  1. n≤100000 / Completed 終了 / Erik Branger / December 14, 2010 2010 年 12 月 14 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

  1. 2×103k+2-119 = 3×(2×102-119×3+2×102×103-19×3×k-1Σm=0103m)
  2. 2×106k+2-119 = 7×(2×102-119×7+2×102×106-19×7×k-1Σm=0106m)
  3. 2×106k+3-119 = 13×(2×103-119×13+2×103×106-19×13×k-1Σm=0106m)
  4. 2×1016k+3-119 = 17×(2×103-119×17+2×103×1016-19×17×k-1Σm=01016m)
  5. 2×1018k+7-119 = 19×(2×107-119×19+2×107×1018-19×19×k-1Σm=01018m)
  6. 2×1022k+17-119 = 23×(2×1017-119×23+2×1017×1022-19×23×k-1Σm=01022m)
  7. 2×1028k+12-119 = 29×(2×1012-119×29+2×1012×1028-19×29×k-1Σm=01028m)
  8. 2×1030k+17-119 = 211×(2×1017-119×211+2×1017×1030-19×211×k-1Σm=01030m)
  9. 2×1033k+16-119 = 67×(2×1016-119×67+2×1016×1033-19×67×k-1Σm=01033m)
  10. 2×1044k+10-119 = 89×(2×1010-119×89+2×1010×1044-19×89×k-1Σm=01044m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 16.84%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 16.84% です。

3. Factor table of 22...221 22...221 の素因数分解表

3.1. Last updated 最終更新日

October 29, 2017 2017 年 10 月 29 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=203, 212, 213, 215, 216, 217, 219, 224, 226, 227, 228, 229, 233, 234, 235, 236, 237, 238, 239, 242, 243, 247, 248, 250, 252, 253, 256, 257, 258, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 271, 274, 275, 277, 280, 283, 284, 285, 287, 290, 292, 293, 294, 295, 297, 298, 299, 300 (57/300)

3.4. Factor table 素因数分解表

2×101-119 = 1
2×102-119 = 21 = 3 × 7
2×103-119 = 221 = 13 × 17
2×104-119 = 2221 = definitely prime number 素数
2×105-119 = 22221 = 33 × 823
2×106-119 = 222221 = 359 × 619
2×107-119 = 2222221 = 19 × 116959
2×108-119 = 22222221 = 3 × 7 × 373 × 2837
2×109-119 = 222222221 = 13 × 17094017
2×1010-119 = 2222222221<10> = 89 × 24968789
2×1011-119 = 22222222221<11> = 3 × 56239 × 131713
2×1012-119 = 222222222221<12> = 29 × 7662835249<10>
2×1013-119 = 2222222222221<13> = 163 × 181 × 75321907
2×1014-119 = 22222222222221<14> = 32 × 72 × 109 × 443 × 521 × 2003
2×1015-119 = 222222222222221<15> = 13 × 131 × 197003 × 662369
2×1016-119 = 2222222222222221<16> = 67 × 1229 × 131321 × 205507
2×1017-119 = 22222222222222221<17> = 3 × 23 × 211 × 239851 × 6363769
2×1018-119 = 222222222222222221<18> = definitely prime number 素数
2×1019-119 = 2222222222222222221<19> = 17 × 130718954248366013<18>
2×1020-119 = 22222222222222222221<20> = 3 × 7 × 59 × 20341 × 309271 × 2851049
2×1021-119 = 222222222222222222221<21> = 13 × 7129 × 5022079 × 477454487
2×1022-119 = 2222222222222222222221<22> = 30803 × 27150463 × 2657157089<10>
2×1023-119 = 22222222222222222222221<23> = 32 × 2469135802469135802469<22>
2×1024-119 = 222222222222222222222221<24> = 167 × 31769 × 52490219 × 797974633
2×1025-119 = 2222222222222222222222221<25> = 19 × 233 × 501970233165173305223<21>
2×1026-119 = 22222222222222222222222221<26> = 3 × 7 × 587 × 72613 × 24826512150000271<17>
2×1027-119 = 222222222222222222222222221<27> = 13 × 33023 × 1107490861<10> × 467398654939<12>
2×1028-119 = 2222222222222222222222222221<28> = 433 × 457512701 × 11217509212181537<17>
2×1029-119 = 22222222222222222222222222221<29> = 3 × 7407407407407407407407407407<28>
2×1030-119 = 222222222222222222222222222221<30> = 8297 × 987029 × 27135415956229677617<20>
2×1031-119 = 2222222222222222222222222222221<31> = 139 × 159721 × 93589860307<11> × 1069502653237<13>
2×1032-119 = 22222222222222222222222222222221<32> = 34 × 7 × 39192631785224377816970409563<29>
2×1033-119 = 222222222222222222222222222222221<33> = 13 × 6869 × 935065627 × 2661390025721890759<19>
2×1034-119 = 2222222222222222222222222222222221<34> = 35829061337<11> × 62022898152996684581333<23>
2×1035-119 = 22222222222222222222222222222222221<35> = 3 × 17 × 491 × 285243851 × 3111139801405384908631<22>
2×1036-119 = 222222222222222222222222222222222221<36> = 34457 × 6449262043190707903248170828053<31>
2×1037-119 = 2222222222222222222222222222222222221<37> = 269 × 22777 × 227962019748451<15> × 1591022012144867<16>
2×1038-119 = 22222222222222222222222222222222222221<38> = 3 × 7 × 1058201058201058201058201058201058201<37>
2×1039-119 = 222222222222222222222222222222222222221<39> = 13 × 232 × 19727 × 1638050992840274857388803011199<31>
2×1040-119 = 2222222222222222222222222222222222222221<40> = 29 × 1471 × 2239 × 150881 × 154201347279592429318754641<27>
2×1041-119 = 22222222222222222222222222222222222222221<41> = 32 × 2469135802469135802469135802469135802469<40>
2×1042-119 = 222222222222222222222222222222222222222221<42> = 1663 × 1094623 × 22077704237<11> × 5529384066861605111617<22>
2×1043-119 = 2222222222222222222222222222222222222222221<43> = 192 × 47 × 3153763058773<13> × 41529180821315812927336031<26>
2×1044-119 = 22222222222222222222222222222222222222222221<44> = 3 × 7 × 8386922410091<13> × 126172749246833258932788819211<30>
2×1045-119 = 222222222222222222222222222222222222222222221<45> = 13 × 421 × 1208677 × 33593231292597591137194765014073001<35>
2×1046-119 = 2222222222222222222222222222222222222222222221<46> = 6675241 × 16214747972747<14> × 20531010898959068451907823<26>
2×1047-119 = 22222222222222222222222222222222222222222222221<47> = 3 × 2112 × 7211 × 111119 × 380847699275573<15> × 545212952395115231<18>
2×1048-119 = 222222222222222222222222222222222222222222222221<48> = 977 × 39006070127<11> × 5831237435018656069988491632239699<34>
2×1049-119 = 2222222222222222222222222222222222222222222222221<49> = 67 × 33167495854063018242122719734660033167495854063<47>
2×1050-119 = 22222222222222222222222222222222222222222222222221<50> = 32 × 7 × 607 × 8117 × 71591704043970482020210128287920018240793<41>
2×1051-119 = (2)501<51> = 13 × 17 × 229 × 293 × 13343488861123<14> × 1123111081663769246267035209971<31>
2×1052-119 = (2)511<52> = 263 × 126719 × 451771 × 147595002041479418347033667523047896783<39>
2×1053-119 = (2)521<53> = 3 × 43481 × 1159775417947354288957<22> × 146890195357570148034082771<27>
2×1054-119 = (2)531<54> = 89 × 2543 × 1758648014675145437<19> × 558305869062435254764471069879<30>
2×1055-119 = (2)541<55> = 277 × 2351 × 171489259 × 500759057 × 39736476177410804098267531456021<32>
2×1056-119 = (2)551<56> = 3 × 72 × 149 × 215498310540036203902741<24> × 4708038583452555544123370327<28>
2×1057-119 = (2)561<57> = 133 × 151 × 1938971212272758771<19> × 345469030180822585894916167786933<33>
2×1058-119 = (2)571<58> = 61 × 210173 × 3192121 × 7485631 × 101273050786367827<18> × 71627381449327183841<20>
2×1059-119 = (2)581<59> = 33 × 16693 × 1895693 × 26008860317869753052556847667416042953502261927<47>
2×1060-119 = (2)591<60> = 4558921 × 16068332171<11> × 4459324076917<13> × 680276679525206047376667577843<30>
2×1061-119 = (2)601<61> = 19 × 23 × 100525273 × 5640498761143<13> × 8968365098010065256752297065251737447<37>
2×1062-119 = (2)611<62> = 3 × 7 × 1058201058201058201058201058201058201058201058201058201058201<61>
2×1063-119 = (2)621<63> = 13 × 112757702008173421<18> × 151599551867224174684509425466502113569928677<45>
2×1064-119 = (2)631<64> = 1050431 × 254040692093505517<18> × 44625986468949994441<20> × 186607390392571883303<21>
2×1065-119 = (2)641<65> = 3 × 7243 × 1037441 × 270305053 × 3646953068149305246596699561747387127100840913<46>
2×1066-119 = (2)651<66> = 521 × 60683393 × 7028779307215459411765844261382249760742959180911325157<55>
2×1067-119 = (2)661<67> = 17 × 1001023 × 130585365419541821788206090006524632490504697354736823184131<60>
2×1068-119 = (2)671<68> = 32 × 7 × 29 × 27407082831913661<17> × 443798802982122095304646139805719918731097693243<48>
2×1069-119 = (2)681<69> = 13 × 55633 × 113779 × 795349 × 12400734565514900742649133<26> × 273806901497183047300155643<27>
2×1070-119 = (2)691<70> = 197 × 42571 × 23382229187<11> × 11332389553235617426855970072648976171316571655270409<53>
2×1071-119 = (2)701<71> = 3 × 26390862312383941<17> × 842167690937945736061<21> × 333283700425819176770786293792607<33>
2×1072-119 = (2)711<72> = 84464422593640261019<20> × 2630956506875528192817056129204455584460347342995959<52>
2×1073-119 = (2)721<73> = 10869931 × 40935663763866685003<20> × 4994118719823247065992481939703494533930786197<46>
2×1074-119 = (2)731<74> = 3 × 7 × 132851 × 366811 × 6504083 × 11612311 × 230699389 × 2352359671<10> × 529792870900134479940431065903<30>
2×1075-119 = (2)741<75> = 13 × 89021 × 2451880180877<13> × 12182535631407967907<20> × 6428575250462894159517047179627685443<37>
2×1076-119 = (2)751<76> = 257 × 1571 × 268781 × 1356083 × 176495542612057<15> × 85557798085094529003289407819323422022074513<44>
2×1077-119 = (2)761<77> = 32 × 139 × 211 × 1182703 × 6470119 × 76888695975426531403<20> × 143086038213701264068727598071179555591<39>
2×1078-119 = (2)771<78> = 59 × 5054639 × 23704451 × 28531796650657<14> × 1101758244776661255766355121465278871844575158803<49>
2×1079-119 = (2)781<79> = 19 × 3270959 × 1422285233<10> × 234841496513851<15> × 107052606182800897109792182063638415486921364947<48>
2×1080-119 = (2)791<80> = 3 × 7 × 2349727 × 1106738559601697167<19> × 406916914623891613700697920733138355674769900099177289<54>
2×1081-119 = (2)801<81> = 13 × 467 × 160883159 × 14104089765646823033759<23> × 16131383081784503861259877865457943118701154371<47>
2×1082-119 = (2)811<82> = 67 × 113 × 74381 × 39068182012988154016218017<26> × 101006430762389693896878396817447366567257170363<48>
2×1083-119 = (2)821<83> = 3 × 17 × 23 × 479 × 1303 × 2347 × 22649573377<11> × 571000422041740336345823620905526185842831906437768901143859<60>
2×1084-119 = (2)831<84> = 22531 × 148944065867<12> × 4076647642532156887315637666642687<34> × 16243538345755016680595977767501779<35>
2×1085-119 = (2)841<85> = 308600635978722359<18> × 7200964493072016091242130712128200291816509457898813754682274198619<67>
2×1086-119 = (2)851<86> = 33 × 7 × 117577895355673133450911228689006466784244562022339800117577895355673133450911228689<84>
2×1087-119 = (2)861<87> = 13 × 10218488056276523<17> × 85995290457975419046037<23> × 19452831482132018815937171090782762799700832567<47>
2×1088-119 = (2)871<88> = 2366611024222364881189<22> × 938989212624162946314111976246126252790669992162992269458468847689<66>
2×1089-119 = (2)881<89> = 3 × 47 × 202403 × 778666387966393085735253420304762471186082979743846556749107075026262373266838027<81>
2×1090-119 = (2)891<90> = 1759 × 88475369258039517841716685128915541<35> × 1427904830861326540562979640315245925117336019004359<52> (Robert Backstrom / GMP-ECM 5.1-beta for P35 x P52 / May 3, 2003 2003 年 5 月 3 日)
2×1091-119 = (2)901<91> = 493492648935934397456506637<27> × 4503050302803422008328605708723826433303120468873712341768533633<64> (Tetsuya Kobayashi / GMP-ECM 5.0.1 for P27 x P64 / May 1, 2003 2003 年 5 月 1 日)
2×1092-119 = (2)911<92> = 3 × 7 × 97 × 33555883 × 556644268217<12> × 13905289209102115900749811<26> × 42002004614740229999705607511498017225985073<44>
2×1093-119 = (2)921<93> = 13 × 4711754083537<13> × 13563989968585817<17> × 14601398255521179097<20> × 18318065677554308642045887832261702926118209<44>
2×1094-119 = (2)931<94> = 163 × 2244461 × 44386787 × 9982509032560283154354521318462340973<37> × 13708640812269209049881772905336527616797<41>
2×1095-119 = (2)941<95> = 32 × 32713 × 129093463 × 1207816908930223<16> × 484082348343068108330580257625948698253567339947211034144329908837<66>
2×1096-119 = (2)951<96> = 29 × 62731 × 3441797 × 5656099 × 2235659955688401559480729<25> × 2806721203379006868561721720457288808162712656194117<52> (Tetsuya Kobayashi / GMP-ECM 5.0.1 B1=250000 for P25 x P52 / April 30, 2003 2003 年 4 月 30 日)
2×1097-119 = (2)961<97> = 19 × 168601 × 9142423 × 1073714203687<13> × 70668151202466329665601301505151757662806456181354805188233406797807159<71>
2×1098-119 = (2)971<98> = 3 × 72 × 89 × 557 × 1151 × 37197431 × 365962921 × 5338998607<10> × 36453546488494885759005970274641525745891577980956204808250413<62>
2×1099-119 = (2)981<99> = 13 × 17 × 683 × 692117 × 22810853555587967557<20> × 93250990995100307905459688987913037321248480205345578295406704270363<68>
2×10100-119 = (2)991<100> = definitely prime number 素数
2×10101-119 = (2)1001<101> = 3 × 646133454837092413273893981139268692313<39> × 11464206584497336755016659776675064889291854135198586780714439<62> (Robert Backstrom / NFSX v1.8 for P39 x P62 / September 22, 2003 2003 年 9 月 22 日)
2×10102-119 = (2)1011<102> = 2464361 × 2698697 × 88637196608395277<17> × 37874825331841534177409<23> × 9953192009203976805808396142078154546022199044241<49>
2×10103-119 = (2)1021<103> = 193 × 593 × 113919821 × 170441830577276697574302450465146392754279755282565411144308902535446379812111129907833649<90>
2×10104-119 = (2)1031<104> = 32 × 7 × 85597 × 224486341 × 4815428239<10> × 18690306299101<14> × 14223731298115387<17> × 14339486464084018667707858170898740412373488927747<50>
2×10105-119 = (2)1041<105> = 13 × 23 × 3301 × 1302520342067171<16> × 5004315794133052387<19> × 34541528464083810638009881009942067661701139226412988026838761027<65>
2×10106-119 = (2)1051<106> = 243146327 × 9139443929260844734957572368437308214909708351145366971643467278130926576662711512899893495912123<97>
2×10107-119 = (2)1061<107> = 3 × 211 × 389 × 19387 × 55217 × 69091213111<11> × 225683592163209704068511<24> × 5406646228003422876120199388217653391784501250141270750587<58>
2×10108-119 = (2)1071<108> = 95483 × 475379 × 7840709 × 624404611704004964601167224861587409720470370076366067093660118368753953191181529322717417<90>
2×10109-119 = (2)1081<109> = 431 × 259112923499372083<18> × 344317336358824787340808998835699614289<39> × 57791271765407223665865284841424563608711940872993<50> (Robert Backstrom / NFSX v1.8 for P39 x P50 / September 22, 2003 2003 年 9 月 22 日)
2×10110-119 = (2)1091<110> = 3 × 7 × 457328877143<12> × 6546862375024513<16> × 16879411860684127<17> × 20938667712871940094223782874601585969482916975891790094927563857<65>
2×10111-119 = (2)1101<111> = 13 × 80369 × 3454334249<10> × 1231018107900921035893<22> × 30167849716281102810174221<26> × 1657991934379465119718848407775808409456183408569<49>
2×10112-119 = (2)1111<112> = 26227793 × 2384652246426899<16> × 1141888666576880742920762783728049632356307<43> × 31115509836999599981075114750243551532478939829<47> (Robert Backstrom / NFSX v1.8 for P43 x P47 / September 22, 2003 2003 年 9 月 22 日)
2×10113-119 = (2)1121<113> = 34 × 1049 × 1907 × 31319 × 163403 × 2169734528685165923137799<25> × 12350990090982371415826299088080570996736698938806523444911574469411509<71>
2×10114-119 = (2)1131<114> = 871963 × 2423498717<10> × 299263016218137589<18> × 1434863716678724050576345339<28> × 244896699779262583406472887308677857090524459331548981<54>
2×10115-119 = (2)1141<115> = 17 × 19 × 672 × 3659 × 46183 × 56993 × 200477909 × 39553707211096027<17> × 20068530453324304020987893601341510321283334576879377298300176766712581<71>
2×10116-119 = (2)1151<116> = 3 × 7 × 2507319193425422501149<22> × 161193292744771977220593313<27> × 2618252937500934264310413817881679467869168284758874568831195340173<67>
2×10117-119 = (2)1161<117> = 13 × 457 × 56597 × 639271993 × 54144935788843<14> × 19093739861711962842631510844052265710486668952884538498753598346075169687061005867127<86>
2×10118-119 = (2)1171<118> = 61 × 521 × 16265121466051631<17> × 12710541221550937810412271999953<32> × 338219445807557401079026012295376061268375701615535231618288076887<66> (Robert Backstrom / NFSX v1.8 for P32 x P66 / September 24, 2003 2003 年 9 月 24 日)
2×10119-119 = (2)1181<119> = 3 × 5922887 × 1250641352335002745689290950073402954911584064900682286764445684580409419833167069945350537230814534771203199961<112>
2×10120-119 = (2)1191<120> = 4957 × 6525328347563<13> × 159599685722579<15> × 43046135231042731200663334146605998000235187932430592279313087247849375289305308147077889<89>
2×10121-119 = (2)1201<121> = definitely prime number 素数
2×10122-119 = (2)1211<122> = 32 × 7 × 109 × 12497 × 143210910752509<15> × 9108456776299891605567230593799<31> × 198515197706813176641830470321538813025543764468766205359363502848269<69>
2×10123-119 = (2)1221<123> = 13 × 139 × 857 × 129857401595344186327<21> × 16181526415410210449407608816578666333446231<44> × 68290818294121941623276576346170451914223203745834667<53> (Robert Backstrom / NFSX v1.8 for P44 x P53 / September 27, 2003 2003 年 9 月 27 日)
2×10124-119 = (2)1231<124> = 29 × 277 × 779392543649429903<18> × 354938796687282760812594730908428019765160258475968075979449531900805417162647006096818322270369950979<102>
2×10125-119 = (2)1241<125> = 3 × 463 × 1733 × 15431309 × 2135816543137<13> × 9080599794793<13> × 941764742905920658136460748893782291<36> × 32753898639274472927055975525325304432064724477027<50>
2×10126-119 = (2)1251<126> = 2551 × 564371 × 303578557 × 508441797854216377661386813678447441455405395862265801409919475275964448001652331279346939236079981573910093<108>
2×10127-119 = (2)1261<127> = 23 × 1493 × 36134697911413711828412466517304805121853464321<47> × 1790916815237999935908081757793939781726708878600751542486314639533850870159<76> (Robert Backstrom / NFSX v1.8 for P47 x P76 / October 7, 2003 2003 年 10 月 7 日)
2×10128-119 = (2)1271<128> = 3 × 7 × 4312265857519994323<19> × 2000281379456033788037758300154874752260789206492659<52> × 122679379713980043623767156301921472799262168767865424593<57> (Robert Backstrom / NFSX v1.8 for P52 x P57 / October 9, 2003 2003 年 10 月 9 日)
2×10129-119 = (2)1281<129> = 13 × 5099 × 4061177 × 28460911165213<14> × 232437847409117060045701<24> × 966470188851780727865057<24> × 16118399957125694243627377<26> × 8010159590449453429221995645947<31>
2×10130-119 = (2)1291<130> = 1810373076045593<16> × 480246179105926087<18> × 1447094084355056103256700594419<31> × 1766276609455737375380554470301408478866556716840222371686019409649<67>
2×10131-119 = (2)1301<131> = 32 × 17 × 191123 × 22049641 × 387510467 × 6800202132442389707<19> × 323169533284029802648184057<27> × 40471183802241289879049991314243075647844785527475266754205303<62>
2×10132-119 = (2)1311<132> = 151 × 179 × 401 × 51291067 × 399734287341827814244764708737669249604688141352229728784334105723639882873372218925282278710883214579324767601825547<117>
2×10133-119 = (2)1321<133> = 19 × 116959064327485380116959064327485380116959064327485380116959064327485380116959064327485380116959064327485380116959064327485380116959<132>
2×10134-119 = (2)1331<134> = 3 × 7 × 2581919 × 6446206383077<13> × 3243670884207326186636599807<28> × 54470736722162911535598654512961727931<38> × 359849861993042534137787006499669004773021871231<48>
2×10135-119 = (2)1341<135> = 132 × 47 × 33203 × 1516393 × 16461631868019553357<20> × 475900693439438622159972488667266705611<39> × 70929125336266553978380708668118477372147344662090404788926159<62> (Robert Backstrom / GMP-ECM 5.0c for P39 x P62 / October 3, 2003 2003 年 10 月 3 日)
2×10136-119 = (2)1351<136> = 59 × 718171 × 131581092018684280750055302535473667<36> × 398578734591057178232196801607321550483774157317431124725964182248269145649847798797233483367<93> (Makoto Kamada / GMP-ECM 5.0.1 b1=5000000 for P36 x P93)
2×10137-119 = (2)1361<137> = 3 × 211 × 9365678723<10> × 1865928101269<13> × 46420799539183752235420713661145631161807899<44> × 43274992245445172262545119809127059093038739356065739492241467101649<68> (Robert Backstrom / GMP-ECM 5.0c for P44 x P68 / October 6, 2003 2003 年 10 月 6 日)
2×10138-119 = (2)1371<138> = 8663 × 957821 × 1095023 × 1976102011009085190527<22> × 279893133285856541731314313<27> × 44219107420693625741545039057103901393783665309131670883149923958017114799<74>
2×10139-119 = (2)1381<139> = 2203 × 8028144107349103<16> × 125648650780754594064558285059806257905068419427093942781139135500452115795031606664075079560307118827420901990504152569<120>
2×10140-119 = (2)1391<140> = 33 × 72 × 382707931 × 689231627363<12> × 1274473161439729<16> × 185629377658362634675703<24> × 269164374960205315887699948826671139874990355995228939150843994386273046030257<78>
2×10141-119 = (2)1401<141> = 13 × 487 × 848807 × 6927527381<10> × 5969362723164512422829646635311758625697464715053654770424894913634078542445752645240152808359129044861336924670183951373<121>
2×10142-119 = (2)1411<142> = 89 × 98269 × 2760361642479388348883<22> × 164316964756186302158333349418739689<36> × 560186392253176191167958961346863939732631331993911634372788193963601208421163<78> (Robert Backstrom / GMP-ECM 5.0c for P36 x P78 / October 6, 2003 2003 年 10 月 6 日)
2×10143-119 = (2)1421<143> = 3 × 1639704346744230467897817374963936809<37> × 4517526237041105422717248364841109362832890589334397951090334806082732090436300786518717858790161469411223<106> (Greg Childers / GGNFS for P37 x P106 / September 27, 2004 2004 年 9 月 27 日)
2×10144-119 = (2)1431<144> = 5717 × 10247 × 289443521 × 20221777393<11> × 648096087914797390365309380561181755491692688584581218815719146187672832178619197103513812818237191330070526819352143<117>
2×10145-119 = (2)1441<145> = 131 × 11467 × 315527 × 4688456056211184056701719864700305648687523179086928822098081969015175438399884463075424125440011781879126243824480898342896211715499<133>
2×10146-119 = (2)1451<146> = 3 × 7 × 1629005499570503911522997110980887938657079503413966178632607<61> × 649599438725074052277587080056907926964379332648616521940920933450301174280530982343<84> (Greg Childers / GGNFS for P61 x P84 / September 28, 2004 2004 年 9 月 28 日)
2×10147-119 = (2)1461<147> = 13 × 17 × 218458756433618805480126903986087<33> × 4602838694637837088523717192983926601433762196527721491287447169511707872045537260983574078409083902834181546023<112> (Robert Backstrom / GMP-ECM 5.0c for P33 x P112 / October 31, 2003 2003 年 10 月 31 日)
2×10148-119 = (2)1471<148> = 67 × 31657237555321009<17> × 5776276623622724180921<22> × 2182492353788207197335578479737599<34> × 7485554533105775050813272783812837<34> × 11102351568636340914388692610584597142709<41> (Robert Backstrom / GMP-ECM 5.0c for P34(7485...), PPSIQS Ver 1.1 for P34(2182...) x P41 / October 4, 2003 2003 年 10 月 4 日)
2×10149-119 = (2)1481<149> = 32 × 23 × 1297 × 1553 × 511646249885055793<18> × 30194192422162344551<20> × 38948616515564849360921579<26> × 88576896447704276583855742314833863085089597515780099422143552514170664903039<77>
2×10150-119 = (2)1491<150> = 279912173263<12> × 458976686907073<15> × 2834188426788549952231733673773047461459519075813368357123<58> × 610304192083969965409076522824019775128554583673057741177067810273<66> (Greg Childers / GGNFS for P58 x P66 / September 28, 2004 2004 年 9 月 28 日)
2×10151-119 = (2)1501<151> = 19 × 1609 × 2393 × 2234742337171349<16> × 6528433774795843<16> × 2082086090538050146881540239911093048642269573823089239899537253936081578428949273520227553573299666521393124801<112>
2×10152-119 = (2)1511<152> = 3 × 7 × 29 × 461 × 1381 × 2111 × 456037 × 484252891669747457450243579<27> × 122946183961168857976091752930571049655461626320389989096332283645622575622869592987460654500186729083923253<108>
2×10153-119 = (2)1521<153> = 13 × 352637 × 1692679 × 4049564323369<13> × 3388240251612274601068927<25> × 2087176375298790522305245520732930624106253769745500064201717699559923892994296753299054487969690249333<103>
2×10154-119 = (2)1531<154> = 4679929 × 62151671 × 474111779 × 10123931833<11> × 21340649531177<14> × 124377581827049<15> × 11155972892775276123423372961<29> × 2679162778111367510973787621601<31> × 20063613869583775177852334220694889<35> (Tyler Cadigan / PPSIQS for P31 x P35 / 12:09:53:34 / October 5, 2004 2004 年 10 月 5 日)
2×10155-119 = (2)1541<155> = 3 × 1367 × 6229 × 280837 × 2240489 × 5383451 × 78032852263<11> × 276510192863<12> × 8018359904057<13> × 15314485511210449<17> × 1079304623982234821101753112489<31> × 89805070704999211290566768202381681346289557411<47>
2×10156-119 = (2)1551<156> = 17627 × 1777687 × 7091756007173030381901148193635948876196590691969251852328677650195608932195265989193014479926094081457868049921195963836248937902589812903026529<145>
2×10157-119 = (2)1561<157> = 1307 × 227076523 × 41803616430887<14> × 133550863188163178037852511255596245705285448630017952863<57> × 1341155421012836738800447933210092150861764010961882722169751753291060047181<76> (Tyler Cadigan / GGNFS-0.77.1-20060722-pentium4 for P57 x P76 / 73.93 hours on Pentium 4 3.20 GHz, 1 Gig RAM, Windows XP and Cygwin / December 28, 2006 2006 年 12 月 28 日)
2×10158-119 = (2)1571<158> = 32 × 7 × 3373 × 244846033 × 136373220163038473408001030523801101796795796597<48> × 3131903903250503659877494912285800041740438149611919544242941413416214051230896603159433989608979<97> (suberi / GGNFS-0.77.1-20060513-pentium4 for P48 x P97 / 61.35 hours on Pentium 4 2.4GHz, Windows 2000 and Cygwin / June 10, 2006 2006 年 6 月 10 日)
2×10159-119 = (2)1581<159> = 13 × 28591 × 129221 × 5335191623<10> × 867224758912501121699617265775810794240302148167812194850191381465402738405782465996962920223322056791970818193261755673672487384355484389<138>
2×10160-119 = (2)1591<160> = 45667395286771<14> × 89202081768071<14> × 13538317546976809<17> × 23560896932940858776232011<26> × 222934006497526103661377728759<30> × 7671378617469401641310156046145987429459320963280216836488341<61> (Makoto Kamada / GMP-ECM 5.0.3 B1=50940, sigma=3165008147 for P30 x P61)
2×10161-119 = (2)1601<161> = 3 × 23473 × 7534931 × 2258817693491<13> × 20884306741661711<17> × 887804023206391615977831930211490328081664980844737970142097426642750499612460803254447197932742425584894558235390326889<120>
2×10162-119 = (2)1611<162> = 2999 × 13291 × 737369127871<12> × 3477161523419951142339720131731396316406999807975085010917<58> × 2174420563538039342235832474859054013840635530546636646389334682567283354466126851267<85> (suberi / GGNFS-0.77.1-20060513-pentium4 for P58 x P85 / 80.13 hours on Pentium 4 2.40GHz, Windows 2000 and Cygwin / June 29, 2006 2006 年 6 月 29 日)
2×10163-119 = (2)1621<163> = 17 × 37877640361436692050097<23> × 2220078767826668361325983014056277664531569885622229234531374787<64> × 1554487611393771714900494781481020302062202220737078357519127682939670142767<76> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P64 x P76 / 38.74 hours on Cygwin on AMD 64 X2 6000+ / January 14, 2008 2008 年 1 月 14 日)
2×10164-119 = (2)1631<164> = 3 × 7 × 2705744860522788636251121991<28> × 391094176557577793883311466250837928124679378240286597104225549984604139382887743727588795990566928192149494732283550828037750266209311<135> (anonymous / GMP-ECM B1=250000, sigma=223471156 for P28 x P135 / January 27, 2007 2007 年 1 月 27 日)
2×10165-119 = (2)1641<165> = 13 × 724499 × 454131008520969815015609614546162302581<39> × 51954741289049915090131599165962689609766478375843775620784761410878644041216476959039033357173188712948113263437198543<119> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P39 x P119 / 49.52 hours on Cygwin on AMD 64 3200+ / August 19, 2007 2007 年 8 月 19 日)
2×10166-119 = (2)1651<166> = 3457 × 6417214836623<13> × 127185217798007777<18> × 7133985552443864311<19> × 110400912819679175656704288993267552390277921319956015267323193088736989355950418463748983973440529980932965277013<114>
2×10167-119 = (2)1661<167> = 33 × 211 × 345979 × 8190545575864479761627<22> × 22483399937205086685698973749619580104633619<44> × 61223296584507659608164240577076192938735095756775297725553210186474662678695824030849575959<92> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon, Msieve 1.38 snfs for P44 x P92 / 10.30 hours, 1.35 hours / October 10, 2008 2008 年 10 月 10 日)
2×10168-119 = (2)1671<168> = 197 × 474369113 × 5575500037<10> × 1555302784493<13> × 1081715269133179811208872005879<31> × 4113790312911686726221727300257<31> × 61624154347874880308475566998218502389129151357945858275948542932460478007<74> (Wataru Sakai / GMP-ECM 5.0.3 B1=10000000, sigma=807740449 for P31(4113...) / January 19, 2005 2005 年 1 月 19 日) (Anton Korobeynikov / GGNFS-0.73.3 gnfs for P31(1081...) x P74 / 20.91 hours / March 5, 2005 2005 年 3 月 5 日)
2×10169-119 = (2)1681<169> = 19 × 139 × 3253 × 258663423751590408227400638099386687035893960256908133758012115717169497369244248977668383842604755162330245499912785160096557504105926189848839293798672453950377<162>
2×10170-119 = (2)1691<170> = 3 × 7 × 521 × 19415939 × 210932730451696181940250897337150581037995111538975826259659355381171<69> × 495938809108537651024325469852249119314303434921038892150321898130866669026706293313313849<90> (Serge Batalov / Msieve-1.36 snfs for P69 x P90 / 47.00 hours on Opteron-2.2GHz; Linux x86_64 / August 11, 2008 2008 年 8 月 11 日)
2×10171-119 = (2)1701<171> = 13 × 23 × 27851033920037562716463233492393<32> × 275686147181721751471622993232321660739<39> × 96796584127055481810278948284165150853864843387232107130793898378385677491078494178075979521903877<98> (Robert Backstrom / GMP-ECM 5.0 B1=807000, sigma=3398800939 for P32, GGNFS-0.77.1-20051202-athlon for P39 x P98 / 109.28 hours on Cygwin on AMD 64 3200+ / June 8, 2007 2007 年 6 月 8 日)
2×10172-119 = (2)1711<172> = 20063 × 1694443 × 65367917450832701935573390163006362499622780991071944066006438249786019517012637757356678057598611275505744662126815388097534432801701619920250574558451061976569<161>
2×10173-119 = (2)1721<173> = 3 × 4780584353<10> × 37913745669376504562053041209773<32> × 40868486384377850363075248339637631162815021698805356262193295482622750962455291582666552767183399762886016728604351667010921652203<131> (JMB / GMP-ECM B1=1000000, sigma=2023477772 for P32 x P131 / August 5, 2007 2007 年 8 月 5 日)
2×10174-119 = (2)1731<174> = 14519 × 48049681 × 498348657919234104075045395918906731471<39> × 292418693276777073349480324433832146379750349557037<51> × 2185857505314291987785721476537254875502814208773838232705659519834440857<73> (JMB / GMP-ECM B1=3000000, sigma=2941621707 for P39 / August 5, 2007 2007 年 8 月 5 日) (Lionel Debroux / GGNFS + Msieve snfs for P51 x P73 / 138.60 hours on Core 2 Duo T7200, 2 GB RAM / October 13, 2009 2009 年 10 月 13 日)
2×10175-119 = (2)1741<175> = 163 × 10844069777<11> × 1738277011363427976191903<25> × 708689383303759727465280703463880612107249962844857<51> × 1020546188278180670922706009868693476812751663996205661858844849135173750426023196856201<88> (Wataru Sakai / Msieve for P51 x P88 / May 9, 2010 2010 年 5 月 9 日)
2×10176-119 = (2)1751<176> = 32 × 7 × 248861 × 959305630194186820350317<24> × 41516934194668521073546137548513384012110597449614654601497<59> × 35588347766215081841942769160244830948301900527528851011812026195468621093233344180003<86> (Dmitry Domanov / Msieve 1.40 snfs for P59 x P86 / May 16, 2011 2011 年 5 月 16 日)
2×10177-119 = (2)1761<177> = 13 × 34969450096193<14> × 372771529012891<15> × 26671975802632266144043<23> × 49165154404454523649825152600645627465026645440417079932083881348841147901500004937496037409185728355768362050791099620360313<125>
2×10178-119 = (2)1771<178> = 61 × 947 × 3863 × 1960551587<10> × 5079309654381364353935119924911510367645270416000495671344921858274494430228596162636346028053990258612144589909376688449860280278169787331935385807982507313423<160>
2×10179-119 = (2)1781<179> = 3 × 17 × 7551263 × 71538107 × 553326390008123779438003962037455996535754030720481824332125575639<66> × 1457736023317239697811111051619154557632778441288399357089473871574544440953793884059624571368229<97> (matsui / Msieve 1.46 snfs for P66 x P97 / July 28, 2010 2010 年 7 月 28 日)
2×10180-119 = (2)1791<180> = 29 × 2699 × 27799 × 64863739486980795803630431431379<32> × 1574546342648474722022271751727776130594766428709953635443779531729815050710283278155800017708651481579996117040508836655706483328393873031<139> (JMB / GMP-ECM B1=1000000, sigma=3415654239 for P32 x P139 / August 4, 2007 2007 年 8 月 4 日)
2×10181-119 = (2)1801<181> = 47 × 67 × 8243 × 258809 × 845003 × 25436381 × 915958679797381117<18> × 16801989009273833066238517022804773963087742421040195467600403674225823075929224535097950458900226903137925256276693826859220066409703857<137>
2×10182-119 = (2)1811<182> = 3 × 73 × 15590527644441643987<20> × 3859810844261017292702989709<28> × 358876710814360315317023330251097074583196051792006020792471873976522644363636948726993210189326153704314907059958585059249644910303<132> (JMB / GMP-ECM B1=1000000, sigma=3242356012 for P28 x P132 / August 4, 2007 2007 年 8 月 4 日)
2×10183-119 = (2)1821<183> = 13 × 582541 × 441798052940802683<18> × 16641012259145975588471482283076100117484229766423887181283154193535885534837<77> × 3991297488724895796791069888533971849021627757607915296540581349241863084493944547<82> (Erik Branger / GGNFS, Msieve snfs for P77 x P82 / November 8, 2012 2012 年 11 月 8 日)
2×10184-119 = (2)1831<184> = 1326093162203393<16> × 5817057857572301<16> × 235038471578322023<18> × 1754676921979215318291368793294107<34> × 698512124268376321562816716178278625864224388509844952931589370471677010602977158625180855254980820277<102> (JMB / GMP-ECM B1=1000000, sigma=1428574779 for P34 x P102 / August 4, 2007 2007 年 8 月 4 日)
2×10185-119 = (2)1841<185> = 32 × 359 × 421 × 1087 × 993965187607299234770545369<27> × 32730470919023920562207810509594024351<38> × 461971794141404244065057687694329062172589699531856123603247362020064379507165792299972728746687223639851201807<111> (Wataru Sakai / GMP-ECM B1=10000000, sigma=3778795959 for P27 / December 30, 2004 2004 年 12 月 30 日) (Erik Branger / GGNFS, Msieve snfs for P38 x P111 / November 9, 2012 2012 年 11 月 9 日)
2×10186-119 = (2)1851<186> = 89 × 313 × 1171253 × 37521984339664039<17> × 8303176140294553575442361<25> × 5672054876831039805652739430090823635795331351714396547<55> × 3854179640598853252966869454646216179794254125825839629052005392127682097320077<79> (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 gnfs for P55 x P79 / June 6, 2012 2012 年 6 月 6 日)
2×10187-119 = (2)1861<187> = 19 × 4649532960488279<16> × 66702983608994124414569333<26> × 5417677756657506037868365980996843358602084039514029397<55> × 69609116984562361869628925329273959967953349393265110401973177722049656717773580669162721<89> (Makoto Kamada / GMP-ECM 5.0.3 B1=79470, sigma=2234985585 for P26 / October 27, 2004 2004 年 10 月 27 日) (Erik Branger / GGNFS, Msieve snfs for P55 x P89 / November 11, 2012 2012 年 11 月 11 日)
2×10188-119 = (2)1871<188> = 3 × 7 × 97 × 148096901 × 674491372013467612817<21> × 356131394155730342359340283127236421896647898601<48> × 306664728595228447198846763994070892544298249807117042700133035827169619012837998189595823463415698428721549<108> (Erik Branger / GGNFS, Msieve snfs for P48 x P108 / November 13, 2012 2012 年 11 月 13 日)
2×10189-119 = (2)1881<189> = 13 × 3083 × 25631746167427<14> × 1578004044743426367658943666531409762810584735790705549990247531<64> × 137083222008153238141822237645264404972385660605056381476650286039394871604081808167530007603895235429075427<108> (Ignacio Santos / GGNFS, Msieve snfs for P64 x P108 / June 21, 2010 2010 年 6 月 21 日)
2×10190-119 = (2)1891<190> = 167 × 11027 × 13999 × 86201858046061710697858104576290515875599141050738413305414583634815523097065084568030116713848022921150291371064811537411192543335442654051985271689370962465097155214222358233031<179>
2×10191-119 = (2)1901<191> = 3 × 29191 × 1554659 × 67235023 × 2240630051383<13> × 69273205858195541150140692138784601350223033196325200758756436829921<68> × 15640517280149185066682947034298269878704290213219977974487416412545807877370633669477145227<92> (Erik Branger / GGNFS, Msieve snfs for P68 x P92 / November 16, 2012 2012 年 11 月 16 日)
2×10192-119 = (2)1911<192> = 558618399051833370115786772061914616637233905518207<51> × 397806843812179113084158478278673278462548559737123328190563207638690256907455600564416540019096658258610880726309405139019884843047677986803<141> (Wataru Sakai / GGNFS-0.77.1-20060513-pentium4 for P51 x P141 / 2650.61 hours on Pentium 4 3GHz, Windows XP and Cygwin / January 30, 2007 2007 年 1 月 30 日)
2×10193-119 = (2)1921<193> = 23 × 181 × 277 × 3511 × 281650732446817<15> × 54780711280843190885242223364871889<35> × 35938228281219889499007772234416370507<38> × 679822382825034769795684390738450884934873<42> × 1456061780748313525137900176910207059850883947091570327<55> (JMB / GMP-ECM B1=3000000, sigma=2691901090 for P35 / August 7, 2007 2007 年 8 月 7 日) (JMB / GMP-ECM B1=3000000, sigma=2602638617 for P38 / August 9, 2007 2007 年 8 月 9 日) (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 gnfs for P42 x P55 / 12.06 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / August 11, 2007 2007 年 8 月 11 日)
2×10194-119 = (2)1931<194> = 37 × 7 × 59 × 113 × 373 × 119065096616236366003<21> × 4902492156616903796343077074589480911013501633553375305402016718379935977013354670306311719310645661121891008117693251486969935771350721466866375812893642307463853<163>
2×10195-119 = (2)1941<195> = 13 × 172 × 3774170591952718080841<22> × 11533820936245777474369<23> × 43981638030895197803257<23> × 30894428099133456998592352304756154114561820270899017642759065083167675013362651060771348896670522987880912670714093783309601<125>
2×10196-119 = (2)1951<196> = 165443 × 247462843 × 258199423348160658302432304492257<33> × 10471040439905050526148890760051348028200119<44> × 20076314329732256850145562333137740948817708854118248004266585875103196776603734604899003008550942190166763<107> (JMB / GMP-ECM B1=1000000, sigma=628360576 for P33 / August 5, 2007 2007 年 8 月 5 日) (Erik Branger / GGNFS, Msieve snfs for P44 x P107 / November 19, 2012 2012 年 11 月 19 日)
2×10197-119 = (2)1961<197> = 3 × 211 × 293 × 687493411597373<15> × 174280025686090562302135583345344823242430861620104419374961434825896400671007818204394679636110268642731925554618321708020821191221554753953558921184690932025191124747320256933<177>
2×10198-119 = (2)1971<198> = 1544037026288694228448962803<28> × 143922858350336298007015876592048703111776471944979409246319942874278590726370537456210410833733045044256670966248552842007007774259251774964473490039868315319739946574207<171> (Makoto Kamada / GMP-ECM 5.0.3 B1=79540, sigma=2813944755 for P28 x P171 / October 27, 2004 2004 年 10 月 27 日)
2×10199-119 = (2)1981<199> = 6963796279053002235013<22> × 2560110206264110506667533637713227109363984689309243441828397455979341579<73> × 124647268986333970900941114277355011718599673723873286839561014905898549784642437189188352232033418831323<105> (Makoto Kamada / GMP-ECM 5.0.3 B1=79550, sigma=3513416514 for P22) (Erik Branger / GGNFS, Msieve snfs for P73 x P105 / November 25, 2012 2012 年 11 月 25 日)
2×10200-119 = (2)1991<200> = 3 × 7 × 14001880603763633983098127<26> × 249790641645802510176227421442280099<36> × 727182175433393931078122953111962126664441675688177986777679719<63> × 416066196608917030775591312733135765594803947396560426016003433030796430523<75> (Makoto Kamada / GMP-ECM 5.0.3 B1=79550, sigma=3513416514 for P26 / October 27, 2004 2004 年 10 月 27 日) (JMB / GMP-ECM B1=1000000, sigma=4272223135 for P36 / August 6, 2007 2007 年 8 月 6 日) (Erik Branger / GGNFS, Msieve gnfs for P63 x P75 / September 28, 2012 2012 年 9 月 28 日)
2×10201-119 = (2)2001<201> = 13 × 1797891157831757707<19> × 6643883914404904480037654208121707602872179817<46> × 31398917179312635383525843867572096433138745135941<50> × 45576821083005898301318063285938623202594261941570151258615418685697860783182999855023<86> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=598158628 for P46 / December 12, 2012 2012 年 12 月 12 日) (Dmitry Domanov / YAFU 1.33 for P50 x P86 / May 14, 2013 2013 年 5 月 14 日)
2×10202-119 = (2)2011<202> = 104987 × 4724145109<10> × 4480523207370969122397198166894840830054134080584789100193535965026832247347198064421799838063429088153039278501342119058668861220812161563876455115381916859529019572077180885148882498587<187>
2×10203-119 = (2)2021<203> = 32 × 337 × 142466312231995005487447<24> × 846017411174066139043758787<27> × [60788803078539353372696447298344364313359195496141068109689264495566970841006331167575095881777078349330170317193114204909537561712171888263207934033<149>] Free to factor
2×10204-119 = (2)2031<204> = 149 × 6361 × 7910846143<10> × 1582438362897155291593288638747039733564541<43> × 18729495582562695816702539806464084661281085548625148936116140346919198999697720507870345226175438277392593373296586666537941823999802434510825003<146> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=699728252 for P43 x P146 / November 29, 2012 2012 年 11 月 29 日)
2×10205-119 = (2)2041<205> = 19 × 8059 × 73079000557<11> × 782058337106781726637<21> × 862468754488698057426083983<27> × 4326281352297687598058057747<28> × 68055440610166727419727279980186522581948985776918603817516834672724033309114443077631134356386082986962856597289<113>
2×10206-119 = (2)2051<206> = 3 × 7 × 439 × 2297 × 519750328045935937163<21> × 2019053858433523409717699772112252288054945481783786741343942431626757380931987247810515181851255424573554646934344464367563920937439333753397472028736536179857531768293807976469<178>
2×10207-119 = (2)2061<207> = 13 × 151 × 7004731023957400522357983773<28> × 16161278831617377147854981630638593462921744304216691015595215290038166718340483921286168295541371852524465177476025279156573759538393293357569833371448779008441576282854463379<176>
2×10208-119 = (2)2071<208> = 29 × 12757 × 452380301 × 149988750095461<15> × 1427415964670599<16> × 5789067292058564665031154444732939089<37> × 10713204966982270773686116341519935044056462647427825005875364104151981554115703662545609972876468751620837836114971032197069467<128> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3504116558 for P37 x P128 / November 16, 2012 2012 年 11 月 16 日)
2×10209-119 = (2)2081<209> = 3 × 44851595695063<14> × 861650085748367191344697<24> × 2249162449432678681021733<25> × 27691900013290359719396309<26> × 3077399070342825245480903494373377076241933737059088257789201488030904448077682925109038451427851477401745719695383978921<121>
2×10210-119 = (2)2091<210> = 772821113 × 8215599810707<13> × 35000095694688274904640956809504368622278706600041317997392928270104232414772472535133212154493052750470284944571465656245444325109103328991484633086110842125886114081440704420633465364631<188>
2×10211-119 = (2)2101<211> = 17 × 223 × 30927509794523<14> × 977341560487110769<18> × 19392883190922393325699761351490969446151579384228637127671097822488773176046406779875027911311231837133420306679147311104009103020086671697860816689825964301018338615953311913<176>
2×10212-119 = (2)2111<212> = 32 × 7 × 339601 × 17330211206907218761665592750783<32> × [59934118305159727360600334624538641966662306832694509501108838899802252841849211541079142803642482968285528989879146194081174678418806331716782865718874494301622585263231549<173>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=865701562 for P32 / November 15, 2012 2012 年 11 月 15 日) Free to factor
2×10213-119 = (2)2121<213> = 132 × 210347 × [6251215333936156781630798740256336148252472597117764023291190671391372723347617579163914139344847065532774970403855422054288323248294519209136118704227956668338147878731185947723017787830107107667154052047<205>] Free to factor
2×10214-119 = (2)2131<214> = 67 × 16829 × 7282882829<10> × 287697817004693<15> × 129469061405718880654662913<27> × 5321254429110186315976778857<28> × 1365320023225350687187259370341188365340586317077929231669409104558345626053728669382898368558055910693938903662724951164262281011<130>
2×10215-119 = (2)2141<215> = 3 × 23 × 139 × 4079094413599136984293<22> × [568015043337446690045087505182941812555714211281590302218810649872453941219195194692042701592341511413842088830328171011784720496808805015930449417123794586223945111666193523034907069479167<189>] Free to factor
2×10216-119 = (2)2151<216> = 2179 × 24473 × 1944712748267<13> × 5200418135867<13> × 22183367680339155401063<23> × [18574701485220837437472371861263594017188821719451436568931605564218977484224661960125901859442643924744183853849902014032493882715091587692417502498692776489209<161>] Free to factor
2×10217-119 = (2)2161<217> = 12606929 × 6221994881<10> × [28330127546671887967200679265667168756476194802425134038417439416076606645131802981628983493255653659476441893994272205384809701348604360379208555850563551672318105166477765753178862882376507386920829<200>] Free to factor
2×10218-119 = (2)2171<218> = 3 × 7 × 1546157 × 63573895035983<14> × 123753053772235627<18> × 15742443080799163830669071758731304253<38> × 5525959831902014276264056391262846516081627312451598468316896561161656154165216862086347387173339853873058897139513048234817534217107886752941<142> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3982307344 for P38 x P142 / November 29, 2012 2012 年 11 月 29 日)
2×10219-119 = (2)2181<219> = 13 × 80486761 × [212382966858575586326476935679112419707062346489717657008138482476852236818102508734537025500305784376353447955173858891117435041199099737869859331201277860058177979034553198346421433135035636694263508678366297<210>] Free to factor
2×10220-119 = (2)2191<220> = 419 × 2539 × 3797 × 113833675111187589774868834845317<33> × 4832806513005564045381657616155267812889787822234005022386285089527679655605917937444378202956033619013322060966574739838989747322881567435568374620229517233830262453235059589669<178> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=1440953567 for P33 x P178 / November 13, 2012 2012 年 11 月 13 日)
2×10221-119 = (2)2201<221> = 33 × 1103 × 39937 × 18684125309913247865759800171740238552277224074798555703997287738380876765683344758998261506880406771135494905451727165882637187940421413568738566726545672906691157862964801695760899490555304183537564177449250393<212>
2×10222-119 = (2)2211<222> = 521 × 1319 × 7213 × 661462160594340023<18> × 1263742885893014041<19> × 185936699284323862145276333591<30> × 54378851262821513880314975555366848576763<41> × 5304325419450196033024840078316413077560574581785699738067043534053402166081200600127345368329637309584357<106> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2803454583 for P30 / November 16, 2012 2012 年 11 月 16 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=53832237 for P41 x P106 / November 16, 2012 2012 年 11 月 16 日)
2×10223-119 = (2)2221<223> = 19 × 1137424513369<13> × 1183910716673269779337646348767<31> × 627681475791559320011126654160509<33> × 138373535609044259489695258937230967890412419228829036420976748354471320365023956568265528790519477159140301744880791925331565943254893340544809437<147> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=2329613887 for P31 / November 13, 2012 2012 年 11 月 13 日) (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2794460553 for P33 x P147 / November 16, 2012 2012 年 11 月 16 日)
2×10224-119 = (2)2231<224> = 3 × 72 × 13171 × 16284427 × 51653492024377<14> × 829909935351661<15> × 61291835071110367570314943<26> × [268253652973157544279346378210356440138557251575643782539955732952782721649964745603252907717011164062786177059489649475158179002723947088543117629404479549<156>] Free to factor
2×10225-119 = (2)2241<225> = 13 × 367 × 63659 × 438313 × 4445157767353<13> × 375531806408652629757455659976831702126700708864958923247511932302642238921370611068468779937873160302206390963490103966694975606312463309041373293406668676679466317064205082107901538389584958226701<198>
2×10226-119 = (2)2251<226> = 887 × 277646236870206090542175257<27> × [9023438751932484987701899902350004989656418394569069190839094450571623695137369121858351313801307806996352851150873208141242015101583038670768008685264069906847968240691450783162474368955832424019<196>] Free to factor
2×10227-119 = (2)2261<227> = 3 × 17 × 47 × 211 × 6029 × 33997 × 3071446367611<13> × [69792407804556373443191329565019635418936302530648569226533860155358092237605604456633478170934700487692247933411757559366965104632823902729835974017199711807723211826956048958910808808259348864110441<200>] Free to factor
2×10228-119 = (2)2271<228> = 6766219 × [32842895304190157342264893025517238242247586461836695238836079976456898930144327610770834083588222938427240120696983384992744429676636570915340195495035295520618268817817191879574430301801083030599840505047534261338898759<221>] Free to factor
2×10229-119 = (2)2281<229> = 280868867 × 959768519 × 246786036978198937<18> × [33403871108579298730478686902521281244658286981405626218936536623759455951661199292633056221236332196899112852945306333381960400837200166742480669722596414519934707598971533192051480820928323521<194>] Free to factor
2×10230-119 = (2)2291<230> = 32 × 7 × 89 × 109 × 11959 × 395778998743<12> × 3266460218885271041845531<25> × 2351827408543356722305823775840489147967049894566656030709021657583050387441152119918340879050290763598657999952248257269713398178767628467814652696446400272264717540532192021958826661<184>
2×10231-119 = (2)2301<231> = 13 × 2977021 × 360178350858227690617791297633630869<36> × 15942067017270245340868850086003262919093266228659780843340873971421682712311219994489746058472673339436591189701335111589331916290769415418615101467611584297372518662025194403269371527233<188> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3383367048 for P36 x P188 / December 11, 2012 2012 年 12 月 11 日)
2×10232-119 = (2)2311<232> = 18923271361<11> × 117433301030715067713931844948625752691927600700553216688727387436962423540770901817340493943267203048709809294491479137554931891261918168199872183940522958197524852490658220404633250570137624008161165967344721111417677261<222>
2×10233-119 = (2)2321<233> = 3 × 191874409 × 7947172567<10> × 1299387455921<13> × [3738504115094842637936526672747358701541291380580429328111862575246443307148398184851819004649096555057734375636993738036061779423303472555042474030195550549708417543008244318083763240995062868702167889<202>] Free to factor
2×10234-119 = (2)2331<234> = 29249377 × 1850136260976791323020245512030393<34> × [4106455784493471635155814210076438844406251260314894887614844746327632508521247140044276857251248339864780436348146357487521749751873107534552941395732834638039211180811505487934479306269453461<193>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=1798847121 for P34 / November 16, 2012 2012 年 11 月 16 日) Free to factor
2×10235-119 = (2)2341<235> = 443 × 108262265389<12> × 23264346006123223<17> × [1991662751294945646760643840499873868199544370666366638506234736240498404276195666389638045324180534448495504134281226340263377279200427910307012482127831163418580687577082681597070585733289237593341291301<205>] Free to factor
2×10236-119 = (2)2351<236> = 3 × 7 × 29 × 9696030269<10> × 181890292866061834469338089803412643729<39> × [20690296235459062778236738401573027128630013969363770186643515685469843132361786665458516515276801546585592408056923287700872190321725549528322117117292961268730333185583188521802903969<185>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2616909915 for P39 / November 17, 2012 2012 年 11 月 17 日) Free to factor
2×10237-119 = (2)2361<237> = 13 × 23 × 12323 × 8491723 × 636622631064909793049<21> × 933893012948446235537<21> × [11946063833677473727906284487726791264561563414039064348319607818321590494221591961971972953828740702890354277990062758207835354088165695611624903338653643769675141641092532377507727<182>] Free to factor
2×10238-119 = (2)2371<238> = 61 × 1291 × 179361727 × 564227849 × 5244584542132759716649<22> × 228086336524877786807041<24> × [233097037298456124824444152888514195120411710695504627002119509920093946440030570850012550477171495879249436652180536577291091140685181286666234444161811688076805223422653<171>] Free to factor
2×10239-119 = (2)2381<239> = 32 × 3517 × 42641 × [16464374173907692048406277240325078639529205626363638483574214655832693887293706303129557372471853536376306019121720708057817024403720221595325863682705113325548198459011350699012955837194168776344275181762478058199171583702414777<230>] Free to factor
2×10240-119 = (2)2391<240> = 1399 × 686563 × 231360586657930102228677640683940054776004741179032703951781210990504769147230742535655066480872871455837219174070207464125563194872745669482104403974297674437198509659824996448415446294780466076625981036430260891082918812581078633<231>
2×10241-119 = (2)2401<241> = 19 × 154487 × 4554007555053820138801<22> × 136124269929480105308622082524154621013<39> × 1221272661239476816733564362892455168470038621717715958206992408621085985982218421408117549299351833201691301786033554556015600063592574911498921658236112364164723636985504389<175> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2471088360 for P39 x P175 / November 16, 2012 2012 年 11 月 16 日)
2×10242-119 = (2)2411<242> = 3 × 7 × 6221 × 1365926198269<13> × 1058150726061367739<19> × [117688281443776166627198438743908564093107721797398919569202948027028897888507804252394337891129713040902615078191828771414006535075794769586961251783870741021712720056517070324427119538934634069508134197491<207>] Free to factor
2×10243-119 = (2)2421<243> = 13 × 17 × 17977908394393331<17> × 53322668906041609091<20> × [1048924358273908198084353812719370557700210964089354574296617079518752777805878309496217750603090121002754803590798601272324283182355835204700446394650721828408282276519883317545569112762989331753995096281<205>] Free to factor
2×10244-119 = (2)2431<244> = definitely prime number 素数
2×10245-119 = (2)2441<245> = 3 × 215459 × 23548799 × 516876095335755982253667935298429953<36> × 2824531234316196179459470640750933732113826532343102002137706786496751918822080347511629522015021128775936058426631363142151497786119734607990560359611893847656232908131638463237065150480749934459<196> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=2796188106 for P36 x P196 / November 14, 2012 2012 年 11 月 14 日)
2×10246-119 = (2)2451<246> = 18956491 × 4485660232828726412129<22> × 2613383606177695250697932089850502014690822589313733975822133454479761862827181051582971379245214023215854799290222485754232650063748922161529976257115439975351007585019988906250982181906372071268376769966883950952039<217>
2×10247-119 = (2)2461<247> = 67 × [33167495854063018242122719734660033167495854063018242122719734660033167495854063018242122719734660033167495854063018242122719734660033167495854063018242122719734660033167495854063018242122719734660033167495854063018242122719734660033167495854063<245>] Free to factor
2×10248-119 = (2)2471<248> = 33 × 7 × 2892723688123293205240009940867<31> × [40646085845811951344078900051570563037584357089076264096010228690178374978474437209248479306496161722170983582304490842164287914053793243222342741893127942443312261514563147946165002275990107430935254489270940891867<215>] (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=3816844927 for P31 / November 15, 2012 2012 年 11 月 15 日) Free to factor
2×10249-119 = (2)2481<249> = 13 × 769289 × 33364076159<11> × 666001960355211734256056986449535972107029278078835870711634421903666725763577365442426718264420005574116298852984173877789613569308131074139596986028951500952607869850407545768096556298590409558100324807550848293329584767537735367<231>
2×10250-119 = (2)2491<250> = 261632473 × 1123150819397<13> × 1821326396023<13> × 62976941931939857719<20> × 33141055472259612233054779773969210388973023727<47> × [1989399828411430761379621089786831099810211271262700156481656084269723172932781328270816330352879817727011617431442366127395909482092923593796876449359<151>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3725647819 for P47 / November 21, 2012 2012 年 11 月 21 日) Free to factor
2×10251-119 = (2)2501<251> = 3 × 811 × 841043410343<12> × 230977480661697759955541<24> × 47017260912519619336115597433362526138293408418279221537084224745048923743072457131492263650353306859725758568588191982312151321245931679499389606257161103270066449739533699557905102071305301518359629682273967999<212>
2×10252-119 = (2)2511<252> = 59 × 607 × 1784297 × 17939227 × 147779459 × 986429501 × 147246344102801183680971986069<30> × [9031320769601553123792016319753893394114336547100515817950689213320056896347728879986016124691525029694393110282638233522649945711649416862869375228920791974209377706942873740797766903633<187>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3092986127 for P30 / July 31, 2015 2015 年 7 月 31 日) Free to factor
2×10253-119 = (2)2521<253> = 596623421 × 56851813375895596564534924431139<32> × 3195774121915539396014025644194907<34> × [20500610332353259809620343716146300946894400691043467319660917259569276358615960200033683455233083187435743373748199160812446962383935330626932467644599959956195132248365812232737<179>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1829503009 for P32 / July 31, 2015 2015 年 7 月 31 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3361040104 for P34 / August 11, 2015 2015 年 8 月 11 日) Free to factor
2×10254-119 = (2)2531<254> = 3 × 7 × 24443 × 311957 × 129223808911<12> × 129537796253<12> × 15972677726657<14> × 519041612097005896203411761147183413810183505274807349970261175417167328461853142394572243024274099134282664192388537858232607347012809826109043456392533855095599956912667533972331441147988632628723813344821<207>
2×10255-119 = (2)2541<255> = 13 × 1257713 × 162836826457<12> × 5661233672359032725661929<25> × 14743441574327694537319624836316467545533170081090241690619088625582764526151601372081318262614422670512469115801903160103458528901529523667168469207630538284484388980237858905903820559041362643223526271069118353<212>
2×10256-119 = (2)2551<256> = 163 × 877 × 1823515729642390553873<22> × [8524929076830938202282763536239194177882272776844649550670357129217875280147816296212564829617238544152586416914642390185320844127259948823933624182139356567776498088081400728027333274902320641192489426951129380385295271308698427<229>] Free to factor
2×10257-119 = (2)2561<257> = 32 × 211 × 233 × 353833 × 5958097 × 54101473 × 1127913325840800678995059<25> × [390405456601790710425479745664624716896526715821933612040073105039528114560406074460615957857363388377402228966829467213493711102081863687911993867062856967465542943950240115796720857015721977197599334699709<207>] Free to factor
2×10258-119 = (2)2571<258> = 45027743 × [4935228981435339146850469991849740774753516342629525584309704846237179203546183121419659480205841590199673615047110449711463935072700006798524683376251441743864937272610404261706437789302968665833910934026211845044558911651916957557082579560388408147<250>] Free to factor
2×10259-119 = (2)2581<259> = 17 × 19 × 23 × 132961793 × 25414798262357092840108768598063776333<38> × 88520446976359914462156896959235728591594480182541742144510515444369196971159586546250363552102642483462486138852766003072889466570508871067597332766805712263752436615397880966719314717950336643267115881892621<209> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=989088715 for P38 x P209 / September 14, 2015 2015 年 9 月 14 日)
2×10260-119 = (2)2591<260> = 3 × 7 × 1259 × 640570393 × [1312126176367822842838480366377766934591890406536607372519246481171027052404713172304905488613402784205353361684721856826437736996564285213968319114391738985386170842623056379287301893016941413346840100894162681162192352444283807609578386545696323<247>] Free to factor
2×10261-119 = (2)2601<261> = 13 × 139 × 3323 × 2113343 × [17511727989962448727477519308752896941010200223666206435353627645019641177395252907187889650472603088801197876916867638000436588021036831390841813698860212741465452755346685576776527119679937891419835409646277736133401613642739039993155289880665927<248>] Free to factor
2×10262-119 = (2)2611<262> = 277 × 186019 × 378551 × 5093987909<10> × 28565801993453<14> × [782927743303488432866097217820290008049727849163498898169991685304853054296415576759343324364635275040339377434746562991033867404646148547719307980603969384103259209030139840490605654288016840928558016057132323467911098502821<225>] Free to factor
2×10263-119 = (2)2621<263> = 3 × 6715231 × 3738148933<10> × 93489362665929540326045596754018687<35> × [3156359595606369208960298566755452428165893083055774757561584077213521742076218447694957896907943677747590872153260217930706270976818236905499513700550016277043012893212381239711233985769932212347867076264722307<211>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=559467308 for P35 / July 31, 2015 2015 年 7 月 31 日) Free to factor
2×10264-119 = (2)2631<264> = 29 × 58554292095988929301583729346903851447<38> × [130867182827184467256024368927209496392873800674020120347564327979266442854750713441018348027550720551974610563297364078958747131210222142290948631565494568372376011522566378355584168159251515613673942911803294241055480538967<225>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=935820727 for P38 / August 9, 2015 2015 年 8 月 9 日) Free to factor
2×10265-119 = (2)2641<265> = 14758621 × 612252559 × [245929766237739434397803038487817365685112713963864038131649518634200841940197044680412657482705627389960681324794173653093102431082488516664665649116983551587152387704821185479097854430911956429457512391318594038919257024824945220530022262596490239<249>] Free to factor
2×10266-119 = (2)2651<266> = 32 × 72 × 197 × 3709 × 263941 × [261287708114706008361643499532408248369762530955941258812503608098339559070750683403523049436680766479343973430980148627736462373463289427283694107105606239428239604624491691852942894821954106046260972580396629409269461983240436824819180732815589913217<252>] Free to factor
2×10267-119 = (2)2661<267> = 13 × 34893495531180620463660169<26> × [489891219947912120739485776974678960169623088916299186631415883115537323442393515470768699788991275188286796261459648129678991557949162696468115503904943347416234776610938941854257973029735119236110136798900704951428579701998074233284820793<240>] Free to factor
2×10268-119 = (2)2671<268> = 123793575902603792769047<24> × [17951030221233648518713077093763082494649569763337746239271805601673167895764501932370700889275530917339332648110556609268053179938747619689323933712315336703978853214305791532344073669935977036256042596954998347010434667521488203048776795675643<245>] Free to factor
2×10269-119 = (2)2681<269> = 3 × 457 × 69389 × 22765138147<11> × 4948560833789<13> × 458505052236579189636242407<27> × [4522369813966464307433781880936244408624515849581953688738304136772770812171375945680054605837726481401015312850369205872129819026092356562173427460013040210627382296210326688756171459742716315764308461929795539<211>] Free to factor
2×10270-119 = (2)2691<270> = 379 × 40061831 × 1086427110971<13> × 2449938385399<13> × 1524345401113841<16> × 252892705489085367287<21> × 14264023229686191978786952943832687106383266964956395505622536199942548497384679039177813349756626006909284875732961230559607580341449304746656985945641080382735430488328054135971270071821829485520003<200>
2×10271-119 = (2)2701<271> = 19541 × 67472017 × 459027311 × 6325597717133<13> × 1544154889438643<16> × 3109041734887679<16> × 23719987934777244701381259884488828121<38> × [5097356834517120491628526146399942967208013695989549746995227870678261769684481268341011351895158406110211257041766324784799957620149394628546852866132032383988170581703<169>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3144496649 for P38 / August 27, 2015 2015 年 8 月 27 日) Free to factor
2×10272-119 = (2)2711<272> = 3 × 7 × 30151167931<11> × 7295506110801325346875834365084575567<37> × 4810703895188300314035262806421830744578504786646786218631670824060567372957363571318273963003697864396293655602034888510607002156941922243979317952143442479024567723647937468650986010200792916383614789795525477392296819413<223> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3318363041 for P37 x P223 / May 7, 2017 2017 年 5 月 7 日)
2×10273-119 = (2)2721<273> = 13 × 472 × 383 × 1579 × 14503 × 882286567093843382824740017706144905831563558071646409481816745445555189786952598631545885899584952002009516501437281095946311774056458253681228483713309373479966656056105778403118614684634044514879875732228334763667851406804479828020307082321765612079341403<258>
2×10274-119 = (2)2731<274> = 89 × 521 × 136601 × 320806602752131<15> × 3018955308272862883<19> × [362247915855735486289355451038171858870801383314090713760457312785054829378209012870214821150276754871525677618058316435829796273478795466715943177315508254241074925341977332117022116453626739706022638848697791715867750052122655533<231>] Free to factor
2×10275-119 = (2)2741<275> = 34 × 17 × 131 × 264221 × 33973253 × 2243693581141<13> × 20769939327140393538548350797450073<35> × [294495736450907187722180296120008259788595099709586778764963451148909228720527752142382573765083987977966154133722978772101875238076477736327622479203381311281764504624108177534289076755448825278774617405312987<210>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1695975942 for P35 / August 11, 2015 2015 年 8 月 11 日) Free to factor
2×10276-119 = (2)2751<276> = 877258077306067973210701<24> × 74985372735388365937668156245041<32> × 3378185986079522285997072242663112461617718464294184586781626658306301342274912186888234566735527969927227682381872258031845921191766956493619807521760361573747934732978253881578937016317424348402702682937355254300651281<220> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3048517845 for P32 x P220 / August 11, 2015 2015 年 8 月 11 日)
2×10277-119 = (2)2761<277> = 19 × 4793 × 7057 × 10977396761<11> × 6158731520391677<16> × 1053996885977285881<19> × 84400015653290397397<20> × [574954993732647914310282111892938965267935028438886061838684612473930135214990329008078010983867451935685772564943815648462171866101282627032600725508937788638077966042943019444609522864235784442989542071<204>] Free to factor
2×10278-119 = (2)2771<278> = 3 × 7 × 1647353 × 642364483022799728448123175907688395297304863135623148807936767772941319230426665202332591167892405696325074867500200746930500662700136644094010851469635348986040671429291840339138641324025998713209043963897355975435172789959529656485925118088352076452987429566219904417<270>
2×10279-119 = (2)2781<279> = 13 × 229 × 463 × 1998569 × 199646548331<12> × 1673151189323<13> × 241496878299795481503520609306541525728038781192967250562011135758266682733844364465826543377066960558832756252503544730918031512429326507935359854823163132809372254572190157592064986374138824103812627300705487430183623105243036705042438263043<243>
2×10280-119 = (2)2791<280> = 67 × 1273879 × 319419223 × 418952839 × 1412249201763600737<19> × [137767564432119175612522384243622952648880924086252496737919768286577038033564056943768107924442913865679370158000810809838604967472292673356495382742345438649040678522276054650565655631907656011896281132989428104216245064011140388610473<237>] Free to factor
2×10281-119 = (2)2801<281> = 3 × 23 × 659 × 72229 × 48639185037637<14> × 3526321164512577681774517455172162297<37> × 39448748091459303124829374851474553614294517847779920685103867396593407049002179618713832534014605768545077259712135443659444076680929639651692919873488652719048620941927952450398592278363166395980272784833840954839026371<221> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2429175727 for P37 x P221 / May 7, 2017 2017 年 5 月 7 日)
2×10282-119 = (2)2811<282> = 151 × 541 × 1559 × 5741 × 1845755657<10> × 8319658482943164631<19> × 19792465859658499992410227690343812252073772422420054008641910456108700262079812353700483350159895924775218818340046435600549849458932624148469109460800685513920070064000115789510796580915717019014117936557164362254440682427526998526474795947<242>
2×10283-119 = (2)2821<283> = 9391 × 8252792570395588964264082199242965467267<40> × [28673104413179176682598377896382749523971027372757270123439287719295347737476430477181655783734534862927234824181350642325267205547896360892359512467115467850760063935749215873556173314783335817032750829351487430998689006172605492390548993<239>] (Serge Batalov / GMP-ECM B1=11000000, sigma=1299112703 for P40 / August 16, 2015 2015 年 8 月 16 日) Free to factor
2×10284-119 = (2)2831<284> = 32 × 7 × 97 × 34673 × [104877851736747360792254255908744883449445254817251190237370498054435356532128503704275497751372450314743073906918180808270079232967357192877847659096485267516868305899413717444186302819682942644221625470392175681841735119273729141097741382205669707467307291209407426676615107<276>] Free to factor
2×10285-119 = (2)2841<285> = 13 × 1181 × 2927 × 242440633 × 27883883816857<14> × [731497489739788926187567229456737362226260885561644422722851885968564910023473007967874342703609066055226539858168157563497500243962155654853014748848907169724550208051556343701137663919052717750207493224511664472391531879865608262600003858410449010972011<255>] Free to factor
2×10286-119 = (2)2851<286> = 1693 × 8518565867597973732152238661<28> × 154086305502560167102697478124941439983089076731190839160135417654379600546182601589833473731768331441956953113938205797048175878402269636343086332147068350354085298546717084968121344501475289416376939840185576480100790923629889327774332903256729003377277<255>
2×10287-119 = (2)2861<287> = 3 × 211 × 41761063 × 2411089853<10> × 94326945217<11> × 1831891724701<13> × 26609496213882733741427401<26> × [75827478210970803592286316909436830749547101523957440909262915091565368190200764712190629740448855231363810417377926556344688736803072184032969602076500042239852930634526390070661228927154064588394225990851677837202099<218>] Free to factor
2×10288-119 = (2)2871<288> = 1172281272809<13> × 539939676886821941004763967<27> × 351083497964156684408880804339375480937275295943777663033702575659658279559644557449034508632682594768613003550634150007251415089934996742658717599753786622699918878706987708683399964336958673573529396798246688427443337764865444137821226548837899707<249>
2×10289-119 = (2)2881<289> = 2576924969<10> × 8598219857<10> × 100294511349301613886828123978893952923203725932685956710512211273484860507571100055278194740148326881145356698105634035824331388760145992256670194411806130380717840135357507015589002891302037881160000806512861242263830139555594702635888567670346483290802531376399600437<270>
2×10290-119 = (2)2891<290> = 3 × 7 × 118457 × 1701022452881<13> × 4280004675780776374911654422624109568343<40> × [1227024324305688623769817823715162930736929617363054789668379194282489842825296542044877923637830840258388714006122567373005982788627118451409448361064408783276591090627042502635646788692845307290217105565739520586194494817817272471<232>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2752947819 for P40 / August 11, 2015 2015 年 8 月 11 日) Free to factor
2×10291-119 = (2)2901<291> = 132 × 17 × 881 × 76106714239<11> × 1153593975422147321400730719186615765213782620649879507468721040217191465533257388616786030830266184533773222432471187086050288427135259925352239023402708459104651220167954437790394268622435845132902970608495244836788915102253193191274372678092763366080790779707840474652603<274>
2×10292-119 = (2)2911<292> = 29 × 64553 × 203857 × 3688322240219161451<19> × 468268631790044640099895583<27> × [3371502651751741077309124158922383813107898507489417128720958908435903080506702619989783409568209031696895370754542306967990298669435170197352728864265602262294196486023135214337883571933212745295269897073303002681851956413782144287093<235>] Free to factor
2×10293-119 = (2)2921<293> = 32 × 295903 × 4821801370828636418373682025660897058816887<43> × [1730558530338481255934930685785056677495317010325340539237124862391521817001506241990869335675386104638181098570727192267931007710961911968235651897285539881093734203858992742402424573155153409728973664565268510508471302895993018847941397761629<244>] (Serge Batalov / GMP-ECM B1=11000000, sigma=4247813799 for P43 / September 4, 2015 2015 年 9 月 4 日) Free to factor
2×10294-119 = (2)2931<294> = 77489 × 3877572975314432617226619678949<31> × [739583902622012055474826952256783110015204934308990283985863980559720517324206015913948759654883799445420982500679823200303314058764668820457838661821897368237058243873935307634283540014525286708571419026004957847820444975028581600187834465343089049337129561<258>] (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=642146524 for P31 / August 8, 2015 2015 年 8 月 8 日) Free to factor
2×10295-119 = (2)2941<295> = 19 × 193 × 159398597 × 866387491 × 30110362076071<14> × 904652871898274559299<21> × 30198513940069092251365492350583297<35> × [5334532831777630817118183581909260937677335274543903572265756178351930903643275713417830009050156076676777223577695304906582754581727713037781822304166319283621873160583981724067778047145995491698979799213<205>] (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=774751769 for P35 / August 8, 2015 2015 年 8 月 8 日) Free to factor
2×10296-119 = (2)2951<296> = 3 × 7 × 337949 × 511417 × 11322498521<11> × 12888509945636681<17> × 6011020878129861976168318973709287<34> × 115480073181105770753363098484499323<36> × 1270742159090449006286494150121788070940776261<46> × 284432002881193467779802532702011011545884043620017<51> × 167226729764235200283849687508366470060853698854347802302168698157066786153919229129413997781<93> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2335255836 for P34 / August 11, 2015 2015 年 8 月 11 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1244743253 for P36 / August 28, 2015 2015 年 8 月 28 日) (Erik Branger / GMP-ECM B1=43000000, sigma=3698198825 for P46 / November 2, 2015 2015 年 11 月 2 日) (Erik Branger / GGNFS, Msieve gnfs for P51 x P93 / October 29, 2017 2017 年 10 月 29 日)
2×10297-119 = (2)2961<297> = 13 × 1607 × 32359 × 51079446637<11> × [6435569450073449626328196836171203511528262644440073934857597678945559964682368287895174549157166242098513740708995161638038629528778141383315093843737563607182880993863982845479872685965643786030287030651180818791968259632314020134232294885794621491380426768164095922433735957<277>] Free to factor
2×10298-119 = (2)2971<298> = 61 × 24767 × 2987083297955858410242446668949797182320051<43> × [492421394314058250073984895333936740189800043054848421235391376855965755360940771192919754601377330436630067627527773197742376092311041160949720260749707396992885757427898968808780237725788370050575192824463656071210277136562844104516887925961882133<249>] (Serge Batalov / GMP-ECM B1=11000000, sigma=1244138650 for P43 / September 4, 2015 2015 年 9 月 4 日) Free to factor
2×10299-119 = (2)2981<299> = 3 × 677 × 4817 × 21968077 × 21533237443<11> × 2062589925289<13> × 134545367348023<15> × [17302860411231122900714584384247230087754219672378389650057208915965289516240571708093475731582614297710718490133799034774070475821593478291326092068983943313037444722935546821870431327432760033084494182380933958531268138935361006013648276702509819<248>] Free to factor
2×10300-119 = (2)2991<300> = 18838889 × 89684467 × 1383428929486358187481518412441400236903079<43> × [95073200574352402018206498686262243356181726001277633554971517040731816804649335213369474345413013258593641464332324390967243787317970341835008547964634225738387681391137952865026501660984627024219657405048339620855390511511985233473524540673<242>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=173380150 for P43 / August 13, 2015 2015 年 8 月 13 日) Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク