Table of contents 目次

  1. About 288...883 288...883 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 288...883 288...883 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 288...883 288...883 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 288...883 288...883 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

28w3 = { 23, 283, 2883, 28883, 288883, 2888883, 28888883, 288888883, 2888888883, 28888888883, … }

1.3. General term 一般項

26×10n-539 (1≤n)

2. Prime numbers of the form 288...883 288...883 の形の素数

2.1. Last updated 最終更新日

May 11, 2015 2015 年 5 月 11 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 26×101-539 = 23 is prime. は素数です。 (Makoto Kamada / November 24, 2004 2004 年 11 月 24 日)
  2. 26×102-539 = 283 is prime. は素数です。 (Makoto Kamada / November 24, 2004 2004 年 11 月 24 日)
  3. 26×107-539 = 28888883 is prime. は素数です。 (Makoto Kamada / November 24, 2004 2004 年 11 月 24 日)
  4. 26×1028-539 = 2(8)273<29> is prime. は素数です。 (Makoto Kamada / PPSIQS / November 24, 2004 2004 年 11 月 24 日)
  5. 26×1073-539 = 2(8)723<74> is prime. は素数です。 (Makoto Kamada / PPSIQS / November 24, 2004 2004 年 11 月 24 日)
  6. 26×10295-539 = 2(8)2943<296> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / November 24, 2004 2004 年 11 月 24 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 2, 2005 2005 年 1 月 2 日)
  7. 26×10494-539 = 2(8)4933<495> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 29, 2006 2006 年 5 月 29 日)
  8. 26×10598-539 = 2(8)5973<599> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 29, 2006 2006 年 5 月 29 日)
  9. 26×102600-539 = 2(8)25993<2601> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Youcef L / Primo 4.0.0 - alpha 14 - LG64 / April 3, 2012 2012 年 4 月 3 日)
  10. 26×103730-539 = 2(8)37293<3731> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Ray Chandler / Primo 4.0.2 - LX64 / April 15, 2013 2013 年 4 月 15 日)
  11. 26×107549-539 = 2(8)75483<7550> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 27, 2004 2004 年 12 月 27 日)
  12. 26×1015865-539 = 2(8)158643<15866> is PRP. はおそらく素数です。 (Erik Branger / PFGW / April 29, 2010 2010 年 4 月 29 日)

2.3. Range of search 捜索範囲

  1. n≤30000 / Completed 終了
  2. n≤50000 / Completed 終了 / Erik Branger / May 1, 2013 2013 年 5 月 1 日
  3. n≤100000 / Completed 終了 / Bob Price / May 11, 2015 2015 年 5 月 11 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

  1. 26×103k-539 = 3×(26×100-539×3+26×103-19×3×k-1Σm=0103m)
  2. 26×106k+5-539 = 7×(26×105-539×7+26×105×106-19×7×k-1Σm=0106m)
  3. 26×1015k+3-539 = 31×(26×103-539×31+26×103×1015-19×31×k-1Σm=01015m)
  4. 26×1016k+4-539 = 17×(26×104-539×17+26×104×1016-19×17×k-1Σm=01016m)
  5. 26×1018k+13-539 = 19×(26×1013-539×19+26×1013×1018-19×19×k-1Σm=01018m)
  6. 26×1022k+1-539 = 23×(26×101-539×23+26×10×1022-19×23×k-1Σm=01022m)
  7. 26×1028k+19-539 = 29×(26×1019-539×29+26×1019×1028-19×29×k-1Σm=01028m)
  8. 26×1030k+21-539 = 211×(26×1021-539×211+26×1021×1030-19×211×k-1Σm=01030m)
  9. 26×1035k+22-539 = 71×(26×1022-539×71+26×1022×1035-19×71×k-1Σm=01035m)
  10. 26×1043k+35-539 = 173×(26×1035-539×173+26×1035×1043-19×173×k-1Σm=01043m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 16.04%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 16.04% です。

3. Factor table of 288...883 288...883 の素因数分解表

3.1. Last updated 最終更新日

March 18, 2018 2018 年 3 月 18 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=190, 191, 194, 201, 203, 207, 213, 214, 223, 224, 225, 226, 231, 233, 234, 236, 237, 239, 240, 241, 243, 244, 245, 246, 247, 248, 249, 251, 252, 253, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 269, 270, 271, 273, 275, 276, 278, 279, 283, 284, 285, 286, 287, 288, 289, 290, 291, 294, 296, 297, 299, 300 (63/300)

3.4. Factor table 素因数分解表

26×101-539 = 23 = definitely prime number 素数
26×102-539 = 283 = definitely prime number 素数
26×103-539 = 2883 = 3 × 312
26×104-539 = 28883 = 17 × 1699
26×105-539 = 288883 = 7 × 41269
26×106-539 = 2888883 = 32 × 199 × 1613
26×107-539 = 28888883 = definitely prime number 素数
26×108-539 = 288888883 = 4603 × 62761
26×109-539 = 2888888883<10> = 3 × 9973 × 96557
26×1010-539 = 28888888883<11> = 521 × 1153 × 48091
26×1011-539 = 288888888883<12> = 7 × 337 × 122462437
26×1012-539 = 2888888888883<13> = 3 × 962962962961<12>
26×1013-539 = 28888888888883<14> = 19 × 1520467836257<13>
26×1014-539 = 288888888888883<15> = 78577 × 3676506979<10>
26×1015-539 = 2888888888888883<16> = 32 × 47 × 6829524560021<13>
26×1016-539 = 28888888888888883<17> = 2661067 × 10856129849<11>
26×1017-539 = 288888888888888883<18> = 7 × 1399 × 62497 × 472015123
26×1018-539 = 2888888888888888883<19> = 3 × 31 × 5333 × 5824736805907<13>
26×1019-539 = 28888888888888888883<20> = 29 × 996168582375478927<18>
26×1020-539 = 288888888888888888883<21> = 17 × 16993464052287581699<20>
26×1021-539 = 2888888888888888888883<22> = 3 × 211 × 739 × 6175650218772409<16>
26×1022-539 = 28888888888888888888883<23> = 71 × 139 × 6151 × 8685763 × 54790339
26×1023-539 = 288888888888888888888883<24> = 7 × 23 × 5743 × 312439652581526621<18>
26×1024-539 = 2888888888888888888888883<25> = 34 × 151 × 236194006122875389493<21>
26×1025-539 = 28888888888888888888888883<26> = 643 × 26711 × 1682014433792829271<19>
26×1026-539 = 288888888888888888888888883<27> = 163 × 1772324471710974778459441<25>
26×1027-539 = 2888888888888888888888888883<28> = 3 × 15068384293<11> × 63906185576266877<17>
26×1028-539 = 28888888888888888888888888883<29> = definitely prime number 素数
26×1029-539 = 288888888888888888888888888883<30> = 7 × 487 × 235952719 × 345958373 × 1038137801<10>
26×1030-539 = 2888888888888888888888888888883<31> = 3 × 157 × 6133522057088936069827789573<28>
26×1031-539 = 28888888888888888888888888888883<32> = 19 × 197 × 1301 × 51972502931<11> × 114145838429251<15>
26×1032-539 = 288888888888888888888888888888883<33> = 4401083 × 65640409164946193672986601<26>
26×1033-539 = 2888888888888888888888888888888883<34> = 32 × 31 × 359 × 1597 × 13799 × 53927 × 1556173 × 15596082331<11>
26×1034-539 = 28888888888888888888888888888888883<35> = 45361 × 6019511 × 105800326014717202195573<24>
26×1035-539 = 288888888888888888888888888888888883<36> = 72 × 173 × 103123 × 330470818868770172430517973<27>
26×1036-539 = 2888888888888888888888888888888888883<37> = 3 × 17 × 56644880174291938997821350762527233<35>
26×1037-539 = 28888888888888888888888888888888888883<38> = 97 × 11497 × 599993 × 43174606628082076343804659<26>
26×1038-539 = 288888888888888888888888888888888888883<39> = 59 × 4896421845574387947269303201506591337<37>
26×1039-539 = 2888888888888888888888888888888888888883<40> = 3 × 224027 × 35452033 × 145670190661<12> × 832333523953511<15>
26×1040-539 = 28888888888888888888888888888888888888883<41> = 1381 × 4481 × 62978890133<11> × 74125427860056573352091<23>
26×1041-539 = 288888888888888888888888888888888888888883<42> = 7 × 41269841269841269841269841269841269841269<41>
26×1042-539 = 2888888888888888888888888888888888888888883<43> = 32 × 320987654320987654320987654320987654320987<42>
26×1043-539 = 28888888888888888888888888888888888888888883<44> = 5639273 × 11867082990461<14> × 431681800588277320063511<24>
26×1044-539 = 288888888888888888888888888888888888888888883<45> = 61 × 18043 × 262477604855512640467161679238839174621<39>
26×1045-539 = 2888888888888888888888888888888888888888888883<46> = 3 × 23 × 631 × 1176403 × 95359886549<11> × 591467028120387204196751<24>
26×1046-539 = 28888888888888888888888888888888888888888888883<47> = 331 × 383 × 5881 × 38748321223953142071241230608666988991<38>
26×1047-539 = 288888888888888888888888888888888888888888888883<48> = 7 × 29 × 432354383 × 3532329199660883<16> × 931823723885928156749<21>
26×1048-539 = 2888888888888888888888888888888888888888888888883<49> = 3 × 31 × 1149713249<10> × 25319299155343<14> × 1067103817965503628468833<25>
26×1049-539 = 28888888888888888888888888888888888888888888888883<50> = 19 × 1520467836257309941520467836257309941520467836257<49>
26×1050-539 = 288888888888888888888888888888888888888888888888883<51> = 463 × 623950083993280537556995440364770818334533237341<48>
26×1051-539 = 2(8)503<52> = 33 × 211 × 7609167541<10> × 443850792263<12> × 150144861276938505967549633<27>
26×1052-539 = 2(8)513<53> = 17 × 5351 × 2915369 × 142848986289275239<18> × 762563952827040945606139<24>
26×1053-539 = 2(8)523<54> = 7 × 10301 × 387614214592091<15> × 10336028930091122523820759349919259<35>
26×1054-539 = 2(8)533<55> = 3 × 31467022046831281525947637<26> × 30602290916815021825028388653<29>
26×1055-539 = 2(8)543<56> = 3907 × 32357920897<11> × 228510846077006343182392416071657453069777<42>
26×1056-539 = 2(8)553<57> = 5327617 × 54224785469542740945696526024466264915231122824499<50>
26×1057-539 = 2(8)563<58> = 3 × 71 × 14942671 × 204797381 × 9138628317613<13> × 484973030347950344229514057<27>
26×1058-539 = 2(8)573<59> = 2280975197<10> × 76807879739976403<17> × 164893865491261982679216008113813<33>
26×1059-539 = 2(8)583<60> = 7 × 3889 × 18211 × 181891 × 47070197 × 102605203 × 1200213089<10> × 552682981559320659379<21>
26×1060-539 = 2(8)593<61> = 32 × 3473457458938432713999623<25> × 92411569197421163473506330545389069<35>
26×1061-539 = 2(8)603<62> = 47 × 131 × 4880401 × 99188910942743<14> × 1699717592389651<16> × 5702513027980746759283<22>
26×1062-539 = 2(8)613<63> = 521 × 123953 × 330041 × 111027853 × 2398850840895497<16> × 50890063431773379986797111<26>
26×1063-539 = 2(8)623<64> = 3 × 31 × 3361 × 12853 × 719076125928898083277227840373535691758541861000671507<54>
26×1064-539 = 2(8)633<65> = 24728707 × 49470101 × 2260312940370769483<19> × 10447636675734694712582373063943<32>
26×1065-539 = 2(8)643<66> = 7 × 18237064948824131<17> × 2262965087071328346354291898332058344808914023399<49>
26×1066-539 = 2(8)653<67> = 3 × 457 × 124356647 × 16944329181855726849912433016030866137834362358926318159<56>
26×1067-539 = 2(8)663<68> = 19 × 23 × 317 × 4651 × 23529145969805367313057<23> × 1905625851745351180632322734492252761<37>
26×1068-539 = 2(8)673<69> = 17 × 139 × 167 × 73020847 × 10025447787846902035799060738151147668040130758175699009<56>
26×1069-539 = 2(8)683<70> = 32 × 311 × 1032114644118931364376166091064268984954944226112500496208963518717<67>
26×1070-539 = 2(8)693<71> = 11772144008625352936882831119871<32> × 2454004034245778677612569647178624487373<40>
26×1071-539 = 2(8)703<72> = 7 × 263 × 9200216152100833667020144479027313<34> × 17056071940081274390912944213268051<35>
26×1072-539 = 2(8)713<73> = 3 × 13399 × 60352332982824689<17> × 554406677023185796238369<24> × 2147903084837676278060248679<28>
26×1073-539 = 2(8)723<74> = definitely prime number 素数
26×1074-539 = 2(8)733<75> = 193 × 2420339 × 8197331 × 5564697463989247<16> × 13557615121906524061356232177402366206063397<44>
26×1075-539 = 2(8)743<76> = 3 × 29 × 3217 × 32341 × 71551 × 11633087 × 53045401229<11> × 7797176040029802749<19> × 927067419008571031236361<24>
26×1076-539 = 2(8)753<77> = 12659 × 2282083015158297566070691910015711263835128279397178994303569704470249537<73>
26×1077-539 = 2(8)763<78> = 73 × 19181 × 20021 × 40768794806249<14> × 53796229089970774559188524785395243298817717500700269<53>
26×1078-539 = 2(8)773<79> = 33 × 31 × 113 × 173 × 2689521597701<13> × 65645626549678747182974714292342202793993602651097058834791<59>
26×1079-539 = 2(8)783<80> = 9689 × 18376251629<11> × 162253828663502922013881991161793969689712604823158891761857023543<66>
26×1080-539 = 2(8)793<81> = 149 × 3739 × 379349491 × 2762817283<10> × 494763251747882803960244506191624325864890194463783774701<57>
26×1081-539 = 2(8)803<82> = 3 × 211 × 101681 × 44883562432242112597331882475630292832600710164642453389935234348654238971<74>
26×1082-539 = 2(8)813<83> = 179 × 433 × 2687 × 4783 × 228591936193<12> × 495197145915943652607289<24> × 256202182352181120617501815863318857<36>
26×1083-539 = 2(8)823<84> = 7 × 101993344182873498221<21> × 404632690500320042795156518486251126254452862333725796145627689<63>
26×1084-539 = 2(8)833<85> = 3 × 17 × 109873 × 834641 × 63674344091<11> × 9700753853692270114904054767068964433160293946583673079734291<61>
26×1085-539 = 2(8)843<86> = 19 × 863 × 2309 × 763031573392498566755242012969206566636807773831407827559982594310695134470771<78>
26×1086-539 = 2(8)853<87> = 1656829 × 990326294101<12> × 124200958874130049117021787299<30> × 1417587555680422488809749228820882433073<40>
26×1087-539 = 2(8)863<88> = 32 × 368605386497<12> × 122722268379712171<18> × 4478302718334971613257161<25> × 1584491196346680701042734429810441<34>
26×1088-539 = 2(8)873<89> = 1638053 × 137606717 × 227240810634923504145514717018552417<36> × 563997170983684459953734679637124100899<39>
26×1089-539 = 2(8)883<90> = 7 × 23 × 7383367468062612619<19> × 305541922612303349179423229490727<33> × 795389167067381883751508539184860031<36>
26×1090-539 = 2(8)893<91> = 3 × 229 × 4205078440886301148309881934336082807698528222545689794598091541322982371017305515122109<88>
26×1091-539 = 2(8)903<92> = 1277 × 1693 × 94907 × 13468901 × 1812658645079<13> × 500094185214109<15> × 11531471906355539056089732059183838410168505239<47>
26×1092-539 = 2(8)913<93> = 71 × 316939267 × 19393173077<11> × 12279042166220612257361535632617<32> × 53911706186232100990751600370806708374291<41>
26×1093-539 = 2(8)923<94> = 3 × 31 × 751 × 1663 × 621726439 × 21852411522334032581<20> × 1830699222335079992904512314329836065030960527598959786293<58>
26×1094-539 = 2(8)933<95> = 1777 × 16547 × 2872703 × 17048431949<11> × 150755854532003887<18> × 1646843561514781816145731<25> × 80802061773522455346789002023<29>
26×1095-539 = 2(8)943<96> = 7 × 241919 × 692568572611309840391582974155547<33> × 246320206317912006736999730094298886516368743245807754833<57> (Makoto Kamada / GGNFS-0.54.5b for P33 x P57)
26×1096-539 = 2(8)953<97> = 32 × 59 × 5440468717304875496965892446118434818999790751203180581711655157982841598660807700355722954593<94>
26×1097-539 = 2(8)963<98> = 2711254939446629<16> × 1291441459130878261<19> × 3093878270516915234380469543<28> × 2666751423505726769248256211069967949<37>
26×1098-539 = 2(8)973<99> = 4296743177<10> × 9997037383614703610671630471<28> × 6725431077539895465245336203727009108485900250546718622980749<61>
26×1099-539 = 2(8)983<100> = 3 × 151 × 21383 × 1431307 × 133657148411331263163231686121050233<36> × 1558974509339642907651120624582656081214290672232907<52> (Makoto Kamada / GGNFS-0.54.5b for P36 x P52)
26×10100-539 = 2(8)993<101> = 17 × 42899107684828686558348819003465232778837<41> × 39612628255895722732070781029282973412362114467830475246327<59> (Makoto Kamada / GGNFS-0.54.5b for P41 x P59)
26×10101-539 = 2(8)1003<102> = 7 × 2054853599791<13> × 121426997166013585257945094641811871<36> × 165400438930491170714093139841463045980448069972087429<54> (Sinkiti Sibata / Msieve 1.38 for P36 x P54 / 1.49 hours / October 7, 2008 2008 年 10 月 7 日)
26×10102-539 = 2(8)1013<103> = 3 × 541 × 7056254953606319<16> × 121810470780205711661897992036627074980747<42> × 2070872842870751685650025646347946691354497<43> (Serge Batalov / Msieve v. 1.36 for P42 x P43 / 0.52 hours on Opteron-2.6GHz; Linux x86_64 / October 7, 2008 2008 年 10 月 7 日)
26×10103-539 = 2(8)1023<104> = 19 × 29 × 227 × 5189 × 89692426478836592784300376550795841826967<41> × 496265333259345156772057309654185119335498040025379133<54> (Serge Batalov / Msieve-1.38 snfs for P41 x P54 / 0.20 hours on Opteron-2.6GHz; Linux x86_64 / October 7, 2008 2008 年 10 月 7 日)
26×10104-539 = 2(8)1033<105> = 61 × 1123 × 1470236641<10> × 6918276745362442304529579011355599487433<40> × 414606469566875297250530265767866835398335555183037<51> (Sinkiti Sibata / Msieve 1.38 for P40 x P51 / 2.28 hours / October 7, 2008 2008 年 10 月 7 日)
26×10105-539 = 2(8)1043<106> = 34 × 109 × 199 × 849624280316155038972453763277<30> × 1577350554019897265169205252353313<34> × 1226905483766051707687131862935370973<37> (Serge Batalov / GMP-ECM 6.2.1 B1=1000000, sigma=2391236779 for P30, Msieve-1.38 for P34 x P37 / 0.02 hours on Opteron-2.6GHz; Linux x86_64 / October 7, 2008 2008 年 10 月 7 日)
26×10106-539 = 2(8)1053<107> = 5198788583502427<16> × 335500273381690253463142691283043816681<39> × 16562878025476215601525675460299270300212300146053409<53> (Sinkiti Sibata / Msieve 1.38 for P39 x P53 / 2.8 hours / October 7, 2008 2008 年 10 月 7 日)
26×10107-539 = 2(8)1063<108> = 7 × 47 × 163 × 4041941 × 1332776622243035616921865327778711225997451019991203666983428798318435728334429900475946791451269<97>
26×10108-539 = 2(8)1073<109> = 3 × 31 × 157 × 197855550228675357091219018484274288671247783637345996088547968556187171350516326887808293191486123477083<105>
26×10109-539 = 2(8)1083<110> = 24164419 × 1195513489850051387078203241256861540469435200941056720167320757386672068916239570621949937587528543057<103>
26×10110-539 = 2(8)1093<111> = 439 × 5760983087<10> × 4182189643042838924141<22> × 27312785617146313850758876714921005932336564327105193099417509297421109513591<77>
26×10111-539 = 2(8)1103<112> = 3 × 23 × 211 × 373 × 276961 × 2994431199583<13> × 4389479797461684314729<22> × 146131703972019114937959232215204011217772007362426578656908680847<66>
26×10112-539 = 2(8)1113<113> = 1999 × 3652920119<10> × 57551700067427<14> × 68741611968175266373896582825351273448465562026659892730534986136705206763325507191609<86>
26×10113-539 = 2(8)1123<114> = 7 × 563 × 6793 × 21313 × 186889 × 3247996853<10> × 114174169349<12> × 2942519181567680945516359718275531<34> × 2482742627192528643815655303357019782896909<43> (Makoto Kamada / Msieve 1.38 for P34 x P43 / 11 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / October 7, 2008 2008 年 10 月 7 日)
26×10114-539 = 2(8)1133<115> = 32 × 139 × 521 × 14768926414169<14> × 50243903714110700183641543<26> × 35127032119824782398542530158633<32> × 170044287364413797100683809593604737743<39> (Makoto Kamada / Msieve 1.38 for P32 x P39 / 4.5 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / October 7, 2008 2008 年 10 月 7 日)
26×10115-539 = 2(8)1143<116> = 972910031 × 29693278893625559595950849939267291703860424981977484502766822525328540773251508277324862825768201878976093<107>
26×10116-539 = 2(8)1153<117> = 17 × 169198918331<12> × 233800200977259317<18> × 429575450963869629357330934461528233960925183993379379777463096470638392545084141897237<87>
26×10117-539 = 2(8)1163<118> = 3 × 68909 × 881196427 × 135110600865228529<18> × 117373885992064655102413836762642714074209092119277650715222791343493927323802268023663<87>
26×10118-539 = 2(8)1173<119> = 16235249 × 279209969893<12> × 82385800024901<14> × 32041411580799304819<20> × 2414220642275524822507433185600278731396221290250404440181057760601<67>
26×10119-539 = 2(8)1183<120> = 72 × 1303 × 2473 × 26251 × 805350496501588903<18> × 86543697020822287906893840081314982173473402383093968231147739253155118233026721869726881<89>
26×10120-539 = 2(8)1193<121> = 3 × 1049 × 2129688447885029<16> × 534622785885437721301<21> × 806251537463047632701420580829058988617699859411947594921946463975568261896843441<81>
26×10121-539 = 2(8)1203<122> = 19 × 173 × 991 × 67489 × 2007712048273207184446462298497217117810023<43> × 65452021084529422210274885461837884035260977024336997039822115743117<68> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P43 x P68 / 1.61 hours / October 7, 2008 2008 年 10 月 7 日)
26×10122-539 = 2(8)1213<123> = 1396273 × 19402957166974971366426216788597<32> × 10663323221080904571958089552579308973412592003811372507188170021888642482959500866743<86> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P32 x P86 / 2.76 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 7, 2008 2008 年 10 月 7 日)
26×10123-539 = 2(8)1223<124> = 32 × 31 × 479 × 88657 × 10411764445779331<17> × 4577386029919616907920358735921111593023502164133<49> × 5116066918556820603101831088148502094912304324933<49> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P49(4577...) x P49(5116...) / 2.74 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 7, 2008 2008 年 10 月 7 日)
26×10124-539 = 2(8)1233<125> = 4702771018702305749095782377707818488983640114722149202591<58> × 6142950352888021378812891699753388017001993925608663874220496607213<67> (Serge Batalov / Msieve-1.38 snfs for P58 x P67 / 1.00 hours on Opteron-2.6GHz; Linux x86_64 / October 7, 2008 2008 年 10 月 7 日)
26×10125-539 = 2(8)1243<126> = 7 × 6310145134591339<16> × 7155330995836183377322672101607069373<37> × 914036885595968065221316256368672623704512840186938586508794752515903627<72> (Serge Batalov / GMP-ECM 6.2.1 B1=1000000, sigma=1904982041 for P37 x P72 / October 7, 2008 2008 年 10 月 7 日)
26×10126-539 = 2(8)1253<127> = 3 × 1447 × 28935371 × 165228653254615932145236476570314596911<39> × 139195961274715951475738988525401637958819321233452897120611300841286875640923<78> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P39 x P78 / 4.67 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 7, 2008 2008 年 10 月 7 日)
26×10127-539 = 2(8)1263<128> = 71 × 223 × 1131379 × 15345026787558290531448963866298651876102210421274475955901<59> × 105097373460091410047218511082896636270831228339123800626269<60> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P59 x P60 / 4.61 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 7, 2008 2008 年 10 月 7 日)
26×10128-539 = 2(8)1273<129> = 3259 × 6329 × 10861 × 29861809811904979<17> × 2131370352579613462233814865258221222956640337<46> × 20261263429298435688151884603702447939050574911133385351<56> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon, Msieve 1.38 snfs for P46 x P56 / 2.31 hours, 0.17 hours / October 7, 2008 2008 年 10 月 7 日)
26×10129-539 = 2(8)1283<130> = 3 × 197 × 1405092463<10> × 22883030017<11> × 47513010419093603<17> × 791521080795985376571139393<27> × 4042498700628381613581250119116289730502518441753855046647430257<64>
26×10130-539 = 2(8)1293<131> = 2557961551<10> × 236438277260853769814529260092665387318271835347<48> × 47766018217713433955106464691584719775555236704971354158444251526906538639<74> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P48 x P74 / 5.80 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 9, 2008 2008 年 10 月 9 日)
26×10131-539 = 2(8)1303<132> = 7 × 29 × 16477 × 86368754920320006866980391203289161362379411363052091088873814219280103804613413619070407111417255128551753104682684682391693<125>
26×10132-539 = 2(8)1313<133> = 33 × 173 × 643 × 9413 × 3598166688866372353097530833614373367174469093192102914267122273893054636247273328946985028902429025218394113813289563287<121>
26×10133-539 = 2(8)1323<134> = 232 × 97 × 135571 × 2876131 × 109545440891568721810547809<27> × 5002428365042696296439157033787319<34> × 2634831116987297229287109977599312699036948502466768118621<58> (Sinkiti Sibata / Msieve 1.38 for P34 x P58 / 3.57 hours / October 7, 2008 2008 年 10 月 7 日)
26×10134-539 = 2(8)1333<135> = 3797 × 18119 × 3919441955398483<16> × 48729181450302679230167<23> × 817346614801410417204553447<27> × 26899016094044379167524904028782450567466824515766755116715643<62>
26×10135-539 = 2(8)1343<136> = 3 × 50891 × 8468576797819920179<19> × 2234385831187018536128720137052584693208227767358541461701571907873475713701455289815160067333711596710209062049<112>
26×10136-539 = 2(8)1353<137> = 181 × 159607120933087783916513198281154082259054634745242480049109883364027010435850214855739717618170656844689993861264579496623695518723143<135>
26×10137-539 = 2(8)1363<138> = 7 × 21563 × 41029142321912814750708583949<29> × 46647801149261483258230864451435677225991269707280561420744207532823419482080864353602554573078146542987<104> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P29 x P104 / 11.37 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / October 8, 2008 2008 年 10 月 8 日)
26×10138-539 = 2(8)1373<139> = 3 × 31 × 7211 × 37439341 × 530151389 × 217032261110742339942597818960829331477049817827508872233817615281717231869910164738832590794751007004935553046090229<117>
26×10139-539 = 2(8)1383<140> = 19 × 650332942358395019<18> × 25824273646714062684335659000399<32> × 53915380676867209844669001244727<32> × 1679193300944030131679668243451992636232339574284880906011<58> (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=3801838601 for P32(5391...) / September 29, 2008 2008 年 9 月 29 日) (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=4115694971 for P32(2582...) x P58 / September 29, 2008 2008 年 9 月 29 日)
26×10140-539 = 2(8)1393<141> = 3992591893357<13> × 96875987404465823<17> × 746895384748374359959089705740704378058572598674316950072668867286857950868875539289872609176930357458360205953<111>
26×10141-539 = 2(8)1403<142> = 32 × 211 × 307 × 7059277 × 202892219 × 4742337129514889<16> × 4346420857022058791531383<25> × 167848584171363182054503004765095279783138013957685279736514621992226053601688851<81>
26×10142-539 = 2(8)1413<143> = 53089 × 340047641 × 991880503657452655844894459<27> × 132486450373648223508514208908735758773123<42> × 12177431881605206398029290707267400696763668300063466828015931<62> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon, Msieve 1.38 snfs for P42 x P62 / 6.07 hours, 0.43 hours / October 8, 2008 2008 年 10 月 8 日)
26×10143-539 = 2(8)1423<144> = 7 × 283 × 577 × 639430311176401939<18> × 72608421793173348599781043468017773823555749411<47> × 5443651740505919077345587202768020121504697287012529543072932930028188871<73> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P47 x P73 / 17.55 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / October 7, 2008 2008 年 10 月 7 日)
26×10144-539 = 2(8)1433<145> = 3 × 293 × 745609 × 678417907 × 9579681949<10> × 7734361840192667<16> × 18653383673223032000447<23> × 4701108985428404744140196988835695949579299656823171422998472067174091873399879<79>
26×10145-539 = 2(8)1443<146> = 11239 × 216179 × 5232607 × 2857515761752823077296380205207103<34> × 6321322749840508001653491196321933073104039<43> × 125798350480661208614497151909486922156386678885355697<54> (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=854998713 for P34 / September 29, 2008 2008 年 9 月 29 日) (Sinkiti Sibata / Msieve 1.38 for P43 x P54 / 9.57 hours / October 8, 2008 2008 年 10 月 8 日)
26×10146-539 = 2(8)1453<147> = 317 × 209257 × 3997061069623<13> × 514125530874761037767<21> × 1413169940062713959719<22> × 1499640759996931158352302946258206632748618178546493861846290379312052337918146358033<85>
26×10147-539 = 2(8)1463<148> = 3 × 56729549 × 29588801926945123689788161696051<32> × 139196806868612644199754015153798471168262938060269<51> × 4121388922514085391358255144517180551116771872537841893331<58> (Serge Batalov / Msieve-1.38 snfs for P32 x P51 x P58 / 11.00 hours on Opteron-2.6GHz; Linux x86_64 / October 8, 2008 2008 年 10 月 8 日)
26×10148-539 = 2(8)1473<149> = 17 × 696481 × 74377741 × 32804215780521233335490209700456550748236337656937633779034439647521471670580420144283828957451404295191925578691707159514330477268719<134>
26×10149-539 = 2(8)1483<150> = 7 × 269 × 1531 × 4229 × 70639 × 12856007 × 4742624878308117767<19> × 97788970591581258252270720835373003<35> × 56261117004221928191795911695451058499504506266353625153621755380206925363<74> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P35 x P74 / 24.19 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / October 8, 2008 2008 年 10 月 8 日)
26×10150-539 = 2(8)1493<151> = 32 × 2970977 × 134070029 × 805855800107634154771237698747652354489384441941068313256532111425748588411632709253607573474630409356758276799249015256107469665192039<135>
26×10151-539 = 2(8)1503<152> = 75709 × 169021267 × 3133069329813048029514937<25> × 720563021009577795205485637148670889595753412346832249671776180332134614182947491956090383956817839261009868626653<114>
26×10152-539 = 2(8)1513<153> = 924037 × 23877311 × 13093509298616785302065567686835520614581695154960290637152449419998853988466108778330950594260253839263066598881268011977566049861216049769<140>
26×10153-539 = 2(8)1523<154> = 3 × 31 × 47 × 99232075578793<14> × 6660363876901343055973973344680091503160102765073947189753962932778327099808319698331954646270760092673450871292819500117848950188077561<136>
26×10154-539 = 2(8)1533<155> = 59 × 9069461437<10> × 12497082788219<14> × 4320049086309313740633616522467248387253360929363994620217114507257915104733445170442171032322686533413922930839052244146156708679<130>
26×10155-539 = 2(8)1543<156> = 7 × 23 × 601751861 × 434606430250744155498232965602831581<36> × 6861062456898643456131174629095768996957912069600254884539207471769541324001009925483131949479653797412862483<109> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=1810396645 for P36 x P109 / October 8, 2008 2008 年 10 月 8 日)
26×10156-539 = 2(8)1553<157> = 3 × 331 × 587 × 9377 × 32537 × 82779547 × 29861311761897452258856672790427<32> × 6571585131207911210838823149579888907845030427984588149967313321690114167689229511352163744579597243273<103> (Serge Batalov / GMP-ECM 6.2.1 B1=1000000, sigma=3981921852 for P32 x P103 / October 7, 2008 2008 年 10 月 7 日)
26×10157-539 = 2(8)1563<158> = 19 × 313 × 34321501 × 1671089759<10> × 21638934139807<14> × 57074054446152619<17> × 2220772121157679073<19> × 18327578493929997273111231602653<32> × 1684935087308557261733642836693608542354060512864471113923<58> (Serge Batalov / Msieve v. 1.36 for P32 x P58 / 1.22 hours / October 7, 2008 2008 年 10 月 7 日)
26×10158-539 = 2(8)1573<159> = 130811 × 973426505769073<15> × 34425015087386547163<20> × 3241490273279072043571<22> × 12344721383578441602570691129719532666583<41> × 1646960755389981787462956664892649361997386854346581393679<58> (Robert Backstrom / GMP-ECM 6.2.1 B1=2008000, sigma=809588647 for P41 x P58 / October 7, 2008 2008 年 10 月 7 日)
26×10159-539 = 2(8)1583<160> = 33 × 29 × 287107 × 23759322402380015305157<23> × 10313704067523250659900937829730796309<38> × 11921264837382755488951323168235476632314123<44> × 4399002839960155168477804483921875138150723586357<49> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=1193863371 for P38 / October 7, 2008 2008 年 10 月 7 日) (Serge Batalov / Msieve-1.38+polyselect gnfs for P44 x P49 / 1.00 hours on Opteron-2.6GHz; Linux x86_64 / October 8, 2008 2008 年 10 月 8 日)
26×10160-539 = 2(8)1593<161> = 139 × 11833111840768866262117<23> × 24699164607397616188571642243521836798253<41> × 4778115508280883342643806899807566682589691<43> × 148825777520226664598083038604252245390400654880786267<54> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P41 x P43 x P54 / 75.15 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 9, 2008 2008 年 10 月 9 日)
26×10161-539 = 2(8)1603<162> = 72 × 499 × 1787 × 69191 × 2820898047146817411392847106167872926575917073080403520030662745443696079<73> × 33874481999243789182317500712459693487731094537714674684152288464812979533931<77> (Serge Batalov / Msieve-1.38 snfs for P73 x P77 / 20.00 hours on Opteron-2.6GHz; Linux x86_64 / October 8, 2008 2008 年 10 月 8 日)
26×10162-539 = 2(8)1613<163> = 3 × 71 × 2381 × 1286752331<10> × 3518638741<10> × 488013020337713483<18> × 2341843428702214565327<22> × 16478484422634004821354670852019<32> × 66806030166871209272531841587303602230572861871779330755544732265179<68> (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=3012937427 for P32 x P68 / September 30, 2008 2008 年 9 月 30 日)
26×10163-539 = 2(8)1623<164> = 119399142290603076780796237<27> × 241952231269608503953586874310657354898130070810017981222732524369789814241184358858202053756481486424720152830583247210798309314301285759<138>
26×10164-539 = 2(8)1633<165> = 17 × 61 × 173 × 1570859 × 3678654851<10> × 5556478709<10> × 88233409332539930388136681<26> × 22070470776022600268261014908547019424559<41> × 25753450207192235293374738897634290020737717214515574604202694188217<68> (Sinkiti Sibata / GGNFS-0.77.1-20050930-pentium4 gnfs for P41 x P68 / 23.43 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / October 9, 2008 2008 年 10 月 9 日)
26×10165-539 = 2(8)1643<166> = 3 × 1759 × 86073325207738151<17> × 6360264303028910215249393335539691073651202074350897653364815984220467642485100197017274628341967247175114967166146302995631103710833171153824729<145>
26×10166-539 = 2(8)1653<167> = 521 × 1597 × 197787847 × 265118142137434755285925832970724934903901408844488191<54> × 662138969195960498557622691000644669495559191169984336202123246282041767740138009213412163051256367<99> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P54 x P99 / 133.61 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / October 11, 2008 2008 年 10 月 11 日)
26×10167-539 = 2(8)1663<168> = 7 × 2399 × 6323 × 127691 × 2938021 × 180397057763401<15> × 641381666556496229620462884848095705753<39> × 62678442074912406253135639578417547373032295596932760185025327623693360325589453770923938796959<95> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P39 x P95 / 143.96 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / October 13, 2008 2008 年 10 月 13 日)
26×10168-539 = 2(8)1673<169> = 32 × 31 × 666737 × 1167093673337653327127830327069259661809<40> × 13306577381392358475255309881615503665415368980360269644105388734553589493156498969747963330291726610161219478491166215269<122> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=304196581 for P40 x P122 / October 7, 2008 2008 年 10 月 7 日)
26×10169-539 = 2(8)1683<170> = 599 × 564251 × 18224693 × 177056177 × 4722398199915096083<19> × 4741302251973319790706989<25> × 56575334809536652290971314862111609<35> × 20910913013535396971131194830319308120739735863239243650630700492909<68> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=67958517 for P35 x P68 / October 7, 2008 2008 年 10 月 7 日)
26×10170-539 = 2(8)1693<171> = 7229 × 24035351007699908057581878367616649511683898296781394921019100136189478983771471809<83> × 1662655008492786764992070871336132080310708411773454004559517256637120059624426981103<85> (Serge Batalov / Msieve-1.38 snfs for P83 x P85 / 30.00 hours on Opteron-2.6GHz; Linux x86_64 / October 8, 2008 2008 年 10 月 8 日)
26×10171-539 = 2(8)1703<172> = 3 × 211 × 122719 × 180794175688461612300191133500389304146671181730293708035199997373677168279<75> × 205698386608080360118607066964350163888517864066216726017377451689667747458205138175489651<90> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P75 x P90 / 221.55 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / October 18, 2008 2008 年 10 月 18 日)
26×10172-539 = 2(8)1713<173> = 1361 × 100943 × 17925443 × 751138622317<12> × 61848580245836377168833683<26> × 252508952476500950360574767111238814039555397439793304069671993069857964005552605366899757990885522699258916138943691177<120>
26×10173-539 = 2(8)1723<174> = 7 × 5345563 × 356118313 × 94738530119<11> × 82765264775272143387710929<26> × 590730273517065674941601593301<30> × 4680379406791545979074664333491333449194196124011084309121446847153757753651238530807739101<91> (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=2868073495 for P30 x P91 / October 1, 2008 2008 年 10 月 1 日)
26×10174-539 = 2(8)1733<175> = 3 × 151 × 18917 × 2243086562866881513988079273467<31> × 9505588734014909843517432505768084428737<40> × 15810853645946726698592400974520411575672816481225283858869417945537837498204945702733827218560177<98> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=1153297637 for P31 / October 7, 2008 2008 年 10 月 7 日) (Serge Batalov / GMP-ECM B1=3000000, sigma=481747367 for P40 x P98 / October 7, 2008 2008 年 10 月 7 日)
26×10175-539 = 2(8)1743<176> = 19 × 19864097753703704521827520997023829831149889<44> × 1054510268817082005325406588880925137752766424226059<52> × 72586788244848406664760136158312476684344733516938432662645506456827825620239107<80> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon, Msieve 1.38 snfs for P44 x P52 x P80 / 28.77 hours, 3.66 hours / October 19, 2008 2008 年 10 月 19 日)
26×10176-539 = 2(8)1753<177> = 11927 × 24221421052141266780321026988252610789711485611544301910697483766989929478401013573311720373009884202975508416943815619090206161556878417782249424741250011644913967375609029<173>
26×10177-539 = 2(8)1763<178> = 32 × 23 × 797 × 590267 × 346862580444879277150908652639967039<36> × 423620523367189045420004683647513020131665408847<48> × 201892053200696614691006324545970203799153294107874994064293439714560039852942087907<84> (Wataru Sakai / GMP-ECM 6.3 B1=3000000, sigma=4242469622 for P36 / January 8, 2012 2012 年 1 月 8 日) (Warut Roonguthai / Msieve 1.48 snfs for P48 x P84 / March 24, 2012 2012 年 3 月 24 日)
26×10178-539 = 2(8)1773<179> = 11633 × 22031 × 39301 × 73699 × 587527 × 181442170201746685666090130449504837290594058667<48> × 365067895755082371783678724995370730577088272638074903294768377394455427788813827300300079109146079247674831<108> (Dmitry Domanov / Msieve 1.50 snfs for P48 x P108 / May 21, 2013 2013 年 5 月 21 日)
26×10179-539 = 2(8)1783<180> = 7 × 26449 × 51169 × 3677980138409395566969512266999<31> × 3694151360312180723018719885828163760695931611624502557577497707921<67> × 2244360139220201596977463363963440775110994946044220368469156959664817331<73> (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=3145198687 for P31 / October 3, 2008 2008 年 10 月 3 日) (Dmitry Domanov / Msieve 1.50 snfs for P67 x P73 / May 21, 2013 2013 年 5 月 21 日)
26×10180-539 = 2(8)1793<181> = 3 × 17 × 6199 × 2980993 × 3065335888297667769320709110923880681073307448766464059078969059931712426134450513591867962683518246674139866132340814945466334689457203144029089405734991146022448090119<169>
26×10181-539 = 2(8)1803<182> = 807636038863<12> × 66921488789290673389427<23> × 3369328714769614093261442906539<31> × 10427535445872279149019723424643<32> × 15213337374233333928173075243605186576974590180708600740358741591585161684419541914479<86> (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=3913582467 for P31 / October 3, 2008 2008 年 10 月 3 日) (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=3547369548 for P32 x P86 / October 3, 2008 2008 年 10 月 3 日)
26×10182-539 = 2(8)1813<183> = 401 × 2927 × 292141869281<12> × 2863326167144624827<19> × 1095801874200976694559259668059942398362699121733538025643800147<64> × 268514089273233140101737518558727987871662202083943332083165446571301830246608274861<84> (Dmitry Domanov / Msieve 1.50 snfs for P64 x P84 / June 7, 2013 2013 年 6 月 7 日)
26×10183-539 = 2(8)1823<184> = 3 × 31 × 44740139 × 727393981955118375455694762027167<33> × 954510823386132534224267076999378204081264448719514571031860968958789346547856870659196008785405121179513067389851384456773239692755612985587<141> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1138828095 for P33 x P141 / May 5, 2011 2011 年 5 月 5 日)
26×10184-539 = 2(8)1833<185> = 59021 × 3884261 × 9306634682534417159<19> × 829258161363959762983675326509364008024210113<45> × 16328017213801956969737663823944089470278335111306801934289820892342358845735041784399722587336432332455364629<110> (Dmitry Domanov / Msieve 1.50 snfs for P45 x P110 / June 10, 2013 2013 年 6 月 10 日)
26×10185-539 = 2(8)1843<186> = 7 × 11967880220222771535977473028528815286409995203134321966881379578399<68> × 3448383549168999632700369166622141002514388314197364283079763510370070630825743226204284898075719770357515051628529131<118> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp, Msieve 1.38 snfs for P68 x P118 / 64.71 hours, 16.53 hours / October 12, 2008 2008 年 10 月 12 日)
26×10186-539 = 2(8)1853<187> = 35 × 157 × 255755548226249<15> × 296073712015724454320467006971773427889531916661278788572184802035594065336004347438818908177886347930247375042325751235873791712768620866878288896056547323002518026317<168>
26×10187-539 = 2(8)1863<188> = 29 × 10034553714807007<17> × 4405806571350986248725535064223823448621220686149401293388821506217652569<73> × 22532498571582195250818256341215174676422219155535062603765144586285580133719085617908490106531769<98> (Kenji Ibusuki / Msieve v. 1.49 (SVN unknown) + GGNFS-0.77.1-VC8 with factMsieve.pl (decomposed + modified) snfs (without procrels.exe, matbuild.exe for "finalFF" calculation) / March 17, 2018 2018 年 3 月 17 日)
26×10188-539 = 2(8)1873<189> = 163 × 126615116466869<15> × 242454230536999579574248898107253798373127<42> × 73952651541143383855877329528338599906295195498044099699681<59> × 780681986995396907452793539483572410186061343662364583049027014047346347<72> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1265340291 for P42 / May 7, 2013 2013 年 5 月 7 日) (Erik Branger / GGNFS, Msieve gnfs for P59 x P72 / June 16, 2013 2013 年 6 月 16 日)
26×10189-539 = 2(8)1883<190> = 3 × 1553 × 5563 × 1716856439<10> × 33281651354256743<17> × 220093334692314683<18> × 12440847919526437323031549<26> × 19176512476342391558103973<26> × 37150419371833925898457792019134544145819010399802274471317333750664669120403165072227257<89>
26×10190-539 = 2(8)1893<191> = 113 × 2141 × 12979 × 185673748573<12> × [49550037766442214391901730618439443529185227961028611095322721349401587781257562883991773927228396385842616092883138162498193736897067152222544221567551507340715466751753<170>] Free to factor
26×10191-539 = 2(8)1903<192> = 7 × 131 × 379 × 4877 × 177301297 × [961297083557646051325455176597558974350282151086900200491921693067738785445310865360213681004798810645073332376600787108714455841563581077976447543859977423024751149596284649<174>] Free to factor
26×10192-539 = 2(8)1913<193> = 3 × 10683249209<11> × 233948408030972261370023921501248280422579230481195601<54> × 107364190578448740457889688379508213740943833119862916279073581<63> × 3588613412062468961426599934006354849570911105274260802160756090509<67> (Robert Backstrom / Msieve 1.44 snfs for P54 x P63 x P67 / March 22, 2012 2012 年 3 月 22 日)
26×10193-539 = 2(8)1923<194> = 19 × 1520467836257309941520467836257309941520467836257309941520467836257309941520467836257309941520467836257309941520467836257309941520467836257309941520467836257309941520467836257309941520467836257<193>
26×10194-539 = 2(8)1933<195> = 9181 × 33131310762757534463314113982209864083<38> × [949734540734059667011737519492193550057699281014965411093905490630203178374931330861533970341294050228827482597677330651031537089155308322620878537348821<153>] (matsui / GMP-ECM 6.2.1 for P38 / November 5, 2008 2008 年 11 月 5 日) Free to factor
26×10195-539 = 2(8)1943<196> = 32 × 443 × 358487 × 17671297873193647462145461<26> × 114378064739778988438057178813407340541905764372470082159460520094310343452954566849236687402930613723374857943874345635250228158864546720322313852761533253603787<162>
26×10196-539 = 2(8)1953<197> = 17 × 1087 × 929315689 × 34487954531312019203<20> × 48777739128054713237482630843607958367591907153826181935680137677457394533627104344419090728662645805467438434676748055569904171499013770145983648595090641323846631<164>
26×10197-539 = 2(8)1963<198> = 7 × 71 × 5827 × 33931 × 11178789730567<14> × 160474133236419241<18> × 56306547250849852600833678809<29> × 75596565104432146039405528529<29> × 385009979678762504086786747134199125917805790129411664760128132679332492042940092757602857005240341<99> (Serge Batalov / GMP-ECM 6.2.1 B1=1000000, sigma=3961827852 for P29(7559...) x P99 / October 7, 2008 2008 年 10 月 7 日)
26×10198-539 = 2(8)1973<199> = 3 × 31 × 9643 × 3221333753593490725222584870064405612505019395526632934346368460367249393552946523010048950644334894317331853502165913308209408004345331438693496412115634483188416678529847701535002702822916717<193>
26×10199-539 = 2(8)1983<200> = 23 × 47 × 16889 × 99702319614580169855411929984280159751927071464169353<53> × 112879180833728107731930758513538191485513904518507517567<57> × 140598956467960922663752484626699497444761638897555138382562440204673333874313016437<84> (Robert Backstrom / Msieve 1.44 snfs for P53 x P57 x P84 / October 26, 2010 2010 年 10 月 26 日)
26×10200-539 = 2(8)1993<201> = 2243 × 1122891043063499300397046028860259110510362089603833836841519<61> × 114700139824709944947549097588800537244671592745208301914546443009726570234479963997583593042030271231169869530665744108323843803528447999<138> (Robert Backstrom / Msieve 1.42 snfs for P61 x P138 / April 21, 2010 2010 年 4 月 21 日)
26×10201-539 = 2(8)2003<202> = 3 × 211 × 19993478767109<14> × 10949753710198470975370811<26> × [20846560570197994927010282956282109907418741830075825379278085912859705875807082383054292873833339229475796070324037968702364057868688580711344882865300560724349<161>] Free to factor
26×10202-539 = 2(8)2013<203> = 53279696384653331834409841423141<32> × 542211965329630444294633841069991684295684552564765900896382668880030671112219250967009645694458185380197343081121594656770257833813534962224167635690410800825067937491063<171> (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=3231428238 for P32 x P171 / October 6, 2008 2008 年 10 月 6 日)
26×10203-539 = 2(8)2023<204> = 72 × 248033 × 95574438551<11> × 49880012460521<14> × 9812895652507523<16> × [508112410878724458819201544533070041390882152660840061136667856515782978885306789874539070580617759669694177947668079410552719566157131561189498225422194703<156>] Free to factor
26×10204-539 = 2(8)2033<205> = 32 × 199 × 463 × 868884451118897<15> × 156502951782418193<18> × 694430743408346543317934266065283<33> × 36892727464062353803746935998125110790437863065618259953712823593194923501179666721819922557179370336183877369556062715328482342983457<134> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=2172110407 for P33 x P134 / October 7, 2008 2008 年 10 月 7 日)
26×10205-539 = 2(8)2043<206> = 150497 × 1472282782226999190085273<25> × 7820116104038038865248694435677276158133<40> × 199129698089302637953117967873480810390257788243589471031489<60> × 83726420829401070715176436757509323551820697232707675136558382891929763584639<77> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2113927963 for P40 / June 19, 2013 2013 年 6 月 19 日) (Erik Branger / GGNFS, Msieve gnfs for P60 x P77 / December 1, 2014 2014 年 12 月 1 日)
26×10206-539 = 2(8)2053<207> = 139 × 173747617 × 76374204656211541488657974941980929<35> × 28217547269776474315093822307602809739<38> × 179012084628061888026383193649999304699543719559933444232607<60> × 31006223239062311275168659263149647499272835988537997877366096373<65> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2924473540 for P35 / May 7, 2013 2013 年 5 月 7 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4079992771 for P38 / June 19, 2013 2013 年 6 月 19 日) (Erik Branger / GGNFS, Msieve gnfs for P60 x P65 / June 22, 2013 2013 年 6 月 22 日)
26×10207-539 = 2(8)2063<208> = 3 × 173 × 988579 × 1201505863<10> × 1173198873857<13> × [3994427731801348373078330396141615758811979417741495354587839418427764843163579942963661631735451129313349814714977781810128588552898318806711887545273032481102254127784831611713<178>] Free to factor
26×10208-539 = 2(8)2073<209> = 571 × 8288453 × 5696373047756975432345878533294413<34> × 1071575630011821520721084469602477890414379323100075456462225211544231119599327225068812358656562866143798791678716497252975920380882768589247896720015425359635554857<166> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=848187652 for P34 x P166 / May 7, 2013 2013 年 5 月 7 日)
26×10209-539 = 2(8)2083<210> = 7 × 911 × 4969 × 254099168745046904104114508221174859<36> × 35879152867419350155318437056198755040400666689908267524480890512280488705940757035446587019812295255540663157802578849888739801086266608082150527489294905612860558249<167> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1630480796 for P36 x P167 / May 7, 2013 2013 年 5 月 7 日)
26×10210-539 = 2(8)2093<211> = 3 × 11177 × 90067 × 10254311 × 93285071923841329599428632232738935402659408998742222567410282572083500176874742372133849141640911814531495131768370843125710137920102476190013677218869313056369564589652811584042849297181174389<194>
26×10211-539 = 2(8)2103<212> = 19 × 2282176632989756411656415048991301<34> × 666235826919946641602119884025819683683919154448590882223997881075893060613774874532390140609958824969926011168802001106406992342931892729266364107705286639660667586448113602157<177> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2406093671 for P34 x P177 / May 7, 2013 2013 年 5 月 7 日)
26×10212-539 = 2(8)2113<213> = 17 × 59 × 359 × 79091867 × 10143868942612250544355267042799809276095997605610884506479843676504977849171295342584443833181244455701475499757566515874398212264158814743135388010142968512612746570757795685330528851057167666552237<200>
26×10213-539 = 2(8)2123<214> = 33 × 31 × 109 × 18378617 × [1722923740191361366934165739040409313553324594846568778901159471808954297148096365111806900037389442554271175277670857803726481416164381898732288878750420571280589721941737592381116022057513864536858603<202>] Free to factor
26×10214-539 = 2(8)2133<215> = 5023 × 193470954241<12> × [29727055001769974882238638265050037319100207067162230761982468940583724657749358055285758471614723803025003860579620783072676797947450710006146076293509126312347921893743489337487297119625357572390381<200>] Free to factor
26×10215-539 = 2(8)2143<216> = 7 × 29 × 33120044753<11> × 37619110458434137<17> × 1142182136657885983180173887498826665800716334995346921566532613546230294684626202129039580279608071455112006348549015709166748055440618490247142372929250820400707079309239527976460048401<187>
26×10216-539 = 2(8)2153<217> = 3 × 227 × 9103 × 232103 × 14704933 × 2831843327237<13> × 45362060754169739145426891311925731<35> × 1062902385730232648114643952102411338350504261912478717632895324040288225993759778146801895521717390543560804075726524807200125965565958523945987903177<151> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=991511848 for P35 x P151 / May 7, 2013 2013 年 5 月 7 日)
26×10217-539 = 2(8)2163<218> = 1109 × 2194212043939641370247<22> × 149646311097227365434442803826469<33> × 137591281122428693985268941376865759<36> × 807313541805248586611575808094611165191477<42> × 714202770330891375643901235133357394344640197669245947760884451410884116512721257063<84> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=8642252 for P33, B1=3000000, sigma=1735152110 for P36 / May 7, 2013 2013 年 5 月 7 日) (Dmitry Domanov / Msieve 1.50 gnfs for P42 x P84 / May 13, 2013 2013 年 5 月 13 日)
26×10218-539 = 2(8)2173<219> = 457 × 521 × 751 × 4397 × 67231 × 1868843 × 17005244444862403021<20> × 171971010889178839892916336044536666745133359896156184254123891429779910245406830216318514966792969460241172027256022659937740200874647658098908956465280642633658756238930299409<177>
26×10219-539 = 2(8)2183<220> = 3 × 205950509 × 4675700815883698364459798266208523733063281542863110685310143918910940700627076201899374586944880835244563357514998727014376851882230419556588534398635368087208577682917807029857658487083238832699184846214499829<211>
26×10220-539 = 2(8)2193<221> = 619313 × 605356816937<12> × 449078378333784489535203376367969093507<39> × 171588058028081507728920397032330110283603100819261664126547167026036356374606274337332493228915237103358683682600448484807232539829185485489480483793808999372957049<165> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3791084369 for P39 x P165 / July 1, 2013 2013 年 7 月 1 日)
26×10221-539 = 2(8)2203<222> = 7 × 23 × 2341 × 191911 × 73833371 × 89739478974181<14> × 687051515242921<15> × 18731491240274123<17> × 90975860072698033<17> × 1901386398749589426784433<25> × 270775415544983300544618578273341339969912581521164666696832865052689319602195517990762445950030479585651483862030669<117>
26×10222-539 = 2(8)2213<223> = 32 × 1170406571<10> × 8022109204363<13> × 30801708164601050305279094813340871<35> × 1109911129502152063312689747972117829534654008358273117083075497927741281503452708909585491539428179509041827010592017818942566184733525005063226872285270821542983189<166> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=484961250 for P35 x P166 / May 3, 2013 2013 年 5 月 3 日)
26×10223-539 = 2(8)2223<224> = 17316229797498571<17> × 1453032624017013000763127203926120827602414537<46> × [1148159259616932493498885730410222309098428211072342896293472151729863707483579954125488380953971034412631227559922324217957647238936367459870566601621679576902129<163>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=690260957 for P46 / July 1, 2013 2013 年 7 月 1 日) Free to factor
26×10224-539 = 2(8)2233<225> = 61 × 311 × 2963 × 296201 × 152052997 × [114110986000624007986527262195442557034016161932712461983590973312057780492408944772039621467027896928763670833460465933681000277532984627810595879539137123009378436639449148375386375394280407086620059743<204>] Free to factor
26×10225-539 = 2(8)2243<226> = 3 × 233 × 317 × 32221529 × 36747314251<11> × 40703774826556696577587<23> × 189176552245069293302671266011<30> × [1429949364043194166140210375322519922265550152935435414024046420237962102453417331461503260894676195138879066953494671300894300637663897128695102088367<151>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2087530737 for P30 / May 3, 2013 2013 年 5 月 3 日) Free to factor
26×10226-539 = 2(8)2253<227> = 491 × 1093 × 1199257 × 3307873 × 91051786544605781<17> × 10556581690282142728123<23> × [14117451707179041981684143259991268996595592821091837249246761875226496839538549472687058651590976651742595084473437617548729727725038385874244125383398983380315373836187<170>] Free to factor
26×10227-539 = 2(8)2263<228> = 7 × 197 × 388313 × 233416591 × 15840254730822502333841143<26> × 30723479775785650317304769111707826256727<41> × 280989247470751082413299473872495720244740703<45> × 2440362493956337382154420951559699282236111241<46> × 6925901539131042572747260842405952827578058804031851473<55> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3900110891 for P41 / June 24, 2013 2013 年 6 月 24 日) (Serge Batalov / GMP-ECM 6.5 B1=11000000, sigma=1240604439 for P45; Msieve v. 1.51 (SVN 719M) for P46 x P55 / November 8, 2013 2013 年 11 月 8 日)
26×10228-539 = 2(8)2273<229> = 3 × 17 × 31 × 149 × 274777 × 44630558602596612257293799835642140911544422498670635584750813369716959198775615715326053030976342320135865755038454104982736625651984618228890699312427206892357480795762315460145042719027546327131838904321226019411291<218>
26×10229-539 = 2(8)2283<230> = 19 × 97 × 65039759 × 2798678952431<13> × 113409073660511<15> × 69484758049987795883<20> × 10927885743345392255159258662085260953921865351086842624638068556667326642995111665812917911831754319935469531300456072111016075222196399738755235138427255867001629707849053<173>
26×10230-539 = 2(8)2293<231> = 321830857 × 283610885748986682917<21> × 3165047707232945412304984494626736211415841707058342495794339994028631515346862986263512114791478008721652671313923707974692438517635704881723053738914237816709972422099753283668501886251678258927654207<202>
26×10231-539 = 2(8)2303<232> = 32 × 211 × 16273 × 6844433 × 37035632552930471<17> × [368791587822017221422682090252215115916753952321463510871481179597621297560792637524429091641599194243570898606003962005641891486297326695012954413668495750889301127183222675043572437129542186665791903<201>] Free to factor
26×10232-539 = 2(8)2313<233> = 71 × 29191 × 1431277 × 9738673917277343159435374957561243362757409776328642680034045389108637976544346053453468279508784098177342504496230765612317617798400946210393710505419428478801981942147059186387654869754988465395328041956799710181572239<220>
26×10233-539 = 2(8)2323<234> = 7 × 257 × [160583039960471867086653078870977703662528565252300660860972145018837625841516892100549688098326230621950466308442962139460193934902106108331789265641405719226730899882650855413501327898215057748131678092767586931011055524674201717<231>] Free to factor
26×10234-539 = 2(8)2333<235> = 3 × 167 × 10285380683<11> × 6428216071673374057838632969<28> × [87213210873235222036690064513019148257377787829624490627033592590247997134331633454844120974317125116474805025826603636641224531306743238421433055993297339106832394143253621158666010145504705229<194>] Free to factor
26×10235-539 = 2(8)2343<236> = 42349 × 246527 × 74426253893<11> × 147529820899<12> × 47187849343166747311<20> × 5340562827855026746521984045480686678990515884747423315909654125892157940002780125667193157850438982624916772933671093695978657837524189464237907355393983171376750842101583110462964673<184>
26×10236-539 = 2(8)2353<237> = 6367 × [45372842608589428127672198663246252377711463623195993228975795333577648639687276407866952864596966999982548906689004066104741462052597595239341744760309233373470847948623981292427970612358864282847320384622096574350383051498176360749<233>] Free to factor
26×10237-539 = 2(8)2363<238> = 3 × 4157 × 23623 × 21402739 × 2959063441219729<16> × [154835620028846333451339040320310629237054479517436833043562111559358463627089696860899506524244015722026697197060242680904305709169993900632015220598066545558809811133977804374788808543061022020038081454321<207>] Free to factor
26×10238-539 = 2(8)2373<239> = 340933 × 106161688858853<15> × 10245944907770432579<20> × 77900808190130620411443981596955770473251209656224952352814818708450057211149011617120740490218816169158591342518963879385782520430522822792359249267286142774416432577611868284234210534019224451373273<200>
26×10239-539 = 2(8)2383<240> = 7 × 643 × 3082312469<10> × [20823089339996373935665104672635694110150380842416301823514614558266521280982594225256257981156195677484563318101448373677720535945762992006441489185440507074522503070978277954345557571196425048805908248920724388210017202024907<227>] Free to factor
26×10240-539 = 2(8)2393<241> = 33 × 874607638441877<15> × [122335868189165236872200115331737720784940461031100762017306065826675754449602938132663194602029918470901855790595308570220453843379212089667353983383129412155706593246968203767688650522582274966272002471672979710523252645477<225>] Free to factor
26×10241-539 = 2(8)2403<242> = 1225009 × 729111049 × [32344309158920777136897977026461659056788576578738020753262898456512625130211999638945004635802337588143878842368107478604119103532957223793509250405723943095220224380462619251072094156785040462683629705098267571015098223705163<227>] Free to factor
26×10242-539 = 2(8)2413<243> = 18493 × 450787 × 4299937003740734161290109483<28> × 8059163984453372511940872256835171700893448143774314437059933790769488747033695082948614500602426239514281116859911352756495063258922713784385740602969890546642222222638322537535709371186365421872086296911<205>
26×10243-539 = 2(8)2423<244> = 3 × 23 × 29 × 31 × 1019 × 133213 × 92501993 × [3708943121589547559370628245195373445014226607260847614468603868143372686837428469975958437104662683611928122021185828471162026010829484276067621194397907393611888437261535191270784586936442865504175553913762618724621671483<223>] Free to factor
26×10244-539 = 2(8)2433<245> = 17 × 39989 × 17531531 × 206389259320909738261763860391<30> × [11744497418566337170904718013855382364104771077474498124985906548835380543447327754601131331885256306198591812926957393768019183676750990562995979516907028234510778906573863418690941164515708078841716371<203>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2302979644 for P30 / May 4, 2013 2013 年 5 月 4 日) Free to factor
26×10245-539 = 2(8)2443<246> = 72 × 47 × 46817 × 16804905850583<14> × 4416299956873514946671<22> × 5786749196685247085353<22> × [6238842366894238712343927585309577519548244883552138192400826722413062463984037176340045178681739269327173473527009942597971981097270780400878743109156993747853647338289448736387277<181>] Free to factor
26×10246-539 = 2(8)2453<247> = 3 × 1000354673364987616726525991501888666227431528383143187<55> × [962621546739771183943688872500188301155112943427102076407100486303595400561691173626782061304814933503544709688336034150098971928175310737429671596936775666654654045572693388643692958446208203<192>] (Serge Batalov / GMP-ECM B1=110000000, sigma=342608600 for P55 / November 15, 2013 2013 年 11 月 15 日) Free to factor
26×10247-539 = 2(8)2463<248> = 192 × 5074923630709<13> × 722480844686690845665000737<27> × [21825680248181045290304639887616117901603126013016016155861032446226104656519593256335371743638304660863848531899448856429482279061093618793280553084069394652958541883071285439272137496377732197458930162191<206>] Free to factor
26×10248-539 = 2(8)2473<249> = 8263 × 26437 × 25815241321<11> × 3534701849191<13> × [14492787968186654647573273249220638546346700154349305860999131633284675892432531836885590026508896557154606185791024483391763341394327013777097486856736796087717922508650725677260754706779461951314431100557557087918863<218>] Free to factor
26×10249-539 = 2(8)2483<250> = 32 × 151 × 3296393 × [644870334060859401605635108814869425361422296818996987282942444117546427464441409965915030511259935025926289898183281421828262164907899986093477897609738608044744425752260224332045635093573111052781448470869193638478574779767499125879440309<240>] Free to factor
26×10250-539 = 2(8)2493<251> = 173 × 140045662396513<15> × 3470563048949657<16> × 188439419430822299<18> × 7261749170678318353<19> × 1482374505507383402040750083554707040341658991<46> × 169373006350200288083312727937230326102560812513878735651342575328754110066602223590844771800118709260883444447732746753423001711488359403<138> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3372157364 for P46 x P138 / June 19, 2013 2013 年 6 月 19 日)
26×10251-539 = 2(8)2503<252> = 7 × 683 × [60424364963164377512840177554672430221478537730367891422064189267703176927188640219386925097027586046619721583118362034906690836412651932417671802737688535638755258081758813823235492342373747937437542122754421436705477701085314555299914011480629343<248>] Free to factor
26×10252-539 = 2(8)2513<253> = 3 × 139 × 3637 × 189506617 × 26987472970033<14> × 5651195271384282079<19> × 28121158376165371787891<23> × [2343642488416148162933099563881603369822879607895755706897620213380251455106225772232888016023880022124559451614449583611971754182867271578329418744161861881677868218509782015363321963<184>] Free to factor
26×10253-539 = 2(8)2523<254> = 28493 × 68108313063151426081<20> × 782426576285827075727<21> × 17233295106203079646241731<26> × [1104029348216006856949487737891488762415663829807987005052722466989987168047618537918232466128048288222383162081061314075787399829174018128397707507382102473910549497140361076900043323<184>] Free to factor
26×10254-539 = 2(8)2533<255> = 883 × 608609 × 10490473666237<14> × 147648569456754057886633<24> × 347062286126891833125096653707939260639724384454730512670105713080804727362442977921429606748565177740159059927276580426377489355013257240117342918011472613763060556772421704405698863402504496361561941918080109<210>
26×10255-539 = 2(8)2543<256> = 3 × 47873498891<11> × 629785177445208859567009471<27> × [31939048901289966283634450410042428784292270927078037020459593219273749585150219374743462594075955159028733145720444538232416138540923542834200824315916072013073535162235223868659467911280154111051272866663236884888301<218>] Free to factor
26×10256-539 = 2(8)2553<257> = 1579 × [18295686440081626908732671873900499612975863767504046161424248821335585110125958764337485046794736471747238055027795369783970163957497713039194989796636408416015762437548378017029061994229821968897333051861234255154457814369150657941031595243121525578777<254>] Free to factor
26×10257-539 = 2(8)2563<258> = 7 × 6101 × 8581211 × [788284873167296016344754999021706724226118830869100761206476355997068323955532702309605251372400428044436607354194363695352045369614680589083604476070281392680920157686521503026507061099887860251675990090570344603153367444098460047101304626857779<246>] Free to factor
26×10258-539 = 2(8)2573<259> = 32 × 31 × 349507 × 49162007499721<14> × 2868049629263867<16> × 2502620888336393378225418228473<31> × 83957485076933830600984511288505455204391676431512383287043123947955206570301394285865578389780340016163333390291992237497129353814451914027845598647650611446297206544431960774905443565135701<191> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=4067427940 for P31 x P191 / April 7, 2016 2016 年 4 月 7 日)
26×10259-539 = 2(8)2583<260> = 293860767117401509507<21> × [98308083696478514487038737185075043913493993917093333103713895134245342156470255556215771735337175481337253821862331092494039330838159263528570371673192141476919571894565383571719531406043586302164241320376662383240992246106443532952154769<239>] Free to factor
26×10260-539 = 2(8)2593<261> = 17 × 179 × 33100600011243749209<20> × 13909515327789688410617447<26> × 4121878149972642343686552229<28> × [50024859019799505080077715170806531179903991246298768304056972901743546392854945948958041803023597343513702257010555421235041040680336294116791087681046362825144512497087443669682301843<185>] Free to factor
26×10261-539 = 2(8)2603<262> = 3 × 211 × 9791 × 315613 × 5223291642979715245494181<25> × [282748896855145453120329340460533372068976325853034378775103652233237968568122148659642451287019528631100173744324268084761981224878179240877831098962042678964063643590567685695602563689295320787437209597694821287962238949637<225>] Free to factor
26×10262-539 = 2(8)2613<263> = 55743181346782370915768955349771060645613<41> × [518249733705886241186984969041112825838511922404993678989505023535619626016048098097437176605153242454517404843682104757170769215016287260239557306745294963928225283649404844542764500129372763923330554277689960304187493791<222>] (Serge Batalov / GMP-ECM B1=6000000, sigma=3122407154 for P41 / May 1, 2016 2016 年 5 月 1 日) Free to factor
26×10263-539 = 2(8)2623<264> = 7 × 280022214043328654704781237<27> × [147380597681637738976443767352416711602384978262571985095197488322996783216330204528606301346058872273840388077983987254676677864599479987088870970309530862650937379673656344538860788189018484007358330171728698369160551225583030286841537<237>] Free to factor
26×10264-539 = 2(8)2633<265> = 3 × 157 × 441359 × 1055890567<10> × 1378059247406788829<19> × 121054328869219495460824480381271<33> × [78895243397936995091386264718799814742850984435139199238946102620134526151066313655913873671635067075139712854086479696245310804255245550713367311891837756121540467808817432136069100762386182740999<197>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3502986778 for P33 / April 7, 2016 2016 年 4 月 7 日) Free to factor
26×10265-539 = 2(8)2643<266> = 19 × 23 × 3697 × 59053 × 117351059869<12> × 13136513290463<14> × 11646533119594843727811407293273<32> × [16865304768351951126773982204089902170249710267946638724257564257502413486901350474481544272410640115875834156108869373099624312808821467573985237201858410886359950769103179780528644908716411400651129<200>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2296376251 for P32 / April 7, 2016 2016 年 4 月 7 日) Free to factor
26×10266-539 = 2(8)2653<267> = 193 × 331 × 649634962850201<15> × 1896200921087748740321<22> × 3671062617016411966709845768063876923149903231524042267867814745474054105009560995407337841192698674522766555101131622406675893729307736004608550032161756035908055334815886881652052136754955802111623246053334890796307378602881<226>
26×10267-539 = 2(8)2663<268> = 34 × 71 × 739 × 38874407261<11> × [17485548187414561040322328311003685887530863607960089426305864523538888674589482981790428663291384593899438636793772295985924462611676885664622337737870740460948414981712249108497799270180823818598915049055903649045349730235365605371325839341601442627<251>] Free to factor
26×10268-539 = 2(8)2673<269> = 56936916811759813<17> × 3671599894906251715567<22> × 138191567738860520019990680927581105607300457864253878454601083817060040351895444241481442197977885778564112419077339515802626616972290655935062248206873217929675079797838238736282619291300239436820877842511235335235480178830554073<231>
26×10269-539 = 2(8)2683<270> = 7 × 163 × 2789 × 47161 × 16115277884369<14> × 36239418724703<14> × [3296056539526874168471068388502690585084644706292122745273412837761911452963602594860118128916784040501647699267084000080395119245172159381265604169456124797440496385218173540409813600644949571753583653879854415958182286934602087421<232>] Free to factor
26×10270-539 = 2(8)2693<271> = 3 × 59 × 521 × 20996567 × 12213454024279<14> × 25277774031536353<17> × 55128781976773697462782422151082009533<38> × [87662899365915944050875300880445333167476882898405436760843588344535379519257002376299902274106457549568069501588879484604987680866449616521088378469345993098405627918775140261746482627642007<191>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=635239030 for P38 / April 8, 2016 2016 年 4 月 8 日) Free to factor
26×10271-539 = 2(8)2703<272> = 29 × 10973 × 53593 × 575549355187041673<18> × [2943179984213932731141100089642906241869859690675538256102014281687747575955204694501946755692431301364599655083957353515129107386637650879092138795187924990797545432244960774988138159462843300484786622903261876532881965206708123311749762784891<244>] Free to factor
26×10272-539 = 2(8)2713<273> = 49843 × 552353 × 7895772133<10> × 1328970500274068576972396699672226774589345271646073702561958218346197882770463519498656129723121551394644267753393854641511367777542873377667477245470837598175246172709070982345617746034062755768281425723807502423044160812597232849086469603398697256269<253>
26×10273-539 = 2(8)2723<274> = 3 × 31 × 212815553 × 204504369939829<15> × 3446768950590899<16> × 4024566624705159025790939<25> × [51452992701520895166437965325009090392014326582314944819122518937553738413582114707571018492659359378509730309563219151809019511111883529524578328321073764771098420728102523825317282687664983601160983209931283<209>] Free to factor
26×10274-539 = 2(8)2733<275> = 5813 × 363157 × 13252879 × 1537209862220900321<19> × 671726838822047831613786506367300222466981688679708661507658495120180002103847198900200269503841575082821048694999248671223873447852554631193965253460721802548572446227219329222797894348078477244375133772933064732602004167389726504157191557<240>
26×10275-539 = 2(8)2743<276> = 7 × [41269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269<275>] Free to factor
26×10276-539 = 2(8)2753<277> = 32 × 17 × 6437541969654541<16> × 130576639619634390373<21> × [22462280507828185881278615378071398266358488891995567846532694416632617748082132016280217100211812606023948873185945199153410010484190865768135503748749200187427101393709683150384434539507635460277481258460409153368003343172676129306110027<239>] Free to factor
26×10277-539 = 2(8)2763<278> = 8239478069287<13> × 115697664134749033<18> × 7659518696781635292239<22> × 1207249006271134279296911<25> × 4764049099872394575570375556449037<34> × 430190996789666216141939055620099597<36> × 1599081733924154744887409969677080947979498004641584051182865568919821568118713803868642882575924821290537784734833273961340315234533<133> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1753184543 for P34 / April 8, 2016 2016 年 4 月 8 日) (Serge Batalov / GMP-ECM B1=3000000, sigma=3413991514 for P36 x P133 / April 27, 2016 2016 年 4 月 27 日)
26×10278-539 = 2(8)2773<279> = 48953 × 8577018325409<13> × 2130694290665669<16> × 3645419216227714089850837<25> × [88582221581223939390649027883869115330716798937043671078569833012362670215609656880570150489825368361779153433698239739343054639528606787130322970382380714381592584728781679430484023249957705033931603576851422711022744243<221>] Free to factor
26×10279-539 = 2(8)2783<280> = 3 × [962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962961<279>] Free to factor
26×10280-539 = 2(8)2793<281> = 2803 × 51147574718338515908314694609013683591<38> × 201503547016535556350809637728206121640207343486129382409800870481495740800633971338424613116389505864853272085233311273837768739080429175814756100818368340622882966503814646430706573518946371141949605966846220782732665971788943772962468471<240> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2924608083 for P38 x P240 / April 8, 2016 2016 年 4 月 8 日)
26×10281-539 = 2(8)2803<282> = 7 × 3449 × 1231261 × 382032839 × 4293375436073<13> × 328302748078232725217454911952253<33> × 18047431395071848243472627116192509559260869744212289240068031526766045860562017400542701853144561894812794649329074383689223671249006301940868895455593549101554831216620450904283140945317288207347388686481456197915531<218> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=208680681 for P33 x P218 / April 8, 2016 2016 年 4 月 8 日)
26×10282-539 = 2(8)2813<283> = 3 × 9100951 × 10805632914919873<17> × 111538047040631764649<21> × 3695476494670945888471552932191<31> × 23756317321911370999195539094867218283170853359510988693411435461586627209238676519030346412236956106978872120192739224839332334221201167390505065188361869324301417629026783034501632217236027864873712447186273<209> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=4192375599 for P31 x P209 / April 8, 2016 2016 年 4 月 8 日)
26×10283-539 = 2(8)2823<284> = 19 × 3725126411272433<16> × [408165433435035235370287916379564788304155582731241687156330832419702619281628183269337683334755525742981957928441970532900315624289885224740035062137985063193739718634954040635660212583143245877697559983189917565200485126784062186660746330881416685641840216175362929<267>] Free to factor
26×10284-539 = 2(8)2833<285> = 61 × 283 × 3792673 × 315247619 × 1720855483<10> × 86282353511<11> × 515613969393272324949639704459479<33> × [182821090525333769674684994709464382671826587723633610069639483911359006532429905372788377121073205116886333679846732645471488354227750554761933666206219228516393702334222243346919306401714775208588678128820784109<213>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1862682120 for P33 / April 9, 2016 2016 年 4 月 9 日) Free to factor
26×10285-539 = 2(8)2843<286> = 32 × 18630541 × [17229110755344552491577547550604550577516114766661239430512922535152771694659197192448016100068573119856672671018391485302957886246440955256621604331707507634247138662675137613430244510218695258911392910579157147806621449567906857221930430665127812856015345322195473961508739207<278>] Free to factor
26×10286-539 = 2(8)2853<287> = 2286601 × 297092772462076813<18> × [42525395641866710280251081687277512868642503393300174235862666434725845262165826547323246791334563349167468709982118432832271846509593677314683436086107032620786340275447287192928910253977840539349815464384161781623425577348539427010818213787234334465994433734791<263>] Free to factor
26×10287-539 = 2(8)2863<288> = 72 × 23 × 161237906269883<15> × 1269514259708905879519<22> × [1252282146589951501154815969942825067188235285413487476816255055871645722714227658989616248148758245850075075136015445428133899630520055208722269594171429406917482337060066095458897328815775019744106662593936627457101233413514162303199883350735084977<250>] Free to factor
26×10288-539 = 2(8)2873<289> = 3 × 31 × 760064803 × [40869306489781018136846136660311927799379893178744288447076046308279566396434046323528945243190430153232646221247776818881407038902052712291324698931008206837576587572972144831579618696435527355989227830861550934181754744275444449598313924333979876957809913299355062889329797477<278>] Free to factor
26×10289-539 = 2(8)2883<290> = 1585234150253108263542566155854285537602604175532869<52> × [18223736149184214002020446725836404367469093116563963292952998542968247499876494746154337808843186566970974497158535017423034952574133994576774662651254378825837082565218334753722270856307383090170158195866801044013730992721283386715965207<239>] (Dmitry Domanov / GMP-ECM B1=43000000, sigma=2652327984 for P52 / September 19, 2016 2016 年 9 月 19 日) Free to factor
26×10290-539 = 2(8)2893<291> = 293 × 36339304817<11> × 5407713023867943793493<22> × [5017333471499618183373909144821154231778361160683056233276853667608361204918898163325632434270267538977504777849437871557837149036768029629191477286988323975373104190375186989652970080110217348478622779460878028863243837194871915316660407039820253352539851<256>] Free to factor
26×10291-539 = 2(8)2903<292> = 3 × 47 × 211 × 1453 × 3550861 × 41898908725629525818383<23> × [449187096995626876805993279850205591128581973537400447640791600215734237678327256698578163549271529851846947531348049016268487811362408907304533362466009291473914435343103680913407251843300288464735968765632329271073970585615309481479981163767924387896947<255>] Free to factor
26×10292-539 = 2(8)2913<293> = 17 × 389 × 761 × 13039778061511087<17> × 440227794870449616301564759517021882488484954754419088172122348375307633473122266992292171298322288379823133286479297555558243920088332124504293862385241307817983519924257693505061999959147675363143681562714041449271353666316261691175750137409679630826523654613947503313<270>
26×10293-539 = 2(8)2923<294> = 7 × 173 × 95190377873783466041<20> × 62515482924943780952208003929<29> × 51285038757974344362314652841553<32> × 781655460430730006195545309621824540987034977195265461806670391121326786108736065672823153803948734307315356782231590372367039946917545290225137613423489817127593821721346601778587076507059503047593203506686409<210> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3517669109 for P32 x P210 / April 10, 2016 2016 年 4 月 10 日)
26×10294-539 = 2(8)2933<295> = 33 × 307 × 891852335049899<15> × 715626867717113628352735027<27> × [546070993033054275369449681268823672643540800273605105220864479404767125341945804856966210112071413984899652420441548586166140056728749438585637601100518524331976399247226892262119401799007754092423877942768751640688576506032111501021681739106848739<249>] Free to factor
26×10295-539 = 2(8)2943<296> = definitely prime number 素数
26×10296-539 = 2(8)2953<297> = [288888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888883<297>] Free to factor
26×10297-539 = 2(8)2963<298> = 3 × 373 × 321169 × 495787 × 202665461 × [80000418082261464221454037277552515184756832814006414410180875134272426496869148494826650937192132522906452370979018933112389843974635069742738922785452565866749086817683872832017003382093869237986704930734375102688115165921289589293513602565340248800535744685356010595013979<275>] Free to factor
26×10298-539 = 2(8)2973<299> = 139 × 259944490641500999128702642919<30> × 799531209531269768203791156731133880087156616688851952842547385106626920021356625045627964154878390287260119425631660819809527327500717370025634971912635817804791540670271511057647507627282772418703422062502042155434807971465977131388852752000504389993576644415839263<267> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3407494919 for P30 x P267 / April 10, 2016 2016 年 4 月 10 日)
26×10299-539 = 2(8)2983<300> = 7 × 29 × 1597 × 92473723 × [9636327284036384598148139322661037212309740617215146027258207682489430463789859601673447955201925920844828872354569795241020658301007468025055986647669922753928904431936709881385235891778584010367853048268362869241312261047830962392638549153642290774834595629371144075418980059331991031<286>] Free to factor
26×10300-539 = 2(8)2993<301> = 3 × 966994969339297479691307226479<30> × 20414930358147763257538021821903853088923<41> × [48779513696750261049846164353668940620228321338571830923137032672704746349918416580915834584460414403471264208889563959013887578836497373645823128118870737569962893653136032281475515264415848155445669595574637700077835779022564333<230>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1535874072 for P30 / April 11, 2016 2016 年 4 月 11 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=373005712 for P41 / May 1, 2016 2016 年 5 月 1 日) Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク