Table of contents 目次

  1. About 288...889 288...889 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 288...889 288...889 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 288...889 288...889 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 288...889 288...889 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

28w9 = { 29, 289, 2889, 28889, 288889, 2888889, 28888889, 288888889, 2888888889, 28888888889, … }

1.3. General term 一般項

26×10n+19 (1≤n)

2. Prime numbers of the form 288...889 288...889 の形の素数

2.1. Last updated 最終更新日

April 3, 2011 2011 年 4 月 3 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 26×101+19 = 29 is prime. は素数です。
  2. 26×107+19 = 28888889 is prime. は素数です。
  3. 26×108+19 = 288888889 is prime. は素数です。
  4. 26×1011+19 = 2(8)109<12> is prime. は素数です。
  5. 26×1014+19 = 2(8)139<15> is prime. は素数です。
  6. 26×1019+19 = 2(8)189<20> is prime. は素数です。
  7. 26×1032+19 = 2(8)319<33> is prime. は素数です。
  8. 26×1041+19 = 2(8)409<42> is prime. は素数です。
  9. 26×1053+19 = 2(8)529<54> is prime. は素数です。
  10. 26×1061+19 = 2(8)609<62> is prime. は素数です。
  11. 26×10133+19 = 2(8)1329<134> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 2, 2005 2005 年 1 月 2 日)
  12. 26×10157+19 = 2(8)1569<158> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 2, 2005 2005 年 1 月 2 日)
  13. 26×10239+19 = 2(8)2389<240> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 2, 2005 2005 年 1 月 2 日)
  14. 26×101237+19 = 2(8)12369<1238> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / September 12, 2006 2006 年 9 月 12 日)
  15. 26×1030254+19 = 2(8)302539<30255> is PRP. はおそらく素数です。 (Serge Batalov / srsieve, sr1sieve, Prime95 and PFGW 3.3.3 / May 11, 2010 2010 年 5 月 11 日)
  16. 26×1034423+19 = 2(8)344229<34424> is PRP. はおそらく素数です。 (Serge Batalov / srsieve, sr1sieve, Prime95 and PFGW 3.3.3 / May 12, 2010 2010 年 5 月 12 日)
  17. 26×10139289+19 = 2(8)1392889<139290> is PRP. はおそらく素数です。 (Serge Batalov / srsieve, sr1sieve, Prime95 and PFGW 3.3.3 / May 18, 2010 2010 年 5 月 18 日)

2.3. Range of search 捜索範囲

  1. n≤175000 / Completed 終了 / Serge Batalov / June 14, 2010 2010 年 6 月 14 日
  2. n≤200000 / Completed 終了 / Serge Batalov / April 2, 2011 2011 年 4 月 2 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

  1. 26×103k+19 = 3×(26×100+19×3+26×103-19×3×k-1Σm=0103m)
  2. 26×106k+4+19 = 7×(26×104+19×7+26×104×106-19×7×k-1Σm=0106m)
  3. 26×1015k+5+19 = 31×(26×105+19×31+26×105×1015-19×31×k-1Σm=01015m)
  4. 26×1016k+2+19 = 17×(26×102+19×17+26×102×1016-19×17×k-1Σm=01016m)
  5. 26×1018k+15+19 = 19×(26×1015+19×19+26×1015×1018-19×19×k-1Σm=01018m)
  6. 26×1021k+13+19 = 43×(26×1013+19×43+26×1013×1021-19×43×k-1Σm=01021m)
  7. 26×1022k+13+19 = 23×(26×1013+19×23+26×1013×1022-19×23×k-1Σm=01022m)
  8. 26×1028k+1+19 = 29×(26×101+19×29+26×10×1028-19×29×k-1Σm=01028m)
  9. 26×1035k+10+19 = 71×(26×1010+19×71+26×1010×1035-19×71×k-1Σm=01035m)
  10. 26×1046k+36+19 = 47×(26×1036+19×47+26×1036×1046-19×47×k-1Σm=01046m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 16.11%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 16.11% です。

3. Factor table of 288...889 288...889 の素因数分解表

3.1. Last updated 最終更新日

June 30, 2018 2018 年 6 月 30 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=204, 205, 207, 208, 209, 211, 218, 219, 220, 221, 223, 224, 226, 227, 229, 231, 232, 241, 243, 244, 245, 247, 248, 249, 250, 253, 254, 255, 256, 257, 260, 261, 262, 263, 264, 265, 266, 267, 269, 275, 277, 278, 280, 282, 283, 284, 285, 286, 287, 288, 290, 291, 292, 293, 294, 295, 297, 298, 299 (59/300)

3.4. Factor table 素因数分解表

26×101+19 = 29 = definitely prime number 素数
26×102+19 = 289 = 172
26×103+19 = 2889 = 33 × 107
26×104+19 = 28889 = 7 × 4127
26×105+19 = 288889 = 31 × 9319
26×106+19 = 2888889 = 3 × 962963
26×107+19 = 28888889 = definitely prime number 素数
26×108+19 = 288888889 = definitely prime number 素数
26×109+19 = 2888888889<10> = 3 × 13397 × 71879
26×1010+19 = 28888888889<11> = 72 × 71 × 8303791
26×1011+19 = 288888888889<12> = definitely prime number 素数
26×1012+19 = 2888888888889<13> = 32 × 320987654321<12>
26×1013+19 = 28888888888889<14> = 23 × 43 × 4639 × 6296659
26×1014+19 = 288888888888889<15> = definitely prime number 素数
26×1015+19 = 2888888888888889<16> = 3 × 19 × 607 × 1583 × 1831 × 28807
26×1016+19 = 28888888888888889<17> = 7 × 4126984126984127<16>
26×1017+19 = 288888888888888889<18> = 3181 × 1272203 × 71385623
26×1018+19 = 2888888888888888889<19> = 3 × 17 × 15671 × 32969 × 109637261
26×1019+19 = 28888888888888888889<20> = definitely prime number 素数
26×1020+19 = 288888888888888888889<21> = 31 × 6113 × 559397 × 2725176379<10>
26×1021+19 = 2888888888888888888889<22> = 32 × 577 × 556304426899458673<18>
26×1022+19 = 28888888888888888888889<23> = 7 × 4126984126984126984127<22>
26×1023+19 = 288888888888888888888889<24> = 61 × 494803 × 9571250425741183<16>
26×1024+19 = 2888888888888888888888889<25> = 3 × 3671 × 6991613 × 37518703124681<14>
26×1025+19 = 28888888888888888888888889<26> = 800416003 × 36092342957426963<17>
26×1026+19 = 288888888888888888888888889<27> = 4327 × 66764245178851141411807<23>
26×1027+19 = 2888888888888888888888888889<28> = 3 × 151 × 467 × 418601 × 32622368896993039<17>
26×1028+19 = 28888888888888888888888888889<29> = 7 × 32141 × 128402480538381723783547<24>
26×1029+19 = 288888888888888888888888888889<30> = 29 × 13043 × 763757250920400925556287<24>
26×1030+19 = 2888888888888888888888888888889<31> = 33 × 1373 × 77928539529251676212912759<26>
26×1031+19 = 28888888888888888888888888888889<32> = 881 × 1381 × 23249246477<11> × 1021297737597737<16>
26×1032+19 = 288888888888888888888888888888889<33> = definitely prime number 素数
26×1033+19 = 2888888888888888888888888888888889<34> = 3 × 19 × 293 × 887 × 195013529551146434661770747<27>
26×1034+19 = 28888888888888888888888888888888889<35> = 7 × 17 × 43 × 967 × 3228241 × 1808518678506210839611<22>
26×1035+19 = 288888888888888888888888888888888889<36> = 23 × 31 × 317 × 28476656411681<14> × 44884154767793189<17>
26×1036+19 = 2888888888888888888888888888888888889<37> = 3 × 47 × 523049222821<12> × 39171406410969323842649<23>
26×1037+19 = 28888888888888888888888888888888888889<38> = 370594971956831<15> × 77952727573039037846119<23>
26×1038+19 = 288888888888888888888888888888888888889<39> = 883 × 1499 × 4993 × 5189 × 8424095184959141726230021<25>
26×1039+19 = 2888888888888888888888888888888888888889<40> = 32 × 59 × 58831 × 1625809 × 30505637 × 1864577612637970553<19>
26×1040+19 = 28888888888888888888888888888888888888889<41> = 7 × 197 × 84533 × 247822246992246441594940403053127<33>
26×1041+19 = 288888888888888888888888888888888888888889<42> = definitely prime number 素数
26×1042+19 = 2888888888888888888888888888888888888888889<43> = 3 × 257 × 6247 × 415868394142037<15> × 1442278199791785822881<22>
26×1043+19 = 28888888888888888888888888888888888888888889<44> = 106651397259231131<18> × 270872108863894260585695419<27>
26×1044+19 = 288888888888888888888888888888888888888888889<45> = 2039 × 452821 × 11822813 × 832535319017<12> × 31788026470970711<17>
26×1045+19 = 2888888888888888888888888888888888888888888889<46> = 3 × 71 × 1949 × 38903087191<11> × 178877340563596587495227873167<30>
26×1046+19 = 28888888888888888888888888888888888888888888889<47> = 7 × 450971 × 6372197021<10> × 1436134079435572775971850729297<31>
26×1047+19 = 288888888888888888888888888888888888888888888889<48> = 1043647324755157<16> × 276807003703730229075920171947477<33>
26×1048+19 = 2888888888888888888888888888888888888888888888889<49> = 32 × 131 × 37742794691564814539927<23> × 64920667841070315012733<23>
26×1049+19 = 28888888888888888888888888888888888888888888888889<50> = 1172932154498627590699<22> × 24629633332234384428544768811<29>
26×1050+19 = 288888888888888888888888888888888888888888888888889<51> = 17 × 31 × 1279 × 78283 × 4850612759<10> × 119363404453<12> × 9456151386434693113<19>
26×1051+19 = 2(8)509<52> = 3 × 19 × 222032456526307089835817<24> × 228265101424809068493632281<27>
26×1052+19 = 2(8)519<53> = 72 × 589569160997732426303854875283446712018140589569161<51>
26×1053+19 = 2(8)529<54> = definitely prime number 素数
26×1054+19 = 2(8)539<55> = 3 × 962962962962962962962962962962962962962962962962962963<54>
26×1055+19 = 2(8)549<56> = 43 × 2827777254173877041<19> × 237583997937373257289228930665746203<36>
26×1056+19 = 2(8)559<57> = 107 × 214616746058321470033<21> × 12580081505412416546457776235677819<35>
26×1057+19 = 2(8)569<58> = 34 × 23 × 29 × 1657 × 18301 × 33811 × 699931 × 74509116150155405891258247394598111<35>
26×1058+19 = 2(8)579<59> = 7 × 113 × 972620197933019<15> × 37550097666338443638529166514397548129341<41>
26×1059+19 = 2(8)589<60> = 6871 × 202127503433<12> × 254748858734243<15> × 816532040611655018921500936861<30>
26×1060+19 = 2(8)599<61> = 3 × 179 × 443 × 5101 × 263761 × 64351153 × 140258952038559402792695723610264732863<39>
26×1061+19 = 2(8)609<62> = definitely prime number 素数
26×1062+19 = 2(8)619<63> = 109 × 14880223 × 2173213771525211<16> × 81958207681319404926392297004256656857<38>
26×1063+19 = 2(8)629<64> = 3 × 151700393974293841997<21> × 1997451349518600880039<22> × 3177947108335753578761<22>
26×1064+19 = 2(8)639<65> = 7 × 1240848179409028187<19> × 650970322001478473107<21> × 5109200680220203536475903<25>
26×1065+19 = 2(8)649<66> = 31 × 1427 × 13381 × 62989 × 7748040590607834664652951068266402016623229621163933<52>
26×1066+19 = 2(8)659<67> = 32 × 17 × 108877 × 41836050245001725789<20> × 4145267734550405400974469585244566598121<40>
26×1067+19 = 2(8)669<68> = 292466815465771<15> × 76839389700925643415061<23> × 1285494833197550317558721536319<31>
26×1068+19 = 2(8)679<69> = 7420409 × 94814323590377<14> × 410609548016004178729165465453820180391731019673<48>
26×1069+19 = 2(8)689<70> = 3 × 19 × 184118825148821<15> × 275269305936593635506268627224286243834853704474978237<54>
26×1070+19 = 2(8)699<71> = 7 × 233 × 2036051 × 122804303327441730697<21> × 70839361744063974297494550888605781503477<41>
26×1071+19 = 2(8)709<72> = 97 × 739 × 3359 × 4951 × 1779875305071571<16> × 136151414678998487757425356306690378366475897<45>
26×1072+19 = 2(8)719<73> = 3 × 1471 × 230906111 × 2835054971714359162478972020715433016121835687008854049149523<61>
26×1073+19 = 2(8)729<74> = 122860536559<12> × 235135623675352313735363693275931861046438691785698055075094871<63>
26×1074+19 = 2(8)739<75> = 103302061 × 3460124177<10> × 808221068234417229854623214057814738461386004305554512237<57>
26×1075+19 = 2(8)749<76> = 32 × 1001297287<10> × 367239728101231<15> × 872922388802470327701274849910132457288938960361193<51>
26×1076+19 = 2(8)759<77> = 7 × 43 × 72739 × 16370063 × 44393660807<11> × 67221732451521805015361<23> × 27009466473293024965132018951<29>
26×1077+19 = 2(8)769<78> = 283 × 305921968669662273017<21> × 17370830247476360546653<23> × 192093717518575304845357185529583<33>
26×1078+19 = 2(8)779<79> = 3 × 99089 × 10955972498481721<17> × 24902483279022939751293581<26> × 35619723808492084718293600281767<32>
26×1079+19 = 2(8)789<80> = 23 × 1319 × 1996517291<10> × 570113931251411017397312569<27> × 836610821145936498253368062481211258243<39>
26×1080+19 = 2(8)799<81> = 31 × 71 × 82994123 × 104003364948283104383484961<27> × 15206037777138174607902033410094274187256163<44>
26×1081+19 = 2(8)809<82> = 3 × 647 × 22163261 × 383794546679<12> × 9083975487263100869<19> × 19261800884504636858699935263388562801539<41>
26×1082+19 = 2(8)819<83> = 7 × 17 × 47 × 15061 × 64067 × 15521101 × 1710531191<10> × 4805011819<10> × 41961387425329497882906631914693778006770551<44>
26×1083+19 = 2(8)829<84> = 61 × 593 × 4969 × 1801810091520710347939858613<28> × 892007073808627035681243729136494107540161644769<48>
26×1084+19 = 2(8)839<85> = 33 × 528469 × 31454221 × 1792688400831421<16> × 3590573451071835977225019035404363990547103344930994983<55>
26×1085+19 = 2(8)849<86> = 29 × 8785822501<10> × 1243285534120387<16> × 91196786431728669024591466778739665121247682434491249960643<59>
26×1086+19 = 2(8)859<87> = 690265599922418689349274086794069092703279<42> × 418518449885606495184642536764347035425069591<45> (Makoto Kamada / GGNFS-0.54.5b for P42 x P45)
26×1087+19 = 2(8)869<88> = 3 × 19 × 112408218710422963052733684956843<33> × 450876829025647797409801063851964315181343732592231939<54> (Makoto Kamada / GGNFS-0.54.5b for P33 x P54)
26×1088+19 = 2(8)879<89> = 7 × 2333 × 3795647885218887695861296627<28> × 5450281037809378681579410671<28> × 85509279278885368022594780807<29>
26×1089+19 = 2(8)889<90> = 680456251 × 1307520029<10> × 2573458649481371<16> × 126172609680546041248323316482439214034490192817571632821<57>
26×1090+19 = 2(8)899<91> = 3 × 185233 × 73250951 × 2114928915622555063<19> × 33556926825043030577100790079468538943078129606337908293347<59>
26×1091+19 = 2(8)909<92> = 1932 × 269 × 35447 × 95531 × 687023 × 14045215433<11> × 88234910566348081122468612936041518410152081996001936287863<59>
26×1092+19 = 2(8)919<93> = 1103 × 341591851 × 11657176903<11> × 16300630115467<14> × 4035060442540040573836387812285798657926452967535643302713<58>
26×1093+19 = 2(8)929<94> = 32 × 119083 × 23816440120273<14> × 113177921700810749886374664912038872565193023867219110866153106776786461219<75>
26×1094+19 = 2(8)939<95> = 72 × 589569160997732426303854875283446712018140589569160997732426303854875283446712018140589569161<93>
26×1095+19 = 2(8)949<96> = 31 × 9318996415770609318996415770609318996415770609318996415770609318996415770609318996415770609319<94>
26×1096+19 = 2(8)959<97> = 3 × 12511 × 4986405206859840920557<22> × 15435830193580369431676195054680942219268427444914822466268375601555169<71>
26×1097+19 = 2(8)969<98> = 43 × 59 × 359 × 31718739687597253010748870904363486021246431794279086114792314842162061532647061801646373383<92>
26×1098+19 = 2(8)979<99> = 17 × 136247 × 91537384859629<14> × 1362562611794070364984021539148190342888294495282866175672711727108299206332859<79>
26×1099+19 = 2(8)989<100> = 3 × 1283 × 84761 × 9574864720328098721<19> × 15215941422355528433<20> × 5786545459104074135150143<25> × 10503547697670941501000046199<29>
26×10100+19 = 2(8)999<101> = 7 × 9604551571452764923<19> × 429690454185347017147472449865725432390299733572932597178608536281695006471662349<81>
26×10101+19 = 2(8)1009<102> = 23 × 1361 × 6367 × 7589 × 773726725896283<15> × 27451159718313817<17> × 8992432355181374745376268571340043804121436732909434901391<58>
26×10102+19 = 2(8)1019<103> = 32 × 151 × 4001 × 27534227983<11> × 103546486712597<15> × 137937398534910999277468415702899697<36> × 1350991222158859136815206762630557093<37> (Makoto Kamada / Msieve 1.38 for P36 x P37 / 2.6 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / October 23, 2008 2008 年 10 月 23 日)
26×10103+19 = 2(8)1029<104> = 18631412312512850791<20> × 139135735199932899403<21> × 477032728582625786083857805619<30> × 23361364091827909274220028120532047<35> (Makoto Kamada / Msieve 1.38 for P30 x P35 / 36 seconds on Pentium 4 3.06GHz, Windows XP and Cygwin / October 23, 2008 2008 年 10 月 23 日)
26×10104+19 = 2(8)1039<105> = 10831 × 2603586013469181875411419<25> × 20356702669780098072759225649<29> × 503248998732969711348354299739970529181723904549<48>
26×10105+19 = 2(8)1049<106> = 3 × 192 × 181 × 4999 × 225313786753025396587280359<27> × 13084372622237729040487980099107369659547110514675247248753197249590623<71>
26×10106+19 = 2(8)1059<107> = 7 × 119293 × 230063 × 741567746167460389<18> × 23948460529423437252677669829306277951<38> × 8467254744731800927879371241029447756127<40> (Makoto Kamada / Msieve 1.38 for P38 x P40 / 9.7 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / October 23, 2008 2008 年 10 月 23 日)
26×10107+19 = 2(8)1069<108> = 6131 × 4529240548802073899<19> × 11065448137643271412974349227552569<35> × 940167271237404170383507021673321016669451674438449<51> (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=345491258 for P35 x P51 / October 15, 2008 2008 年 10 月 15 日)
26×10108+19 = 2(8)1079<109> = 3 × 2122591747<10> × 232275067429039<15> × 1953172125664284032748220552370420331443634842228341204245176539074747675570488868511<85>
26×10109+19 = 2(8)1089<110> = 107 × 2185727459<10> × 3764215737119<13> × 2352715497850448405626204828134063318937<40> × 13947845666568227036142246713980273600953265951<47> (Sinkiti Sibata / Msieve 1.38 for P40 x P47 / 1.11 hours / October 24, 2008 2008 年 10 月 24 日)
26×10110+19 = 2(8)1099<111> = 31 × 22133 × 421045335732643984954430749135197171482210753595038919973370501920047701197728233697003145046717409107243<105>
26×10111+19 = 2(8)1109<112> = 33 × 907 × 168767341619<12> × 1465655582681<13> × 476913318812121399388072549893256640345308788102859623458869393935186884044197300259<84>
26×10112+19 = 2(8)1119<113> = 7 × 7079 × 3657427501779101<16> × 320527766521067057<18> × 518857361767438433<18> × 958454541512414491646574389200601980183778493632838796973<57>
26×10113+19 = 2(8)1129<114> = 29 × 1686215041338380021572937791171<31> × 5907719703323257778586769068210524623648463541801532971095602379233154901093364271<82> (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=2579881558 for P31 x P82 / October 15, 2008 2008 年 10 月 15 日)
26×10114+19 = 2(8)1139<115> = 3 × 17 × 317 × 123853 × 2368486816503398807<19> × 609149508142605469200878679919382721159635905440338257763300981618138042155782554555677<87>
26×10115+19 = 2(8)1149<116> = 71 × 887633 × 139816911036211<15> × 4052285520166099624316663<25> × 507454672971243130848301995461509<33> × 1594344078173797603574713727914653079<37> (Makoto Kamada / Msieve 1.38 for P33 x P37 / 1.7 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / October 23, 2008 2008 年 10 月 23 日)
26×10116+19 = 2(8)1159<117> = 20874883 × 1354195691<10> × 3985936200711109<16> × 2563864198137642900199053648779941451844871252989030529231156237796126912622991073957<85>
26×10117+19 = 2(8)1169<118> = 3 × 217796488202037795124400663808785540452513197331<48> × 4421388842916857822576165384014630930811356834672941194996507478703873<70> (Makoto Kamada / Msieve-1.38 snfs for P48 x P70 / 1.98 hours on Pentium 4 3.06GHz, Windows XP and Cygwin / October 23, 2008 2008 年 10 月 23 日)
26×10118+19 = 2(8)1179<119> = 7 × 43 × 347 × 18493 × 142596099014873898701<21> × 310504758589188668868039465733010830759<39> × 337793737293839609947074217344570551540349654109001<51> (Sinkiti Sibata / Msieve 1.38 for P39 x P51 / 2.19 hours / October 24, 2008 2008 年 10 月 24 日)
26×10119+19 = 2(8)1189<120> = 736263616133061701623550210150297<33> × 392371539973909649382032778751456036602264866557453159976736681829768276853002659960737<87> (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=2585567636 for P33 x P87 / October 16, 2008 2008 年 10 月 16 日)
26×10120+19 = 2(8)1199<121> = 32 × 149 × 167 × 2621 × 46536431 × 5242136191<10> × 42910591189432423<17> × 2532197628334213822309<22> × 48367556102007245662123469<26> × 3838848349935957784999256458129<31>
26×10121+19 = 2(8)1209<122> = 26297 × 1913341 × 16418789 × 31209553 × 1120478645616734146935469200989452276093229163403252015390360629397338765785008178232210453169121<97>
26×10122+19 = 2(8)1219<123> = 74162267 × 237038273947153447<18> × 46879667831372870430779365910146268011<38> × 350545857881710086313544549379318576471907638151859610638951<60> (Serge Batalov / GMP-ECM 6.2.1 B1=4000000, sigma=2427505608 for P38 x P60 / October 24, 2008 2008 年 10 月 24 日)
26×10123+19 = 2(8)1229<124> = 3 × 19 × 23 × 293673451 × 14086235410802221<17> × 2260206644216843897235550228849<31> × 235678719982591680453016546251331940361325353146335698040419053881<66> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=1715797540 for P31 x P66 / October 24, 2008 2008 年 10 月 24 日)
26×10124+19 = 2(8)1239<125> = 7 × 46359253 × 7190093831059<13> × 773275929802648482592761218854738987<36> × 16011326705494942557586789847113370037134298211097213575458840860723<68> (Sinkiti Sibata / GGNFS-0.77.1-20050930-pentium4 snfs for P36 x P68 / 2.98 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / October 25, 2008 2008 年 10 月 25 日)
26×10125+19 = 2(8)1249<126> = 31 × 115183 × 80906005363383566316178739663052004170891282648646036444359057491091704249839985036123131098504088413833719550597013193<119>
26×10126+19 = 2(8)1259<127> = 3 × 383 × 461 × 59077 × 449119140387283944411011<24> × 205555871832887163019307151644464149010607016643751942398569882121898872644155834398272013583<93>
26×10127+19 = 2(8)1269<128> = 458085681516861371474360406126427<33> × 7023583414196555680661945198122510555776461537<46> × 8978946353297513072321536821597066798123200152411<49> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P33 x P46 x P49 / 1.91 hours on Core 2 Quad Q6700 / October 24, 2008 2008 年 10 月 24 日)
26×10128+19 = 2(8)1279<129> = 47 × 587621 × 608854427798862595293365769991723889<36> × 17179962200419555232686564654540718862779882714985860187643887329996349818496153104123<86> (Serge Batalov / Msieve-1.38 snfs for P36 x P86 / 2.00 hours on Opteron-2.8GHz; Linux x86_64 / October 24, 2008 2008 年 10 月 24 日)
26×10129+19 = 2(8)1289<130> = 32 × 431 × 2481979 × 300063351905773311205157292318746418570853662955638897798395900695948044805888889490481286765513711703936357223477141229<120>
26×10130+19 = 2(8)1299<131> = 7 × 17 × 2393 × 6379 × 59238105054710539<17> × 268464841987219115685084707100679292933265037259546786068611150820593219109810858051226777082702081652607<105>
26×10131+19 = 2(8)1309<132> = 24749 × 11672749965206226065250672305502803704751258187760672709559533269582160446437790976964276895587251561230307846332736227277420861<128>
26×10132+19 = 2(8)1319<133> = 3 × 229 × 2651273 × 36877893731033<14> × 2726275397938340164900433126360846604110296672882596679<55> × 15775524934216280471244052315246368790827525421860015377<56> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P55 x P56 / 5.84 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 24, 2008 2008 年 10 月 24 日)
26×10133+19 = 2(8)1329<134> = definitely prime number 素数
26×10134+19 = 2(8)1339<135> = 853 × 12766709 × 23777247334594406239<20> × 1115684173939333265351158427819754773809891630270023774905697145783257780455252610026220318063578874243263<106>
26×10135+19 = 2(8)1349<136> = 3 × 3623 × 8298691 × 2984924145121567481231370167761731005911594902352492537<55> × 10729966269440986387424384155216021254035129543325817268738099540010143<71> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P55 x P71 / 5.86 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 24, 2008 2008 年 10 月 24 日)
26×10136+19 = 2(8)1359<137> = 72 × 1009163 × 92173330259<11> × 109003884098615801826326739083592367603<39> × 58146849261168928709085037160922928516795192130437343258069237123101709831491811<80> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P39 x P80 / 10.84 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 24, 2008 2008 年 10 月 24 日)
26×10137+19 = 2(8)1369<138> = 9631 × 14869 × 5722254078034531<16> × 9802201373737973<16> × 11175936684238851902101<23> × 942109337103983355597445301<27> × 3415872845459558480669333191518408929821445918077<49>
26×10138+19 = 2(8)1379<139> = 34 × 197 × 2543 × 2647 × 35381 × 760167308372426344731521700795399460351483335380971015228287215345037312254814026971422009559580861531035911427317870289577<123>
26×10139+19 = 2(8)1389<140> = 43 × 177269 × 79411635295193<14> × 1524870987576423772289<22> × 31297694513688989828891472140798986615816131799021375615871320663994169119525002500857195269794871<98>
26×10140+19 = 2(8)1399<141> = 31 × 4973 × 13349257 × 146756720381<12> × 16946406410302077950728265839823308474681<41> × 56444025048774398773331902576688228725404795527707944697772162262625763068639<77> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P41 x P77 / 7.86 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / October 24, 2008 2008 年 10 月 24 日)
26×10141+19 = 2(8)1409<142> = 3 × 19 × 29 × 3296148577<10> × 5839065893291<13> × 35712359448084329<17> × 144912971424315491<18> × 7537297685684934579476791673851030409<37> × 2327910906718027614464758526910877086171667909<46> (Serge Batalov / Msieve 1.38 for P37 x P46 / 0.28 hours / October 24, 2008 2008 年 10 月 24 日)
26×10142+19 = 2(8)1419<143> = 7 × 11779 × 209401 × 48358927 × 159074758657<12> × 217504224412151957911856291266645032919981637979651214212494610467687145820942849573456523484775452299253777074867<114>
26×10143+19 = 2(8)1429<144> = 61 × 1187 × 117617 × 63544867 × 163152643 × 5008510873<10> × 242354794037594091064567695394505940331886690503589<51> × 2695537401622218909188582052352420335657517229979365604083<58> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P51 x P58 / 17.79 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 25, 2008 2008 年 10 月 25 日)
26×10144+19 = 2(8)1439<145> = 3 × 3868456166380275987258850199506057417163<40> × 248926941794460034322836458820266164478157735098297360503167305646685102364493278068850644610523325296601<105> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P40 x P105 / 13.04 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / October 24, 2008 2008 年 10 月 24 日)
26×10145+19 = 2(8)1449<146> = 23 × 16034479 × 187957327080463607012417<24> × 54896618346979991955469420943911<32> × 588289017691633394319116788695937<33> × 12904837953364134191960473735409301929999830768343<50> (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=3333414326 for P33 / October 17, 2008 2008 年 10 月 17 日) (Serge Batalov / Msieve 1.38 for P32 x P50 / 0.2 hours / October 24, 2008 2008 年 10 月 24 日)
26×10146+19 = 2(8)1459<147> = 17 × 1367 × 185599 × 5265763 × 20930509 × 1124073153303578585771807081716025889983932995108149151131<58> × 540632434021785268234902288892949509330978466439075267476173783637<66> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P58 x P66 / 15.54 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / October 24, 2008 2008 年 10 月 24 日)
26×10147+19 = 2(8)1469<148> = 32 × 972370937 × 39727826471<11> × 306375831071<12> × 300447610951927<15> × 90268930435770722711767732385165909698755136141628425667886097693461119696019314044374135619418771719<101>
26×10148+19 = 2(8)1479<149> = 7 × 6869 × 600812946132497741174404444167146161614060871594719316367300062161031734477650913813382877293199028531682484222883116462967969737514067110806083<144>
26×10149+19 = 2(8)1489<150> = 20179355711<11> × 106315628013331801<18> × 15750235873838074915509902031059707619<38> × 8549473520716549201848743714153027681604986908351797552246043947706893694574847601621<85> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P38 x P85 / 24.14 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / October 25, 2008 2008 年 10 月 25 日)
26×10150+19 = 2(8)1499<151> = 3 × 71 × 3017003463910021527742494989600535726691290449142078503<55> × 4495473338205509039310196795964079881302715548106765302223250101153564129630339087731808697251<94> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P55 x P94 / 21.15 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 26, 2008 2008 年 10 月 26 日)
26×10151+19 = 2(8)1509<152> = 367 × 11399 × 6075767 × 959734623010792392437077357<27> × 7947880915750697011047998057190331<34> × 51027845668162402739414306998386845861<38> × 2920028986625899746912414355924945584277<40> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=1288646471 for P34; Msieve-1.38 for P38 x P40 / 0.08 hours / October 24, 2008 2008 年 10 月 24 日)
26×10152+19 = 2(8)1519<153> = 23223504043387553<17> × 12439504751271350662645539821715552039890053793514581854225095076774775344637237109453745568666024816060341190664233281974217248304501913<137>
26×10153+19 = 2(8)1529<154> = 3 × 263 × 171697 × 217829018959<12> × 1799406072605487269788642443251985797<37> × 3155029794925095373974038518269034733<37> × 17244187886143827169731047895923370766606567965331126953137387<62> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P37(1799...) x P37(3155...) x P62 / 37.34 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / October 27, 2008 2008 年 10 月 27 日)
26×10154+19 = 2(8)1539<155> = 7 × 371567527 × 29471268699385870710400517<26> × 376874032411927810418233357862347954070267175040065594500083254358985061746168307840688160851101602687013313950275415253<120>
26×10155+19 = 2(8)1549<156> = 31 × 59 × 72383 × 229093 × 538963150673787390706865573661610521092599<42> × 1528601204716243697472593549862635099435041001<46> × 11561534087493686424248097003525027478147253178845840561<56> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona snfs for P42 x P46 x P56 / 20.88 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / November 1, 2008 2008 年 11 月 1 日)
26×10156+19 = 2(8)1559<157> = 32 × 223 × 233769517 × 134568092601416937915213119<27> × 4694190438486921544482209313363107731432206332676001<52> × 9747489708959753624184848714122459667180630977918143237919612742549<67> (Sinkiti Sibata / GGNFS-0.77.1-20050930-pentium4 snfs for P27 x P52 x P67 / 48.37 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / October 29, 2008 2008 年 10 月 29 日)
26×10157+19 = 2(8)1569<158> = definitely prime number 素数
26×10158+19 = 2(8)1579<159> = 105188220778305713<18> × 24222934745760446147<20> × 417696229209318550390360676653337<33> × 271441605526889400486767802727114167273548745703371791610999906296442521703183253981680827<90> (Jo Yeong Uk / GMP-ECM 6.2.1 B1=1000000, sigma=1028318472 for P33 x P90 / October 24, 2008 2008 年 10 月 24 日)
26×10159+19 = 2(8)1589<160> = 3 × 19 × 2897 × 47530117865256101258279<23> × 63372486529335247949657526960405508372415068972242089<53> × 5808150331783600012048251978464509513167533255570748146548143492258533560391311<79> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P53 x P79 / 24.36 hours on Core 2 Quad Q6700 / October 30, 2008 2008 年 10 月 30 日)
26×10160+19 = 2(8)1599<161> = 7 × 43 × 4751 × 2160941477<10> × 15034052475361<14> × 431970434483796983<18> × 1439481945189507209057054169068060767630695907204010850971700032507094915760334263926555364338583114074961503893089<115>
26×10161+19 = 2(8)1609<162> = 76423 × 220372643 × 1474229971<10> × 147156782343257<15> × 10361570462978943081240648695403377<35> × 7630938828349621287861991098515099831174529504441192479176022590263801165241085184406853279<91> (Jo Yeong Uk / GMP-ECM 6.2.1 B1=1000000, sigma=4091174184 for P35 x P91 / October 25, 2008 2008 年 10 月 25 日)
26×10162+19 = 2(8)1619<163> = 3 × 17 × 107 × 3932444423<10> × 5161231151<10> × 8309646714841<13> × 3138906803206599113287052920695721758326401681039758067069838332780654379708863209964377320441674032386211183467363438687006089<127>
26×10163+19 = 2(8)1629<164> = 7457 × 18506641791872782624357<23> × 40079919846728870051247378643<29> × 28009093238970577101538416824495651053679<41> × 186471808485408531378078405605085883074515478870902537239877522909513<69> (Sinkiti Sibata / GGNFS-0.77.1-20050930-pentium4 gnfs for P41 x P69 / 28.21 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / October 27, 2008 2008 年 10 月 27 日)
26×10164+19 = 2(8)1639<165> = 1297 × 411676655521<12> × 4990807523509232364418465886288926752428403251<46> × 108408616165558846036225029730435357616003437405601641863437365460786398813070202087637446096562159822547<105> (Serge Batalov / Msieve-1.38 snfs for P46 x P105 / 22.00 hours on Opteron-2.6GHz; Linux x86_64 / November 5, 2008 2008 年 11 月 5 日)
26×10165+19 = 2(8)1649<166> = 33 × 117851 × 518327 × 58366361 × 17084746139318579<17> × 1461695095426919438797142366846476947894188853677<49> × 1201716525739254573467518321801984231101319213539948807673545053111692159046723257<82> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P49 x P82 / 31.99 hours on Core 2 Quad Q6700 / November 3, 2008 2008 年 11 月 3 日)
26×10166+19 = 2(8)1659<167> = 7 × 1667 × 6479340028054522941348709917163<31> × 382090664543561576649417393525054205485383414004188396956282953099429824152707303462083388779904441883425715160662357958463678303487<132> (Markus Tervooren / GGNFS snfs for P31 x P132 / 78.56 hours on Core 2 Q6700, Linux 2.6.22 / October 29, 2008 2008 年 10 月 29 日)
26×10167+19 = 2(8)1669<168> = 23 × 97 × 7440716741<10> × 994429931053939659460376462395301<33> × 8171083938783497384303320933326590394457<40> × 2141719727669073859289699777557563993829652102083579639846097856848841724268160287<82> (Erik Branger / GGNFS,Msieve snfs for P33 x P40 x P82 / 72.08 hours / November 10, 2008 2008 年 11 月 10 日)
26×10168+19 = 2(8)1679<169> = 3 × 156641 × 21214442884961<14> × 23964088941151470239380261199<29> × 26698194639575122525661827534142287<35> × 452928540577266887157236259134255076239219768187618558929062743927670190164498760454451<87> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=274814543 for P35 x P87 / October 24, 2008 2008 年 10 月 24 日)
26×10169+19 = 2(8)1689<170> = 29 × 100913 × 21379041680182019<17> × 629791800841938978959882287717<30> × 237851355259520245767693083629268399033<39> × 3082441596275624181609734228458130179747319199386915262705645132263828924699723<79> (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=664282463 for P30 / October 19, 2008 2008 年 10 月 19 日) (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs for P39 x P79 / 29.59 hours on Core 2 Quad Q6700 / November 1, 2008 2008 年 11 月 1 日)
26×10170+19 = 2(8)1699<171> = 31 × 109 × 113 × 9660131363<10> × 488636161233487<15> × 5122903932197939<16> × 31288111868874775466217091531671853408886748527034530353222192576181955508036378282114946026152486735425294704662642089719973<125>
26×10171+19 = 2(8)1709<172> = 3 × 7927 × 2064534799<10> × 58840793128050175178298051481219826016901405745440710990739997380870205354950136171364165089471873076754440737769643140949485627710576957651466187196501930731<158>
26×10172+19 = 2(8)1719<173> = 7 × 1181 × 65111 × 3923159 × 246579306925687<15> × 50169052621949839<17> × 8814210924167472918102113645618339<34> × 125463286336434572308957135668122719389564410798397992166471206788212294955363170100495218929<93> (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=4060022048 for P34 x P93 / October 19, 2008 2008 年 10 月 19 日)
26×10173+19 = 2(8)1729<174> = 458557838989194890719<21> × 73305096001558563409944288559304387<35> × 8594142483414908579347938546811251556448886758055864089876219871162756829401458004039178884223538718178148112968531213<118> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=512132224 for P35 x P118 / November 11, 2008 2008 年 11 月 11 日)
26×10174+19 = 2(8)1739<175> = 32 × 47 × 877 × 1487 × 14923 × 327647 × 58842514411389697<17> × 3175275385344722097446150161592978284466047<43> × 6798825822382332539138989568911778049390000203<46> × 843162028662030721627798804446681868703053274408861<51> (Wataru Sakai / GMP-ECM 6.2.1 B1=3000000, sigma=3833894689 for P43 / April 30, 2010 2010 年 4 月 30 日) (Sinkiti Sibata / Msieve 1.44 gnfs for P46 x P51 / May 1, 2010 2010 年 5 月 1 日)
26×10175+19 = 2(8)1749<176> = 6037 × 13892588197<11> × 1188980002162363873832000747<28> × 99709170220611576912129631471426794339011551392116167<53> × 2905473026109346601310451361654546227361935358658751563844306434736778139700083349<82> (Warut Roonguthai / Msieve 1.47 snfs for P53 x P82 / October 8, 2011 2011 年 10 月 8 日)
26×10176+19 = 2(8)1759<177> = 5009083614373<13> × 263244752614807717485533561514637801<36> × 13846160635245628435450588498766339281487419<44> × 15822804735493278831125816906565287313811130352493512461394438924942071620863021644647<86> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1919362627 for P36 / May 2, 2011 2011 年 5 月 2 日) (Warut Roonguthai / Msieve 1.48 snfs for P44 x P86 / November 8, 2011 2011 年 11 月 8 日)
26×10177+19 = 2(8)1769<178> = 3 × 19 × 151 × 3587179 × 189131176702050198928735399<27> × 959723740658094715959169192533581<33> × 515485702773915802716451315008777070532365283458751898964416511354537578121088900302789965490401804779221327<108> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3440889890 for P33 x P108 / May 2, 2011 2011 年 5 月 2 日)
26×10178+19 = 2(8)1779<179> = 72 × 17 × 131 × 6221 × 13170991 × 117211700666225923<18> × 27565439411382742645908646018114305337104147936924500277803798782868761286802694706119468317363371218282573585135473071383587254356858254533581531<146>
26×10179+19 = 2(8)1789<180> = 293 × 479 × 9059 × 25169 × 9027790751859335506668040864864758401996398739956247347419035799324832109207043485165147762602174992086136311582094141058247493951915948178702638618784123617692163097<166>
26×10180+19 = 2(8)1799<181> = 3 × 954929 × 117938593743891369844723<24> × 453284248244311629354840487811415535169306954334562577<54> × 18863050555753386904887398712213524671079562033877333877994811094634854416405887383193614921953057<98> (Dmitry Domanov / Msieve 1.50 snfs for P54 x P98 / June 3, 2013 2013 年 6 月 3 日)
26×10181+19 = 2(8)1809<182> = 43 × 4007 × 16993 × 2070546246863<13> × 2753324676418189<16> × 1436002109176389918189437<25> × 1205245567709978556828899668455099839468645763352818840969598865453926297059914012506745024102553726678337923406913608747<121>
26×10182+19 = 2(8)1819<183> = 7043 × 96867847 × 201516374371360394265277308214273<33> × 2101276299723671206120498097057725729768387883150010467636633116614507024850753184367346723002313401091433304498164473161257641353986419733<139> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=415918334 for P33 x P139 / May 1, 2011 2011 年 5 月 1 日)
26×10183+19 = 2(8)1829<184> = 32 × 523 × 396581 × 526640720719667695487503531673622317<36> × 383711407361697590374349024452742352084447763732961112432190845386243<69> × 7658356687614362351996674241742735701672408278866275539133065715235857<70> (matsui / Msieve 1.48 snfs for P36 x P69 x P70 / October 25, 2010 2010 年 10 月 25 日)
26×10184+19 = 2(8)1839<185> = 7 × 337 × 5469233617643<13> × 4463720283931621059099167171334352112869012632137697765379943<61> × 501625321435576890506879564651135153581818476332606214142030719885314997570388167701029926429490579198643979<108> (Dmitry Domanov / Msieve 1.50 snfs for P61 x P108 / June 11, 2013 2013 年 6 月 11 日)
26×10185+19 = 2(8)1849<186> = 31 × 71 × 20615533660491618785251220567<29> × 20449069590089789690641645260144214303477248394418395529<56> × 311345549075856687071623258197503482698725652946691672903412059106018399512285948222253955777135823<99> (Dmitry Domanov / Msieve 1.50 snfs for P56 x P99 / August 27, 2013 2013 年 8 月 27 日)
26×10186+19 = 2(8)1859<187> = 3 × 2595473 × 1512878213996179<16> × 118184612071978216526814974278596227006137118819<48> × 2075048087065413660877723940574899135608694636341619493439878838811386891425743399287696806779959449805311399765701531<118> (Jo Yeong Uk / GMP-ECM 6.4.4 B1=11000000, sigma=5478225160 for P48 x P118 / October 30, 2016 2016 年 10 月 30 日)
26×10187+19 = 2(8)1869<188> = 176383 × 4502341 × 968947597 × 1159371762200163185995707576333841182987594913747<49> × 32382674943093936729794846859049790968316742990912284698384546621430031248875948314474501272628231891555526303638599357<119> (Jo Yeong Uk / GMP-ECM 6.4.4 B1=11000000, sigma=5505482073 for P49 x P119 / November 21, 2016 2016 年 11 月 21 日)
26×10188+19 = 2(8)1879<189> = 809 × 266981218891<12> × 1337524067345341167803774434898181677742753591005557875037628704076689946310957500190365837970607380279612434516380367670741482594465309962442353727642270672999399206924448531<175>
26×10189+19 = 2(8)1889<190> = 3 × 23 × 601 × 2671 × 10639819 × 2451315141290536453343696446972536501129045742862048257854053357119404631410734942123037931677709655054076327251612792681661247758107421794562791028204125019421341175895629769<175>
26×10190+19 = 2(8)1899<191> = 7 × 15168778577<11> × 30634497431<11> × 482310411894178980501153905298998263625418633561756383263940347284400459<72> × 18413857981900874403637464677299268351151075451655412355611441067574830456533195260011579653826619<98> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P72 x P98 / February 8, 2017 2017 年 2 月 8 日)
26×10191+19 = 2(8)1909<192> = 6546636591067<13> × 48421679091043459756832926021<29> × 2153820384023866080156634678956728129<37> × 423119730074125102627793750180947647139243985435705089248933851807413801041554209405456953889741819397195180158463<114> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=4247144727 for P37 x P114 / May 13, 2013 2013 年 5 月 13 日)
26×10192+19 = 2(8)1919<193> = 33 × 21810230190172589513<20> × 488003202740138179993416261737107<33> × 56651991641491329140629163659116551071<38> × 177447126291793026849517859634685152825959661686933351176356176408622575620660816594287315968727157487<102> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3844117644 for P33, B1=3000000, sigma=2561424890 for P38 x P102 / May 1, 2011 2011 年 5 月 1 日)
26×10193+19 = 2(8)1929<194> = 317 × 2963 × 109515738733<12> × 411435617161<12> × 25800375226586219898912662777<29> × 26456688297984493357462028451361017695070187538368241646106358619730267766259668810167025687166909487184203065039237925744068631923548059<137>
26×10194+19 = 2(8)1939<195> = 17 × 505313 × 12771221 × 56982194136793<14> × 46211477855398204035436513722866869060182788600220689393443418575672795428644154937534110578691264240358127496156580749926936605528091080359295935753389281501664230253<167>
26×10195+19 = 2(8)1949<196> = 3 × 19 × 192497 × 167449669 × 54054658379899<14> × 303234856492361593<18> × 95925810076280840598050616441441745295780029403633193468420983180944747763292013336061880943284829801891488844768001883836271562254601175879034163327<149>
26×10196+19 = 2(8)1959<197> = 7 × 1401709204154971<16> × 2797517173290800762665848126822169038220133212410932095038589876611076220471741987<82> × 1052451550306042309109100814495096397801222772071137355992882276424831487895975925540378932669992751<100> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P82 x P100 / October 1, 2017 2017 年 10 月 1 日)
26×10197+19 = 2(8)1969<198> = 29 × 9371191 × 1493505089459<13> × 1565373932131998097<19> × 1494079400538155617261<22> × 639900809943620340672158725117<30> × 475583642631248084680030923183755462497251138565228616126060593087253780870104126913586414931844328199210801<108> (Makoto Kamada / GMP-ECM 6.2.1 B1=250000, sigma=2376128635 for P30 x P108 / October 22, 2008 2008 年 10 月 22 日)
26×10198+19 = 2(8)1979<199> = 3 × 77279 × 2055683347693761794908033459097817743577503253460088752305316991613051897545659925425514213803<94> × 6061664177762265356194596385502868427508513607986290094790850525083670809352604890329689105705984999<100> (Robert Backstrom / Msieve 1.42 snfs for P94 x P100 / April 8, 2010 2010 年 4 月 8 日)
26×10199+19 = 2(8)1989<200> = 373864121956335499<18> × 5320197646371110461841<22> × 124358970664130895181666233769510155763108614307738432243928021<63> × 116791749282179689217520434122561654057958777330121707833832577969716123527675872963226101350507951<99> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P63 x P99 / May 7, 2018 2018 年 5 月 7 日)
26×10200+19 = 2(8)1999<201> = 31 × 704269 × 1142785101494011<16> × 31707950796792711487<20> × 4882888787321861689096755294688994300394827995428791033914537<61> × 74786118612187656547791623939302068679178592785136737804694586734529645972723227999199712719436239<98> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P61 x P98 / June 30, 2018 2018 年 6 月 30 日)
26×10201+19 = 2(8)2009<202> = 32 × 1329143 × 87676933 × 672667087 × 700031869871361978338608957811387640889<39> × 5849426393368120416659320050901710483805994655040473799474508316155810667588764432764129827952626486444380717024385321389186221815163272013<139> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2045695079 for P39 x P139 / May 27, 2013 2013 年 5 月 27 日)
26×10202+19 = 2(8)2019<203> = 7 × 43 × 33739 × 8179693 × 41316437 × 780868339 × 4999350253283<13> × 1001553437158757072561<22> × 2140714341323083671077016450224488001869990932782924090051<58> × 1005652754254909209043477473090214193391654058566257431342263039946461508200751973<82> (Erik Branger / GGNFS, Msieve gnfs for P58 x P82 / November 4, 2012 2012 年 11 月 4 日)
26×10203+19 = 2(8)2029<204> = 61 × 9819918737<10> × 37287396313<11> × 100744959165252560987<21> × 5394637429152624442511<22> × 1591392095289804421962004160362504930638566818651<49> × 14954375035445075432517592802281751545607225577975759746369031858970547474844079393319097347<92> (Dmitry Domanov / GGNFS/msieve 1.41 gnfs for P49 x P92 / 484.30 hours / June 11, 2009 2009 年 6 月 11 日)
26×10204+19 = 2(8)2039<205> = 3 × 11027 × 12347 × 214761986819<12> × [32933155746618384230635078922489482058585852552343935890675380185817087796146262477197096891629471197007754370544871623575359344682742318516185994210228852515022262611743399469933438033<185>] Free to factor
26×10205+19 = 2(8)2049<206> = 1019 × 19501 × 23789 × 7928831891<10> × 745122950291407<15> × [10343950552472031681005712364399820062945125787745975468952602468643196203790173241528373209398493097306354784750104828984156442628967866140332592692513800677503846485567<170>] Free to factor
26×10206+19 = 2(8)2059<207> = 659 × 84641758249613<14> × 230301749304620235749074544303<30> × 22488656497350997760942342151588712093800539428710557774710556998038844136819422872817212560411113455703175914134745512744169893357242823400497439467910633441889<161> (Serge Batalov / GMP-ECM B1=2000000, sigma=743212274 for P30 x P161 / May 12, 2013 2013 年 5 月 12 日)
26×10207+19 = 2(8)2069<208> = 3 × 39223533469<11> × 174256239924542085066229596341<30> × [140888170762849291424108374281873053149506859278011582938715842918874427542060771212446026784685322652018118459665396790999100344706403017629190183004809507900909513747<168>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3118599252 for P30 / May 9, 2013 2013 年 5 月 9 日) Free to factor
26×10208+19 = 2(8)2079<209> = 7 × 3581 × 23971 × 59387 × 28880463124767645885547<23> × [28031528874537818099382137073144183866729001224917769785344801750020050716666157529201914775914443722234029142605938979084991898964631879653015674079957671932057393755308593<173>] Free to factor
26×10209+19 = 2(8)2089<210> = 6279181 × 32361898530420142987<20> × 1786441129587372820771281582174181661161<40> × [795802200529462604672218906687706680249718761649564585274127628986576309156936490976752119778100139138566996656468097138155748698787037247579167<144>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1621079188 for P40 / May 13, 2013 2013 年 5 月 13 日) Free to factor
26×10210+19 = 2(8)2099<211> = 32 × 17 × 4241 × 1184588197587776743<19> × 3758406356412718500580048960740784445173912292354181306083972648421045713716371990246890676757729440943616518848707650062084703113709444134126981252943658028621598970280961228843700391751<187>
26×10211+19 = 2(8)2109<212> = 23 × 14077363 × [89224000783598119128001856872251876968499584230397871634762255602931887076247376384986458444231688441899019597104968201319377193784180747391918713410251772693782545374408325494807542184813302867221741461<203>] Free to factor
26×10212+19 = 2(8)2119<213> = 151429 × 48164489 × 4079130973223<13> × 49045779539832999675395207<26> × 1076098416875069707174179408244153447<37> × 13583411396425126809141840897860999899<38> × 13544553371874862474434060424233441551308111787115717460348030875260758091647702366171793<89> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=589383313 for P37, B1=3000000, sigma=2425860895 for P38 x P89 / May 14, 2013 2013 年 5 月 14 日)
26×10213+19 = 2(8)2129<214> = 3 × 19 × 59 × 10433 × 158075527199<12> × 1186415274581<13> × 3440233457187803377009<22> × 83724063746100478029795218445903245417<38> × 1524246409448412128067534422322524409864129430856888387098550272973329961345598350667198474630543633867814506879723211449313<124> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3346762877 for P38 x P124 / May 13, 2013 2013 年 5 月 13 日)
26×10214+19 = 2(8)2139<215> = 7 × 2044971553<10> × 506581507300149745091961305964770553981253<42> × 3983787784548679351504018251462109135286887309334046321615033119829675870785093745896893957880342499973006214558855674008476516235004452644636464642194289250939603<163> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3307321528 for P42 x P163 / May 27, 2013 2013 年 5 月 27 日)
26×10215+19 = 2(8)2149<216> = 31 × 107 × 677282777 × 17437204559<11> × 7374600063790893929510404138631039739631002107282254717897153967268068861967140272434322528492174013590984459422982395009617899696138588033110639982674049305314762365946225571034671412030372019<193>
26×10216+19 = 2(8)2159<217> = 3 × 15559 × 50070453263336811384905967997<29> × 1236079432531196206064739888048899157163241104830105906630831821482156294130241382454611115916308470408304822834526186022401024776589632566886360248316817927190318628190403943438986681<184>
26×10217+19 = 2(8)2169<218> = 607 × 2704278899831<13> × 17599108464087874775022201446573163731975717827997147011095511522415259817966385985000710477497396705149596630311328573865668817577342764162916823390128588994151001764449198112692726601875764094362198417<203>
26×10218+19 = 2(8)2179<219> = 283 × 73925173675193<14> × [13808676312963963988461086082026630183023837070985882456506096291315766831693894757464239413445590460212809753101299557988814533359641927134946428881117075359949585373566894727282092579397614981616765331<203>] Free to factor
26×10219+19 = 2(8)2189<220> = 37 × 499 × 61846297 × 2068489525049<13> × 108764027657473166345053<24> × [190251986710107912036317250044700032241288937118284209723388779208014096836628722843036949549326580915771094376488002493456104883802975417545018159952876001169263693391117<171>] Free to factor
26×10220+19 = 2(8)2199<221> = 73 × 47 × 71 × 3000824958323<13> × 8753847893059<13> × [960817384928285356049802654904060763511772036692096013344818087650486896685735436725904118717848880941244900385897815643347335941298331484783942629833762906503238150060764306456889332560847<189>] Free to factor
26×10221+19 = 2(8)2209<222> = 389 × 2273170981<10> × 8115409510531<13> × 16720532231338941377<20> × 40948099490585039693<20> × [58796956617703493102189978561156071683425469863286437787782278505976655387827737148637202540341338915476544716930734956492736230361801430845308656107633636631<158>] Free to factor
26×10222+19 = 2(8)2219<223> = 3 × 1291 × 264349 × 19836032397152602345639997<26> × 29859651629701101133165763<26> × 4763938257448377260154899469258289150003875361297488789770178772631609333416199799459524885470447798969179841418990142846302255737598969643975584920149798862504187<163>
26×10223+19 = 2(8)2229<224> = 43 × 144756935444019906406340177<27> × [4641122190534407041425655482035362675310492496653665222151126805285010693122464067386372282929129294226247862440054623374717084859277346369872972724578750083306790862985575283085144323462569101499<196>] Free to factor
26×10224+19 = 2(8)2239<225> = 448514301719961716443<21> × [644101844202199072294401325777635492079722154208802351990524402321020935566935162270289664952913974099982072414108708516072182981883533244943389933829539856215031105176366880460912053267066835510923884923<204>] Free to factor
26×10225+19 = 2(8)2249<226> = 3 × 29 × 564244014617450538086011104190607<33> × 3089665549320597171693702881524529<34> × 71283192991566983493976702096818571<35> × 397835188855499827954241579596466852594730547<45> × 671649685343764455219365583679042792801198241043062107365849411098475723491777<78> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3198102633 for P33 / May 9, 2013 2013 年 5 月 9 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3752943081 for P34 / May 13, 2013 2013 年 5 月 13 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1132989421 for P35 / May 27, 2013 2013 年 5 月 27 日) (Dmitry Domanov / Msieve 1.50 gnfs for P45 x P78 / June 3, 2013 2013 年 6 月 3 日)
26×10226+19 = 2(8)2259<227> = 7 × 17 × 49910730841<11> × 606267473098403<15> × 1135731865691690736569<22> × [7063986624469107545707468739351203029111116003150282090959355841224972187078662918881271229217848280542587441278972400285960348673867191379751840602122876339311835398583293360213<178>] Free to factor
26×10227+19 = 2(8)2269<228> = 12950891 × 6623232351342447767258767964260156108939<40> × [3367915599134473735247154248586149952035461054374370676746351460034195909473009991776623966859775330869454548766200727530180002535728347695082468856971716134486109478051670243209761<181>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2963317653 for P40 / May 27, 2013 2013 年 5 月 27 日) Free to factor
26×10228+19 = 2(8)2279<229> = 32 × 569 × 8243 × 35069 × 25440742697053<14> × 76707458747857564425195758766723580128558421800097632165199664126691547145642021783948113961976085576009076744390740243388563384125704477585151775002682219511848288613169287041373938557419209496476756459<203>
26×10229+19 = 2(8)2289<230> = 5981 × [4830110163666425161158483345408608742499396236229541696854855189581823923907187575470471307287893143101302272009511601553066191086589013357112337215998811049805866726114176373330360957848000148618774266659235727953333704880269<226>] Free to factor
26×10230+19 = 2(8)2299<231> = 31 × 4415639 × 10318901599<11> × 9573571549298777270933<22> × 21363289500270401894433712156977326946894581794316028130702043763721056213690085304986464993938478741173793557733935515287650776855964679960593866483274258602063177113271005463708407540176563<191>
26×10231+19 = 2(8)2309<232> = 3 × 19 × 3617099219<10> × 19154837499194477<17> × 56052582647473849800313259895629807<35> × [13050329027079377052573996293292941358135087676293870777958801813370354244835221603073955136725988388995818588537996885706608543274683656192168386614013368481425932943497<170>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=489541762 for P35 / May 13, 2013 2013 年 5 月 13 日) Free to factor
26×10232+19 = 2(8)2319<233> = 7 × 1171 × 16342271263<11> × 5672775901361<13> × [38016126228496945616617915026504826289813666967078762651211231639087872475146981869086503139948512252862145701460985092689497328012424987917775547057085367209919194811096393013061706200887720178626622300459<206>] Free to factor
26×10233+19 = 2(8)2329<234> = 23 × 64891 × 70936973263621<14> × 2728637739748175095913687409472286345551444992072281064358129769508003464476538480073126509837773020594615565895081671118171589237412255013519755211255640669120393500956304627831239116452708902685936335237188760313<214>
26×10234+19 = 2(8)2339<235> = 3 × 5905844683334039753852268959515378846784050400953884984294354392510460336973743305661075996601291<97> × 163052537714103805428497064747025353760196432728372774638216779600489988184336426603539538892735805185160965738261390866850929953344491993<138> (matsui / Msieve 1.52 snfs for P97 x P138 / January 13, 2014 2014 年 1 月 13 日)
26×10235+19 = 2(8)2349<236> = 44581219 × 19486351522930333<17> × 33254342576155100908059081953475136697950344561782836615934957465621302108003896980036911073082634734276202358285794861818790538030856533437098128812166938786815796226129531324379544460838989328775761067640696207<212>
26×10236+19 = 2(8)2359<237> = 197 × 769943 × 515778371092529<15> × 2588163636265586704802960065635337<34> × 867643999284640862552126168048707146725239143037<48> × 511594888605590262194975815317366244515081582506351053<54> × 3214277852610829773937391126815230732847175490972640162325164831464406166010803<79> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1581710937 for P34 / May 13, 2013 2013 年 5 月 13 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4060267211 for P48 / May 27, 2013 2013 年 5 月 27 日) (Erik Branger / GGNFS, Msieve gnfs for P54 x P79 / June 25, 2013 2013 年 6 月 25 日)
26×10237+19 = 2(8)2369<238> = 32 × 250007 × 751749962826834819427979770698947<33> × 29378536818842590731276213699055111<35> × 58134318122580068598212960323733578317637078993897006150360251776393835216622555079902560483121308010634492880952223398195042849677519078737116202530560074742188059<164> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1812074787 for P33 / May 11, 2013 2013 年 5 月 11 日) (Serge Batalov / GMP-ECM B1=2000000, sigma=1223045637 for P35 x P164 / May 12, 2013 2013 年 5 月 12 日)
26×10238+19 = 2(8)2379<239> = 7 × 179 × 118493 × 18755410993964263<17> × 10374340237401142113543784944128818191080283534336650411974244234106553581572086345926280472245660007304562173151357937852427577783987845106678544036585671823700586508204442578991302900162217057908485421194198539407<215>
26×10239+19 = 2(8)2389<240> = definitely prime number 素数
26×10240+19 = 2(8)2399<241> = 3 × 487 × 3806714339<10> × 9421561416019<13> × 26334389791819205528794777<26> × 2185116388560404402088982973<28> × 516988623052971862000704180020184071567<39> × 287584321208332211971027464508890955890673<42> × 6444117137401237820375093669978729725258224313475914012860996841327237640336444599<82> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2857971523 for P39 / May 13, 2013 2013 年 5 月 13 日) (Dmitry Domanov / Msieve 1.50 gnfs for P42 x P82 / May 15, 2013 2013 年 5 月 15 日)
26×10241+19 = 2(8)2409<242> = 2797 × 811637 × 106710509 × 96926395817677212566159629521556307<35> × 426262195388764312210176967442960807<36> × [2886359768368873074771102202949093415527519307334065208274479596028161182777683890597603647851123068555296812584402196125849178176929677935201567445701161<154>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3872199745 for P35 / May 11, 2013 2013 年 5 月 11 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2655541024 for P36 / May 13, 2013 2013 年 5 月 13 日) Free to factor
26×10242+19 = 2(8)2419<243> = 17 × 16993464052287581699346405228758169934640522875816993464052287581699346405228758169934640522875816993464052287581699346405228758169934640522875816993464052287581699346405228758169934640522875816993464052287581699346405228758169934640522875817<242>
26×10243+19 = 2(8)2429<244> = 3 × 32173431431<11> × 49784060231385690426852965131333019<35> × [601204036387141571708422451393714397492584080872935997323740449051483311717168516190726672421273442715445364377401251624238290724926262350611589955885794181466651891602323710308263187629097805802767<198>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3708227019 for P35 / May 27, 2013 2013 年 5 月 27 日) Free to factor
26×10244+19 = 2(8)2439<245> = 7 × 43 × 631 × 73702128690400981477445650296991<32> × [2063739859051785421317670837433082880073561022032789110118565246043456867916872898763451654067819118504737873077740106165709892474680477984284025563478756525242672484589930041991606951337489274849539832144309<208>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1080498048 for P32 / May 13, 2013 2013 年 5 月 13 日) Free to factor
26×10245+19 = 2(8)2449<246> = 31 × 168239131 × [55391372746514063479063118618993098558121835575333519856154091279729778030114284151977524237919395908973218121272962177921134152884863684412376189524001517794428994104344229023452393599182438541062833927831989392045756678157172120654949<236>] Free to factor
26×10246+19 = 2(8)2459<247> = 33 × 293599 × 364428641697221555387890347402395392265173081108345798544940155701015846240379626998034341989116282549767601752716748945543245856863334367609851442486355336119053903439333150530320063519351588376952147870229259395359340446952386290659846693<240>
26×10247+19 = 2(8)2469<248> = 73713256787<11> × [391909001828063387271931158567721755447783602877116070203146929759991271688985737784491750744179324451761573866070035710968604946125250474464413368002568876768476797064799981144386075257034469642783942144923382855780873136160770468887747<237>] Free to factor
26×10248+19 = 2(8)2479<249> = 541 × 4339 × 137860369267313284198131451<27> × [892697843925188899626102016213092092759354698153894037227236779701792892448982554041053234195742697115322629765588391244868026904417122753303990744869149199342382258476612982171670029525729283591694758375658916114061<216>] Free to factor
26×10249+19 = 2(8)2489<250> = 3 × 19 × 5732466622740101<16> × 247961416252668922691263<24> × [35655812716077691383385551688439643008768246965896000338913461803509990551806424524052762157736183355357525345231448190779245567284610800089883493857977589463740126148508929257423206812522903631960806673569779<209>] Free to factor
26×10250+19 = 2(8)2499<251> = 7 × 563 × 72613 × 186444627533471<15> × 530220016700351749<18> × [1021184069338146633186529360671715538699278914172896038335020984414522445027758775426694131659238149410663866488708270191889980285925611387724614812286863401418865949258981768086316977321697065872089260087898227<211>] Free to factor
26×10251+19 = 2(8)2509<252> = 8340083239573<13> × 6079547668183927267511893910641<31> × 5697563646674616457436034241998302194194929446292957630226816677936811823709409771215677187047749208089991813425566664833259324077187075919957448556889062180865071085260673023039517955871768283769247974041573<208> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=2071876561 for P31 x P208 / April 15, 2016 2016 年 4 月 15 日)
26×10252+19 = 2(8)2519<253> = 3 × 151 × 1499 × 150197 × 2094041 × 13526472838313371944694967655345245419290566727659949800637742600474878538110155668178166586022649573897389399996522959795990319982819215088467338728286468610184745564284037649416250235004068168144474356720136701620012560730784888794331<236>
26×10253+19 = 2(8)2529<254> = 29 × 3617885705947609048235383<25> × [275345509322705104963477494040826693174508732549474026563139479172086955336263737329871625882769007562748031410930196105216532286611795595571008204836192967907681929603341500258681092473140797852992862372692682177450642773912027<228>] Free to factor
26×10254+19 = 2(8)2539<255> = 59723 × 50237704094221858603<20> × 28668817371452128981716233<26> × [3358533324489134680462698263960031659366793442910401674566963383167844654678866919500148518496485541034491809366585495231687882403960690934523188505719354479844472724565248841719330381674063668786887472857<205>] Free to factor
26×10255+19 = 2(8)2549<256> = 32 × 23 × 71 × 81676326786405815711805396533<29> × [2406611270758000363000344637629374939190435154414182984856481644167890265692509307377346685371786169281744704285856448709383593977157878723432373522733144293064060565532525391214078841648668113665277648106544409224342489389<223>] Free to factor
26×10256+19 = 2(8)2559<257> = 7 × 203767 × [20253446961402616636290391118209165292353443526106420490692723193569748703798868938464653178026786118380930102160723409502652461522150922299130792164502235318412618956868025657378202196548641262456551487650733357840004156630499463244706586366423337081<251>] Free to factor
26×10257+19 = 2(8)2569<258> = 39569 × [7300889304477972374558085594502991960597662030601958323154208822282314157266771687151277234423131463744064517397176802266645325605622807978187189185698119459397227346884907096183600517801533748360809949427301394750660590080337862692736457552348780330281<253>] Free to factor
26×10258+19 = 2(8)2579<259> = 3 × 17 × 6902989 × 8303122073<10> × 604701638987<12> × 27717392525903<14> × 58964217589358190459588346690670185807987751856027281881796061507495542312034657393802109081752962913027390393375708431381203363107305884119973151189926958487056047136284683156197711939755603025798952527430369795067<215>
26×10259+19 = 2(8)2589<260> = 7550729 × 136214435173<12> × 28087870955243799749661413962815272353013510177617425496429587231810268362179209154071921625304849716381660274793157869355727444552738954053792261626260571392190045974002921380759999706372911433637703664860131572412972839522904853607128474717<242>
26×10260+19 = 2(8)2599<261> = 31 × 467 × 10333 × 291439 × 334199 × 3756173 × 421842643 × 1436273803512767<16> × 20315489730631265434349<23> × [428856917155617683436197932623423948233102583950235289710948155878146141510987986040284639139983626676380358547757845111095565592205281306440930711416219421290015625176410119564308716622597<189>] Free to factor
26×10261+19 = 2(8)2609<262> = 3 × 3709 × [259628730914791847657849275535983543532748170116733071707458334581548385808294139380685619564023446471545689663780793465344557283085188180901311125091119698830672138841456716894840378259089502012122664589636819348331885403872462378798318404681305732802093007<258>] Free to factor
26×10262+19 = 2(8)2619<263> = 72 × 907 × 115571 × 55719414463571<14> × 1771116214585748076619<22> × 3249524226348654403187<22> × [17539015755976121740666274944707547443207495323094839462835440020411574457672361828385511215777600036505625935671611979985983905210203412462619432442371145170233690754212576812434563895444048816851<197>] Free to factor
26×10263+19 = 2(8)2629<264> = 61 × 97 × 2111 × 181085039 × [127719869162169119784917686909727707689786644187221845195439378387003432175374809436362752959919702797639479866709646741194058143495494464376406629104275558533194471654534886033524456662103977210054603745703101677034519005425817155808917997722698173<249>] Free to factor
26×10264+19 = 2(8)2639<265> = 32 × 4889 × 5038759788757781<16> × [13030006638199061698117118301987096863552007566036211476616678886294839726183215734109907443966564402200774687985802299118416469989294591435924365454394998381495189994967498690708775137920381860756871532896180428398189182567928289628980006806069<245>] Free to factor
26×10265+19 = 2(8)2649<266> = 43 × 19529509 × 2898392731087361<16> × 7524857559494519239<19> × [1577304502437322153035728040191088258554461309987114170427528569246073986627916899222000005801879152366600000860623911038776790802914339424514057378115019232320968836110290609802986682528940623697372799111511967659380886393<223>] Free to factor
26×10266+19 = 2(8)2659<267> = 472 × [130778129872742819777677179216337206377948795332226749157487047935214526432272018510135305065137568532769981389266133494291031638247573059705246214979125798501081434535486142548161561289673557668125345807554951964186912127156581660882249383833811176500176047482521<264>] Free to factor
26×10267+19 = 2(8)2669<268> = 3 × 19 × 15539515051406372502816341<26> × [3261508550357889199879409391710464306855017365521023732613758676912688419173203580049196836657836551120370371374102828147315807575188015591305237958694579197148219462774806761418926983192883270772743658803170957514308561774393040762696633597<241>] Free to factor
26×10268+19 = 2(8)2679<269> = 7 × 107 × 149 × 2069 × 5292503 × 46604177 × 410530175999<12> × 42977097846434137<17> × 28749754155132205463014308372394703830514534502520493181752019840808223190608060484636008067895985944482174684414958278043063386788605386766096952229523866790057324334836541246230458570603925886750391401145418186091477<218>
26×10269+19 = 2(8)2689<270> = 233339871387398536474391<24> × 3776546016753546835080199<25> × [327828799612009915601300552719575018934846338538805833595066137862743353899042565457354471989555282581833926148826124011637389091556155936947521726389699937282894297162149063520603588838857901193598810436746399926813172121<222>] Free to factor
26×10270+19 = 2(8)2699<271> = 3 × 1049 × 39618872420543057523990290239237<32> × 23170317480538205074099405330386293589967038263354417392830561524277443792346183485201795938864467442320027403712512852407558120732918225518314994554507748898276944522294528001411969865930626631961862934965591367999454139371226795167951<236> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3412983946 for P32 x P236 / April 16, 2016 2016 年 4 月 16 日)
26×10271+19 = 2(8)2709<272> = 59 × 5153 × 8898894469<10> × 7851867476897375498952393797227<31> × 131424662065383246369095056346598221<36> × 10347437166613191407218743194028709234854268272656521783889092653357662676263598808374277941902750691661237480906143405874698092870672627996472363541626769150800052165007986913998978671015409<191> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1169575096 for P31, B1=1e6, sigma=848372825 for P36 x P191 / April 16, 2016 2016 年 4 月 16 日)
26×10272+19 = 2(8)2719<273> = 317 × 12739 × 360091 × 13013731 × 14371457 × 1062236808831742075215150589639808082206981861356408772311675998717727596917102503211659625164456173321617406760997459428305045204561641076396291333877055266939475864373480875069837301365350963248232660301284929526962295310023411443415296774622399<247>
26×10273+19 = 2(8)2729<274> = 33 × 105472151 × 9544084923239725491271<22> × 531472418880386889453583430939<30> × 10627668667895753731117084612340663<35> × 1482020306311274327401676939717333403587<40> × 12697612936913942650771847390503144664465006142151635418446705548524998659481594374355393195753271106513473647669855065891918503341140268013<140> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=4087470382 for P35, B1=1e6, sigma=2772719476 for P30 / April 16, 2016 2016 年 4 月 16 日) (Serge Batalov / GMP-ECM B1=6000000, sigma=421517492 for P40 x P140 / May 1, 2016 2016 年 5 月 1 日)
26×10274+19 = 2(8)2739<275> = 7 × 172 × 557 × 2399 × 33080194088561<14> × 323058716744045706406826649337616899256532237733399600975119023666271434425789301164441731394053538299271225631019200312022503918454574958525357243451520140578599070137271101027867097255452396125621394065537633433662234006963637215817953639550219690741<252>
26×10275+19 = 2(8)2749<276> = 31 × 1883213 × 183823031299<12> × 72545625431552256072542439031<29> × 1043114128333032187866757772614159<34> × [355735101775827900470255361479986106657825594550522361092262986436316485761994187143860949227588664597830048104743791602551451043830249956931749772798045909254999525009825452685507342955247964553<195>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=345295454 for P34 / April 17, 2016 2016 年 4 月 17 日) Free to factor
26×10276+19 = 2(8)2759<277> = 3 × 359 × 3833723 × 699671855855993689756840243668884128525562901145840405207749775301668466121362061463289942723830940059208744264496709044570048475735746249854539465776128655734481807720518592983033330824248164184952700885056499053621062536987508490786738991728107390658143150125937359<267>
26×10277+19 = 2(8)2769<278> = 23 × 21277630639<11> × 46142659721398621<17> × [1279313882520402561701156115476300144291249436498073545179154774124138600384689342418302449725068565687432537101352944844329183405514921676127490530462050341698216817804446252240799993424201889261374955012150804529801349867282769505061245946374670197<250>] Free to factor
26×10278+19 = 2(8)2779<279> = 109 × [2650356778797145769622833843017329255861365953109072375127420998980632008154943934760448521916411824668705402650356778797145769622833843017329255861365953109072375127420998980632008154943934760448521916411824668705402650356778797145769622833843017329255861365953109072375127421<277>] Free to factor
26×10279+19 = 2(8)2789<280> = 3 × 4799 × 12112077163<11> × 16566860103916991391742591765641196731993891532394128157034283548886097394925632795442737127087366357709446938999240366372773908170724525987307074661595763704364705242437770619695371590368727543489915861039531068717121012492496824266933140396776456833929360807798599<266>
26×10280+19 = 2(8)2799<281> = 7 × 971 × 80963 × [52496092282253900395500289454467936245851786297827733164185755153901936644223228374845202829322363244312283270753741168492293890345737222480566597285791835162793579381197381628418562010164729912888131859702362473504083968530144138223774555092341949831734265312289211090399<272>] Free to factor
26×10281+19 = 2(8)2809<282> = 29 × 443 × 750599 × 197478572053297<15> × 151705440101829335659891627063772708011033029081054678309644240437725630883678559760607793898143566655025296903930026939328797171516924130243913583672992677965383416047241786765212880682506690398029193214143768830500748220814583123979788787713949249475902529<258>
26×10282+19 = 2(8)2819<283> = 32 × 113 × 48407 × 6581348445037<13> × 160265325915733310304691997321<30> × [55634893550507044478124631990513466707874750880912258469560635183098560538897598529651641893309122766731968400916214042088251588324580026494796924069641860969512399364260613660830784776061475994367199217916756269533965451854058189003<233>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=953811500 for P30 / April 17, 2016 2016 年 4 月 17 日) Free to factor
26×10283+19 = 2(8)2829<284> = 193 × 701 × 4457129 × 237055829 × 159762576607<12> × [1264953651208373253686904343213088558525298066223063916928882109495749010087453583804455561695367252762124939113418413944303935485760456540644392019741842266651925641806339062131921766027014310617786776631754531188951890286907004700588216348566028174479<253>] Free to factor
26×10284+19 = 2(8)2839<285> = 35839 × 37313 × 2229673 × [96888807870862845224024058405012002336708598969185637757158475414218516395134523012776093847006460698860395607581959924728227459053402227140749424640471888690066157131115475444319166874499491928345864717314131356522159751523305203072935272866376069379266077242362516399<269>] Free to factor
26×10285+19 = 2(8)2849<286> = 3 × 19 × 181 × 1997 × 11743 × [11940438668948935093555353571235561393550219670834080619137410021056002465450695637491333505542586020604609939276143029966432212677861631143849095971696983658950266940018014612739183714364566737114424631504542988259844274931451099215611927199320520826031379508809561454355727<275>] Free to factor
26×10286+19 = 2(8)2859<287> = 7 × 43 × 167 × 390109 × 257174033 × 694720211 × [8245649169599580252577748876722560259189876824097338201552630373142670440343761140845341719364236600446498595697036601680879948101848997903179484457531028217004620724803897294239071779012209216588976738655889558762565071592349259981638089348153784584939434301<259>] Free to factor
26×10287+19 = 2(8)2869<288> = 2371 × 2971 × 36209 × 11391859 × 55489630233419<14> × 33232708789086767<17> × [53914791266660933891427367638638277008015367494252036476343536289320059642200724108663474863927949754661616664297231196906096016416897809613692580757480843614736774552802841859946448286094349435232770748234439501902016790602753429399686983<239>] Free to factor
26×10288+19 = 2(8)2879<289> = 3 × 11131 × 3400303083388379964421<22> × [25442382165420672193188517059943566125873908147001711417039435869738906915627943966014118166775045705715647478166938295942343507588781702608902750053001857597977750223430283598921099212135541271787074148966529072514704170570786951629152129435982294546295821201013<263>] Free to factor
26×10289+19 = 2(8)2889<290> = 4943 × 54181 × 490239585001<12> × 1653587604017<13> × 6424352666539<13> × 1554084414214636043959<22> × 523902348557540797599253<24> × 2718682658675397300873385327099733137608804307<46> × 9357175753126661880650340866515988071950665413854104560194525242822741769898340344358040697164288286389511398415876409531852512170846158047581465971581169<154> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=1417829544 for P46 x P154 / May 5, 2016 2016 年 5 月 5 日)
26×10290+19 = 2(8)2899<291> = 17 × 31 × 71 × 35573 × 259691 × 2612894491<10> × [319861971912977589704386406797437006611940421043716686448283485344448676988789972572974146001234403593332326295448206821877244240307102939879091326708574377746197567483728882162076677710982756672991197716222097648915997249252484882342159476994129277025961695159543109<267>] Free to factor
26×10291+19 = 2(8)2909<292> = 32 × 347 × 22573 × 25770709 × 176684681 × 451396670507<12> × 5448805911758783533<19> × 6647897802381655867305973566503609<34> × [550427704146699806726756283141121086534994656397977049980343094875618479819762489494884925378980488940602271838150908277350411104203655723820001771836201157342451739413109931079101609642117138343445971901<204>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=771638060 for P34 / April 19, 2016 2016 年 4 月 19 日) Free to factor
26×10292+19 = 2(8)2919<293> = 7 × 313 × 174592248381772301378317<24> × 4326517679175681047534277467<28> × [17455207684320962494902607303506023016295884822006259094611188179955579034626005616792710507806556824529017326982299280779791541284260358780024782979703145742583710650401976610919570939876538358507682231626316346491161097583841007000931561<239>] Free to factor
26×10293+19 = 2(8)2929<294> = 386501623 × 17916047998267184475519477910159<32> × [41719327515160008185265789599490810991882753879443324042255191508625892827068952078444135136546091205672515089944592814352523828358411905311750720375905994645740673429180607534276132712480471216390342583638628119302603047705831101076681922615689671840577<254>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=1312446583 for P32 / April 19, 2016 2016 年 4 月 19 日) Free to factor
26×10294+19 = 2(8)2939<295> = 3 × 3872669 × [248656149793065961217693266055777801553131177222469300361833909110993726281012646049265496990050779698177913723833088488317220749556175072789066910433854006878192523802825122147790829260895512361878322924825995447316298646479459763528192820755650163482332975775353628973445177721866486127<288>] Free to factor
26×10295+19 = 2(8)2949<296> = 9677 × 15649 × 37273 × 2345197287397096402379<22> × 3040955703173445539597<22> × [717661552893114541790969144960754160292025908550533566708714805904317508293323582268668923065168025964645319891106131666412950820663523211004664835803755037809001568186353773136342980147615109091243871434085174493666966481221472001053360107<240>] Free to factor
26×10296+19 = 2(8)2959<297> = 4651 × 21247 × 1566211 × 893563524169<12> × 2088868876069562771086576442343193356196696597075560024467396709502481914528696095737797741686357069043544348278495524180771740022508015473868129593032936354734165134568811737670596147145975280757724756550806151165773609678239251659639884351621959477056246363129128592143<271>
26×10297+19 = 2(8)2969<298> = 3 × 3517 × 1185631205142693078709<22> × [230933849143579615699857333038704847500384031581370957438056841812387863980017664259979106436536194843116040936909978699121245584880166782174587569836156197719584830205405472204804310764072038341060115344730012953467653576587140578062582120513940921037586040481097691409971<273>] Free to factor
26×10298+19 = 2(8)2979<299> = 7 × 257 × 8543 × 879923152058231<15> × 31998623894949486278263<23> × [66759522578741803055322154138507171398599193786410302201741158972393827628110782300961953558361009163086042925384319990690973519669179636448374300964105464468812686681236472636236126763528614341486538879421046110090300159493964887382349047704124997149009<254>] Free to factor
26×10299+19 = 2(8)2989<300> = 23 × 712493 × 2233499 × [7892900686042889889059322210621582691445328496961302816357256469042488756143935348302492687159080435425751211862545323501963316948407446598636630094999997838551444571592675045041205206524585918800124160151139421021525202239499160719411484721332163327047160888108378615474849526238700049<286>] Free to factor
26×10300+19 = 2(8)2999<301> = 34 × 368032001 × 96908135237278412138522358283544918125804094085040554310380820003441812514494917619039587061762555298671086763272962209666247148192255621267641500249640375094463689491216076490543585754850438486629295099940181858640518052744706533052669994330291037096321833665256307623918638427290513931369<290>
plain text versionプレーンテキスト版

4. Related links 関連リンク