Table of contents 目次

  1. About 288...881 288...881 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 288...881 288...881 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 288...881 288...881 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 288...881 288...881 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

28w1 = { 21, 281, 2881, 28881, 288881, 2888881, 28888881, 288888881, 2888888881, 28888888881, … }

1.3. General term 一般項

26×10n-719 (1≤n)

2. Prime numbers of the form 288...881 288...881 の形の素数

2.1. Last updated 最終更新日

March 30, 2015 2015 年 3 月 30 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 26×102-719 = 281 is prime. は素数です。
  2. 26×1012-719 = 2(8)111<13> is prime. は素数です。
  3. 26×1027-719 = 2(8)261<28> is prime. は素数です。
  4. 26×1044-719 = 2(8)431<45> is prime. は素数です。
  5. 26×1080-719 = 2(8)791<81> is prime. は素数です。
  6. 26×10119-719 = 2(8)1181<120> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Makoto Kamada / PPSIQS / December 31, 2004 2004 年 12 月 31 日)
  7. 26×10131-719 = 2(8)1301<132> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Makoto Kamada / PPSIQS / December 31, 2004 2004 年 12 月 31 日)
  8. 26×10275-719 = 2(8)2741<276> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Makoto Kamada / PPSIQS / December 31, 2004 2004 年 12 月 31 日)
  9. 26×10315-719 = 2(8)3141<316> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Makoto Kamada / PPSIQS / December 31, 2004 2004 年 12 月 31 日)
  10. 26×10876-719 = 2(8)8751<877> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 29, 2006 2006 年 5 月 29 日)
  11. 26×101307-719 = 2(8)13061<1308> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / September 10, 2006 2006 年 9 月 10 日)
  12. 26×1010895-719 = 2(8)108941<10896> is PRP. はおそらく素数です。 (Erik Branger / PFGW / April 29, 2010 2010 年 4 月 29 日)
  13. 26×1017105-719 = 2(8)171041<17106> is PRP. はおそらく素数です。 (Erik Branger / PFGW / April 29, 2010 2010 年 4 月 29 日)
  14. 26×1060717-719 = 2(8)607161<60718> is PRP. はおそらく素数です。 (Bob Price / PFGW / March 30, 2015 2015 年 3 月 30 日)

2.3. Range of search 捜索範囲

  1. n≤30000 / Completed 終了
  2. n≤50000 / Completed 終了 / Erik Branger / May 1, 2013 2013 年 5 月 1 日
  3. n≤100000 / Completed 終了 / Bob Price / March 30, 2015 2015 年 3 月 30 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

  1. 26×103k+1-719 = 3×(26×101-719×3+26×10×103-19×3×k-1Σm=0103m)
  2. 26×106k+1-719 = 7×(26×101-719×7+26×10×106-19×7×k-1Σm=0106m)
  3. 26×1016k+5-719 = 17×(26×105-719×17+26×105×1016-19×17×k-1Σm=01016m)
  4. 26×1018k+17-719 = 19×(26×1017-719×19+26×1017×1018-19×19×k-1Σm=01018m)
  5. 26×1021k+3-719 = 43×(26×103-719×43+26×103×1021-19×43×k-1Σm=01021m)
  6. 26×1022k+10-719 = 23×(26×1010-719×23+26×1010×1022-19×23×k-1Σm=01022m)
  7. 26×1028k+2-719 = 281×(26×102-719×281+26×102×1028-19×281×k-1Σm=01028m)
  8. 26×1028k+17-719 = 29×(26×1017-719×29+26×1017×1028-19×29×k-1Σm=01028m)
  9. 26×1033k+3-719 = 67×(26×103-719×67+26×103×1033-19×67×k-1Σm=01033m)
  10. 26×1042k+26-719 = 127×(26×1026-719×127+26×1026×1042-19×127×k-1Σm=01042m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 19.34%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 19.34% です。

3. Factor table of 288...881 288...881 の素因数分解表

3.1. Last updated 最終更新日

April 25, 2016 2016 年 4 月 25 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=189, 190, 202, 207, 209, 211, 213, 216, 217, 218, 224, 225, 227, 230, 231, 234, 237, 238, 240, 242, 244, 245, 247, 248, 250, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 264, 265, 266, 269, 271, 272, 273, 274, 276, 277, 278, 279, 281, 283, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 300 (61/300)

3.4. Factor table 素因数分解表

26×101-719 = 21 = 3 × 7
26×102-719 = 281 = definitely prime number 素数
26×103-719 = 2881 = 43 × 67
26×104-719 = 28881 = 32 × 3209
26×105-719 = 288881 = 17 × 16993
26×106-719 = 2888881 = 179 × 16139
26×107-719 = 28888881 = 3 × 72 × 196523
26×108-719 = 288888881 = 1259 × 229459
26×109-719 = 2888888881<10> = 14939 × 193379
26×1010-719 = 28888888881<11> = 3 × 23 × 173 × 2420113
26×1011-719 = 288888888881<12> = 11923 × 24229547
26×1012-719 = 2888888888881<13> = definitely prime number 素数
26×1013-719 = 28888888888881<14> = 32 × 7 × 17737 × 25852951
26×1014-719 = 288888888888881<15> = 76631 × 3769869751<10>
26×1015-719 = 2888888888888881<16> = 257 × 829 × 6073 × 2232749
26×1016-719 = 28888888888888881<17> = 3 × 229 × 251 × 1801 × 93022213
26×1017-719 = 288888888888888881<18> = 19 × 29 × 107 × 593 × 8263057381<10>
26×1018-719 = 2888888888888888881<19> = 74017 × 275461 × 141690013
26×1019-719 = 28888888888888888881<20> = 3 × 7 × 1117 × 11159 × 110365438487<12>
26×1020-719 = 288888888888888888881<21> = 223 × 57947 × 22356047240701<14>
26×1021-719 = 2888888888888888888881<22> = 17 × 17551 × 252899 × 38285377957<11>
26×1022-719 = 28888888888888888888881<23> = 33 × 193 × 5543828226614639971<19>
26×1023-719 = 288888888888888888888881<24> = 613 × 78311 × 2163919 × 2781035893<10>
26×1024-719 = 2888888888888888888888881<25> = 43 × 8209 × 11093 × 737773606171991<15>
26×1025-719 = 28888888888888888888888881<26> = 3 × 7 × 2385167227<10> × 576756782538743<15>
26×1026-719 = 288888888888888888888888881<27> = 127 × 13799 × 44562403 × 3699226308499<13>
26×1027-719 = 2888888888888888888888888881<28> = definitely prime number 素数
26×1028-719 = 28888888888888888888888888881<29> = 3 × 857 × 455431 × 38926891 × 633806157791<12>
26×1029-719 = 288888888888888888888888888881<30> = 47 × 154487 × 39786985985998255707929<23>
26×1030-719 = 2888888888888888888888888888881<31> = 167 × 281 × 3301 × 41213 × 452510117698375631<18>
26×1031-719 = 28888888888888888888888888888881<32> = 32 × 7 × 14563 × 31487591285252023652994149<26>
26×1032-719 = 288888888888888888888888888888881<33> = 23 × 1579 × 7954646278296359525535944293<28>
26×1033-719 = 2888888888888888888888888888888881<34> = 379 × 2339 × 16885432592629<14> × 192996403211069<15>
26×1034-719 = 28888888888888888888888888888888881<35> = 3 × 59 × 6141981383608039<16> × 26573519410973527<17>
26×1035-719 = 288888888888888888888888888888888881<36> = 19 × 683 × 932051587867<12> × 23884523597314400659<20>
26×1036-719 = 2888888888888888888888888888888888881<37> = 67 × 138268168457<12> × 311841438933148995814499<24>
26×1037-719 = 28888888888888888888888888888888888881<38> = 3 × 7 × 17 × 113 × 10211365123<11> × 70129440425037205245967<23>
26×1038-719 = 288888888888888888888888888888888888881<39> = 87503816841621163<17> × 3301443289174089827987<22>
26×1039-719 = 2888888888888888888888888888888888888881<40> = 198997547187721<15> × 14517208527016184712009961<26>
26×1040-719 = 28888888888888888888888888888888888888881<41> = 32 × 3209876543209876543209876543209876543209<40>
26×1041-719 = 288888888888888888888888888888888888888881<42> = 149 × 359 × 5400700844794243683776502381501353291<37>
26×1042-719 = 2888888888888888888888888888888888888888881<43> = 58147 × 9373703 × 5300200961631623268574798740941<31>
26×1043-719 = 28888888888888888888888888888888888888888881<44> = 3 × 7 × 163 × 22245284071<11> × 379390090706153081176280864057<30>
26×1044-719 = 288888888888888888888888888888888888888888881<45> = definitely prime number 素数
26×1045-719 = 2888888888888888888888888888888888888888888881<46> = 29 × 43 × 1151 × 2012746413382658006592983117005671222673<40>
26×1046-719 = 28888888888888888888888888888888888888888888881<47> = 3 × 228518093 × 30932380872488993<17> × 1362309055912122868423<22>
26×1047-719 = 288888888888888888888888888888888888888888888881<48> = 877 × 329405802609907512986190295198276954263271253<45>
26×1048-719 = 2888888888888888888888888888888888888888888888881<49> = 97 × 457 × 919 × 714373755631<12> × 99266315325830601677515832401<29>
26×1049-719 = 28888888888888888888888888888888888888888888888881<50> = 34 × 72 × 5881 × 28859 × 42886171901366639655443486248759325531<38>
26×1050-719 = 288888888888888888888888888888888888888888888888881<51> = 109 × 2089807 × 122474249 × 2332765607<10> × 4438970637091640993469509<25>
26×1051-719 = 2(8)501<52> = 227 × 1212042911<10> × 337024098253867<15> × 31154876223567312107639119<26>
26×1052-719 = 2(8)511<53> = 3 × 2917 × 760661654172934917383<21> × 4339919072207608163860159657<28>
26×1053-719 = 2(8)521<54> = 17 × 19 × 173 × 1234253 × 4188688086903652093021444325497477823006563<43>
26×1054-719 = 2(8)531<55> = 232 × 61 × 1093 × 234669951697<12> × 2919387997457<13> × 119557236341326738200017<24>
26×1055-719 = 2(8)541<56> = 3 × 7 × 647 × 3377887 × 75195061 × 8370913034588550268284093104442817409<37>
26×1056-719 = 2(8)551<57> = 331 × 13634164596751<14> × 64013903687959235457484019205255951790301<41>
26×1057-719 = 2(8)561<58> = 433 × 4297 × 24407737 × 63613614611362159829936266854730545900578113<44>
26×1058-719 = 2(8)571<59> = 32 × 151 × 281 × 4139 × 322802317 × 36844731349<11> × 1536730100093179350755660862197<31>
26×1059-719 = 2(8)581<60> = 1020821 × 282996616340072244682357522904494410762404857353922861<54>
26×1060-719 = 2(8)591<61> = 40153039375403059903673<23> × 71946954298522263644201673139674026297<38>
26×1061-719 = 2(8)601<62> = 3 × 7 × 1375661375661375661375661375661375661375661375661375661375661<61>
26×1062-719 = 2(8)611<63> = 557 × 518651506084181129064432475563534809495312188310392978256533<60>
26×1063-719 = 2(8)621<64> = 839 × 2275327 × 59138137 × 105247136447<12> × 1163529163938857<16> × 208963222219616598599<21>
26×1064-719 = 2(8)631<65> = 3 × 16972611604966540301143<23> × 567362869884549710132756551538829507395389<42>
26×1065-719 = 2(8)641<66> = 293 × 205303165423<12> × 4802502202175903267180706336114502579157435218899379<52>
26×1066-719 = 2(8)651<67> = 43 × 251 × 1889 × 2861 × 3727 × 13288606855937932537772430320250538588501246680720899<53>
26×1067-719 = 2(8)661<68> = 32 × 7 × 487 × 941588895045431664185942077796971705253703884778491212440562201<63>
26×1068-719 = 2(8)671<69> = 127 × 2714919829717411<16> × 837857396613881405045843727358879425420241839209573<51>
26×1069-719 = 2(8)681<70> = 17 × 67 × 7069211119<10> × 113853020927<12> × 28020098775172139203<20> × 112466179465344525757826761<27>
26×1070-719 = 2(8)691<71> = 3 × 107 × 93629 × 503550567472035121<18> × 3377175130719667906207<22> × 565221598503236996190347<24>
26×1071-719 = 2(8)701<72> = 19 × 17597 × 37885982977<11> × 4370470381057693871797<22> × 5218333876165203778950271917818443<34>
26×1072-719 = 2(8)711<73> = 181 × 6924577510111<13> × 100777008704819873<18> × 22871651208006712143472936889482792812467<41>
26×1073-719 = 2(8)721<74> = 3 × 7 × 29 × 85487 × 34447009 × 16108754051421344280728272168583658607199338089032883110623<59>
26×1074-719 = 2(8)731<75> = 613 × 1297 × 10037 × 106441 × 27645340962411214638532669219<29> × 12302562133103206677642660246427<32>
26×1075-719 = 2(8)741<76> = 47 × 653 × 12289 × 5465105681900570729209<22> × 1401537397207875662117524695264842227620120691<46>
26×1076-719 = 2(8)751<77> = 33 × 23 × 307 × 583447 × 718303 × 361569485704143166259985611039642132631509601714423566052703<60>
26×1077-719 = 2(8)761<78> = 163621 × 10402702937849<14> × 169724914701124344925749573586327597874902298757007837995589<60>
26×1078-719 = 2(8)771<79> = 38647544077<11> × 963372343223<12> × 1157688674039437627037<22> × 67022863465627573295586528878250703<35>
26×1079-719 = 2(8)781<80> = 3 × 7 × 1168969 × 16368797 × 119469991 × 601773357030134149261820575383009367263471000811923999247<57>
26×1080-719 = 2(8)791<81> = definitely prime number 素数
26×1081-719 = 2(8)801<82> = 1529233 × 350134042855576951<18> × 952694189301155334207227<24> × 5663296798489480753588063228719941<34>
26×1082-719 = 2(8)811<83> = 3 × 260509753025273<15> × 352353293170307721142239761<27> × 104907674912728610703334779655267668391459<42>
26×1083-719 = 2(8)821<84> = 192244012305093716480087521259245272634289<42> × 1502719826875120105583547596262677898150529<43> (Makoto Kamada / GGNFS-0.54.5b for P42 x P43)
26×1084-719 = 2(8)831<85> = 22283 × 1028002024697<13> × 126113973185142981224021057219695902178801582875181150544268438293131<69>
26×1085-719 = 2(8)841<86> = 32 × 7 × 17 × 1429 × 35404937207<11> × 2539658861977<13> × 331291505188149799735886167<27> × 633664863276787571338187788043<30>
26×1086-719 = 2(8)851<87> = 281 × 137867 × 32955931347088647841648029723290765501<38> × 226271889642993716126349935267701976474503<42>
26×1087-719 = 2(8)861<88> = 43 × 383 × 853 × 35550131 × 5784600521518154262503947829404958998753057709151595591220657721542441443<73>
26×1088-719 = 2(8)871<89> = 3 × 650505559533653354689736605353608521637<39> × 14803301045625343174276516222728870673430348418271<50> (Makoto Kamada / GGNFS-0.54.5b for P39 x P50)
26×1089-719 = 2(8)881<90> = 19 × 14081 × 27799 × 1957613210537999870838931613067611171<37> × 19842102028666560640834479985607719844318351<44>
26×1090-719 = 2(8)891<91> = 333996079600410178649<21> × 92535787813559822575000420894649281<35> × 93471614174953405320311257038092249<35>
26×1091-719 = 2(8)901<92> = 3 × 72 × 41694534985694711467994149<26> × 4713400778623322382013357089162705919062474617871030226040720527<64>
26×1092-719 = 2(8)911<93> = 59 × 29191 × 20475383 × 6715555721756421703803082061533<31> × 1219876493815405881569044817203903324084198303391<49>
26×1093-719 = 2(8)921<94> = 1739207 × 887666553130667<15> × 19279544984618859541939537816451143<35> × 97058355302509208426666658159272995843<38>
26×1094-719 = 2(8)931<95> = 32 × 15161 × 211719315560311097105064081736684687237641088530431801544085254482545778194701968419621169<90>
26×1095-719 = 2(8)941<96> = 1069 × 330413 × 4702853 × 6129012569676217683453529809548861<34> × 28375537129854877448829271477073244037529134681<47> (Makoto Kamada / GGNFS-0.54.5b for P34 x P47)
26×1096-719 = 2(8)951<97> = 173 × 170354564240669<15> × 98023670683509204843676231621361170883081418556051415995751072743677866054253913<80>
26×1097-719 = 2(8)961<98> = 3 × 7 × 10445917 × 1497490223<10> × 87942939419287202727967246532522041177969031732661276838827990810873597954039871<80>
26×1098-719 = 2(8)971<99> = 23 × 92641 × 2067553144387<13> × 1188654245163488175861717361<28> × 55168038255009128344858961850910886177003463958913581<53>
26×1099-719 = 2(8)981<100> = 8803 × 3827953 × 23201635947720613<17> × 101426980767819684301935126708077<33> × 36430189805401218856153610441289037059659<41>
26×10100-719 = 2(8)991<101> = 3 × 3915907 × 36090418559584349<17> × 21853506048210356568799<23> × 3117914296414568278648500798941727097615162119765144611<55>
26×10101-719 = 2(8)1001<102> = 17 × 29 × 6826783 × 5039041944389<13> × 17034125692739793260776607778967649413663992951644486810629016856870237377397391<80>
26×10102-719 = 2(8)1011<103> = 67 × 4538946310673361934203419529586170464160589<43> × 9499505316661328483693123081125976474462217351123397421287<58> (Serge Batalov / Msieve-1.38 snfs for P43 x P58 / 0.30 hours on Opteron-2.8GHz; Linux x86_64 / September 27, 2008 2008 年 9 月 27 日)
26×10103-719 = 2(8)1021<104> = 33 × 7 × 122957 × 2859377 × 711477715669633811243963<24> × 611058872610932479795467278209668632172821757390612976241443319147<66>
26×10104-719 = 2(8)1031<105> = 2341 × 26458462171<11> × 370732385526715253<18> × 139843856570401837141193521969<30> × 89962374216378031869000710849753782440938203<44> (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=1197011526 for P30 x P44 / September 19, 2008 2008 年 9 月 19 日)
26×10105-719 = 2(8)1041<106> = 431 × 439 × 18353 × 72367 × 43770940957279<14> × 764960558670767<15> × 343333742814848883281184493663263126047009052403297477953383063<63>
26×10106-719 = 2(8)1051<107> = 3 × 446120111 × 74629065549615864486910488511<29> × 289234289525912646065905696331040565981315662962537495174904318190987<69>
26×10107-719 = 2(8)1061<108> = 19 × 751 × 35081 × 256203379480958915983<21> × 2252581338499781319109765022591621996800365695490292643824076353436523597663763<79>
26×10108-719 = 2(8)1071<109> = 43 × 163527916727774226853681<24> × 514753659624992452587910543<27> × 798125223056022285675979858654290612491419410592861599949<57>
26×10109-719 = 2(8)1081<110> = 3 × 7 × 1613 × 69226093 × 182758699286729815310887319891<30> × 67410771328016497019214021589313374524953741887543626581908524611719<68> (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=1732740741 for P30 x P68 / September 19, 2008 2008 年 9 月 19 日)
26×10110-719 = 2(8)1091<111> = 127 × 1951 × 7886623688988353<16> × 9671736314603461057887965599847505751<37> × 15285311076956761976885931758180371769621907771691351<53> (Justin Card / msieve 1.38 for P37 x P53 / 1.41 hours on One processor of an AMD Athlon 64 X2 3600+, 3 GB RAM, running Ubuntu Linux / September 27, 2008 2008 年 9 月 27 日)
26×10111-719 = 2(8)1101<112> = 2767 × 3333611 × 216040609 × 729069478395533069<18> × 2287183728027393459865876871<28> × 869363487033546892092301105530892286871111946343<48>
26×10112-719 = 2(8)1111<113> = 32 × 29147 × 4769177979227823799073881807117328228690591<43> × 23091435821474135828457919814168101536665195947355131326279552917<65> (Serge Batalov / Msieve-1.38 snfs for P43 x P65 / 0.65 hours on Opteron-2.6GHz; Linux x86_64 / September 27, 2008 2008 年 9 月 27 日)
26×10113-719 = 2(8)1121<114> = 21402882559<11> × 66298611785379051886444433<26> × 233933146018818524294877597578708248079<39> × 870286754579849616427691583403051247537<39> (Makoto Kamada / Msieve 1.38 for P39(2339...) x P39(8702...) / 15 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / September 27, 2008 2008 年 9 月 27 日)
26×10114-719 = 2(8)1131<115> = 61 × 281 × 82515401 × 2042488730913691639104650910398239582141440720934800185153713411030988033336465950595502899478863680741<103>
26×10115-719 = 2(8)1141<116> = 3 × 7 × 377623 × 3642949120316759470094939597591713591003888469879683338609304453545932481272754508230101612919926423076390107<109>
26×10116-719 = 2(8)1151<117> = 251 × 131720106875977<15> × 8737859206605456421920387818565009399157859423070212877559556073065684698167582598414523065268146603<100>
26×10117-719 = 2(8)1161<118> = 17 × 367 × 123303799438487<15> × 2521648704253213<16> × 1489206111576747385326317635494414497587939920378747285822849103697054997132472520509<85>
26×10118-719 = 2(8)1171<119> = 3 × 9629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629627<118>
26×10119-719 = 2(8)1181<120> = definitely prime number 素数
26×10120-719 = 2(8)1191<121> = 23 × 136218576607105746678368963<27> × 922075886144206554886576656131076386005082223938336897160903723946919615663003983326596865469<93>
26×10121-719 = 2(8)1201<122> = 32 × 7 × 47 × 142543003 × 222364605027963289594960585610198951220800558531666759<54> × 307808683726998816731583533019641595302396302718066515573<57> (Serge Batalov / Msieve-1.38 snfs for P54 x P57 / 1.20 hours on Opteron-2.6GHz; Linux x86_64 / September 27, 2008 2008 年 9 月 27 日)
26×10122-719 = 2(8)1211<123> = 821 × 41047 × 194210021 × 32371843362773<14> × 1363537839471737853854171703214567769643618136905315756013768004765981868298980868688485093411<94>
26×10123-719 = 2(8)1221<124> = 107 × 1171 × 189319853 × 234597262348601<15> × 519123952054151613992975315794179630294541895846149700274688784517171822460114373949070705155341<96>
26×10124-719 = 2(8)1231<125> = 3 × 163 × 57162358247<11> × 4863987289960456051<19> × 82711241811099317326869797485718892733761469<44> × 2568945372540053678056380379294551958469473628953<49> (Justin Card / msieve 1.38 for P44 x P49 / September 28, 2008 2008 年 9 月 28 日)
26×10125-719 = 2(8)1241<126> = 19 × 613 × 91823 × 153407 × 15699580490746648722017623746645943623109<41> × 112158465934766181512722569942161506774982710985048339315616976232886227<72> (Sinkiti Sibata / GGNFS-0.77.1-20050930-pentium4 snfs for P41 x P72 / 3.95 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / September 27, 2008 2008 年 9 月 27 日)
26×10126-719 = 2(8)1251<127> = 401 × 3354622878026888455049<22> × 16283299902589791600249813240195129893581187<44> × 131886498973573202679378662889306990910980844571318172595187<60> (Justin Card / GGNFS for P44 x P60 / September 28, 2008 2008 年 9 月 28 日)
26×10127-719 = 2(8)1261<128> = 3 × 7 × 4177 × 113230714718788553945893724491447<33> × 2908592098095199284156292274582063675219090371694461454439845943319274746957258978219884619<91> (Sinkiti Sibata / GGNFS-0.77.1-20050930-pentium4 snfs for P33 x P91 / 5.33 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / September 28, 2008 2008 年 9 月 28 日)
26×10128-719 = 2(8)1271<129> = 131 × 14173 × 391990036073<12> × 209136141955673<15> × 282253571530531905287821895982263<33> × 6724410067927540770071296948992460956272813315912377010665593281<64> (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=821616480 for P33 x P64 / September 20, 2008 2008 年 9 月 20 日)
26×10129-719 = 2(8)1281<130> = 29 × 43 × 30322790101<11> × 76400328402729636583996072679655276993028676781734064123958532848712731406744190291234858392221914334108938386694323<116>
26×10130-719 = 2(8)1291<131> = 37 × 107279 × 85922473291<11> × 114742625399467795589<21> × 1555264010009095245215689855939<31> × 8030298041873378200644298075643381459141156096670048678509977<61> (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=2307223106 for P31 x P61 / September 20, 2008 2008 年 9 月 20 日)
26×10131-719 = 2(8)1301<132> = definitely prime number 素数
26×10132-719 = 2(8)1311<133> = 398509 × 27916677970667<14> × 32059996951889623<17> × 1298007338759416798757<22> × 44910186825661846875165788128120087307<38> × 138945178582090619144089903560714259151<39> (Makoto Kamada / Msieve 1.38 for P38 x P39 / 8 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / September 27, 2008 2008 年 9 月 27 日)
26×10133-719 = 2(8)1321<134> = 3 × 72 × 17 × 151 × 1061 × 37783 × 99011812111<11> × 1965547559984367689019258871317555515695451<43> × 9813077914068196935358138454323876101771621519472202609560133578483<67> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P43 x P67 / 3.06 hours / September 27, 2008 2008 年 9 月 27 日)
26×10134-719 = 2(8)1331<135> = 1801897 × 265450281363670856539<21> × 2151771244658802648860981132723919893684815718567<49> × 280686539850995217773316080340193459612811030104024615577821<60> (Sinkiti Sibata / GGNFS-0.77.1-20050930-pentium4 gnfs for P49 x P60 / 19.00 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / September 29, 2008 2008 年 9 月 29 日)
26×10135-719 = 2(8)1341<136> = 67 × 4073 × 2577318468267485992379509<25> × 2266135705922041576057780547<28> × 1812540111305362497474519958299985462603635906692187803862724690978797947213917<79>
26×10136-719 = 2(8)1351<137> = 3 × 2741 × 92372285975211434631537057344098560567670446839<47> × 38032848797379633248033194711881967676062087393154102007966129723213945990007458206473<86> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P47 x P86 / 12.79 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / September 27, 2008 2008 年 9 月 27 日)
26×10137-719 = 2(8)1361<138> = 11257 × 142789 × 267456302461<12> × 14845595497047991036103<23> × 45265045481221598104267269266172691666697998764880142075033410042315437306865697873975786165359<95>
26×10138-719 = 2(8)1371<139> = 120949069 × 41467906931283023773<20> × 35541916653799466686224456599258869<35> × 16205981899812491349119706433005180738013612088106238598294885611831440295477<77> (Robert Backstrom / GMP-ECM 6.2.1 B1=962000, sigma=110969026 for P35 x P77 / September 27, 2008 2008 年 9 月 27 日)
26×10139-719 = 2(8)1381<140> = 32 × 7 × 173 × 2735315574127449899<19> × 969028940637058435379565483346687500734639049776666154299653705880036734309615144908116016346872434929650138183383681<117>
26×10140-719 = 2(8)1391<141> = 258551 × 1061457857440639884285723044526980992447605343813900560013<58> × 1052644826720225490937098572168106297601845969296447812929710800726211325127987<79> (Serge Batalov / Msieve-1.38 snfs for P58 x P79 / 5.70 hours on Q6600/Windows XP / September 28, 2008 2008 年 9 月 28 日)
26×10141-719 = 2(8)1401<142> = 1852300363<10> × 48498280602860997751847<23> × 11957796235248191680187920873<29> × 2689316621920129151748266636989988558817843164300163318157065656999358945583080077<82>
26×10142-719 = 2(8)1411<143> = 3 × 23 × 281 × 1277 × 351887 × 1043876039<10> × 318812637521068164983566579422495812535445874888122847<54> × 9963154172558509622279112283921622547309975069751848442172384313887<67> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P54 x P67 / 17.38 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / September 28, 2008 2008 年 9 月 28 日)
26×10143-719 = 2(8)1421<144> = 19 × 499 × 811 × 3023 × 11778986365783666685605364089<29> × 1055139232688970450101066539881861257396800078440763829380768723165857760542270687341617581994385205902653<106>
26×10144-719 = 2(8)1431<145> = 97 × 29782359679266895761741122565864833906071019473081328751431844215349369988545246277205040091638029782359679266895761741122565864833906071019473<143>
26×10145-719 = 2(8)1441<146> = 3 × 7 × 1608107 × 462490307618949845351<21> × 1849668777502947672500183140826106456358182307024383860925894413289489850919850764988120125242281394671333244035615073<118>
26×10146-719 = 2(8)1451<147> = 17681 × 23242459 × 17943666279248153726359854426579738150064948201372651529<56> × 39176962177511276591329105438819030419134508058060721100657357913796416293078491<80> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P56 x P80 / 28.94 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / September 27, 2008 2008 年 9 月 27 日)
26×10147-719 = 2(8)1461<148> = 4433629 × 22802546140678726259<20> × 28575125483363629663708169323077533792813056069075832791036233308603515800494944166208542588827288112471816020976867779271<122>
26×10148-719 = 2(8)1471<149> = 32 × 7079 × 8191 × 155940502619527<15> × 298681499547353786867<21> × 71645980636279641188679079<26> × 548351273705704159083138201388318961<36> × 30252519542307107524429438513999026405036011<44> (Makoto Kamada / Msieve 1.38 for P36 x P44 / 17 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / September 27, 2008 2008 年 9 月 27 日)
26×10149-719 = 2(8)1481<150> = 172 × 113 × 2154307 × 36542965889<11> × 112368133532218289965850899209443042160089698345563763309355408011120372412458052674594364060766418159180313235943929296895149771<129>
26×10150-719 = 2(8)1491<151> = 43 × 59 × 39511 × 156236473309783<15> × 306806534558417<15> × 90996090683978972051700665489<29> × 278892062287133994385679444936173651725679<42> × 23691165618220695016170882191532431070649463<44> (Serge Batalov / Msieve-1.36 for P42 x P44 / 0.64 hours on Opteron-2.8GHz; Linux x86_64 / September 27, 2008 2008 年 9 月 27 日)
26×10151-719 = 2(8)1501<152> = 3 × 7 × 263 × 13679 × 3226777 × 17209986945207499<17> × 2745596514435287531823283642891597<34> × 2507928999895546296791005056224527982607687054515900884400907699433831261610761528623203<88> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P34 x P88 / 31.07 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / September 28, 2008 2008 年 9 月 28 日)
26×10152-719 = 2(8)1511<153> = 127 × 12033947 × 32357092752211<14> × 5841838267994907952234512777996809791421378473775901328667996549199008252039137277490509186794283935279535559944825097412206914959<130>
26×10153-719 = 2(8)1521<154> = 31305484393<11> × 92280600185661177317176958619721201286600673008435978711383259729038778489310337530316612880812193375757962797061674869605934383054313306529417<143>
26×10154-719 = 2(8)1531<155> = 3 × 10493039 × 13334533 × 4570917521<10> × 485145053135641669248545737<27> × 31035267576004012651346185065852138769010321805851564283469921769192271481347895210841100769039168722073<104>
26×10155-719 = 2(8)1541<156> = 761 × 54499 × 30564664990261253<17> × 63836161460698741419691880404514945920853927423<47> × 3570024888040223758946915583946688879184055497902878240186964550332918034067683819241<85> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P47 x P85 / 42.65 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / September 29, 2008 2008 年 9 月 29 日)
26×10156-719 = 2(8)1551<157> = 151343 × 3327811 × 39667337 × 832273997796829361<18> × 3034209970641607921129<22> × 1539101763813295096540956696049<31> × 37204674366771785637207080014338786059371882679796505450287968745701<68> (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=571760825 for P31 x P68 / September 22, 2008 2008 年 9 月 22 日)
26×10157-719 = 2(8)1561<158> = 33 × 7 × 29 × 1069127170831<13> × 126665524459966483<18> × 38920933129788572751461850668663377146791517046767392622328332651471009796826838347825331489893834957817320817699929770918237<125>
26×10158-719 = 2(8)1571<159> = 109 × 10324367 × 37888800062586718993411<23> × 6775323796122561021392720791721894210710345641522567973344748380668726026375367434350051236408909228034404350305916261740029257<127>
26×10159-719 = 2(8)1581<160> = 149640577 × 19305518241144505135721903083071437828583679471437007950650236325197335271494501714524188775942028671066196763521493831775915224444028232321564015947953<152>
26×10160-719 = 2(8)1591<161> = 3 × 1094998023968034643446213026625908789762145086429066485506433912988981<70> × 8794198180133646807441422534325880565522933789319895295254625222992854439653169060283985967<91> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P70 x P91 / 66.55 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / October 1, 2008 2008 年 10 月 1 日)
26×10161-719 = 2(8)1601<162> = 19 × 632162252911445335796435973980354556377945502963326151746830745204115223<72> × 24051860566725428718633081455487317525885368126175025927404218378326986147965349318982413<89> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P72 x P89 / 77.65 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / October 2, 2008 2008 年 10 月 2 日)
26×10162-719 = 2(8)1611<163> = 1605341 × 34840843885409601679480678418650111005563801<44> × 65612945889179070840638882215639321183998522259344767579<56> × 787200458193689081759211506325782501478201241604278678679<57> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P44 x P56 x P57 / 77.77 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / September 29, 2008 2008 年 9 月 29 日)
26×10163-719 = 2(8)1621<164> = 3 × 7 × 17482589 × 742458152998064175019<21> × 82040906752589392506124571605912668180523<41> × 1291824044130121762655087841332987925302619521194453123869004000921846867381372572710987124377<94> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P41 x P94 / 92.11 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / September 30, 2008 2008 年 9 月 30 日)
26×10164-719 = 2(8)1631<165> = 23 × 227 × 599 × 14327 × 71023 × 90781227164104282626792394433221404648923820543835822171006084382597544053558391249359161305828679254950109178345635780998308047593518589419864132259<149>
26×10165-719 = 2(8)1641<166> = 17 × 13309 × 71671 × 101477581746372523<18> × 1787383004449952594789773835754260083<37> × 982212133326409521576440542949381649398350348153586585505016074608770961266853317136037014383074679043<102> (Jo Yeong Uk / GMP-ECM 6.2.1 B1=1000000, sigma=1501512258 for P37 x P102 / September 28, 2008 2008 年 9 月 28 日)
26×10166-719 = 2(8)1651<167> = 32 × 251 × 331 × 5263090523549879<16> × 1510502859597760806417065936942084544672808513<46> × 4859865188787395072098314485948357294398599462740799180745466247719147971275211882335881557251224807<100> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P46 x P100 / 134.13 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / October 4, 2008 2008 年 10 月 4 日)
26×10167-719 = 2(8)1661<168> = 47 × 3623 × 160163 × 62177173667916090994125727316510673911399562654031399314878446246681393<71> × 170361507648356832458459057572079293694991001668148898771440660882317084143196327486739<87> (Serge Batalov / Msieve-1.38 snfs for P71 x P87 / 30.00 hours on Opteron-2.6GHz; Linux x86_64 / October 4, 2008 2008 年 10 月 4 日)
26×10168-719 = 2(8)1671<169> = 67 × 2122979 × 1511856001837<13> × 13433831889058316132335688910396873009373778091991109237464980699374703934809231433511845110174828473933317093536073439400798548161037026510838916941<149>
26×10169-719 = 2(8)1681<170> = 3 × 7 × 1627 × 114070908582737007811213<24> × 7412233467866737649078844614418727591696572257339817915548970954562122741187976123665672782009435053166599716686877866266209455647846103666611<142>
26×10170-719 = 2(8)1691<171> = 281 × 1036151797<10> × 8352757623297097696332618845370352702448983<43> × 118787640151714003352535632523216976307927450058745101074936089603900745826743578588056704612356256078974602954505651<117> (Serge Batalov / Msieve-1.38 snfs for P43 x P117 / 30.00 hours on Opteron-2.6GHz; Linux x86_64 / October 5, 2008 2008 年 10 月 5 日)
26×10171-719 = 2(8)1701<172> = 43 × 1380617898681809<16> × 3669494174838085730319346360886510108147157739379354571402691886612341441<73> × 13261195602581412992450307530343836667060648761360730528724076800274659175677939043<83> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P73 x P83 / 221.80 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / October 6, 2008 2008 年 10 月 6 日)
26×10172-719 = 2(8)1711<173> = 3 × 1867 × 9980458761793547<16> × 32389267017818243837131<23> × 2449546433911624471161459374915594356652322414642886072105793<61> × 6513703188268288072413620827782285132171359163786368510031938034560281<70> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P61 x P70 / 242.20 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / October 10, 2008 2008 年 10 月 10 日)
26×10173-719 = 2(8)1721<174> = 3659 × 2994692089<10> × 1180877675714413<16> × 713468875576511513283306519138119<33> × 31292215261332474324598857424033910552657776703198753648313833959464824814897277997193127602654614246649390049073<113> (Wataru Sakai / GMP-ECM 6.2.1 B1=3000000, sigma=927773744 for P33 x P113 / September 25, 2009 2009 年 9 月 25 日)
26×10174-719 = 2(8)1731<175> = 61 × 70388459 × 22644944916809299781937983566931675591<38> × 54191800160239458856829701948081845851736190659092683069<56> × 548270273624219861877501722737475486911050288607230429985686530631932461<72> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=4142602450 for P38 / October 22, 2008 2008 年 10 月 22 日) (ruffenach timothee / Msieve 1.44 snfs for P56 x P72 / July 8, 2010 2010 年 7 月 8 日)
26×10175-719 = 2(8)1741<176> = 32 × 72 × 51396937 × 5485541467765331185793932059381071<34> × 54508721122940264631491161814117815268010024915110722388920609<62> × 4262550289695569536241089487495841928985817428623630808822329387118687<70> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=1753223694 for P34 / November 24, 2008 2008 年 11 月 24 日) (Warut Roonguthai / Msieve 1.48 snfs for P62 x P70 / November 26, 2011 2011 年 11 月 26 日)
26×10176-719 = 2(8)1751<177> = 107 × 613 × 5414231 × 10578209 × 230072970263<12> × 4597194814998215328498307<25> × 54750566371088487970140619870411787020199<41> × 1327976953687722400410338375555843000971594563026585227832663573259827714155008331<82> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona gnfs for P41 x P82 / 104.16 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 1, 2008 2008 年 10 月 1 日)
26×10177-719 = 2(8)1761<178> = 10052417 × 21365986109957<14> × 8459473624619747<16> × 2017376076560828643015124685140414200032729190914283198287949673<64> × 788146940141827768388237540425351195753513134089806471319636383900285174343879<78> (Alfred Reich / Msieve 1.50 snfs for P64 x P78 / June 16, 2013 2013 年 6 月 16 日)
26×10178-719 = 2(8)1771<179> = 3 × 233 × 5445889 × 412207149418759962139714793065450600844832257<45> × 2724448098765146707217118086863033569787258501<46> × 6757574131838943072526248573414624173231223988191018415602136143263460883734503<79> (Rich Dickerson / GMP-ECM 6.3 [config GMP 5.0.1] [ECM] B1=11000000, sigma=1691005103 for P45 / March 9, 2011 2011 年 3 月 9 日) (Erik Branger / GMP-ECM B1=3000000, sigma=2023336989 for P46 x P79 / March 13, 2011 2011 年 3 月 13 日)
26×10179-719 = 2(8)1781<180> = 19 × 805459515280979963<18> × 135517574063092956043<21> × 689523469696998589998599612895602920980121651035607<51> × 202017433532289157887864819888714839163924983934214208588608108590343913495309649602550373<90> (Ben Meekins / Msieve 1.52 snfs for P51 x P90 / December 2, 2013 2013 年 12 月 2 日)
26×10180-719 = 2(8)1791<181> = 1583 × 173293 × 30652327 × 9171562003<10> × 5180675266282702470079103328497117<34> × 7230623966166744056534552330638013085435246638933530227944780217280797823900932447771260410059969005105897132631718086187<121> (Rich Dickerson / GMP-ECM 6.3 [config GMP 5.0.1] [ECM] B1=11000000, sigma=868985690 for P34 x P121 / March 9, 2011 2011 年 3 月 9 日)
26×10181-719 = 2(8)1801<182> = 3 × 7 × 17 × 569 × 176629 × 805171410557155800861366660155118190471817323933812169954793647407124615352336572549230663089448237613509338948993012030556552460963122456041702941730996629065027732607633<171>
26×10182-719 = 2(8)1811<183> = 173 × 220151 × 110713051 × 6865896803327465239534403<25> × 57448379566066515238703741<26> × 173696152694645518216739504251668072007092977460556651727149937481711473326806807607265790218404077426739634082054239<117>
26×10183-719 = 2(8)1821<184> = 593003743193204034604146674734025028736359951238501379<54> × 4871619988995031102117074254428860421831102448543408974537652092788862101145035929409514449229400537835795554628125214530032586939<130> (Wataru Sakai / GGNFS-0.77.1-20060722-nocona snfs for P54 x P130 / 785.58 hours / October 10, 2008 2008 年 10 月 10 日)
26×10184-719 = 2(8)1831<185> = 33 × 179 × 1601 × 1889 × 1116382941283<13> × 316284036213022695489839<24> × 256130348375762858480307615369015337<36> × 21854418197108778032904529332960642192411393111303719149893244677801745046148919838515882595289731460877<104> (Rich Dickerson / GMP-ECM 6.3 [config GMP 5.0.1] [ECM] B1=11000000, sigma=2984161912 for P36 x P104 / March 10, 2011 2011 年 3 月 10 日)
26×10185-719 = 2(8)1841<186> = 29 × 5503 × 10169 × 71875359003529<14> × 1394709746073037<16> × 2877363597220133641<19> × 426635400523700719380560824023990687589207990696100701579<57> × 1446570433676351806454922108543228604497249940075625639596510848668340941<73> (JPascoa / ggnfs, Msieve 1.43 gnfs for P57 x P73 / 141.61 hours on I7 860, Windows 7 64-bit / December 1, 2009 2009 年 12 月 1 日)
26×10186-719 = 2(8)1851<187> = 23 × 10399 × 12078456075997645630177186305074856231530995408793023112125701421494913344045994760737399034559714725449725052529670030516683832010974671013052630014127148048888015523603393674512553<182>
26×10187-719 = 2(8)1861<188> = 3 × 7 × 3691 × 6131 × 67933 × 894860603401049492254225588600554827613706756408911410267659179421260192360741126817593436885577268478576831428106892782068277788564155183371527642278471038356436081382904577<174>
26×10188-719 = 2(8)1871<189> = 1063 × 551630183606680962183180226091792336239549492768560137458052747<63> × 492662552392220576655684845632298686292166468106550344307131322364753054986270108272824989428881410922859811571673578121621<123> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon, Msieve 1.39 snfs for P63 x P123 / 92.37 hours, 10.91 hours / December 26, 2008 2008 年 12 月 26 日)
26×10189-719 = 2(8)1881<190> = 149 × 82484045852903<14> × 785112311669773<15> × [299393817131356279336065800264145830601932691803714919545020283493239460372605841969601560541240138607504740044106613222605852456130682326992085029440958730551<159>] Free to factor
26×10190-719 = 2(8)1891<191> = 3 × 5323 × 6829 × 59771 × 210299 × 44902633 × 45406366813<11> × 4279883378958839<16> × [2415170409483583770869780725260019893286730251397827770036052814461503377873514307708622040643803660346719976536018993623719279077480504719<139>] Free to factor
26×10191-719 = 2(8)1901<192> = 977 × 2357695266025173133599952969468394108657649003264896879481391411<64> × 125414746118265231875647176337445819091154835277185222972199907719810763192008226592232607294689716776008863337203936248400923<126> (Robert Backstrom / GGNFS-0.77.1-20050930-k8, Msieve 1.42 snfs for P64 x P126 / 10.73 hours / December 14, 2009 2009 年 12 月 14 日)
26×10192-719 = 2(8)1911<193> = 43 × 67183462532299741602067183462532299741602067183462532299741602067183462532299741602067183462532299741602067183462532299741602067183462532299741602067183462532299741602067183462532299741602067<191>
26×10193-719 = 2(8)1921<194> = 32 × 7 × 1201 × 553933 × 341283149332924321<18> × 8999470872199646683363<22> × 224418275962907346433058957357334014855466989928211348216849716457064289548832238652744346030584595954448847717026152929657225389968136526410793<144>
26×10194-719 = 2(8)1931<195> = 127 × 11413826722781612615066149463171<32> × 199294742752855759616595652474247599588531861457327919786234813849577319328816218083242071052288301464688708144297554003022214681904207255725793885068388792538693<162> (matsui / GMP-ECM 6.2.1 for P32 x P162 / November 23, 2008 2008 年 11 月 23 日)
26×10195-719 = 2(8)1941<196> = 991 × 2915125014015024105841462047314721381320775871734499383338939342975669918152259221885861643682027133086668909070523601300594237022087677990806144186568000896961542773853571028142168404529655791<193>
26×10196-719 = 2(8)1951<197> = 3 × 167 × 727 × 3769 × 1054083829<10> × 4893585078149317769<19> × 353696527018745721903428283630432881<36> × 11534518633048134523180327610901063377106304551914649516210640528009424835879528513544875027432818715673310932957874304660127<125> (Rich Dickerson / GMP-ECM 6.3 [config GMP 5.0.1] [ECM] B1=3000000, sigma=725290316 for P36 x P125 / March 10, 2011 2011 年 3 月 10 日)
26×10197-719 = 2(8)1961<198> = 17 × 19 × 1279 × 44076787 × 3347261073818741<16> × 4739780782996463433792434116767118843629729809597926905362789451601467224955971265481895566715748028457231642783246000229562394386349807885040658509028062372928941876779<169>
26×10198-719 = 2(8)1971<199> = 281 × 7743557 × 15794094665352108651876851<26> × 56141214127490815204720556917<29> × 6672158345324570924911004640070319<34> × 224409447889967492996585171782030978009865301467761627115443269401396865659446660091646883625181321541<102> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=234056921 for P34 x P102 / November 24, 2008 2008 年 11 月 24 日)
26×10199-719 = 2(8)1981<200> = 3 × 7 × 475103 × 15072410100740017<17> × 192106061735210765667943266817885418526469652353933451550948938970506863327139514207663726305796214789921563556419481550157602054801271261221217128144041912786275413208313661411<177>
26×10200-719 = 2(8)1991<201> = 457 × 659 × 1028189 × 201476424323633<15> × 232889869689920753376507723060620724903611987528778023095730208042169239447924580459<84> × 19882978276955596620491120229381248631475387440528475936924814881711134718400118924895727389<92> (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs for P84 x P92 / October 4, 2012 2012 年 10 月 4 日)
26×10201-719 = 2(8)2001<202> = 67 × 709 × 45067507487<11> × 269107696072907851<18> × 5014413488141042333177812169589043126620088494875197575702337648730858588393975857924637968349322227175336534946919385197895618220227952108391208870447229392491953530371<169>
26×10202-719 = 2(8)2011<203> = 32 × 162829 × 204311 × 26513321 × 442088279 × 104971095584193040721<21> × [78419119805953469383211171835519248762348051738516828595417574446325468469569199906340333128529445493620638571410528988427594700409202593350798658886882149<155>] Free to factor
26×10203-719 = 2(8)2021<204> = 6505357 × 42550589 × 1043648198330154046733704862540220161769432100367395178553115796286870862014417114164702832652874586653213387400314377775147174415518048952197824902795187966631285533508703754800830862583897<190>
26×10204-719 = 2(8)2031<205> = 67331854193<11> × 6528999071532135872608730759<28> × 424263003850670654949198111263905081<36> × 15489182430424854777257012135391671153069770278842653023875480999918012136522060144423679794031129858722659619226939920411797739823<131> (Warut Roonguthai / GMP-ECM 6.3 B1=3000000, sigma=2529562006 for P36 x P131 / February 11, 2013 2013 年 2 月 11 日)
26×10205-719 = 2(8)2041<206> = 3 × 7 × 163 × 81672722156009459<17> × 103334872631765777357862586089817198499074094260441752889924769252669729793857468108885829418623491952058338416107649334477598326896871488092462951697868682066117300430642916616728042133<186>
26×10206-719 = 2(8)2051<207> = 27437185871<11> × 10529100551606963631262593668379966958342762501777888287021725840058507539965518386048801093857957226246356717291230427911142713010958881399228936574961503233564943796305008779407444387061020573311<197>
26×10207-719 = 2(8)2061<208> = 21767 × 31429738051<11> × 12496524028672457<17> × [337910954609247080466951307316731700288225441463273005175944600728599698001824359766493769513944419253160652398919915584775390958962141857420334245575351223154284372745686502149<177>] Free to factor
26×10208-719 = 2(8)2071<209> = 3 × 23 × 59 × 151 × 21599 × 162422833 × 294250835205415950733132409058853<33> × 45525461701473599331147823310964400422651991020595643755404086529508154925144207961834933022248530609247839976116119918261339169586876290965428180250831346611<158> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=3670381793 for P33 x P158 / February 3, 2013 2013 年 2 月 3 日)
26×10209-719 = 2(8)2081<210> = 25910279 × 9597500227655609771<19> × [1161717731120213473445633949482376498264668061257225821459739655122346280962947480832395346352769725283838206719844523241298965438748512753184190996020667448347973010770285014516217109<184>] Free to factor
26×10210-719 = 2(8)2091<211> = 2521 × 118259 × 20055273773<11> × 1248601739937007<16> × 91099919129363333623352227<26> × 4247694444473240967416501879999512610764960895468129813752129976164251072713861009072482980479415481437354570797317085554806591351352670348949118440907<151> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=3761491322 for P26 / February 10, 2013 2013 年 2 月 10 日)
26×10211-719 = 2(8)2101<212> = 34 × 7 × 293 × 383081 × [453930690736046948910817526439799022651850819981494155031700401077413399185449856831587801826831647767764588533469583170772916129262453887054486991503585445309675869621076678449117610683378779656071571<201>] Free to factor
26×10212-719 = 2(8)2111<213> = 935726575163<12> × 2540215364466023<16> × 121537790313824497550126730693468620299476119402167321904944720043164134571719840329239077226017305560111363504207289074225828732079662885179369694737998565486292442614433224493937396869<186>
26×10213-719 = 2(8)2121<214> = 17 × 29 × 43 × 47 × 80329 × 2533313 × [14248081590877190021287753439140629916958026996310418473830657382759708669786314238772636169242123975198330290373693506288027569919548855288687529205385067456579954880503644208690857582921609905001<197>] Free to factor
26×10214-719 = 2(8)2131<215> = 3 × 193 × 218873 × 128894069184066577<18> × 5634382199137505025363077<25> × 144760633166393498178422977841<30> × 9790810924814670789037765047390895129209442911476622227<55> × 221468369608511105410771883939130038980777189248332249133141024280017527952112781<81> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=3895029837 for P30 / February 3, 2013 2013 年 2 月 3 日) (Erik Branger / GGNFS, Msieve gnfs for P55 x P81 / January 22, 2015 2015 年 1 月 22 日)
26×10215-719 = 2(8)2141<216> = 19 × 6166822872649490738429283127<28> × 2465561063867660303247117939043874821292311968953498365905701946376144646876669661480765836656869370658186023892574267975043856050201204658278643884376461499269690370261140699078183736237<187>
26×10216-719 = 2(8)2151<217> = 251 × 11791130364507932829288684649<29> × [976116549458014414189705037993161569534080444917554122529678536852069498052568308419746079867779213510981462078891036933680111801775366429680605975454036674862448393610101877890033382219<186>] Free to factor
26×10217-719 = 2(8)2161<218> = 3 × 73 × 42526784767<11> × [660165636929562535369744437140483224918494934982468460313439859886776587500156678039002158741261307317477826402821580061135511507579695058313723954247083384739524714971185918211546452133638381602353443267<204>] Free to factor
26×10218-719 = 2(8)2171<219> = 1210177 × 180683403442930332839<21> × 4868030186674886876032327<25> × [271400359534669858800155138276382569813359163005967940199666360871841519544280506027908881420381066351687925068783050306429288236844752794084618886944122480116082922401<168>] Free to factor
26×10219-719 = 2(8)2181<220> = 15347537 × 31102969907193362908393<23> × 14306783145066472082366483389<29> × 423007721439852554685080131554710182386295612662120438942777819169973169474190502156074327134354708655514355016813348020302102959689050240210080705615647478586669<162>
26×10220-719 = 2(8)2191<221> = 32 × 359 × 358763092471559<15> × 24922185350494223968905838297259267752642939735274005556350518315251801478301073868242978585792358125617079390843617536410616316471287840338621824135703890894903309186059536924216076072968384381410113689<203>
26×10221-719 = 2(8)2201<222> = 61392370759061<14> × 4705615458680609873952194342014525574513593330458267401599025689409463261640694047886439702623633552112273580397603035665570999027157622296314622664445355254933684490819810435770972185992151311596221519992621<208>
26×10222-719 = 2(8)2211<223> = 3047071 × 6668509 × 17811089 × 709258441219<12> × 32406430484173185218577289279<29> × 347290848385892780451212058486968042960125447438063653040609716369677748551344102104802097621900264031955750701732744778785870159718274033962790179461303140012711<162> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2258436895 for P29 / February 10, 2013 2013 年 2 月 10 日)
26×10223-719 = 2(8)2221<224> = 3 × 7 × 7857714383555611<16> × 29503692265055550869104142681<29> × 105994486480278226826694894465615593700906691<45> × 55982934610796711598455495576492144128169370476476732726548117793126927446427794655975413665861007110756316992324292071598933713929381<134> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2051825605 for P29 / February 10, 2013 2013 年 2 月 10 日) (Youcef Lemsafer / Prime95 v28.5, GMP-ECM 6.4.4 B1=11000000, sigma=1466884222739245 for P45 x P134 / November 7, 2014 2014 年 11 月 7 日)
26×10224-719 = 2(8)2231<225> = 80233 × [3600624292858161715115836238067738821792640046974298466826478991049678921252961859694750151295463074905448990925041926500179338786894281516195192612626835452854671879262758327482318857438820546270099446473257747920293257<220>] Free to factor
26×10225-719 = 2(8)2241<226> = 173 × 53546889473050693488157<23> × 290763839995326176092249<24> × [1072531588000832344598686307562389026095583333652914704275269169732530946999794439250827327169193787152286607983644901492509938037836674823752661020947841843770473766946597705729<178>] Free to factor
26×10226-719 = 2(8)2251<227> = 3 × 281 × 116286396137324269<18> × 68889087294293925296356143774059155521707<41> × 4277833938473544143186753771267505359049959083581815855179016730503855465994042240328654017718006645773122472840916812757901276238410372403446453337962797955950200349<166> (Youcef Lemsafer / Prime 95 v28.5, GMP-ECM 6.4.4 B1=20000000, sigma=8203022542527119 for P41 x P166 / November 5, 2014 2014 年 11 月 5 日)
26×10227-719 = 2(8)2261<228> = 613 × 12842887 × 1788462184268718184645411<25> × 17555960503888407899466297607<29> × [1168700811974770340022059947744950307596836233241307045520959180650403847843936298010603159856633280640948997267079534532837092405745321175531319276595781497975570863<166>] Free to factor
26×10228-719 = 2(8)2271<229> = 11051970773<11> × 309394781750186131<18> × 844847116527156189750496475298133709350408398532721451494962567764552199735410626194527551581140482243641749918329984851038643971502318082470187425923721239003747424423796791047969051620563857203081087<201>
26×10229-719 = 2(8)2281<230> = 32 × 7 × 17 × 107 × 307 × 42854381 × 1827742132590703487585377<25> × 104554332859955470165662168857<30> × 504005066031907882145669438446133<33> × 198944587367784168586766744436521298154554430775564127782947078896851534022650823420248579051000524275587988884065270438416716087<129> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=2942162082 for P30 / February 3, 2013 2013 年 2 月 3 日) (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=3732652861 for P33 x P129 / February 11, 2013 2013 年 2 月 11 日)
26×10230-719 = 2(8)2291<231> = 23 × 18089 × 1955633 × 107102441 × 4692261151<10> × 259265182277<12> × 43623007119469691685825136409<29> × [62468308283263588238049143049866306529188784542726813890388911476566423914234290551166917638442394078606291737500952615407772387957641929499902475600942368758237<161>] Free to factor
26×10231-719 = 2(8)2301<232> = 76654336144265849<17> × [37687220765331657021044284072477314010987867011908222983196358130827113934390641971307306441780497389766136142800758808975296341590369292909408968382210289800373000873714924634722078898311679297293369137645880699769<215>] Free to factor
26×10232-719 = 2(8)2311<233> = 3 × 751 × 22587819093697423<17> × 20274140675864230465961857<26> × 27999668553224614469001610950621833310644050437027216097607437924106815830167260128226437611723690004040498531704094968756675593369160017667614713827952493282474462158527383653700421637307<188>
26×10233-719 = 2(8)2321<234> = 19 × 8009 × 121439 × 10857491 × 11086291037<11> × 129874834772547267271225490478323987984527207520301695782987074775635070593062716730628380484648512595387267556184414569496275613614689923376823545322005605694126750169782623609146702852938202644881365415147<207>
26×10234-719 = 2(8)2331<235> = 43 × 61 × 67 × 7309 × 9396973303<10> × 47766253562821<14> × [5010610113048817600145262145992883857531376416004133024239016603035665598606945915003745152439774866198645228162479134782900140113240757481134988457149248346941430147324928292557390556709122572800066723<202>] Free to factor
26×10235-719 = 2(8)2341<236> = 3 × 7 × 51422662199033<14> × 26752045048481462885784683280593151595095653240096798373438452194497441726145022530758002998975505483677291510947430422076860629627411625729197824723697598796887590034145800427630920374147699443251738161137057819956293717<221>
26×10236-719 = 2(8)2351<237> = 127 × 419 × 2786972648479<13> × 301597607152838983335978581<27> × 6458809814064640693481875090423090867534102645461814086768484147844666836373919204938081779680628018885128860493409387340118559650010501590271239110706035270505728339041790237944775837368782863<193>
26×10237-719 = 2(8)2361<238> = 9421 × 9242239 × [33178491755142344276785485053452487413960711636165437127164559891210170840774440576643354025801556377102908394016058031459737263500539527630298795879157036347404407725411825143689919883606297863800514818112797687806211504527499<227>] Free to factor
26×10238-719 = 2(8)2371<239> = 33 × 313 × 7124881363<10> × 84680059249<11> × [5665835306132024127279833119902278200221888412080143265651121041095214775904273108162778671735769847216587584665782657982237023196655591884113950892029857667339107045703898886131500592170172469439791866689108184713<214>] Free to factor
26×10239-719 = 2(8)2381<240> = 150965113997692493<18> × 491348783221293076888668902789333<33> × 3894613405115940764296836374692531057963534631013999270472705018312818869822656595366229429068185016998685268740111247866849486258106991796132129483591762792599804359076171598414783054460449<190> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=561211223 for P33 x P190 / February 10, 2013 2013 年 2 月 10 日)
26×10240-719 = 2(8)2391<241> = 97 × 12637 × 20504318296994785575407412479840749119900679<44> × [114939627100196084426056957196830601147913390599667494734927938879349817353188359178336437734556828157283608496270511920720214408229918126303271991201805460463289322115528566751704311729013651<192>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3285317832 for P44 / March 11, 2013 2013 年 3 月 11 日) Free to factor
26×10241-719 = 2(8)2401<242> = 3 × 7 × 29 × 193923091 × 3750842933<10> × 2342900079491<13> × 12501928753833781574211276266779<32> × 2226508492000072076435292702801436970843205033632001687647771607552888135321862492059244783268685043117692693498032799900398152718460010811961756960974473188481293324168868678927<178> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2883895847 for P32 x P178 / February 10, 2013 2013 年 2 月 10 日)
26×10242-719 = 2(8)2411<243> = 223 × 2488417 × 17394563 × 9506537809<10> × [3148233337922065699166236308825382058724952048167808627129504038335304289041448140543696097100377453873995106084037267426227912047464976665497840866256031223031776634272101102993330991474562730846111329848644850869173<217>] Free to factor
26×10243-719 = 2(8)2421<244> = 337 × 3366222023<10> × 2546585023686283594079825364062492194373021599363916402793350038302264393277969852614811967403968088171101664819541263316134660999064785974811664593437237809802824929838524817308008474153764795770259058302013961501436872471507364631<232>
26×10244-719 = 2(8)2431<245> = 3 × 229 × 84111439 × 1879725787<10> × [265965030756997759227631819196536723522160066428754916052624108381305946988903294032957187091714630202435236077447258019194874334066947121575382822241059491256108522313770314400854222999988833107222174737342860941024290149091<225>] Free to factor
26×10245-719 = 2(8)2441<246> = 17 × 9768055092345310223<19> × [1739697810017925548020291993227620270462534654842859408930458125762168020983727462134719183825304847702732252114379028393620808047835087652312525287405439596070471047674257371703047843143829647485141273980078835620252673782991<226>] Free to factor
26×10246-719 = 2(8)2451<247> = 2444173 × 22853570220997838994731125799<29> × 27359442682640633983921698761921896510117<41> × 1890329857034523086903372598876659695220628700401791133317949709221042407096188269885069260285760012958226860754869251006220238571702868225569867166238079034024689071081159<172> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=151272034 for P41 x P172 / February 10, 2013 2013 年 2 月 10 日)
26×10247-719 = 2(8)2461<248> = 32 × 7 × 1395907 × 120262559 × 337011239 × 4268407667<10> × 359919666328906522449028152559413119<36> × [5275790116978000389000771225647646223435078291625228704490747418984574130432593828544078074355984084469605537280137304106368759419276435793665460699196657369026440915063699912417<178>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=3883657530 for P36 / February 10, 2013 2013 年 2 月 10 日) Free to factor
26×10248-719 = 2(8)2471<249> = 703393 × [410707654026822685026562517524184757154092930820876649168940960300840197285001256607456839759407456271087271111439677234332569259132361125130458916834385455767812430446263879351783268939112116397076582918637076127980928000262852898577166518417<243>] Free to factor
26×10249-719 = 2(8)2481<250> = 6343 × 2241638518459<13> × 76851074974312378213<20> × 53477472538829439078042859<26> × 349997948681488235876821831<27> × 141248624577929630145504808239594336642221845953745805369535068898649315623313442480310203088176142946488305809939533107194120973154236817130408360259248001394469<162>
26×10250-719 = 2(8)2491<251> = 3 × 1432271 × [6723329334762506278232003321738434716355794140654687297047576631538046661301967036705783772505084323867221796454462618896584256491704174440192972998566353455197814959340536553228844003425070834799859544478405015272689057887529405838440930263637<244>] Free to factor
26×10251-719 = 2(8)2501<252> = 19 × 2593 × 5863740209245314082223169441794484926804735195747435177479629140984612192520122777698842813422552395901696650676698172993867880911946919619398154726061844416929971154908739904781880140639553634052994679783402457809261552132033387234637564472951243<247>
26×10252-719 = 2(8)2511<253> = 23 × 181 × 509 × 21457043920303015909<20> × [63538470336461143868652036107060956475677876475798920613089205269515764063392191338627973603611390820615020803465345110693983068010577849883247739457585938617301459614693966344959136847065376415044239695321443512973983465615627<227>] Free to factor
26×10253-719 = 2(8)2521<254> = 3 × 7 × 34213 × 41671571089056210893<20> × 365651668811926002428849<24> × 16914153687352914528236137<26> × [156013679556834445185500184684018257211283352948186953218840295228864571955320306948694297094211660589089295631996114185283128568425468581637878546629031247176339478937433800035733<180>] Free to factor
26×10254-719 = 2(8)2531<255> = 281 × 199967 × 215196566261<12> × 90040866017779<14> × [265332950700205859727890455695828264036006001868244667174496124779336147388827116601578503402643145719513675962779966113085560324845838200273260911350974834647639445021844700720435152807065445155215590117192521782328681737<222>] Free to factor
26×10255-719 = 2(8)2541<256> = 43 × 122504633 × 30087477499<11> × 2058921560429<13> × 18722098418354885558591<23> × [472856937900909277029696024354601126226500517063718450307616038126865897248643282650209785773605071142705471075463634612674840429845930802700612380786924392652907212020744111077632438893085540704037259<201>] Free to factor
26×10256-719 = 2(8)2551<257> = 32 × 269 × 2169011064721109990327526713736052481<37> × [5501413408519354492747842531059268676826793550525033330954121717094331369259654567396468252355348471110419009215830311031759055128878877286887398022649330200818202580361744079428066371110418997337366589900082391362381<217>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1356120644 for P37 / April 2, 2016 2016 年 4 月 2 日) Free to factor
26×10257-719 = 2(8)2561<258> = 201581 × 39128192107<11> × 137603678714279<15> × [266171416988487722377583702504622880356923025927523862158003136376337321788603562091761284682510572779314198731003221389268421614437881409101286733985460033086536884249543761704754987134813817568130050833798323343100821082344617<228>] Free to factor
26×10258-719 = 2(8)2571<259> = 131 × 4113103 × [5361545027703687772766244720146101557601891909587275549282209683378954936497997823702269055986170209694915350129953963545226684233826689653482616926666513322354608935270451880709020703434348823633520232441899080637253041340902103545833532769920034517<250>] Free to factor
26×10259-719 = 2(8)2581<260> = 3 × 72 × 47 × [4181341567359804441871311172223026326369791415384120551293803573438831797494411476174394107524806612952509609044563451858284685032405397147038484424502661584728454029365883469226934272526977694150946430581688940351554333317251250381949470095366751901706309<256>] Free to factor
26×10260-719 = 2(8)2591<261> = 195161 × 3714769090689520417<19> × [398479496981237423948933816513762510919025255816993519897687600337762395874773938380089253890553703407430401428941268710910971613133771197195133976845099383147937059767222248090469611748319599341895081928374942435085986617120909189160313<237>] Free to factor
26×10261-719 = 2(8)2601<262> = 17 × 113 × 10859 × 704453 × [196590088225115295268228910633708899281031044214647610796716898931822667115944243165886278710971983800416499037833079639909218034851347176640356483621260456088829673385475825787268306075601428654837927877743105830242966672243162742487264858297989943<249>] Free to factor
26×10262-719 = 2(8)2611<263> = 3 × 1377371 × 1973440421501<13> × [3542702056762129842619619558624549524932182657156535971931287782232267994544156779696706601675308630085897497291196741601958686717114570108150988849532796413635091878751995881356433596031453059884414573086948747493352908220280703903809478328437<244>] Free to factor
26×10263-719 = 2(8)2621<264> = 53653 × 1818840213776317703<19> × 452682017829629990749847183305201<33> × 6539567656824274385119740454789512756179407972732571378959475269323775933437487294016742221271792533790223934761799561273139762413803756457489711917845618009710823417944816389187457704368316858862679578864859<208> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=211980500 for P33 x P208 / April 3, 2016 2016 年 4 月 3 日)
26×10264-719 = 2(8)2631<265> = 2833 × 6977 × 22933393605121742012676662343877739<35> × [6373048391212174029335133060245326261165875666249808866379106091088337381810656061752704218617150940316674668443211986388657423261960857849240620148617098801324238668573814182371817515587789306380731880324620868625461467619<223>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3390500056 for P35 / April 3, 2016 2016 年 4 月 3 日) Free to factor
26×10265-719 = 2(8)2641<266> = 33 × 7 × 113920054013839<15> × [1341741498330107119601560624853130857295550901818643899366331506821831490382520985289426731698156973214487291241417198932201180927827379302753874373577103128706440243199810420116473169689731919483382789514830238911617941955733989349654657870750525611<250>] Free to factor
26×10266-719 = 2(8)2651<267> = 59 × 109 × 251 × 120963047 × [1479537201390596069071187134170941534496806290233097094634118551393393311666399131784279927986792203384256822003495528335463349810327726932859834263748015414859822465312122053132654702542031730820566586993010131257997928638615033945971524280867040931483<253>] Free to factor
26×10267-719 = 2(8)2661<268> = 67 × 1083851 × 5633059622591<13> × 576402529489100174326769<24> × 12252260647846724086760364470788662358383161064610402810138040071823754256984627034326608104144188181433258925423033142448437709388985084205663373199463118337567995087884769279456582100572924247605208896247925413571223611167<224>
26×10268-719 = 2(8)2671<269> = 3 × 173 × 1373 × 9341 × 537496409 × 942980281 × 4519039757<10> × 3424619170824569834119<22> × 553302901321732964207110127459897091926847985785462531014710946621634462148266735412307112190311342803504111429573688596344013885731958433544829862359742562455078365631788827403453368490232291951719721074864749<210>
26×10269-719 = 2(8)2681<270> = 192 × 29 × 10531 × 774773 × [3382061871619377934250936400024068422942602712177202868831632281986930989240855531484924635030670392259634131181380455562979613691818584107035556037740841020574593301666205041974464235847574467331106685547324511964185635422668378459773074523404916026159523<256>] Free to factor
26×10270-719 = 2(8)2691<271> = 4349 × 193682019406081<15> × 129878014919677714618057536374400351601<39> × 26406843044351721608005294505722715828144515417027113766378954298563509285454213799688006819583921534000112145640498273309814491827879100947580810337981467376675285362738529181289865869859328073338312171677366620949<215> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2473035641 for P39 x P215 / April 3, 2016 2016 年 4 月 3 日)
26×10271-719 = 2(8)2701<272> = 3 × 7 × 257 × 1668449 × 4217431 × 17900644073923459660589<23> × 41597107868939993523682597780115072797<38> × [1021611339384197091197984329319341922972758569694185696693113394383293277142746326010545035889635041880816422921453214149864467825051082582848070046077128801807294021858928662655552654936377144499<196>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1571690558 for P38 / April 3, 2016 2016 年 4 月 3 日) Free to factor
26×10272-719 = 2(8)2711<273> = 36280243 × 119576549 × 38886448141<11> × [1712443924398732015934751615580383716036021625130399968241681037353904890823501737593579674878611111973601542100545763447152693837473111670982732457359459053541771804600464926815696087977428958483367052685698327627877854171128322516257875128987563<247>] Free to factor
26×10273-719 = 2(8)2721<274> = 577 × 967 × 10181 × 1233226028921<13> × 178328382015593<15> × 3632654985416688263768281705997<31> × [636576804463707577292719345357420331577437938135715335903366912164547256693132288320587283002510222009305764247328913063608608889474798343054638087697592728347330770947938818816704001697031513399586629239079<207>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2102917102 for P31 / April 4, 2016 2016 年 4 月 4 日) Free to factor
26×10274-719 = 2(8)2731<275> = 32 × 23 × [139559849704777241009125067096081588835212023617820719269994632313472893183038110574342458400429414922168545356951154052603327965646806226516371443907675791733762748255501878690284487385936661298980139559849704777241009125067096081588835212023617820719269994632313472893183<273>] Free to factor
26×10275-719 = 2(8)2741<276> = definitely prime number 素数
26×10276-719 = 2(8)2751<277> = 43 × 331 × 3373 × 4987 × 7167291881345934826153<22> × [1683540578560352173737971756128600446211653539571165271593541267578792419647941748617426570629246989641721072447905373748777822717716801992255999740595211391060570294225396707305301108949987042802652251364115500145810027161252669667267788739119<244>] Free to factor
26×10277-719 = 2(8)2761<278> = 3 × 7 × 17 × 227 × 1997 × 9467 × 11685462100059931<17> × [1613616893678780729159463284181108265691172076296905066941329550310380220136990154123588440069998077103661501252232597004379534005726858794281028535872844164228573381596246269779591070330425118499161647855172537638603835462448080707225348547388004691<250>] Free to factor
26×10278-719 = 2(8)2771<279> = 127 × 613 × 1327824123250981667<19> × 183591772308733926853346383499<30> × [15222040541963342608542895368213354897321969566238682439546958084707748467687373926170997635919931041244281498639215292545450423549925115673248476539107967870858178053592256357169667857964819341911860636517002115376739365567907<227>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=1789626168 for P30 / April 4, 2016 2016 年 4 月 4 日) Free to factor
26×10279-719 = 2(8)2781<280> = [2888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888881<280>] Free to factor
26×10280-719 = 2(8)2791<281> = 3 × 623729 × 9294367 × 996619749281632268685301<24> × 58187170036874190800579989<26> × 1560071623952301210432054988441<31> × 18360840911585617937974484669449193321719478617204166293235891967987599790859822771447559449464186521303814570327059403464482644605631404285527643839165911162275825429339117635417778230661<188> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3556956862 for P31 x P188 / April 4, 2016 2016 年 4 月 4 日)
26×10281-719 = 2(8)2801<282> = 1493 × 5753897 × [33628612387093094582490352926432907829519102644338209591047363721167390388027382256311504692593825207559444034230537180305210556675339263205752136577891788432942227476536663998735141281510450260690489997435629338550699449580552826260931091544018702565506218204898053959461<272>] Free to factor
26×10282-719 = 2(8)2811<283> = 107 × 281 × 3313 × 199471397565674423797<21> × 938040030647651198777<21> × 154994862212679948602227452219662479028445176678278667791731364994841993746609218264064409681862046000228384104360907490130998315161420893789542628253325673807961785939643976607000243652993150617893011618521267305488233697589573178919<234>
26×10283-719 = 2(8)2821<284> = 32 × 7 × 151 × 16493 × 87959 × 217835568609103<15> × [9609584409217278709126376732452498449820827474893377331183093504242698424104752221500620796142794228716366532174534341620119937748942114034334929783978904858415073895682566841208176447349977014418945003835930847875967150508815640009057703844676681569007317<256>] Free to factor
26×10284-719 = 2(8)2831<285> = 13513 × 468813856739<12> × 1162995301751<13> × 43666427438403192886629003244570105991<38> × 897951747979033421918781145014731048183635552551032825068968148632294582434754836921497942247219735202061266791864759370810432140089691779380429070374796972748411714812207995019116288192564432626652821664184634338192963<219> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2510581083 for P38 x P219 / April 5, 2016 2016 年 4 月 5 日)
26×10285-719 = 2(8)2841<286> = 840459013 × 8322885576836371507324067<25> × 412990798548073863710260180674612307002543061565931350401017470394277376337107602933517361239136979386696083933547419752664115909121437360223212736410570450627905478254872913456893961430319784711697571447198709893548356286450709743471741079981576593311<252>
26×10286-719 = 2(8)2851<287> = 3 × 163 × 67559 × 365766048678981064495249611080982353<36> × 2390756670177403303416422921091095559268679078070461285656133480317661633210469477322879514213263124265410265336382408987186616600204985648341126798797203356233850914036220095693782561331069840832626783844288652728136211052829209466002117154527<244> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1108504355 for P36 x P244 / April 5, 2016 2016 年 4 月 5 日)
26×10287-719 = 2(8)2861<288> = 19 × 4552537110192304222211851<25> × 828933546177052860466042719691121<33> × 4029062714253761324859990792192874669638698127577098571655562299833978233913853309747661389226299787757133964191476477028107041117416652825624418417262361022678457539603872615155461272552349185358180086913763207763547295587293169<229> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=1920559117 for P33 x P229 / April 5, 2016 2016 年 4 月 5 日)
26×10288-719 = 2(8)2871<289> = 341617 × 424693 × 23027038557583<14> × 15008841575481097<17> × [57614394180239743022149329996688860256721466746523483715669835345853520011106408308426620070017715717762774007604333490657274386326400992898242805624494999920288417929943973080313754198494227459332222722834418503119853629719464093041047287652440251<248>] Free to factor
26×10289-719 = 2(8)2881<290> = 3 × 7 × [1375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661375661<289>] Free to factor
26×10290-719 = 2(8)2891<291> = 1999906151691065449723<22> × 3749772097037311031473854161<28> × [38522667233579847781196272011916806022558378180384392615618107035149879679105175970161527662661242376340063155149840380457555696347104689667875752954901804538405813907331662301653377738045007953756751553923243981777837179250334428900683603027<242>] Free to factor
26×10291-719 = 2(8)2901<292> = 829 × 1010861 × 61590761107<11> × 3587662772039<13> × 24618507092597067602520748799212586243<38> × [633717891490417929978309864245081160692668708110479763541638712502608069823275186061397552517271847463998913553166458740794823123105288795862720494641408634081707696415475132945411121419463652402608112579697063781224700791<222>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1013218483 for P38 / April 5, 2016 2016 年 4 月 5 日) Free to factor
26×10292-719 = 2(8)2911<293> = 34 × 90371 × 667807087 × [5909703716487610464227831697167049099394902301007103777843893386526093365512048700573280404880263326835789877880772803983937114023715082576917511318645738843056254556380406280813933628339406598814575883094615916778786215242094779792934898547432432044546500535261649019987984613<277>] Free to factor
26×10293-719 = 2(8)2921<294> = 17 × 2087 × [8142531888973445950812843904531945344820566782854333236249299272496093150564809856221677298934267845454744747283995853572222691983677355305642461424755175988299808024152002279908928912564866227596293268944696549758699199213306149803796298906082158146759742069643701594996727328529239518839<289>] Free to factor
26×10294-719 = 2(8)2931<295> = 61 × 6151 × 679223387 × [11335551265393737659932464313138111817269512907781884805890770797323232488543689262214240483517666195049869977053375188999397271713414154701480095876345589864721068288156018704870092921422801974597172402861599077823732850036047530123331599332700677996246924745271267468872071118633<281>] Free to factor
26×10295-719 = 2(8)2941<296> = 3 × 7 × 187631 × [7331738229084616408672668032795090690640999491882341731247295892796902757943310943614731368354170556365289644971573863921077334639059513946925941745561104835425176946567335149179300732082521872055584501822063845396876718993000417711686105501626391031659883821840001788944127896646403716131<289>] Free to factor
26×10296-719 = 2(8)2951<297> = 23 × 1987 × 990599 × 3277599791<10> × 52688047478735239212101<23> × [36952108310097665304562098354619809903235209398868185719328093279889553093893763864982288155539561880432001468298995869932456796597759399537039858263861411119530764188101116001810322028540374130570373707486805590869612939157496750888052523643713830688209<254>] Free to factor
26×10297-719 = 2(8)2961<298> = 29 × 43 × 10067 × 171707 × 28693447 × 821683007 × 6745256773<10> × 213503090279191625183<21> × 3812307253337248856993969<25> × [10353775378274643284101766063066237338225476682086985523850865277316074828564155400617542877085435585113892172323375013318585201352662323801860141540079165032912196883729437759573257738893196903160279201848868521813<215>] Free to factor
26×10298-719 = 2(8)2971<299> = 3 × 18719 × 93973405021<11> × 2851999010403051164416451<25> × 1918848401159361536748841510398812363<37> × 1000303851798446998917595175280044179629038903156835567290575822216049207851619393598917657327856456963552152523210524938977784576124803523927111730635463651510487196057031497582575194768778292731321203211743744286766774921<223> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2736022935 for P37 x P223 / April 6, 2016 2016 年 4 月 6 日)
26×10299-719 = 2(8)2981<300> = 7490443001<10> × 38567664002025143891604774910814235416793726815903299988129619156137930658140107097904460629496069626241441162111165885219034842621438284260016477614057327620653619721588598854206659076730472391573958509171611128970246187030412313645331334240652729704803328612751683749030224933272793605881<290>
26×10300-719 = 2(8)2991<301> = 67 × 853 × 4001 × 21211 × [595631022649980451033263261376460618174181329414996021338445281940387332890089022387356171188504396197160027857894014932910078549047530417048734256046233467780139970878309879230089942111099763689082012341603756756970019341810496499398863104413385635517974906886185168948480928885545909821<288>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク