Table of contents 目次

  1. About 288...887 288...887 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 288...887 288...887 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 288...887 288...887 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 288...887 288...887 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

28w7 = { 27, 287, 2887, 28887, 288887, 2888887, 28888887, 288888887, 2888888887, 28888888887, … }

1.3. General term 一般項

26×10n-179 (1≤n)

2. Prime numbers of the form 288...887 288...887 の形の素数

2.1. Last updated 最終更新日

March 30, 2015 2015 年 3 月 30 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 26×103-179 = 2887 is prime. は素数です。 (Makoto Kamada / November 24, 2004 2004 年 11 月 24 日)
  2. 26×106-179 = 2888887 is prime. は素数です。 (Makoto Kamada / November 24, 2004 2004 年 11 月 24 日)
  3. 26×1018-179 = 2(8)177<19> is prime. は素数です。 (Makoto Kamada / PPSIQS / November 24, 2004 2004 年 11 月 24 日)
  4. 26×1069-179 = 2(8)687<70> is prime. は素数です。 (Makoto Kamada / PPSIQS / November 24, 2004 2004 年 11 月 24 日)
  5. 26×10443-179 = 2(8)4427<444> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Makoto Kamada / PFGW / December 31, 2004 2004 年 12 月 31 日)
  6. 26×10449-179 = 2(8)4487<450> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 29, 2006 2006 年 5 月 29 日)
  7. 26×10455-179 = 2(8)4547<456> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Makoto Kamada / PFGW / December 31, 2004 2004 年 12 月 31 日)
  8. 26×102459-179 = 2(8)24587<2460> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Ray Chandler / Primo 3.0.9 / September 30, 2010 2010 年 9 月 30 日)
  9. 26×104745-179 = 2(8)47447<4746> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 18, 2004 2004 年 12 月 18 日)
  10. 26×107973-179 = 2(8)79727<7974> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 27, 2004 2004 年 12 月 27 日)
  11. 26×1014249-179 = 2(8)142487<14250> is PRP. はおそらく素数です。 (Erik Branger / PFGW / April 29, 2010 2010 年 4 月 29 日)
  12. 26×1031710-179 = 2(8)317097<31711> is PRP. はおそらく素数です。 (Erik Branger / srsieve and PFGW / May 1, 2013 2013 年 5 月 1 日)

2.3. Range of search 捜索範囲

  1. n≤30000 / Completed 終了
  2. n≤50000 / Completed 終了 / Erik Branger / May 1, 2013 2013 年 5 月 1 日
  3. n≤100000 / Completed 終了 / Bob Price / March 30, 2015 2015 年 3 月 30 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

  1. 26×103k+1-179 = 3×(26×101-179×3+26×10×103-19×3×k-1Σm=0103m)
  2. 26×105k+2-179 = 41×(26×102-179×41+26×102×105-19×41×k-1Σm=0105m)
  3. 26×106k+2-179 = 7×(26×102-179×7+26×102×106-19×7×k-1Σm=0106m)
  4. 26×1015k+13-179 = 31×(26×1013-179×31+26×1013×1015-19×31×k-1Σm=01015m)
  5. 26×1018k+14-179 = 19×(26×1014-179×19+26×1014×1018-19×19×k-1Σm=01018m)
  6. 26×1022k+19-179 = 23×(26×1019-179×23+26×1019×1022-19×23×k-1Σm=01022m)
  7. 26×1028k+22-179 = 29×(26×1022-179×29+26×1022×1028-19×29×k-1Σm=01028m)
  8. 26×1033k+11-179 = 67×(26×1011-179×67+26×1011×1033-19×67×k-1Σm=01033m)
  9. 26×1035k+31-179 = 71×(26×1031-179×71+26×1031×1035-19×71×k-1Σm=01035m)
  10. 26×1041k+8-179 = 83×(26×108-179×83+26×108×1041-19×83×k-1Σm=01041m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 15.52%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 15.52% です。

3. Factor table of 288...887 288...887 の素因数分解表

3.1. Last updated 最終更新日

May 4, 2016 2016 年 5 月 4 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=191, 198, 201, 202, 205, 209, 211, 212, 213, 215, 216, 218, 219, 221, 224, 226, 230, 231, 236, 240, 241, 242, 243, 244, 246, 247, 248, 250, 251, 253, 254, 255, 256, 259, 260, 261, 264, 266, 267, 270, 271, 273, 274, 275, 276, 277, 278, 279, 280, 281, 285, 286, 287, 288, 290, 291, 293, 296, 297, 298, 299, 300 (62/300)

3.4. Factor table 素因数分解表

26×101-179 = 27 = 33
26×102-179 = 287 = 7 × 41
26×103-179 = 2887 = definitely prime number 素数
26×104-179 = 28887 = 3 × 9629
26×105-179 = 288887 = 307 × 941
26×106-179 = 2888887 = definitely prime number 素数
26×107-179 = 28888887 = 3 × 41 × 234869
26×108-179 = 288888887 = 7 × 83 × 487 × 1021
26×109-179 = 2888888887<10> = 47 × 61465721
26×1010-179 = 28888888887<11> = 32 × 139 × 23092637
26×1011-179 = 288888888887<12> = 67 × 347 × 12425863
26×1012-179 = 2888888888887<13> = 41 × 70460704607<11>
26×1013-179 = 28888888888887<14> = 3 × 31 × 310633213859<12>
26×1014-179 = 288888888888887<15> = 7 × 19 × 167 × 7127 × 1824971
26×1015-179 = 2888888888888887<16> = 223 × 1237 × 10472642437<11>
26×1016-179 = 28888888888888887<17> = 3 × 33757 × 52901 × 5392397
26×1017-179 = 288888888888888887<18> = 41 × 10337 × 681635915711<12>
26×1018-179 = 2888888888888888887<19> = definitely prime number 素数
26×1019-179 = 28888888888888888887<20> = 32 × 23 × 30681359 × 4548685399<10>
26×1020-179 = 288888888888888888887<21> = 72 × 293 × 20121814368523291<17>
26×1021-179 = 2888888888888888888887<22> = 233 × 599 × 1033 × 175663 × 114068959
26×1022-179 = 28888888888888888888887<23> = 3 × 29 × 41 × 446717 × 18129893341933<14>
26×1023-179 = 288888888888888888888887<24> = 11491 × 261127 × 96276708575291<14>
26×1024-179 = 2888888888888888888888887<25> = 59 × 2153 × 22742321623661811181<20>
26×1025-179 = 28888888888888888888888887<26> = 3 × 337 × 96928652111<11> × 294800020547<12>
26×1026-179 = 288888888888888888888888887<27> = 7 × 42457651 × 972023658818083691<18>
26×1027-179 = 2888888888888888888888888887<28> = 412 × 22037567 × 77982917574501881<17>
26×1028-179 = 28888888888888888888888888887<29> = 35 × 31 × 743 × 4002773 × 27719819 × 46518179
26×1029-179 = 288888888888888888888888888887<30> = 107 × 109 × 313 × 1171 × 15683 × 4309135869241961<16>
26×1030-179 = 2888888888888888888888888888887<31> = 229 × 15937 × 791569010645598509439019<24>
26×1031-179 = 28888888888888888888888888888887<32> = 3 × 71 × 141965414727823<15> × 955363576353013<15>
26×1032-179 = 288888888888888888888888888888887<33> = 7 × 19 × 41 × 97771 × 541857742978556463117049<24>
26×1033-179 = 2888888888888888888888888888888887<34> = 691 × 369991 × 11299562564510805262982827<26>
26×1034-179 = 28888888888888888888888888888888887<35> = 3 × 2003 × 197909 × 71437494637<11> × 340045377085471<15>
26×1035-179 = 288888888888888888888888888888888887<36> = 2275151 × 113693982317581<15> × 1116819875231677<16>
26×1036-179 = 2888888888888888888888888888888888887<37> = 919 × 1823 × 21089 × 357482321561<12> × 228727351934519<15>
26×1037-179 = 28888888888888888888888888888888888887<38> = 32 × 41 × 4219 × 85223 × 217739955047946405487886579<27>
26×1038-179 = 288888888888888888888888888888888888887<39> = 7 × 2969 × 3319 × 1499630909321<13> × 2792742957397437911<19>
26×1039-179 = 2888888888888888888888888888888888888887<40> = 857 × 16824539 × 20105507117<11> × 9965332911061849457<19>
26×1040-179 = 28888888888888888888888888888888888888887<41> = 3 × 14557 × 4181470248079961<16> × 158200805618793275977<21>
26×1041-179 = 288888888888888888888888888888888888888887<42> = 232 × 248641 × 690874741 × 3179092085945311420061963<25>
26×1042-179 = 2888888888888888888888888888888888888888887<43> = 41 × 61 × 97 × 131 × 67939 × 1337996467134692955489147597619<31>
26×1043-179 = 28888888888888888888888888888888888888888887<44> = 3 × 31 × 5531509 × 24603389 × 169729657 × 13447811095325116187<20>
26×1044-179 = 288888888888888888888888888888888888888888887<45> = 7 × 67 × 13417 × 45909501389795380822580665951573210019<38>
26×1045-179 = 2888888888888888888888888888888888888888888887<46> = 653 × 38303559379<11> × 115499079857348669038180082291201<33>
26×1046-179 = 28888888888888888888888888888888888888888888887<47> = 32 × 63247 × 202719787 × 250352687275518232887266466790387<33>
26×1047-179 = 288888888888888888888888888888888888888888888887<48> = 41 × 4957 × 1421438462922051048228860339844068200617451<43>
26×1048-179 = 2888888888888888888888888888888888888888888888887<49> = 329077117 × 270217798441<12> × 32487717747948190138278402571<29>
26×1049-179 = 28888888888888888888888888888888888888888888888887<50> = 3 × 83 × 2855141 × 183841251728608471<18> × 221034956535722849393333<24>
26×1050-179 = 288888888888888888888888888888888888888888888888887<51> = 7 × 19 × 29 × 149 × 61619954509<11> × 8157809469450106687769354603804951<34>
26×1051-179 = 2(8)507<52> = 4049 × 713482066902664581103701874262506517384264976263<48>
26×1052-179 = 2(8)517<53> = 3 × 41 × 28537 × 27939413 × 95034581 × 248966449 × 12450237757908147425621<23>
26×1053-179 = 2(8)527<54> = 6623148509<10> × 43618059974999254374848397180774870782667043<44>
26×1054-179 = 2(8)537<55> = 128151890256296880216813421<27> × 22542694322426822283850996147<29>
26×1055-179 = 2(8)547<56> = 33 × 47 × 383 × 273733533798676060469071<24> × 217141302434054953241426411<27>
26×1056-179 = 2(8)557<57> = 7 × 139 × 1905486101<10> × 155816058023587702956764811154921076677878919<45>
26×1057-179 = 2(8)567<58> = 41 × 14767 × 168781 × 260807 × 108395663399729203026043246889354355396163<42>
26×1058-179 = 2(8)577<59> = 3 × 31 × 191 × 421 × 2699 × 1431296279365410032897513012726640012232906593131<49>
26×1059-179 = 2(8)587<60> = 53399602635641<14> × 7934078440758703<16> × 681861741551459868708201034369<30>
26×1060-179 = 2(8)597<61> = 12537337 × 230422847283190113569483606358263233164179034901023151<54>
26×1061-179 = 2(8)607<62> = 3 × 113 × 134665521795569107826868481<27> × 632812023359047618251357573767693<33>
26×1062-179 = 2(8)617<63> = 72 × 41 × 1319 × 30400371027431<14> × 48113058108326629129<20> × 74535687258054830599303<23>
26×1063-179 = 2(8)627<64> = 23 × 13007 × 188452303774937107<18> × 51241804044148430939702818503712962890581<41>
26×1064-179 = 2(8)637<65> = 32 × 1789 × 9029 × 7673793186323399167938511<25> × 25895735170899762385323407928673<32>
26×1065-179 = 2(8)647<66> = 22483 × 39269220701750419<17> × 327208287778492625058845690356959533974753631<45>
26×1066-179 = 2(8)657<67> = 71 × 34147 × 1649117051<10> × 6696664095509<13> × 107897141186986578433516490285543542589<39>
26×1067-179 = 2(8)667<68> = 3 × 41 × 1109 × 49019 × 170917284199<12> × 25278060573342451800096343349153794045204419061<47>
26×1068-179 = 2(8)677<69> = 7 × 19 × 366044979054464581842442469<27> × 5933961762157714110120696276917835219631<40>
26×1069-179 = 2(8)687<70> = definitely prime number 素数
26×1070-179 = 2(8)697<71> = 3 × 181 × 47385509 × 172715233 × 2343924419072790223<19> × 2773391706706223406916067805422939<34>
26×1071-179 = 2(8)707<72> = 56267 × 7224936685129<13> × 17257482726777294296959<23> × 41178031851773552871209942695651<32>
26×1072-179 = 2(8)717<73> = 41 × 11515621409<11> × 36717994597<11> × 2347058643669241<16> × 70999731891340245209511781470997099<35>
26×1073-179 = 2(8)727<74> = 32 × 31 × 2049941 × 204063349597213<15> × 247525680122046557852907836894678368096518392381441<51>
26×1074-179 = 2(8)737<75> = 7 × 228014573265719708509719967951<30> × 180996506840582206130802004662852128233351391<45>
26×1075-179 = 2(8)747<76> = 2530231254151641546941<22> × 70502878825163537572727<23> × 16194359343246756298091968419541<32>
26×1076-179 = 2(8)757<77> = 3 × 38067513709<11> × 637505378759<12> × 396799592662231664901271091118511067175178482402761959<54>
26×1077-179 = 2(8)767<78> = 41 × 67 × 105165230756785179792096428426970836872547829955911499413501597702544189621<75>
26×1078-179 = 2(8)777<79> = 29 × 5113 × 541987 × 1496141 × 24026784531529740284104149283774074793183625347038804548645293<62>
26×1079-179 = 2(8)787<80> = 3 × 101363 × 6958001 × 13653551767002224002714229601419650084453296678644491210254173931583<68>
26×1080-179 = 2(8)797<81> = 7 × 39657513878779011021022853437<29> × 1040656290154512825009487081425849311434991863574693<52>
26×1081-179 = 2(8)807<82> = 6737 × 54484182511111208591<20> × 57504952190153148557<20> × 136863803613299453009918794558453828973<39>
26×1082-179 = 2(8)817<83> = 33 × 41 × 59 × 107 × 431 × 13810211 × 694496152581690339832989329557756040257698480565239334010207851577<66>
26×1083-179 = 2(8)827<84> = 1012597447<10> × 3121443862678206979<19> × 91398376533108471284146789586496377035830279362727505499<56>
26×1084-179 = 2(8)837<85> = 1201 × 46499 × 76465196688571<14> × 676519638328487097631602903465956873341716315947493599122253303<63>
26×1085-179 = 2(8)847<86> = 3 × 23 × 46457 × 2000569777<10> × 23020014412584863<17> × 2794562183133950651169557<25> × 70025708866363654623129458777<29>
26×1086-179 = 2(8)857<87> = 7 × 19 × 1887133 × 1151003617094828081630757826257616289987031602403759672567909579737630682189383<79>
26×1087-179 = 2(8)867<88> = 41 × 401 × 123764062260061<15> × 1419737499788951371224850033348292274424589326139430178990995599366587<70>
26×1088-179 = 2(8)877<89> = 3 × 312 × 1373 × 6089 × 90558007 × 460310287 × 2428139369329<13> × 400271608340371<15> × 40244896331823331<17> × 735111028672425817<18>
26×1089-179 = 2(8)887<90> = 33427 × 8642381574442483288625628650159717859481523585391715944861605555056956618568489211981<85>
26×1090-179 = 2(8)897<91> = 83 × 848727284236990268073360436180901<33> × 41009510209003861535971707303267695550977312433593020489<56> (Makoto Kamada / GGNFS-0.53.3-k1 for P33 x P56)
26×1091-179 = 2(8)907<92> = 32 × 51353359 × 1003836161849041<16> × 62266812843610959960925034767934147501389827740260213154653218263297<68>
26×1092-179 = 2(8)917<93> = 7 × 41 × 75391 × 13351480871541330333235040758194036177983928750582336392378413956327603909915442863511<86>
26×1093-179 = 2(8)927<94> = 24038923 × 163635367025882860907<21> × 196290532053971656386389739847<30> × 3741444480345757250046735666126821561<37>
26×1094-179 = 2(8)937<95> = 3 × 854415157 × 406605143033<12> × 176706732600963304813<21> × 156860890297054521091504063901426432621915370538127893<54>
26×1095-179 = 2(8)947<96> = 70921 × 10040708298374933915971<23> × 405687510522833867570704027712518485226357846476005573107775200502357<69>
26×1096-179 = 2(8)957<97> = 5420048172980815305501023<25> × 533000592741985273574139049276588896235796306568704530691961547063792169<72>
26×1097-179 = 2(8)967<98> = 3 × 41 × 167736299 × 88645085387921<14> × 2856632688293233<16> × 5529547671511323114925853140660438580266220507583835687967<58>
26×1098-179 = 2(8)977<99> = 7 × 1181 × 742891 × 2726890123439<13> × 685926691910998609<18> × 25148521740540441606478330718945982623084179348421896346321<59>
26×1099-179 = 2(8)987<100> = 811 × 27423108371579386721219<23> × 8907938229843030552914196383<28> × 14581966881851168253184897925118668289327774121<47>
26×10100-179 = 2(8)997<101> = 32 × 134059 × 387296603 × 928547652451<12> × 66580104040365479760309272846771918410400884544954866029436768169061138509<74>
26×10101-179 = 2(8)1007<102> = 47 × 71 × 35574426601268299<17> × 2596991132256756419<19> × 937057533343457033065672361500140639879186482464054830951858271<63>
26×10102-179 = 2(8)1017<103> = 41 × 61 × 139 × 191996507 × 43282169244982135997537310377249361366070021700122908028371082359862975325504268841516819<89>
26×10103-179 = 2(8)1027<104> = 3 × 31 × 463 × 115597 × 1972108063362367189451376248797<31> × 2942995695171047624969249628590188180420693681219570640764638677<64> (Serge Batalov / Msieve-1.38 snfs for P31 x P64 / 0.40 hours on Opteron-2.6GHz; Linux x86_64 / October 15, 2008 2008 年 10 月 15 日)
26×10104-179 = 2(8)1037<105> = 72 × 19 × 103069 × 12233821 × 246088304067315737982793164882988642957353826165297967580478510779268609648209317343669173<90>
26×10105-179 = 2(8)1047<106> = 776977 × 3718113777999720569449145713307972937279853700803098275610331951768056054283317123787305015320773831<100>
26×10106-179 = 2(8)1057<107> = 3 × 29 × 1553 × 2106931 × 316383017 × 320757377430365201292023670742058327604849597153871913356774098056526101769617840577971<87>
26×10107-179 = 2(8)1067<108> = 23 × 41 × 284381193490905375402181939<27> × 52161574370679550506920781358070597227<38> × 20652259918624873179819191842874591046953<41> (Makoto Kamada / Msieve 1.38 for P38 x P41 / 13 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / October 15, 2008 2008 年 10 月 15 日)
26×10108-179 = 2(8)1077<109> = 1597 × 1069129 × 1691982288201597366677691109154277629237969396020078927437501622175817017933867628918963706164968299<100>
26×10109-179 = 2(8)1087<110> = 34 × 1464468001<10> × 1196211061787626501<19> × 203590785887029237731625929572842586699229463829465072328985391136871377289479227<81>
26×10110-179 = 2(8)1097<111> = 7 × 67 × 1367 × 43744265513290879<17> × 6001131512745860146554482788707579097961<40> × 1716466010916447043435880068391731173711732687851<49> (Sinkiti Sibata / Msieve 1.38 for P40 x P49 / 1.51 hours / October 15, 2008 2008 年 10 月 15 日)
26×10111-179 = 2(8)1107<112> = 73754123201921790624647439007473229<35> × 39169184900751608644593613969599919588169278840249296543982129934412148934803<77> (Serge Batalov / Msieve-1.38 snfs for P35 x P77 / 0.60 hours on Opteron-2.6GHz; Linux x86_64 / October 15, 2008 2008 年 10 月 15 日)
26×10112-179 = 2(8)1117<113> = 3 × 41 × 186704459521810910741<21> × 1257972176767329523839689852993754345961868321439927210781478338931285355365492267725290209<91>
26×10113-179 = 2(8)1127<114> = 19753 × 145349 × 163299769 × 178646921 × 58801239298499<14> × 58656769588635532757964758120867771264709170902690120938033769958597196721<74>
26×10114-179 = 2(8)1137<115> = 257 × 1013 × 317123 × 34991336324059744382881695200961925882685787604084955138227590633291862805896937585870174572828423848809<104>
26×10115-179 = 2(8)1147<116> = 3 × 8461 × 2017489 × 514585271 × 7226400063779105319823<22> × 151704114908820019833555359595268698581197476937330115120749663430440400297<75>
26×10116-179 = 2(8)1157<117> = 7 × 18521 × 242863 × 1287353 × 13576111621781<14> × 2523728029868333<16> × 464769930904188568201<21> × 18547636755398752559384051<26> × 24130415824051282420912093<26>
26×10117-179 = 2(8)1167<118> = 41 × 15131 × 33334465990591586809048639<26> × 139696603899697084060453914075306279298708501077945144846908921518679258773666975756723<87>
26×10118-179 = 2(8)1177<119> = 32 × 31 × 4817 × 339145835876930553447588298468823<33> × 6925540496049346647691472035885723<34> × 9151869670383651567843410263648963919135064821<46> (Sinkiti Sibata / GMP-ECM B1=1000000, sigma=334309867 for P33, Msieve 1.38 for P34 x P46 / 0.2 hours / October 15, 2008 2008 年 10 月 15 日)
26×10119-179 = 2(8)1187<120> = 1399 × 1623781998084351779<19> × 13658004825147971646613<23> × 9311038875043590582860791685188090604042640093510594647549861124478313517919<76>
26×10120-179 = 2(8)1197<121> = 5653 × 11949605451227<14> × 4379004068674901<16> × 3759727749368860911148358537753<31> × 2597565697150329074823057784392058457450845003898821264709<58> (Serge Batalov / GMP-ECM 6.2.1 B1=1000000, sigma=1986497679 for P31 x P58 / October 15, 2008 2008 年 10 月 15 日)
26×10121-179 = 2(8)1207<122> = 3 × 7873 × 53864369008742065072303<23> × 22707418058505944540267895823232190406581775192667194956387838170103178836202772219507810460691<95>
26×10122-179 = 2(8)1217<123> = 7 × 19 × 41 × 341749 × 2352433 × 20495738160928880568287015789<29> × 3215194580464421314737130019839908378741240382067765459614466569192985402116883<79>
26×10123-179 = 2(8)1227<124> = 659 × 3067 × 8171 × 3358661 × 16925338109<11> × 3077180084024289719976099689328144624804306007332758398991620074711940580176624528319228153375701<97>
26×10124-179 = 2(8)1237<125> = 3 × 2089 × 67324333 × 83861369 × 1824903596618491254551411008086026120234261<43> × 447401266840912389986722883683744380837849073077673223449077613<63> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona gnfs for P43 x P63 / 16.15 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 16, 2008 2008 年 10 月 16 日)
26×10125-179 = 2(8)1247<126> = 367 × 829 × 107823286243<12> × 7310071877663<13> × 3042549675264553555477312649387<31> × 395948183335808890825034372088476100294521230559806139712454179923<66> (Sinkiti Sibata / Msieve 1.38 for P31 x P66 / 7.34 hours / October 16, 2008 2008 年 10 月 16 日)
26×10126-179 = 2(8)1257<127> = 585841 × 8319390006989801<16> × 39516536678078326093<20> × 14999635891299074031406203688563731254186558679481545002880324683774379074924206343499<86>
26×10127-179 = 2(8)1267<128> = 32 × 41 × 2410931 × 176708995742868033725601335173947516522546743<45> × 183764252538525370473390572332885210401984688084514695855899989508440764331<75> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P45 x P75 / 3.81 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 15, 2008 2008 年 10 月 15 日)
26×10128-179 = 2(8)1277<129> = 7 × 571 × 21991 × 51461 × 2755967 × 25614977 × 1633859560898027<16> × 30645216628346592539<20> × 18068749112523726301205782694922922033352583209183549264067828280423<68>
26×10129-179 = 2(8)1287<130> = 23 × 283 × 619662383277042403<18> × 716244720834500392085779152846525427334111384136680504955621355292766291132204080158097949637918169822448881<108>
26×10130-179 = 2(8)1297<131> = 3 × 58057 × 69371 × 324402044532790648012864351<27> × 7370440685555257301425889465224730487513726859828079077767490216481146722341718702964212383857<94>
26×10131-179 = 2(8)1307<132> = 83 × 249020929 × 455293743642730862501540767<27> × 30699069682396506376408811585604642597574296522221297170696897794127463531457954254117953984723<95>
26×10132-179 = 2(8)1317<133> = 41 × 419 × 168163972809179165777337964310430693805744740024965882117055060765404790086087018388083642172937242498916635944402403451242149653<129>
26×10133-179 = 2(8)1327<134> = 3 × 31 × 310633213859020310633213859020310633213859020310633213859020310633213859020310633213859020310633213859020310633213859020310633213859<132>
26×10134-179 = 2(8)1337<135> = 7 × 29 × 68113 × 3973247 × 15177348453623950838024813965176032894221<41> × 346468154200169948635742296967949960762542906674809782261859479169727252266013559<81> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P41 x P81 / 8.36 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / October 15, 2008 2008 年 10 月 15 日)
26×10135-179 = 2(8)1347<136> = 107 × 208469 × 138287918399311<15> × 607945304699186949097267321<27> × 1540482714932326888732496552385370709074714666940677042800588786174348752142926864938519<88>
26×10136-179 = 2(8)1357<137> = 33 × 71 × 2753 × 2574853 × 8565894033048239<16> × 248186055544913144047678360561713251080679519278899234099321219894587469976855840958205244615003625640991561<108>
26×10137-179 = 2(8)1367<138> = 41 × 109 × 526294333620542813446146956660416129<36> × 2734255542207168448248267232752481223<37> × 44921338536578715635599211917927596126790380075342452322497069<62> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P36 x P37 x P62 / 8.31 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / October 15, 2008 2008 年 10 月 15 日)
26×10138-179 = 2(8)1377<139> = 97 × 461 × 424764761 × 471660949414796375161<21> × 322462916815158289551352358250834948471388132869941108316942145506625215305631004933780029061016751690691<105>
26×10139-179 = 2(8)1387<140> = 3 × 5967564541461373<16> × 1613661580486479022608000536333354521515832040328209607157273069289567166129505654472813722235123144881097677081060152887873<124>
26×10140-179 = 2(8)1397<141> = 7 × 19 × 59 × 10823330227479669738080213<26> × 15077310007224324951774760507<29> × 225601722962187252449060268273607180793361643029023092858205654969195425263446008631<84>
26×10141-179 = 2(8)1407<142> = 522449 × 9070753 × 7101121041869<13> × 62287803097261588411025473<26> × 1378204508318455077524955617129199881726681823179254533066439175818127124772687928539982083<91>
26×10142-179 = 2(8)1417<143> = 3 × 41 × 263 × 5119 × 45893 × 187237 × 16077483223453<14> × 1262782811232057517822479154588040644400121777867748189349743707515582934462017599459185342061877937643690024649<112>
26×10143-179 = 2(8)1427<144> = 67 × 193727 × 31125912494910113<17> × 31933829173675731761<20> × 90462110732910171490943<23> × 247528993500663266468907382577689199117203373297050313525212382617084821898157<78>
26×10144-179 = 2(8)1437<145> = 193 × 1782151055743702442344825007074171523<37> × 16521095534080175058325500493943837954429<41> × 508382011054035835676406114546052839485630855313152746851685502977<66> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P37 x P41 x P66 / 19.60 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / October 15, 2008 2008 年 10 月 15 日)
26×10145-179 = 2(8)1447<146> = 32 × 3209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543<145>
26×10146-179 = 2(8)1457<147> = 72 × 269 × 33199 × 634511 × 5620064353004873311<19> × 522334017727834679201<21> × 1277048743505362372399<22> × 277537228588019597808698312534363267245298018710608898117638602005416787<72>
26×10147-179 = 2(8)1467<148> = 41 × 47 × 8311 × 20368459 × 8856001234059277495687390004249079788284559209323541348873637559375685830438907102634498282132095758446466636978089723673214913723269<133>
26×10148-179 = 2(8)1477<149> = 3 × 31 × 139 × 209878147747<12> × 1047273545987807287979<22> × 470430007046326795627273<24> × 258331263861267506722848379<27> × 6326624605864122383184067711<28> × 13223964744142966970001635879625901<35>
26×10149-179 = 2(8)1487<150> = 134971906566222676263728404267505511206402426126592403563178725170953<69> × 2140363103985260191659544710319723616409514346738105611022769933803701494623081279<82> (Serge Batalov / Msieve-1.38 snfs for P69 x P82 / 10.00 hours on Opteron-2.6GHz; Linux x86_64 / October 15, 2008 2008 年 10 月 15 日)
26×10150-179 = 2(8)1497<151> = 173219839325464879007<21> × 131422865042692013761171<24> × 126900191201635731193469316064866135239350469626230007520759544977950736037296085565442642759528436559130771<108>
26×10151-179 = 2(8)1507<152> = 3 × 23 × 2179 × 85571 × 5391868838249<13> × 416445900460789779754780719214820123310513983831504982883360594887903018579013570038444576157174854893384425083472967083151972603<129>
26×10152-179 = 2(8)1517<153> = 7 × 41 × 4337812181<10> × 29338042969<11> × 290802376337873<15> × 27198760097018826385539771116283352114585884235845871709618866821341227850142763035555938909516830025437932915814333<116>
26×10153-179 = 2(8)1527<154> = 191 × 13691 × 29404942766701<14> × 2690568143184441439<19> × 24008502534823630793<20> × 144033299950349239793375411134290953<36> × 4038034105758540631100193593028886436502038569222778774393017<61> (Sinkiti Sibata / Msieve 1.38 for P36 x P61 / 8.54 hours / October 15, 2008 2008 年 10 月 15 日)
26×10154-179 = 2(8)1537<155> = 32 × 33349 × 1655806187784170081376129355024512400874595061215829462877<58> × 58129423001915900497455256477363673668965485263795199277948640370085158428885797129195181391<92> (Serge Batalov / Msieve-1.38 snfs for P58 x P92 / 15.00 hours on Opteron-2.6GHz; Linux x86_64 / October 16, 2008 2008 年 10 月 16 日)
26×10155-179 = 2(8)1547<156> = 9461 × 213337 × 1788621326127365943790437163<28> × 7097597855816557021348858901<28> × 11274513704521551215456122635353023301044932333197288191210011601151059731671156427617080757<92>
26×10156-179 = 2(8)1557<157> = 661 × 763627 × 3627160799939<13> × 1577906605456026029381111851744261694384468375765783438004820633178668299848373654467019326148740514472728872233806919884885315006154139<136>
26×10157-179 = 2(8)1567<158> = 3 × 41 × 82013 × 52965943 × 84856973371799<14> × 3677069971699943402973240503427918915132808241897783<52> × 173283371006799030478413179782103712024486470011088345019793475092290392389823<78> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P52 x P78 / 58.34 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 17, 2008 2008 年 10 月 17 日)
26×10158-179 = 2(8)1577<159> = 7 × 19 × 307 × 587 × 5549312039923441<16> × 2172018774033280685672645102785290370597869566322350192817580828553444597575322832536010080809683026204117802837863784612128207129316331<136>
26×10159-179 = 2(8)1587<160> = 8837 × 5635633 × 1139822240018422481622821<25> × 145680615773863178153918657<27> × 457172000486643298781203262917205228548147422071<48> × 764125619267224024718139398079281672269351217374681<51> (Sinkiti Sibata / Msieve 1.38 for P48 x P51 / 4.91 hours, 5.57 hours / October 17, 2008 2008 年 10 月 17 日)
26×10160-179 = 2(8)1597<161> = 3 × 116471 × 82678345937011184154249810078299573538731784131926656675306553817084335410785771819848972101464138108453002289236201540551979717093779821840884251269669099<155>
26×10161-179 = 2(8)1607<162> = 491 × 30557 × 12184547 × 265985593868700211361992135555305954314323409649102462483859930225459<69> × 5941158371782505498596768539671106948764441091331681031338463367290089728487537<79> (Serge Batalov / Msieve-1.38 snfs for P69 x P79 / 20.00 hours on Opteron-2.6GHz; Linux x86_64 / October 17, 2008 2008 年 10 月 17 日)
26×10162-179 = 2(8)1617<163> = 29 × 41 × 61 × 995377 × 5501286498405655905342717694686972908197<40> × 10125694884984205676521560253483207273265641799<47> × 718360506293268421227792773673534536293455189801295656412695055613<66> (Serge Batalov / Msieve-1.38 snfs for P40 x P47 x P66 / 20.00 hours on Opteron-2.6GHz; Linux x86_64 / October 16, 2008 2008 年 10 月 16 日)
26×10163-179 = 2(8)1627<164> = 33 × 31 × 179 × 3509069 × 7129207 × 36956614945034206049<20> × 208558085616122847820847533750745755014243370177830791182431646478506760373448790903044578630511266181560961057092409612806107<126>
26×10164-179 = 2(8)1637<165> = 7 × 2609 × 2777 × 254477308858753<15> × 22383797915311648917449733569107168708110031267221676228693301393388451708374862515150772836004153116567734548403126418476453905436433888446729<143>
26×10165-179 = 2(8)1647<166> = 263957 × 4058137 × 7818152593406970277472416624103<31> × 12764119228429224522971656618663<32> × 27025638012775141945475448077100614364122822615878345459713349089216440618643727446116152387<92> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=2782357100 for P31 / October 15, 2008 2008 年 10 月 15 日) (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=660598922 for P32 x P92 / October 16, 2008 2008 年 10 月 16 日)
26×10166-179 = 2(8)1657<167> = 3 × 293 × 1471197411837404676000587813206308006550640281066939<52> × 22339374628322814429464629999793314774821231845019922359202585861305762667563370954938494467079355549589396537627<113> (Serge Batalov / Msieve-1.38 snfs for P52 x P113 / 40.00 hours on Opteron-2.8GHz; Linux x86_64 / October 16, 2008 2008 年 10 月 16 日)
26×10167-179 = 2(8)1667<168> = 41 × 6131 × 1149253051819378086131211989007836579752194520803469329751199974893241021792047964518138086290339334644365853216516180819939010024580754696798313603752576426432997<163>
26×10168-179 = 2(8)1677<169> = 1151 × 53189 × 3845297 × 691786150359227305260342651851<30> × 946812596364691311451086016834132866784096017745846067579369<60> × 18735613134758722493314686248856404802936412322699495052983347031<65> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P30 x P60 x P65 / 138.68 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / October 17, 2008 2008 年 10 月 17 日)
26×10169-179 = 2(8)1687<170> = 3 × 9629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629<169>
26×10170-179 = 2(8)1697<171> = 7 × 839 × 1905572217209473820989<22> × 17607993330194074552487257<26> × 1466005367440292290833774320052810857345021260071416247319187235267691953636126183247779691761276708721171227162569108203<121>
26×10171-179 = 2(8)1707<172> = 71 × 2014690833579469<16> × 1891416654878237659147193<25> × 48109016865913520195095540051309093<35> × 221947566920328070216344062694348500510850700259673035094854433728769797473984579418247370694137<96> (Serge Batalov / GMP-ECM 6.2.1 B1=1000000, sigma=2805974126 for P35 x P96 / October 17, 2008 2008 年 10 月 17 日)
26×10172-179 = 2(8)1717<173> = 32 × 41 × 83 × 131 × 527623 × 371470216724616829<18> × 1322759690532757068064807<25> × 79595740428624758405274066235447<32> × 605333788407412819438944577230313913<36> × 576423491058992736416957914655421765461285925809189<51> (Sinkiti Sibata / GGNFS-0.77.1-20050930-pentium4 gnfs for P32 x P36 x P51 / 94.00 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / October 20, 2008 2008 年 10 月 20 日)
26×10173-179 = 2(8)1727<174> = 23 × 113 × 1747 × 1214533 × 52386855943880371081206465288938094471757593313627262803935867513299244330073423336978065546773984513288605974136778090624430595957448370655640545703366315308463<161>
26×10174-179 = 2(8)1737<175> = 1504631 × 1495084506147527<16> × 1284207175868635702875860256439781440980412244243485362612085327733728611840896250536975571442424012471352353768498507122988766964939928297532440063258551<154>
26×10175-179 = 2(8)1747<176> = 3 × 368227817 × 45998168948410733<17> × 4452792496021608493<19> × 333421341979068916546519038846193733716819<42> × 382936350699197296494228208288801846939571547135265957954115629647469996359944562538119167<90> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P42 x P90 / 309.56 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / October 22, 2008 2008 年 10 月 22 日)
26×10176-179 = 2(8)1757<177> = 7 × 19 × 67 × 17489 × 40977317 × 45237218920471762643738682467176254229824227271916793195031639956051405168016865003320057081523388774115851695843989362150704132441435473199407732688463878513109<161>
26×10177-179 = 2(8)1767<178> = 41 × 167611427 × 420381270347671883138997480440700864056285649727573195871938197034171226560051068025374225054838919825234054362562088598353504290653441369845891277126770483879998504341<168>
26×10178-179 = 2(8)1777<179> = 3 × 31 × 32097281 × 917532221041693<15> × 291002292243422807<18> × 46551979756688864329755577511<29> × 1708434994113216837999887829197<31> × 455748551939836496273169743872540564466760991620862143095874663969405813171067<78> (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=3345119744 for P31 x P78 / October 10, 2008 2008 年 10 月 10 日)
26×10179-179 = 2(8)1787<180> = 577 × 2011439 × 27778159 × 98699849 × 1653903478537<13> × 5568917968267078138899173830351221759908557861721<49> × 9857056137728383106952550168939175812236563857884385884810595206543334545507467963339269590847<94> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P49 x P94 / 548.54 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / October 30, 2008 2008 年 10 月 30 日)
26×10180-179 = 2(8)1797<181> = 167 × 3010382267<10> × 5746358544308457124963224859126250910652899203722052339545523213610649609927820829600498107418413923471455462212594533264082193720058439328236481516801344244293532374083<169>
26×10181-179 = 2(8)1807<182> = 32 × 224958691931<12> × 14268737587585277375071422810770097814904672776272627708791478282228314808496620637339691534063130394891487635682862123291479796286282857448469074374867494969887184278253<170>
26×10182-179 = 2(8)1817<183> = 7 × 41 × 557 × 193877 × 12576721727<11> × 2630853583414356649<19> × 397735015198036130921<21> × 7705077856010243672569936151<28> × 27900753421609641791743272247<29> × 42270617153930770525183763329<29> × 77943148986701300786028243919221412871<38>
26×10183-179 = 2(8)1827<184> = 571191356051002418872131436996090915923457383067405912592086693050165007850808002169422749<90> × 5057655124302924926840820612415887462963794902802707794326442625485636705143562806846593819363<94> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P90 x P94 / 296.85 hours on Core 2 Quad Q6700 / October 29, 2008 2008 年 10 月 29 日)
26×10184-179 = 2(8)1837<185> = 3 × 347 × 773 × 39726525073084482231811855145440261<35> × 1320609859565989645500044320598167223<37> × 56769868243326996068138076631635363450932003<44> × 12053900854975104886597626247097584098530293555309152172407068051<65> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=1909449008 for P37 / October 16, 2008 2008 年 10 月 16 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=256027446 for P35, Msieve 1.50 gnfs for P44 x P65 / May 13, 2013 2013 年 5 月 13 日)
26×10185-179 = 2(8)1847<186> = 129449 × 2231681116801897958955950906448785922555515213627674905861682121058400519810032436626693824509180363609521038315389758815354996090266351141290306521401392740684662599857000740746463<181>
26×10186-179 = 2(8)1857<187> = 1889221 × 1891522946385477739752438959<28> × 146203648118672203771476839521743508125823598003164107077<57> × 5529403085686413025689548226969862116538460730222913935956926371335284404156153721034793787861729<97> (Dmitry Domanov / Msieve 1.50 snfs for P57 x P97 / August 26, 2013 2013 年 8 月 26 日)
26×10187-179 = 2(8)1867<188> = 3 × 41 × 234869015356820234869015356820234869015356820234869015356820234869015356820234869015356820234869015356820234869015356820234869015356820234869015356820234869015356820234869015356820234869<186>
26×10188-179 = 2(8)1877<189> = 72 × 107 × 5231 × 18149 × 22571 × 2677937513<10> × 3823781428699<13> × 8363994565547<13> × 300230990370444021333391506222939272898689818867365394159393125733190909652064142745737971622150772924093513344466002216000597185319769869<138>
26×10189-179 = 2(8)1887<190> = 135326044273402220579417211557<30> × 308558625109499251401820985922667799129<39> × 69184970598627553405721583020567880328939767088659245846281753528690243836282372708043882582675957484334049718542087996579<122> (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=2938075691 for P30 / October 11, 2008 2008 年 10 月 11 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1892484777 for P39 x P122 / May 10, 2013 2013 年 5 月 10 日)
26×10190-179 = 2(8)1897<191> = 34 × 29 × 5197 × 643723 × 20375015119<11> × 56517181816247228761<20> × 3192402488609683454331848124467861551215649688331037275095136387614039177732944407471583395809398417965856017135551887944467276825459640719769457547<148>
26×10191-179 = 2(8)1907<192> = 63031 × 8850787783<10> × 33593973541<11> × [15414638266408339951323984387721773155252815502067007572766414636316980146812770209671083451811386044716354282159269859999847706003798607445293482414929520947276398059<167>] Free to factor
26×10192-179 = 2(8)1917<193> = 41 × 79272414103<11> × 646339692493393337747248290139367<33> × 82042192357926772102610496389810561633<38> × 23347548471027891222391051218682713727291<41> × 717935663614141323476198407218450614415097949778852880550482361549069<69> (Serge Batalov / GMP-ECM 6.2.1 B1=1000000, sigma=652635297 for P38 / October 17, 2008 2008 年 10 月 17 日) (Serge Batalov / GMP-ECM 6.2.1 B1=1000000, sigma=2198108180 P33, Msieve-1.38/gnfs for P41 x P69 / 10.00 hours on Opteron-2.6GHz; Linux x86_64 / October 17, 2008 2008 年 10 月 17 日)
26×10193-179 = 2(8)1927<194> = 3 × 31 × 47 × 38261 × 262317748916420123<18> × 13959292132313990467<20> × 47173993467324567306427078103133586594876142641377205826649107282064337526395322319900680287848466927017221080846111126742363874668100553697405512297<149>
26×10194-179 = 2(8)1937<195> = 7 × 19 × 139 × 7424577444081465199644878390221956376139<40> × 96942856703978898224609908436953202767406259931799891<53> × 21710850776123173933795522336376573592096102085576350141569591485808016975406800565073205663702449<98> (Robert Backstrom / Msieve 1.42 snfs for P40 x P53 x P98 / February 8, 2010 2010 年 2 月 8 日)
26×10195-179 = 2(8)1947<196> = 23 × 16387913092815080088799706325752575559733136683692971560249525931029829007<74> × 7664420968242000729840063963573618783981209238122361233171156686202207659037578930162203115556226303477752467991137793167<121> (Robert Backstrom / GGNFS-0.77.1-20050930-k8, Msieve 1.39 snfs for P74 x P121 / 10.92 hours, 6.73 hours / May 2, 2009 2009 年 5 月 2 日)
26×10196-179 = 2(8)1957<197> = 3 × 287771327 × 810857563 × 185726128967846339<18> × 671758004937985886076476237<27> × 31939879173910580438400878878759<32> × 10356150813844787900834823060533787167148150203266154500522047784924543502448871053345793359278564043017<104> (Serge Batalov / GMP-ECM 6.2.1 B1=2000000, sigma=847032883 for P32 x P104 / October 17, 2008 2008 年 10 月 17 日)
26×10197-179 = 2(8)1967<198> = 41 × 7046070460704607046070460704607046070460704607046070460704607046070460704607046070460704607046070460704607046070460704607046070460704607046070460704607046070460704607046070460704607046070460704607<196>
26×10198-179 = 2(8)1977<199> = 59 × 149 × 421 × 14357059316680247952073829<26> × [54368201646957887734820638765823985629095501422642461653111790827676014411937243777882224110117103445627220136026480165697003207075054264785300397035345734252233868873<167>] Free to factor
26×10199-179 = 2(8)1987<200> = 32 × 9539 × 181739 × 4257521 × 1245502778215280365687705374277619306904568259<46> × 349169134863121096462062859479802778230676324325224197726362311978983940203604020047553120414541176159190077653658736698772034448950732197<138> (matsui / Msieve 1.49 snfs for P46 x P138 / July 8, 2011 2011 年 7 月 8 日)
26×10200-179 = 2(8)1997<201> = 7 × 475872218348784794493923143<27> × 11017491137972072258902161720782163991151072600037442311439102020692038783<74> × 7871540557281710951686387440367282404549787631036199455153879978434456028112484559193138176493110489<100> (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs for P74 x P100 / October 8, 2012 2012 年 10 月 8 日)
26×10201-179 = 2(8)2007<202> = 87721 × 50469536772814494876165871<26> × [652526187971680960073559273979976928659024944718191394691270632541234278787590360979253033587788699620665989006329336066397045069200694676403931650663616382217166579133457<171>] Free to factor
26×10202-179 = 2(8)2017<203> = 3 × 41 × 2333 × 129797485565316576138335938787553938939<39> × [775612337868844507616271572284373761381973575256362313544270876107000293028543916178363902529711692579369109164356752919211141934170017178762799324790822743387<159>] (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=1776639700 for P39 / October 17, 2008 2008 年 10 月 17 日) Free to factor
26×10203-179 = 2(8)2027<204> = 7243 × 1037683 × 3824063918680895647818959<25> × 10051306320160897756550779314342344044868906035898401171586090645209622387730976180941938768718465087339732656131270519681228102051309161218446964573005534593769747422697<170>
26×10204-179 = 2(8)2037<205> = 2014333 × 1297946064816229<16> × 1104950759641022827587552018158725051019477754041895433422858617547355269403640355002322959643205473729092677173804963388887456791302583038463234925472963748369755493834520438263011591<184>
26×10205-179 = 2(8)2047<206> = 3 × 1281337457<10> × 6184941102745251014137093855799<31> × [1215095726717624108313042811163489589367050988054670746983203695328134019542140905673514545375797126634777813069355225401443615953964939157714410100337386839565981403<166>] (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=1117521290 for P31 / October 13, 2008 2008 年 10 月 13 日) Free to factor
26×10206-179 = 2(8)2057<207> = 7 × 71 × 30313 × 412619 × 355639744382808086024392934891209<33> × 130673047207081265460635647114111966357316898179108665720730511209685468384688647802347456320876940256415943315494598305325649348317654295398265653258184404571877<162> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1848711461 for P33 x P162 / May 10, 2013 2013 年 5 月 10 日)
26×10207-179 = 2(8)2067<208> = 41 × 34469 × 3603290157463<13> × 21605470035529<14> × 72210122201316243425321101503931<32> × 167604250340433002812365720433021631473<39> × 43510582515128436274679352982674484830622431951859351<53> × 49862877577402470069117765515402250006170834663806753<53> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=367222766 for P32 / May 10, 2013 2013 年 5 月 10 日) (Ignacio Santos / GMP-ECM 7.0 B1=11000000, sigma=1 for P39 / May 19, 2013 2013 年 5 月 19 日) (Dmitry Domanov / Msieve 1.50 gnfs for P53(4351...) x P53(4986...) / May 21, 2013 2013 年 5 月 21 日)
26×10208-179 = 2(8)2077<209> = 32 × 31 × 41097455657<11> × 204902283869<12> × 4180686801751727046229<22> × 19748307574915385586419501<26> × 45557454282911934261946470885599<32> × 3269097974601891261004202407774318301780561921654158212796248651242113204539578928019048257688185189290371<106> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2413918756 for P32 x P106 / May 8, 2013 2013 年 5 月 8 日)
26×10209-179 = 2(8)2087<210> = 67 × 4561 × 13915508255141<14> × 26743868556111156714569<23> × 464531815452287143280207<24> × [5468361252861951633631280728953861290277808670312196011950541794269249055437195274409932208559740334392507567607095891952913340762843574449916367<145>] Free to factor
26×10210-179 = 2(8)2097<211> = 23917624345686361355409787719127179446746273526474915559632885924637220921917955929663635867<92> × 120784942816024764846877957324717894315733619020272627472295263089450992431254002988996351709341704196143940486898503061<120> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P92 x P120 / November 4, 2013 2013 年 11 月 4 日)
26×10211-179 = 2(8)2107<212> = 3 × 2454407 × 248857985354247967<18> × [15765633339632674860253925733214006879455511398506384126737269719413956410160687492082095481717458406160429283110000557310682782629824714448507676526521221490083429757699492845245268372741<188>] Free to factor
26×10212-179 = 2(8)2117<213> = 7 × 19 × 41 × 103288015515596541857<21> × 39993423257958354217894622569<29> × [12824983885664484379907168963250904499862820335352162501112180718245713278329872957140238867417423135656330426954255134081566773695995143773784267383706987026363<161>] Free to factor
26×10213-179 = 2(8)2127<214> = 83 × 929 × 1069 × [35047684200878837665983995741911263747010976787761039179041859049302692151331419667768524070318827044271063281105126058519762648401549869524413857575569139310038375097859031735714439567842265341468973834689<206>] Free to factor
26×10214-179 = 2(8)2137<215> = 3 × 16315111091<11> × 85398203027108221<17> × 2833260614711887266172450733<28> × 2439407146409714615647154781012239918950364423171940625606812207360340227827312279080761655395846878659871960608169521123960821612916346176462405238062169928583<160>
26×10215-179 = 2(8)2147<216> = 379 × 569 × 10605046399<11> × 1536291605027<13> × [82222964661803976981636417755831012523359374652700888993053602408884117323426973019467372559169953283545745940400426767124455708387828727853787669791758618340516721252562401524468833509569<188>] Free to factor
26×10216-179 = 2(8)2157<217> = 4409 × 654258142308686563091<21> × [1001478438517100828412402181776079887465416362430499276393838712419503083743981042488993020781233775265183239537090225264961866569504471812057520793641986248586460695468509336171723782208773173<193>] Free to factor
26×10217-179 = 2(8)2167<218> = 33 × 23 × 41 × 8839 × 31333671550582649<17> × 4096764136973024432169627373702063131832050608899243410214205981926843524077758547113415674848361790462044695590762574534212790901956880632405570201698456626944238621673310801484204428200200597<193>
26×10218-179 = 2(8)2177<219> = 7 × 29 × 11926790567959<14> × 3763584139820808209<19> × [31703672839549369193824610398577954958339900282048214991134921456093250978921681448669527352805116360486046880044982974611495343514292628991825968454419615057590778165283902323264792659<185>] Free to factor
26×10219-179 = 2(8)2187<220> = 23333 × 85094927 × 18044547894177113<17> × [80632584827943483225081244516906988639938161042738354227514469324488891824793290560135301212863085729921452438113304722826081471895787887331150825992387281096418640589196460430660682460476589<191>] Free to factor
26×10220-179 = 2(8)2197<221> = 3 × 161614763 × 1858062107723510569<19> × 32067738059219226355719622537887629663110308305076647155036984423652698835300275579230179408964089480517185362496770752303870084232357983565119942809704439057929778044765273895576974853278483807<194>
26×10221-179 = 2(8)2207<222> = 1237 × 2423 × 128337075936512575411<21> × 881865875694927767372563770123137<33> × [851634108938449969284471709540425518952078737942296072127215652764398631071522522862563883132518822615596257779403674223979847166166528317992091526910690877434191<162>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2077778744 for P33 / May 10, 2013 2013 年 5 月 10 日) Free to factor
26×10222-179 = 2(8)2217<223> = 41 × 61 × 332903 × 6839448437796494036592263<25> × 507315764740473912922865400844822419604520037672638455794822465674583621837100640147326476070231908158675567076033401435876744401714761896031629228847598108934748805353505839371199697384283<189>
26×10223-179 = 2(8)2227<224> = 3 × 31 × 40263828018792759221288876084859814033535480192985952449237609947750135255830169183675969193750143327<101> × 7714944880899928568166601461007452418733682738854462923246328211902396465667021774602334160205897940379024134727063929917<121> (matsui / Msieve 1.52 snfs for P101 x P121 / October 26, 2013 2013 年 10 月 26 日)
26×10224-179 = 2(8)2237<225> = 7 × 13963 × 23327 × 201829 × 1034339 × 3200128842503<13> × [189662398519203316150209011012031640565203750356752681969941008477388862734061806649145927003962547578774679732236512671842839992452068385158904185004332320090863952319766268032679816118524037<192>] Free to factor
26×10225-179 = 2(8)2247<226> = 5669 × 461408872993<12> × 32886385647094282421<20> × 15612354477164433006951187<26> × 2151066768893779077896527085360230337092303329729020871322645235592131587903828632898548958443141830697835821353332455024462053373156883329622644803391727970820161893<166>
26×10226-179 = 2(8)2257<227> = 32 × 6043 × 30497 × 8167279602489246983<19> × 3223593734318774722957<22> × 33877206583081559481743<23> × [19527798988533631516793317849880524482927420846320937304646407691165741205693450715279157594651383631685760305242308020309771724421415154945628807251661401<155>] Free to factor
26×10227-179 = 2(8)2267<228> = 41 × 171170449190226164276767360574183<33> × 96394309037948028379347047503916006330249<41> × 427038269782884233571532629979381352832240790918436546156182993571318741189860388406762137047462360654921341179853471476977626176912681764465131892365121<153> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2825448489 for P33 / May 10, 2013 2013 年 5 月 10 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1322315109 for P41 x P153 / June 17, 2013 2013 年 6 月 17 日)
26×10228-179 = 2(8)2277<229> = 2957 × 976966144365535640476458873482884304663134558298575883966482546124074700334423026340510276932326306692218088903919137263743283357757486942471724345244805170405440949911697290797730432495396986435200841693908991846090256641491<225>
26×10229-179 = 2(8)2287<230> = 3 × 1117 × 225527 × 28521683 × 1340240443322145452594608580123566778938419928728231420817207666260179108215604238223566745360189659996318497142415676771480970041558592292747221996232806012449986562092598432132278555717778263116733660583481827357<214>
26×10230-179 = 2(8)2297<231> = 73 × 192 × 96823 × [24096334410372354650002845048179749061320437173414127320926732838686955712659249989114580559189254749481402261247978335510957581794634983490079194883943097103841927778020148440489276340452268894421331458735198114275297103<221>] Free to factor
26×10231-179 = 2(8)2307<232> = 11482789 × 94982094271<11> × [2648754531890925744289472505627766883929793361843739243117119534608459881234378813589286838969120587380933702797403158140854202238285868393621848157100790178139518012616285397700505475736965258643893204378384701973<214>] Free to factor
26×10232-179 = 2(8)2317<233> = 3 × 412 × 479 × 533702134158195875018619524965993<33> × 22408222984258557220585324832934669743874518639026109662537045297306328683671375922258627350973512800801633025697555555996433295684925399983053196387963555394603802441310684860549943560247180347<194> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2380210641 for P33 x P194 / May 10, 2013 2013 年 5 月 10 日)
26×10233-179 = 2(8)2327<234> = 270568079346787<15> × 1458188309033643675506240019400447561<37> × 732218450011112549329119131472487464700996108071642143999651677432370944661405118122237150930243439740333603349258790156504015126106670529850725189521677411299381341703689637291020341<183> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1584514277 for P37 x P183 / May 8, 2013 2013 年 5 月 8 日)
26×10234-179 = 2(8)2337<235> = 97 × 9547112531621507<16> × 6804665820529834837<19> × 3136977826075147800007259<25> × 81905251419833619330254697604752251<35> × 8393665944821433862444552283858331903378361914997<49> × 212571669450062725661880620799653260066108653855107765172137873301246418292229829184693453<90> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2937262404 for P35 / May 10, 2013 2013 年 5 月 10 日) (Erik Branger / GGNFS, Msieve gnfs for P49 x P90 / November 22, 2013 2013 年 11 月 22 日)
26×10235-179 = 2(8)2347<236> = 32 × 225597862166785741<18> × 14228310997188427035560096857032946699104202798634137956615067815756191012988096269153101649428934047972270017251723515582186914237584628874973739036383473302387500706829069308068323471035424090731001544929188582174523<218>
26×10236-179 = 2(8)2357<237> = 7 × 551688774974503<15> × [74806382043478423435808369731981724377709478131578313162508505851955659628886150027973616118133062540569741584585888975216971294133994999132988181176488627119025163771902109920510942725786902856504974080673613787782389447<221>] Free to factor
26×10237-179 = 2(8)2367<238> = 41 × 223 × 1381 × 29595000763<11> × 1710601075348849<16> × 4519405855614158856884301388738185575756906518256479494127771111668925596350872395461729640532157289964771865124222341695253104537075290130104038639459737934533546564095044682704199963659079298283868934247<205>
26×10238-179 = 2(8)2377<239> = 3 × 31 × 17914895525348997871953180891109<32> × 77799771931273889262077139536983524215512156277756839<53> × 222871885019913493394674438897875118627492966147616203412002063359479369172645860685447727562232168450461348576023634337126531163771724817976675857903809<153> (Youcef Lemsafer / GMP-ECM 6.4.4 B1=250000, sigma=1225550637 for P32 / May 9, 2013 2013 年 5 月 9 日) (Youcef Lemsafer / GMP-ECM 6.4.4 B1=110000000, sigma=4255384633 for P53 x P153 / October 24, 2013 2013 年 10 月 24 日)
26×10239-179 = 2(8)2387<240> = 23 × 47 × 1974516179<10> × 783184550387<12> × 2624145363097<13> × 65855560035949746934374422957813019297715338563906553636299798991736365261050211236842206375241425798794410221372903443606963083455429959374729373156012489798253878006676247585725790268721379897288967567<203>
26×10240-179 = 2(8)2397<241> = 139 × 28081094512567872099214223<26> × [740119773182529698842285598811759848496818110178449714021001259371659989972380680299220412852382560387706022207351400699824314177424279618317732228887971415096912953835767450635345593359135556969033247430377459371<213>] Free to factor
26×10241-179 = 2(8)2407<242> = 3 × 71 × 107 × 1597 × 110647 × 891061 × 716548727 × 7617023257<10> × 344551386263058068014921536077<30> × [4280854333158383909402266227048703161333611911475043914733823268530873520055698084964609588224244772720591414983902697395436903019905769301572740184077545219305548757811599981<175>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3264400521 for P30 / May 7, 2013 2013 年 5 月 7 日) Free to factor
26×10242-179 = 2(8)2417<243> = 7 × 41 × 67 × 671717 × 359130329 × [62278151843472083513806827039035431434759424862476731853681487850268473432357274166833477475038741991228599462136779070015776912891318958303370014943267405898223993638265400549776207070522028299457933767281925820601046207871<224>] Free to factor
26×10243-179 = 2(8)2427<244> = 1113587 × 3821829797<10> × 5726924014423<13> × 18457844659426898624257103<26> × 11983715129155259527908464941<29> × [535847809763143978355192340386397559158261690549041305186065206160895995101772667431578875419310133033903838245571040001763373837995436297060368826983389317324277<162>] Free to factor
26×10244-179 = 2(8)2437<245> = 33 × 288991 × 1654186130690103533309<22> × [2238197371361675944214564282141368295886665583880549597336891397847701696874687892494014339513936717193584329398332508250451328552862934073023223244558607086379896891838018612034960228999552934226891065335923910498599<217>] Free to factor
26×10245-179 = 2(8)2447<246> = 109 × 1831 × 10651 × 318570302287<12> × 717269346372110529889834619227<30> × 594754933235438547994296700191439590607322804005208610107213036478886644781828192903370744174179313347905085970207485282456085972652441293523975735734434356927872614518675501444687794540196560147<195> (Youcef Lemsafer / GMP-ECM 6.4.2 B1=250000, sigma=3327193573 for P30 x P195 / May 9, 2013 2013 年 5 月 9 日)
26×10246-179 = 2(8)2457<247> = 29 × 40973 × 674993193683<12> × 4088232325913017661<19> × [881049107121719365981770608433291103846777569010730175120669889558632667159938628355105061758530685244231825602064639619474204555092802821872613651844910360480650234755093532474541672136009864249496531963246297<210>] Free to factor
26×10247-179 = 2(8)2467<248> = 3 × 41 × [234869015356820234869015356820234869015356820234869015356820234869015356820234869015356820234869015356820234869015356820234869015356820234869015356820234869015356820234869015356820234869015356820234869015356820234869015356820234869015356820234869<246>] Free to factor
26×10248-179 = 2(8)2477<249> = 7 × 19 × 191 × 1187 × 2822717 × [3394124530399892253802537454845802705641635643356913523852000092125096713737047217176318136792842921353363309634506090707467536341228396380125916861856375993823507599392692520691559424469293083431961047301131819406318537485341558589651<235>] Free to factor
26×10249-179 = 2(8)2487<250> = 3247195123<10> × 11593557419<11> × 76737162307556378984398718793875380368233253762006373382519271656332862828173310529886514093841019483127838868098693960730698431956757362970630921133722347896991825063599684303472223777197629302693388920213155940697698393327148551<230>
26×10250-179 = 2(8)2497<251> = 3 × 181 × 527407 × [100875365029972288268524560273915010772233862870763616491697356667638092552083567880681470931159842300595172141732779110265693299939226588785825575989633820907930903412078920731086339776251821387646805669497675200924686914555390961490240054887<243>] Free to factor
26×10251-179 = 2(8)2507<252> = 3041 × 37619 × 90977 × 28816159 × [963250998907777248285352785483812035469292893708911459392480121022140989366120366225663204748889374696831899205609030613373472832762559839935563249108417766935644438911034635931538226475672022711887285628811119151104446023551920371<231>] Free to factor
26×10252-179 = 2(8)2517<253> = 41 × 27919 × 11389732202400389<17> × 221581557198349925111335598451055688504302373053476159205284964637578789558078050311238406346228321394793439294458598229788457415263248289778605339409918359897092810271166614021777400431356642446274843715737551415520949383745794877<231>
26×10253-179 = 2(8)2527<254> = 32 × 31 × 233 × 967 × 338744844735738731<18> × 7356934035524736187189051<25> × [184405845456205222280345935962493641117338603335263671853195371820076387836589922257203834919217479310510611510285933043851356199417192589141031369554376173081002910730466525051492656924644679725732692583<204>] Free to factor
26×10254-179 = 2(8)2537<255> = 7 × 83 × 52400503 × 148983491 × 300017953 × 61119962177<11> × [3473367876565069471097994526493665538989019401054077401905906318796542206737439937549306738927071698303220181983193965385560216860070784075256998908798407670756204904635173044939660907153992159130217073121600122689679<217>] Free to factor
26×10255-179 = 2(8)2547<256> = [2888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888887<256>] Free to factor
26×10256-179 = 2(8)2557<257> = 3 × 59 × 455836155248410033<18> × [358054225492933975231709304255216336785633846646141966689905475951904095698005850776568824849336041143976736260452726688860218703822578741764387888034731016701350051129523200759662242992052576563320156343727622797018337463987559170938007<237>] Free to factor
26×10257-179 = 2(8)2567<258> = 41 × 463 × 2417 × 1203283 × 47360049557<11> × 432950087954640491<18> × 255194657974709677397001818001649141827212021365055452657563906677562656303717353594955129862110753130773545486512216531099469178865943756621745506514130938977884172572500601996050719670682114983182222994568306307277<216>
26×10258-179 = 2(8)2577<259> = 229 × 7739247664549<13> × 236154115188904918440733<24> × 6902415417304000271251242038989053121804651208273696410838240991930913502583948116269801227655192945168060327475277722378436544547797144562073200500190116023252780371789329574776228164155201997203771060877766411152365659<220>
26×10259-179 = 2(8)2587<260> = 3 × 590407 × 28190993 × 3744458419746846669165457609<28> × [154510749711232605731954926736502201980959219497127745793022715707684612842571637656090238755805753894019425436373332441559875664248081250332202535279027505808826508634462304838223999884641841367664006592931766798850131<219>] Free to factor
26×10260-179 = 2(8)2597<261> = 7 × 2803 × 5690719 × 36191298137<11> × 92262257105498267<17> × [774844087565594234537025215914480211371525725416833618279753444750863276255779001126668915918822520241831557837770118073074249142295987057723945345076679241357511581996789300580021664768564589616418698710940044125643472647<222>] Free to factor
26×10261-179 = 2(8)2607<262> = 23 × 20959 × 2823392324201<13> × [2122566058144378866766332443363278456768185016857734306191914856406630538453701151807698251621699078069263095296610157056200211267376705422228613698532216311930338806832386819350932745741120233230246266784460492303644285278329088636959475205991<244>] Free to factor
26×10262-179 = 2(8)2617<263> = 32 × 41 × 28667722824534123015011<23> × 2730934447245515548297610357299226292141011819349999735378051826925821649966521470439007023353482254405941319513061354451504968551201271315202856450150411755990909215722157766552688572196516702821572811588350044064329040326066191430819693<238>
26×10263-179 = 2(8)2627<264> = 691 × 10167303710521820081<20> × 41119421351399248722291549312250745245821993152563082959017989701675445799543355846305162754241030773090486804993208849353394166064318895708393784542056423883728271814441354816292147455393341835537371966451556215944981389042000233925081340797<242>
26×10264-179 = 2(8)2637<265> = 7825973459<10> × [369141155924394106597606963451994105323848490819279801098145902731828941267674300310822059598412048344373114860175107691850516009894493674756645873374267073257255329632327199141973078967081236160487838537773002801195532253962489305816196595522965840010893<255>] Free to factor
26×10265-179 = 2(8)2647<266> = 3 × 9493747 × 489579892254752558895766931<27> × 2071802522155580285349577370984303810975485510685027027755324659768096706077033110274102560571876125574363033621657064746905800916409557539371598778348642927525859633015057636440478755209776962597328108098118616152010307651430702997<232>
26×10266-179 = 2(8)2657<267> = 7 × 19 × 4866192114077305327271<22> × 1451097154490110987069937<25> × [307605046753581334359724422427148791940302939285314975976063598122551537410849424303367211216025003270277633398595646031995080187415466928185851883273112567357291115108587423631837021788120330316587724608132976107873357<219>] Free to factor
26×10267-179 = 2(8)2667<268> = 41 × 24137 × [2919198931393548098798715956666961954866265321724352844473052593972101215812671860819780671602133844597343102320280359865371036359408628680478295026145356121498406847183191971125080600766649005513131735700668934435128831546839725761470234331957604698473135454311<262>] Free to factor
26×10268-179 = 2(8)2677<269> = 3 × 31 × 7587972834965027<16> × 14808542809930358543<20> × 2764456734569050529416592362485855065536316352400454536435490792250238869667202801270953021299843346250752594836594013256009444518122675215253425355687694984376877456155154935892744988526517597868900797345536688651297354126103998319<232>
26×10269-179 = 2(8)2687<270> = 238258363620893828884154806549077398914079<42> × 1212502614802459202039176758257338482056734765206973869088741214700995145025270535740676914725297618765121318771055569813705244670531409592228863431053766510510365054880038312619823020475885259614935388863197896928518467454661353<229> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3019791177 for P42 x P229 / May 4, 2016 2016 年 5 月 4 日)
26×10270-179 = 2(8)2697<271> = 283 × 17431 × 90289 × 421397 × 64821079 × 31719617766050313090168013519<29> × [7486030917902604468072708350765768096081572558590996318796834827623516080550596481017138505259960723544465103383062495302850963360466682761523665312148947093485792280027676922462032601983005539008653174856147450484143<217>] Free to factor
26×10271-179 = 2(8)2707<272> = 36 × 619 × 1543934057<10> × [41465214273160822043028721411693791525473668992386479667072135543747237057102792738008902878164915930651589229305626168076873334621393646445238852014625561020777799273012272634224163204113378819491462513745681436391361433449654290529505172619319015820035941<257>] Free to factor
26×10272-179 = 2(8)2717<273> = 72 × 41 × 61736424663041<14> × 2329214189609457172092521930492354650624581349488828797018117967709362763536597779518000363936161296783236745041293694253066402734619418481842758800506197389287860761326398806095602888069661031438755352454194828278611718816615540010892268512512940142228623<256>
26×10273-179 = 2(8)2727<274> = 890588801033<12> × [3243796559689552622635251004399195904265267562070023222019584010648526689184684131398362724923533951968493558986408814545981920570851064979932083992768656111955222348674432243823637105046764297255457703739370044768269747658252876701249406298954413284861633074239<262>] Free to factor
26×10274-179 = 2(8)2737<275> = 3 × 29 × 456683843151440189040163<24> × 142058263590865964205644591<27> × 152417650160766741150857641003969<33> × [33581042556263763956982200111877691294921688660230796709390446529937639827032579882895888465146878313117879252621753428711868701124257544662640325096928894701678857880352668221027908517759813<191>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=207294349 for P33 / April 12, 2016 2016 年 4 月 12 日) Free to factor
26×10275-179 = 2(8)2747<276> = 67 × 98443 × 21370087 × 590945072335347833174881<24> × [3468309056013431280217909751268099317029908207135674466236281285521577073501945507747178176422894349392577867644288929497564506173254927393396260012922278635138419554974647067736518677563399916893348912365904809573876279240376315082685041<238>] Free to factor
26×10276-179 = 2(8)2757<277> = 71 × 6871 × 73238104184842833617<20> × 7827580283462206318507119449<28> × [10329704950174580294737510296050614956861265743174648955161340825009936489990795742098144214187935750493109045953848335851313181895277524274731551132700864730996654054666704324084961511457387615285344518099421159687496074879<224>] Free to factor
26×10277-179 = 2(8)2767<278> = 3 × 41 × 19225879 × 869150070137<12> × 822438534612327475793<21> × [17089970073841183017082203566183104386473524244396323142449585221229270685303609320611769032473001948141646246246796099730488854640583339600463953485520950668670995130028832006992469667518452920419240043167543894328514789851781786333371<236>] Free to factor
26×10278-179 = 2(8)2777<279> = 7 × [41269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841<278>] Free to factor
26×10279-179 = 2(8)2787<280> = 6238381 × [463083112251221733473619018923161135699933827204348193688216363971499799208943616763530295582922698836266795645999961991563017534339260280654369922082169859277413304652102667164587877670326465935454870244201001652333977179157362926196538635406989231483118599022549101904627<273>] Free to factor
26×10280-179 = 2(8)2797<281> = 32 × 7838591 × [409496622953012415523386351349353033371670564672895491448638734079871821761063505317457760356405448786634810160381699110194235572423225450833771427782945073913990819252662016665564412006767952285881889982082648511262191110180797783242321212644365534130203996680425075953473<273>] Free to factor
26×10281-179 = 2(8)2807<282> = 176849 × 1962097 × 6685837795817<13> × 3592473603742943727058483<25> × [34662376447298383129285028401788727710765238658985379963639587834585063562837988902176191133431473425523266093073546464515647035888902807295864509159208188624830827438205810809427682364141991135142841429565794038746837890238598474789<233>] Free to factor
26×10282-179 = 2(8)2817<283> = 41 × 61 × 12284377635875475199<20> × 94029469981038707144663326257810746148023474285286805193482502912706966823534715385094280968858184221376081281645327829199910060356856407092023623632034414267259240247866000363754843091790527217314576934150856951280532301489475997593056655145443086337239996213<260>
26×10283-179 = 2(8)2827<284> = 3 × 23 × 31 × 1324913 × 368587633 × 6072469973<10> × 14862110233<11> × 42572684550439<14> × 1977341600241825619<19> × 148069383301573081477541<24> × 1873311715649819269885558249243<31> × 42796096155470033476287542611078224019<38> × 306657695259573951790179388151598938109064911314227459322438954179239652420997910717730755155093705029263231000278296786289<123> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=4291853695 for P31 / April 13, 2016 2016 年 4 月 13 日) (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3960184079 for P38 x P123 / April 13, 2016 2016 年 4 月 13 日)
26×10284-179 = 2(8)2837<285> = 7 × 19 × 1201 × 58217 × 1978262325553<13> × 847413610132252893528585734685107<33> × 18531349766616377328031478501373775567388602826202730035609148896017483946369391598726957108697068694324965280595706366322766005507791167320701874340259048585816480699119946392754451328358384362884475400260633940383045318027739777<230> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=118245157 for P33 x P230 / April 13, 2016 2016 年 4 月 13 日)
26×10285-179 = 2(8)2847<286> = 472 × 113 × 39239671 × 178562921989<12> × [1651733730286989414271489066926279457593505032483107429146597712163804466376480681141153800220177523080409169774216048551145153351217556113298790916751316437796331286514041987520176999687416426787426606037020910757142529970456307386159227489117408206555156961469<262>] Free to factor
26×10286-179 = 2(8)2857<287> = 3 × 139 × 3032060048146722349515422123393<31> × [22848462729778143704874338304227620797568269052464739545156581065044684172299159694006471447191427843097538493865618696804347293297394042336035607481354908824057435661751867042983320611116614526118320898165574781187774796662585863656565105303028830999127<254>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=4002669515 for P31 / April 13, 2016 2016 年 4 月 13 日) Free to factor
26×10287-179 = 2(8)2867<288> = 41 × 401 × [17571248031682311835587183802012583716859612486399178206245902858031074076326798180700011488892943792280815576235562854381661023592779568693442545398022558779203752137271996161358122309402645148646000175712480316823118355871838020125837168596124863991782062459028580310740763267981807<284>] Free to factor
26×10288-179 = 2(8)2877<289> = 230267423 × 30248427536963<14> × 8228647846311352895689<22> × [50404238567102274849635471773828339980504268231303784107580023543630514607706132243287601246441901368537644748416485797596836738033795561402023454435612872978596347077227071825781270907583497514496838333467109744330079865963819727202844307365067<245>] Free to factor
26×10289-179 = 2(8)2887<290> = 32 × 21836069 × 196303949 × 25720079729370051862157522783<29> × 29114713733245529556637496969812986017106100752935687554078841432303989042144102382941946179585487873853378776633826035688812695842651270750122326532795426964348512243428890587133028597041266760303870363118388208353866770906311994001670422455041<245>
26×10290-179 = 2(8)2897<291> = 7 × 1549 × [26642893008290038632194862020556016682549929806224189697398219025075061227417586358838779755500220316230645475319458534435939213214874932111859161568651562195784274544765183887198089909516636437230368799122833984034758728109276850400155758451433080225849754577966327482144138051174849109<287>] Free to factor
26×10291-179 = 2(8)2907<292> = 1787 × 40357 × 35738345791801777<17> × 333184202509092967<18> × [3364097411994019136070200499314848190661526627794098234773462128038013836602657507290509801221306905917400739502925676052736080238705513397789279065113779931524099087374203115861080181145887320222562451574158443825349334948040149257031748564012782327<250>] Free to factor
26×10292-179 = 2(8)2917<293> = 3 × 41 × 12697 × 1935911 × 33673411 × 33783523 × 122325023 × 1261452583<10> × 38447199013<11> × 47121218533033901<17> × 7048380279987340603627138081<28> × 18862000854303564464224116757<29> × 225996976987175757090292869221975001557631031221366412175217325881935058856226405923895055148879913595536755086399379383853582924140066915576644151452387100909371471<165>
26×10293-179 = 2(8)2927<294> = 22147 × 20530931 × 1687312476263093<16> × [376540566518220322510829135086349369173484379528642893113924326866060222273547059237566045263541600067396535243323394795541103225520389528666514119992221403761542966718409977933917205754440237974457524600342176741628099634542067104968308233721558629090503480596359987<267>] Free to factor
26×10294-179 = 2(8)2937<295> = 107 × 26998961578400830737279335410176531671858774662512980269989615784008307372793354101765316718587746625129802699896157840083073727933541017653167185877466251298026998961578400830737279335410176531671858774662512980269989615784008307372793354101765316718587746625129802699896157840083073727933541<293>
26×10295-179 = 2(8)2947<296> = 3 × 83 × 2383 × 222023 × 4875341 × 44978450002423551658971254458436085634499887635613925684310711828330641918799658851230173610756585860951234694953296196658144217522531236042111810805862180439555919796406465595099449728959788677919004682254607885887771416843682718436623444096638752886840720573653120804714888627<278>
26×10296-179 = 2(8)2957<297> = 7 × 15467 × 52279093331<11> × 307160592425822769977869721581<30> × [166162558008196248398910667785673850472451009716460704279084247227739493923676578717506824146240064678336475416750126568975447883542268244970413747024633300060765971364130991785389942996836628474274597443534421422026703484253681439337493174054025791493<252>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=1004523392 for P30 / April 14, 2016 2016 年 4 月 14 日) Free to factor
26×10297-179 = 2(8)2967<298> = 41 × 431 × 133769 × 494610573532532533<18> × [2470875339340324290301514946102095927428883205623744067395886691878695268219892759108294344565220811787355886214813076072557944307138493781917316148789282378881354174990044635172463118374091952692373259321657235801674969849548746744129585884844275019597285011233807792261<271>] Free to factor
26×10298-179 = 2(8)2977<299> = 33 × 31 × 1039 × 1447 × 15451 × 153884388573022657337<21> × [9655397238150978317824774045465051424857145549853641485872979302876057434837613565948038056210065930931670289349950820731494650410858728131400655136228393375526629098734178074941319565486453593244550937965562252493651788924461918655169714825930922652942127617073681<265>] Free to factor
26×10299-179 = 2(8)2987<300> = 5501 × 165941 × 9745888760594159157977<22> × [32472374022095702121471416914640250629647228956540538870660378252919805045734201773631394234489141760804174664661182539834147405944520207881157392133662112081387101052395820135298883917525685530475635943846253251026688733373812273821058936313136545341226366446717511791<269>] Free to factor
26×10300-179 = 2(8)2997<301> = 1129 × [2558803267394941442771380769609290424170849325853754551717350654463143391398484401141619919299281566774923727979529573860840468457828953843125676606633205393169963586261194764294852868812124790867040645605747465800610176163763409113276252337368369254994587146934356854640291309910441885641177049503<298>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク