Table of contents 目次

  1. About 299...993 299...993 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 299...993 299...993 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 299...993 299...993 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 299...993 299...993 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

29w3 = { 23, 293, 2993, 29993, 299993, 2999993, 29999993, 299999993, 2999999993, 29999999993, … }

1.3. General term 一般項

3×10n-7 (1≤n)

2. Prime numbers of the form 299...993 299...993 の形の素数

2.1. Last updated 最終更新日

August 11, 2015 2015 年 8 月 11 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 3×101-7 = 23 is prime. は素数です。
  2. 3×102-7 = 293 is prime. は素数です。
  3. 3×105-7 = 299993 is prime. は素数です。
  4. 3×1010-7 = 29999999993<11> is prime. は素数です。
  5. 3×1029-7 = 2(9)283<30> is prime. は素数です。
  6. 3×1039-7 = 2(9)383<40> is prime. は素数です。
  7. 3×10114-7 = 2(9)1133<115> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 2, 2005 2005 年 1 月 2 日)
  8. 3×10484-7 = 2(9)4833<485> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 29, 2006 2006 年 5 月 29 日)
  9. 3×10865-7 = 2(9)8643<866> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 29, 2006 2006 年 5 月 29 日)
  10. 3×104180-7 = 2(9)41793<4181> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日)
  11. 3×105385-7 = 2(9)53843<5386> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日)
  12. 3×1013122-7 = 2(9)131213<13123> is PRP. はおそらく素数です。 (Erik Branger / PFGW / April 29, 2010 2010 年 4 月 29 日)
  13. 3×1013832-7 = 2(9)138313<13833> is PRP. はおそらく素数です。 (Erik Branger / PFGW / April 29, 2010 2010 年 4 月 29 日)
  14. 3×1022676-7 = 2(9)226753<22677> is PRP. はおそらく素数です。 (Erik Branger / PFGW / April 29, 2010 2010 年 4 月 29 日)
  15. 3×1025020-7 = 2(9)250193<25021> is PRP. はおそらく素数です。 (Erik Branger / PFGW / April 29, 2010 2010 年 4 月 29 日)
  16. 3×1030057-7 = 2(9)300563<30058> is PRP. はおそらく素数です。 (Erik Branger / srsieve, PFGW / November 22, 2013 2013 年 11 月 22 日)
  17. 3×1035910-7 = 2(9)359093<35911> is PRP. はおそらく素数です。 (Erik Branger / srsieve, PFGW / November 22, 2013 2013 年 11 月 22 日)
  18. 3×1037935-7 = 2(9)379343<37936> is PRP. はおそらく素数です。 (Erik Branger / srsieve, PFGW / November 22, 2013 2013 年 11 月 22 日)
  19. 3×1042295-7 = 2(9)422943<42296> is PRP. はおそらく素数です。 (Erik Branger / srsieve, PFGW / November 22, 2013 2013 年 11 月 22 日)
  20. 3×1050194-7 = 2(9)501933<50195> is PRP. はおそらく素数です。 (Erik Branger / srsieve, PFGW / November 22, 2013 2013 年 11 月 22 日)
  21. 3×10110076-7 = 2(9)1100753<110077> is PRP. はおそらく素数です。 (Bob Price / PFGW / August 10, 2015 2015 年 8 月 10 日)
  22. 3×10184124-7 = 2(9)1841233<184125> is PRP. はおそらく素数です。 (Bob Price / PFGW / August 10, 2015 2015 年 8 月 10 日)
  23. 3×10191152-7 = 2(9)1911513<191153> is PRP. はおそらく素数です。 (Bob Price / PFGW / August 10, 2015 2015 年 8 月 10 日)

2.3. Range of search 捜索範囲

  1. n≤30000 / Completed 終了
  2. n≤100000 / Completed 終了 / Erik Branger / November 22, 2013 2013 年 11 月 22 日
  3. n≤200000 / Completed 終了 / Bob Price / August 10, 2015 2015 年 8 月 10 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

  1. 3×105k+3-7 = 41×(3×103-741+27×103×105-19×41×k-1Σm=0105m)
  2. 3×108k+3-7 = 73×(3×103-773+27×103×108-19×73×k-1Σm=0108m)
  3. 3×1016k+14-7 = 17×(3×1014-717+27×1014×1016-19×17×k-1Σm=01016m)
  4. 3×1018k+7-7 = 19×(3×107-719+27×107×1018-19×19×k-1Σm=01018m)
  5. 3×1021k+16-7 = 43×(3×1016-743+27×1016×1021-19×43×k-1Σm=01021m)
  6. 3×1022k+1-7 = 23×(3×101-723+27×10×1022-19×23×k-1Σm=01022m)
  7. 3×1028k+21-7 = 29×(3×1021-729+27×1021×1028-19×29×k-1Σm=01028m)
  8. 3×1033k+32-7 = 67×(3×1032-767+27×1032×1033-19×67×k-1Σm=01033m)
  9. 3×1041k+27-7 = 83×(3×1027-783+27×1027×1041-19×83×k-1Σm=01041m)
  10. 3×1042k+34-7 = 127×(3×1034-7127+27×1034×1042-19×127×k-1Σm=01042m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 22.39%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 22.39% です。

3. Factor table of 299...993 299...993 の素因数分解表

3.1. Last updated 最終更新日

October 13, 2016 2016 年 10 月 13 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=191, 196, 201, 204, 207, 208, 213, 214, 215, 217, 220, 223, 224, 226, 227, 234, 237, 238, 239, 240, 241, 242, 243, 246, 247, 248, 250, 251, 252, 253, 254, 255, 256, 257, 260, 263, 264, 267, 268, 270, 272, 273, 274, 275, 276, 277, 278, 281, 282, 283, 285, 286, 287, 288, 289, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300 (65/300)

3.4. Factor table 素因数分解表

3×101-7 = 23 = definitely prime number 素数
3×102-7 = 293 = definitely prime number 素数
3×103-7 = 2993 = 41 × 73
3×104-7 = 29993 = 89 × 337
3×105-7 = 299993 = definitely prime number 素数
3×106-7 = 2999993 = 173 × 17341
3×107-7 = 29999993 = 19 × 311 × 5077
3×108-7 = 299999993 = 41 × 7317073
3×109-7 = 2999999993<10> = 227 × 13215859
3×1010-7 = 29999999993<11> = definitely prime number 素数
3×1011-7 = 299999999993<12> = 73 × 22133 × 185677
3×1012-7 = 2999999999993<13> = 59 × 50847457627<11>
3×1013-7 = 29999999999993<14> = 41 × 479 × 1527572687<10>
3×1014-7 = 299999999999993<15> = 172 × 2137 × 3023 × 160687
3×1015-7 = 2999999999999993<16> = 467 × 6423982869379<13>
3×1016-7 = 29999999999999993<17> = 43 × 21277 × 44263 × 740801
3×1017-7 = 299999999999999993<18> = 4363 × 2782159 × 24714629
3×1018-7 = 2999999999999999993<19> = 41 × 1429 × 1665023 × 30752819
3×1019-7 = 29999999999999999993<20> = 73 × 727 × 45341 × 12467313763<11>
3×1020-7 = 299999999999999999993<21> = 47 × 6382978723404255319<19>
3×1021-7 = 2999999999999999999993<22> = 29 × 14939 × 18307 × 378254887229<12>
3×1022-7 = 29999999999999999999993<23> = 64098527 × 468029475934759<15>
3×1023-7 = 299999999999999999999993<24> = 23 × 41 × 151 × 8761 × 240479984004041<15>
3×1024-7 = 2999999999999999999999993<25> = 56546197 × 53053965768909269<17>
3×1025-7 = 29999999999999999999999993<26> = 192 × 5660731 × 14680523253055523<17>
3×1026-7 = 299999999999999999999999993<27> = 5939 × 13907 × 173291 × 20960346940051<14>
3×1027-7 = 2999999999999999999999999993<28> = 73 × 83 × 8340752393<10> × 59362895149139<14>
3×1028-7 = 29999999999999999999999999993<29> = 41 × 193 × 3791229622140780993302161<25>
3×1029-7 = 299999999999999999999999999993<30> = definitely prime number 素数
3×1030-7 = 2999999999999999999999999999993<31> = 17 × 176470588235294117647058823529<30>
3×1031-7 = 29999999999999999999999999999993<32> = 127453 × 33120937 × 7106709737797915013<19>
3×1032-7 = 299999999999999999999999999999993<33> = 67 × 4477611940298507462686567164179<31>
3×1033-7 = 2999999999999999999999999999999993<34> = 41 × 378411155279<12> × 193363040931942888287<21>
3×1034-7 = 29999999999999999999999999999999993<35> = 127 × 236220472440944881889763779527559<33>
3×1035-7 = 299999999999999999999999999999999993<36> = 73 × 139 × 64969 × 8001611909<10> × 56872186918708639<17>
3×1036-7 = 2999999999999999999999999999999999993<37> = 8291 × 15213119 × 23784612329642446512944717<26>
3×1037-7 = 29999999999999999999999999999999999993<38> = 43 × 697674418604651162790697674418604651<36>
3×1038-7 = 299999999999999999999999999999999999993<39> = 41 × 302941 × 614863 × 39282668639885187200647531<26>
3×1039-7 = 2999999999999999999999999999999999999993<40> = definitely prime number 素数
3×1040-7 = 29999999999999999999999999999999999999993<41> = 194167 × 2676917 × 57717954094800936155245947187<29>
3×1041-7 = 299999999999999999999999999999999999999993<42> = 61 × 1699 × 1129133 × 2563615806052953325816712606539<31>
3×1042-7 = 2999999999999999999999999999999999999999993<43> = 131 × 739 × 9413 × 58706613131<11> × 56077731378430703911159<23>
3×1043-7 = 29999999999999999999999999999999999999999993<44> = 19 × 41 × 73 × 4679321 × 105566730011<12> × 1067950267835171525809<22>
3×1044-7 = 299999999999999999999999999999999999999999993<45> = 1811 × 165654334621755935946990612921038100496963<42>
3×1045-7 = 2999999999999999999999999999999999999999999993<46> = 23 × 521 × 563 × 613919983 × 9462887771<10> × 76544121199288610969<20>
3×1046-7 = 29999999999999999999999999999999999999999999993<47> = 17 × 2377 × 252381433753051<15> × 2941614437604474434732834227<28>
3×1047-7 = 299999999999999999999999999999999999999999999993<48> = 1613 × 349823429 × 531664906496470899353100146638535609<36>
3×1048-7 = 2999999999999999999999999999999999999999999999993<49> = 41 × 89 × 719 × 2957 × 1165872165481<13> × 331677676614535440225583259<27>
3×1049-7 = 29999999999999999999999999999999999999999999999993<50> = 29 × 173 × 3025369 × 3450697297<10> × 178896439009<12> × 3201770815343579417<19>
3×1050-7 = 299999999999999999999999999999999999999999999999993<51> = 5694486468763<13> × 52682538038441998362242618863241257211<38>
3×1051-7 = 2(9)503<52> = 73 × 97 × 429570716502509<15> × 986261300021320591903991131292917<33>
3×1052-7 = 2(9)513<53> = 38833 × 39863 × 60107 × 133789490251<12> × 2409923634153698499717890231<28>
3×1053-7 = 2(9)523<54> = 41 × 44898546488662394786777<23> × 162969043387170361806111445049<30>
3×1054-7 = 2(9)533<55> = 4057290239390967318353<22> × 739409759468014964747695349027881<33>
3×1055-7 = 2(9)543<56> = 32665169 × 610358441181169<15> × 6976225339896877<16> × 215690436695812669<18>
3×1056-7 = 2(9)553<57> = 4589444731<10> × 65477631887<11> × 998316264207105833544335690930066869<36>
3×1057-7 = 2(9)563<58> = 59168881 × 7682753902800453193333<22> × 6599499143290305535669023941<28>
3×1058-7 = 2(9)573<59> = 41 × 43 × 3990749511865583<16> × 4263973267093125175567911209654453501117<40>
3×1059-7 = 2(9)583<60> = 73 × 163 × 25127 × 6135061588459367723<19> × 163550254238434027608380315287367<33>
3×1060-7 = 2(9)593<61> = 109 × 2008225567242057245851228907<28> × 13705101771816599211970478043511<32>
3×1061-7 = 2(9)603<62> = 19 × 55977197 × 152648470361440633<18> × 184783866057050946989986973194331047<36>
3×1062-7 = 2(9)613<63> = 17 × 14124571339<11> × 20126872010957233<17> × 62075577991749361724417101512976267<35>
3×1063-7 = 2(9)623<64> = 41 × 937 × 78090428716453653330556784756748314548246869875315615482729<59>
3×1064-7 = 2(9)633<65> = 2762849 × 10858356718011009649821615296384275796469513896705900322457<59>
3×1065-7 = 2(9)643<66> = 67 × 661 × 5807 × 178521407 × 17792791233404596831187<23> × 367247444439121441483719853<27>
3×1066-7 = 2(9)653<67> = 47 × 8941 × 7138998684044575907783174331968198140528809429189461886075859<61>
3×1067-7 = 2(9)663<68> = 23 × 73 × 313 × 2833 × 732889955570420529792047<24> × 27494186665736922923964291981943409<35>
3×1068-7 = 2(9)673<69> = 41 × 83 × 487 × 929 × 1033 × 954952261 × 197529810719025559771655747127450876142381029169<48>
3×1069-7 = 2(9)683<70> = 896947 × 112842827 × 822427339 × 7344841710623<13> × 4906824622945938092484244546324901<34>
3×1070-7 = 2(9)693<71> = 59 × 3169063 × 132074707 × 1214838968175389449030210093135645815191851627588101247<55>
3×1071-7 = 2(9)703<72> = 149 × 77377 × 1191293 × 576763553 × 37870993660572697198300908541206230781390180477529<50>
3×1072-7 = 2(9)713<73> = 4496651918177<13> × 667163048105408665186644021277780391502794740160718246413209<60>
3×1073-7 = 2(9)723<74> = 41 × 883 × 1117 × 691437589 × 1072927892606161434458283514437101060262952971040534496587<58>
3×1074-7 = 2(9)733<75> = 7691 × 519369682548231169<18> × 1447112285977984957481<22> × 51899075057568853399874353813907<32>
3×1075-7 = 2(9)743<76> = 73 × 22993 × 144773 × 12345684702690221215690727658471481200746127272298324605881690669<65>
3×1076-7 = 2(9)753<77> = 127 × 754633628964966973809046907<27> × 313026697160233703777658958599629306969374056037<48>
3×1077-7 = 2(9)763<78> = 29 × 4496509 × 47273727563<11> × 48666256610101450693770379883958247889029074363758568768851<59>
3×1078-7 = 2(9)773<79> = 17 × 412 × 30491 × 1917317 × 50128051 × 35822691217329452883535973372324375749278686797074020197<56>
3×1079-7 = 2(9)783<80> = 19 × 43 × 2072057437<10> × 524222960180108353057807908398059<33> × 33805033443334190185461635447442263<35>
3×1080-7 = 2(9)793<81> = 1217 × 1351099 × 9418537 × 2313020227702423<16> × 11398590629043678321871<23> × 734732868148376568253047451<27>
3×1081-7 = 2(9)803<82> = 139 × 146084400680863009<18> × 147741536484100240702785606335371798030497553204677813231395243<63>
3×1082-7 = 2(9)813<83> = 105041792255800663<18> × 285600610535501664630910801196245459713208417984924484364044292911<66>
3×1083-7 = 2(9)823<84> = 41 × 73 × 4373 × 16706531 × 248433393185469030804567971<27> × 5522539215804046633907535836205387510458237<43>
3×1084-7 = 2(9)833<85> = 1831 × 238145213 × 799426924271<12> × 8606216821833434280793632376048651261821540928636858989221861<61>
3×1085-7 = 2(9)843<86> = 5257559 × 16292161 × 350234082530206643545873000220423449117716831546591807227963415158865007<72>
3×1086-7 = 2(9)853<87> = 534073 × 256830289 × 698096864068085227884551909064009967<36> × 3132987804392042217894882713321800607<37>
3×1087-7 = 2(9)863<88> = 49074331215135871662164352061620157<35> × 61131755150128619573827193417726050993904641966003949<53> (Makoto Kamada / GGNFS-0.54.5b for P35 x P53)
3×1088-7 = 2(9)873<89> = 41 × 32668049842108543<17> × 1879560371784273560052702852157<31> × 11916752199520156001544300802205904815323<41>
3×1089-7 = 2(9)883<90> = 23 × 529956721278463<15> × 1221735429632752897111<22> × 20145397717380594702864766144334667714272774673702487<53>
3×1090-7 = 2(9)893<91> = 27073 × 300073 × 128035463783099<15> × 7155270250560533<16> × 403089634945954657923428956224600453296801968926551<51>
3×1091-7 = 2(9)903<92> = 73 × 1912129 × 12723947 × 16434248219657<14> × 113149242742746923725832569<27> × 9083597058727784463071328219055034579<37>
3×1092-7 = 2(9)913<93> = 89 × 173 × 631 × 492971606256827<15> × 2081663667995930171<19> × 934932643516228947551119<24> × 32184220413324863260992821813<29>
3×1093-7 = 2(9)923<94> = 41 × 3319 × 221212198618532822657518266919<30> × 99660043725599786755884788217021864728527174110556729974193<59> (Makoto Kamada / GGNFS-0.54.5b for P30 x P59)
3×1094-7 = 2(9)933<95> = 17 × 273857 × 50736806544125182727059957829623309042903<41> × 127006327579537107737996122558784534366651222399<48> (Makoto Kamada / GGNFS-0.54.5b for P41 x P48)
3×1095-7 = 2(9)943<96> = 3533 × 1001544527686081<16> × 42907833229284301<17> × 47794793502289827289<20> × 41341876127667250973177966751544194190969<41>
3×1096-7 = 2(9)953<97> = 105716918560885019<18> × 84826881140613763057<20> × 334536307856845536905409704221858141814590672022973378601771<60>
3×1097-7 = 2(9)963<98> = 19 × 521 × 14361317 × 28492109297<11> × 2370922293737<13> × 3123875664564538643409287322339749893623803998803594503291763239<64>
3×1098-7 = 2(9)973<99> = 41 × 672 × 151 × 46448341 × 14699350183747451<17> × 751154106800146859<18> × 21048127031018388845501130427016744996720399554603<50>
3×1099-7 = 2(9)983<100> = 73 × 1543 × 22657284571<11> × 33994238561<11> × 73006926117795259733621<23> × 473647476771372501389498106143899191060172913548337<51>
3×10100-7 = 2(9)993<101> = 43 × 520474043 × 2521284071<10> × 54259042988364807699026477681<29> × 9798504903679346799981799815998990291317699151934007<52>
3×10101-7 = 2(9)1003<102> = 61 × 270538861909140599<18> × 1503944237661379360868402573256481<34> × 12087320199218433786007971497669328028718661880027<50> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 gnfs for P34 x P50 / 2.70 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / August 26, 2007 2007 年 8 月 26 日)
3×10102-7 = 2(9)1013<103> = 5503 × 3539577321355187357058316586614016942558507<43> × 154017595180034784335600556931964288371618563510589261333<57> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P43 x P57 / 0.35 hours on Core 2 Quad Q6600 / August 27, 2007 2007 年 8 月 27 日)
3×10103-7 = 2(9)1023<104> = 41 × 22093 × 23599 × 5635247 × 51407263 × 85935290864503<14> × 19008185993682724277<20> × 2965783485720682229873326130872834525250555929<46>
3×10104-7 = 2(9)1033<105> = 14306459 × 15418327 × 2124528671<10> × 69658927796959<14> × 51317164112551327<17> × 179081126555694774392291804925465911407077526573667<51>
3×10105-7 = 2(9)1043<106> = 29 × 113 × 11939 × 32843 × 26345205751<11> × 40345426547<11> × 188547589391012659<18> × 11649764616834067845518116860705408548212159084371178579<56>
3×10106-7 = 2(9)1053<107> = 269 × 351599 × 85916641609<11> × 247442640229<12> × 738774190963452887<18> × 20195648113222437925515153574177134536502955251016044395929<59>
3×10107-7 = 2(9)1063<108> = 732 × 31957 × 277589851523296053332037672941<30> × 1002459894818158467774433246518331<34> × 6330513515041898460559917424038309211<37> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P30 x P34 x P37 / 0.45 hours on Core 2 Quad Q6600 / August 27, 2007 2007 年 8 月 27 日)
3×10108-7 = 2(9)1073<109> = 41 × 140723320772963967845461<24> × 348045719063430961912708909<27> × 1493946436367187554883887397135974677940055938643149095777<58>
3×10109-7 = 2(9)1083<110> = 83 × 56809 × 16216515547<11> × 1243071210473<13> × 2248059687775148500471809593908702163<37> × 140399198593424783364159287344550310097264723<45> (Sinkiti Sibata / Msieve v. 1.26 for P37 x P45 / 1.4 hours on Celeron 750MHz,Windows 2000 / August 26, 2007 2007 年 8 月 26 日)
3×10110-7 = 2(9)1093<111> = 17 × 491039 × 5146243 × 1721445263<10> × 4056699508782791903388906801562232920260501335354127930862027874602883948349825380940979<88>
3×10111-7 = 2(9)1103<112> = 23 × 373003 × 27835335642957025433655367694790412609627019<44> × 12562747515193989773402390442014510943362606451247158043351463<62> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P44 x P62 / 0.69 hours on Core 2 Quad Q6600 / August 27, 2007 2007 年 8 月 27 日)
3×10112-7 = 2(9)1113<113> = 47 × 51329 × 23588119 × 527190145177582333444260317030062053099466733411113735957322662540237419926423245653997929202619969<99>
3×10113-7 = 2(9)1123<114> = 41 × 51513642470265587<17> × 23701595572502442779<20> × 50132733817468641778099964125202773<35> × 119540802551021556641486044708047824109037<42> (Makoto Kamada / Msieve 1.26 for P35 x P42 / 4.9 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / August 26, 2007 2007 年 8 月 26 日)
3×10114-7 = 2(9)1133<115> = definitely prime number 素数
3×10115-7 = 2(9)1143<116> = 19 × 73 × 183978391 × 52741576847<11> × 148097434733<12> × 15051415032624839272796239307797611365954407544272847296283005945190961524544515279<83>
3×10116-7 = 2(9)1153<117> = 5711 × 3219174617934997967729103654362313099113789<43> × 16317910987225509303709497983754427492567247926719168101616013003489667<71> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P43 x P71 / 0.83 hours on Core 2 Quad Q6600 / August 27, 2007 2007 年 8 月 27 日)
3×10117-7 = 2(9)1163<118> = 65663146013<11> × 1115445346207<13> × 218367804382939724096025924452209<33> × 187569691815535808504272490616328250324358050799297959129311747<63> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 gnfs for P33 x P63 / 10.53 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / August 27, 2007 2007 年 8 月 27 日)
3×10118-7 = 2(9)1173<119> = 41 × 127 × 167 × 1213 × 9897661 × 14329261617626323<17> × 200539541744802669558099610471711696723801947641295708137598305473137079551362983266923<87>
3×10119-7 = 2(9)1183<120> = 78368605499<11> × 53095903456340370936693577<26> × 188290868464416554619696945024940247957<39> × 382903082208360177830892669855412560821185463<45> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 gnfs for P39 x P45 / 2.71 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / August 26, 2007 2007 年 8 月 26 日)
3×10120-7 = 2(9)1193<121> = 5839 × 40493 × 7873580993<10> × 1611500804618018920416277327603751960929318129969962351751472775272740456386711094959536999325299568563<103>
3×10121-7 = 2(9)1203<122> = 43 × 4337 × 7031670871<10> × 21125729592553<14> × 169087047557767<15> × 11849991123529165669<20> × 540461496936340133701144762007986592828319113259134309253127<60>
3×10122-7 = 2(9)1213<123> = 227 × 541 × 5821 × 2440113394861<13> × 83874866130091704225931620360708407017715883677<47> × 2050494856118000514981197734640153342657783824277403827<55> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 snfs for P47 x P55 / 2.62 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / August 27, 2007 2007 年 8 月 27 日)
3×10123-7 = 2(9)1223<124> = 41 × 73 × 25229 × 80436896303091941<17> × 25717660438571745381489038333885826323571075209<47> × 19205593766110280619993552722286434599284651570080801<53> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 snfs for P47 x P53 / 2.60 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / August 27, 2007 2007 年 8 月 27 日)
3×10124-7 = 2(9)1233<125> = 499 × 50123 × 4979165454103<13> × 32069277584934255341895947641<29> × 7511694512964920660213222237541918019312926923461518825741959466812334839383<76> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 snfs for P29 x P76 / 3.48 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / August 27, 2007 2007 年 8 月 27 日)
3×10125-7 = 2(9)1243<126> = 8929 × 105642398249<12> × 318038854042474590841624434519546128113364597743750708667591053125474563140439565756732101437336647209578296433<111>
3×10126-7 = 2(9)1253<127> = 17 × 1947761627248864935777984869025486217<37> × 90601737793013067707297429917950567899839201443202358104654069381901149336940160966925537<89> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P37 x P89 / 1.98 hours on Core 2 Quad Q6600 / August 27, 2007 2007 年 8 月 27 日)
3×10127-7 = 2(9)1263<128> = 139 × 181 × 491 × 52314763871<11> × 46421815166515942054629056212512630972121829637426324358911515355441565203529703724844328748618857947465260707<110>
3×10128-7 = 2(9)1273<129> = 41 × 59 × 54773 × 7537788328018616405984189140699812345322214029<46> × 300382702420089950889070923665817867552296755414839069498484220494663049491<75> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P46 x P75 / 2.00 hours on Core 2 Quad Q6600 / August 27, 2007 2007 年 8 月 27 日)
3×10129-7 = 2(9)1283<130> = 13634014563100632163485094139<29> × 139215960043020963366563162682325387847822463557<48> × 1580550856695477889083277991070258583743421455170186591<55> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P29 x P48 x P55 / 2.83 hours on Core 2 Quad Q6600 / August 27, 2007 2007 年 8 月 27 日)
3×10130-7 = 2(9)1293<131> = 1171 × 278757858367742941463<21> × 91904598132686346780820614473422413139780712486439835126506806791746850203603242336943654784374659215916341<107>
3×10131-7 = 2(9)1303<132> = 67 × 73 × 1019 × 116345861 × 977792987 × 556928995904051921<18> × 59726562069597109314324525106720499<35> × 15906850721045874492067807848099118867247459356850020189<56> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 gnfs for P35 x P56 / 4.36 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / August 27, 2007 2007 年 8 月 27 日)
3×10132-7 = 2(9)1313<133> = 2521 × 12924559 × 92073080921359787437475420014943909736351050261133039298638936043529890608166831533180614686946553381372373890860885463887<122>
3×10133-7 = 2(9)1323<134> = 19 × 23 × 29 × 41 × 4133 × 845895553 × 15285736889<11> × 63642234051349873089290850183434749198604956677859<50> × 16976338245683764819391125937000990768709124738416339799<56> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 snfs for P50 x P56 / 6.23 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / August 28, 2007 2007 年 8 月 28 日)
3×10134-7 = 2(9)1333<135> = 593 × 1974304861<10> × 3113816399009399331502040880885247<34> × 82292327352237237759282275303994140450126197932685043092723845873827586615938532821406403<89> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=916588648 for P34 x P89 / August 20, 2007 2007 年 8 月 20 日)
3×10135-7 = 2(9)1343<136> = 173 × 3767 × 4603408670673678169561954975594261697645049571039035371057755899651828857541380807775464138679220673601446084110414291435665062123<130>
3×10136-7 = 2(9)1353<137> = 89 × 1259 × 19246037 × 50843011 × 273610613173572184314688065898806371900333711622405918497593770818128895110745150711625752461204761515171765221862749<117>
3×10137-7 = 2(9)1363<138> = 233 × 701 × 5477 × 21661 × 488603 × 6476427849686591970532300943502577690100886356016287<52> × 4892540299472487410211328047955667103685004673915706548024083374513<67> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P52 x P67 / 4.06 hours on Core 2 Quad Q6600 / August 28, 2007 2007 年 8 月 28 日)
3×10138-7 = 2(9)1373<139> = 41 × 119617 × 904286291 × 676454429502225918046520757179306967939933913900456238419488571312244894562861677438863361825076381458797189851296464088459<123>
3×10139-7 = 2(9)1383<140> = 73 × 743 × 1447 × 8089 × 44357 × 808196944503758129<18> × 836617817977783013624277121<27> × 1575577370354228377776494151421374328316543300862879300850332723907996910985253<79>
3×10140-7 = 2(9)1393<141> = 163 × 257 × 22303 × 277717378709055933498757<24> × 37093886403445655363232597242736014387<38> × 31169644391610806846824618395203670558943768245441618617177544108945299<71> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 snfs for P38 x P71 / 11.33 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / August 28, 2007 2007 年 8 月 28 日)
3×10141-7 = 2(9)1403<142> = 6397202872201<13> × 468954957335569090511649262700943541094113100410688877527511298162402599051005534156014161127050959282671746600219899815826225393<129>
3×10142-7 = 2(9)1413<143> = 17 × 43 × 373 × 971 × 3350911 × 9620632886332129154929892341<28> × 3514870106914108345406517412425465775454616884446672411785268027905576643346816691885052515554485991<100>
3×10143-7 = 2(9)1423<144> = 41 × 5461117 × 10069687 × 22362475732852823<17> × 2637453503735239381<19> × 2255980031085937390123230461692929651446696232854796074224525926167886189121112417153968514849<94>
3×10144-7 = 2(9)1433<145> = 18599213 × 17212516823<11> × 9370921697067736101509915668666524834479967418197513761679217340038627790407423975555652928877627886519362752811613681741052107<127>
3×10145-7 = 2(9)1443<146> = 881 × 69669013 × 123399738089<12> × 3960877860017655387557299413351438582955602298745046582859124671697045089229849463136903602045141855351929003254850928494429<124>
3×10146-7 = 2(9)1453<147> = 1854775915575395694657042218355139211068315081<46> × 161744606170893075229127752358828695970725053902533763048339214947771986894331414501673269180172824753<102> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P46 x P102 / 11.47 hours on Core 2 Quad Q6600 / August 28, 2007 2007 年 8 月 28 日)
3×10147-7 = 2(9)1463<148> = 73 × 97 × 1657063033<10> × 255674627260153646516206521906177265384354530316168720276398635139260630866908792603402370413630743079266622475357304138872093365346841<135>
3×10148-7 = 2(9)1473<149> = 41 × 293 × 23176583 × 420246714641792212696158791990420325985853003<45> × 256398832799819491996337343700283603386076585422635350041027234530711778924253071751054434289<93> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 snfs for P45 x P93 / 25.94 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / August 31, 2007 2007 年 8 月 31 日)
3×10149-7 = 2(9)1483<150> = 179 × 521 × 3463 × 5282612227<10> × 35419352915554933199557<23> × 21272798033221076607577777047006013<35> × 233380215802854007300467394780726271343697166092228509059711875575719508047<75> (Jo Yeong Uk / GMP-ECM 6.1.2 B1=1000000, sigma=2894591195 for P35 x P75 / August 27, 2007 2007 年 8 月 27 日)
3×10150-7 = 2(9)1493<151> = 83 × 189651047 × 16655019752526043619345197086882937152885261185068417<53> × 11443075559040216743203773330203910152796400883206795006697965100458043235549364132362629<89> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 snfs for P53 x P89 / 32.25 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / August 30, 2007 2007 年 8 月 30 日)
3×10151-7 = 2(9)1503<152> = 19 × 156901 × 2776542823659779412773229802771285257042021400690501832194379669<64> × 3624412053738393293775064001860434687254067055643958807515278373333482272091019563<82> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 snfs for P64 x P82 / 37.52 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / September 2, 2007 2007 年 9 月 2 日)
3×10152-7 = 2(9)1513<153> = 21419 × 39111724098589<14> × 6256881900772855177774283<25> × 57234401466004564622314659495068850297923427270981654934536130156776665032786481422195112907293155615384079381<110>
3×10153-7 = 2(9)1523<154> = 41 × 1367 × 152729 × 350467197066908065138673900838897476819510509047630610421954277466994169648620804342420534240926520184963180073402277323673646790483330973857711<144>
3×10154-7 = 2(9)1533<155> = 34019 × 609903171398591373643<21> × 3638448521596708316295882652136033250258553<43> × 397395170759107781009516079528422156485067127226121794287339983126117723660641650772993<87> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs for P43 x P87 / 57.07 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / September 18, 2007 2007 年 9 月 18 日)
3×10155-7 = 2(9)1543<156> = 23 × 73 × 10333 × 12641093 × 18943129103597<14> × 72211735649817090988968245723900684844204410757785843620258795826399357717876433788968295437619330193896011121330668926863924419<128>
3×10156-7 = 2(9)1553<157> = 20326576471807<14> × 755863572447083289435283827464011678816063064420816854967<57> × 195260141964162497840754186283403004144880025879973776465137141067044484471377181806897<87> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P57 x P87 / 45.23 hours on Cygwin on AMD XP 2700+ / September 20, 2007 2007 年 9 月 20 日)
3×10157-7 = 2(9)1563<158> = 1475129 × 1737809617<10> × 1216200005067323<16> × 14727583118035831<17> × 727011729433678369<18> × 6006402632184905734339<22> × 149622433904500682887740394139684660311996484164146297871579604342815847<72>
3×10158-7 = 2(9)1573<159> = 17 × 41 × 47 × 3041 × 841123744137979613<18> × 263885431718243596975433066048441779693678318105769<51> × 13567470651611743221749122292261888185172901056388384006891037144978168857382893251<83> (suberi / GGNFS-0.77.1-20060722-k8 snfs for P51 x P83 / 49.54 hours on Turion 64 X2 Mobile 1.79GHz, Windows XP and Cygwin / November 3, 2007 2007 年 11 月 3 日)
3×10159-7 = 2(9)1583<160> = 2659 × 629501473 × 3776223670753814722104781857341<31> × 2429003868169712771564765938483840128221281<43> × 195398061142744316558324686703766895073805079591953321661587802348156465519<75> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=2566452289 for P31 / August 22, 2007 2007 年 8 月 22 日) (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 gnfs for P43 x P75 / 56.60 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / September 21, 2007 2007 年 9 月 21 日)
3×10160-7 = 2(9)1593<161> = 127 × 40829 × 1767818010311<13> × 16453710424472833724720213<26> × 156576499347676290337540161614647420749481<42> × 1270342440851204099715174694929205958381506676212657967303937958146615630937<76> (Jo Yeong Uk / GMP-ECM 6.1.2 B1=1000000, sigma=3734854031 for P42 x P76 / August 28, 2007 2007 年 8 月 28 日)
3×10161-7 = 2(9)1603<162> = 29 × 61 × 3257 × 53717 × 241313 × 32371309 × 103528123293945208277<21> × 1198573279750995653400341941182039366354667310712305043897588264383401423275498691870653282350121116813509672488529957<118>
3×10162-7 = 2(9)1613<163> = 311 × 839 × 4051197719261188815701375854427236740369079486103<49> × 20165397378055339711076080733916793276540156689149<50> × 140737126881900958635390331620494185432391996158454693370011<60> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P49 x P50 x P60 / 45.25 hours on Cygwin on AMD 64 3400+ / September 20, 2007 2007 年 9 月 20 日)
3×10163-7 = 2(9)1623<164> = 41 × 43 × 73 × 433163734125755498123<21> × 984803325251956195887249668731139<33> × 546442521935781460110773913223987286991730594097092602213887622250012599971203648826978554376441175284731<105> (Jo Yeong Uk / GMP-ECM 6.1.3 B1=1000000, sigma=4192204273 for P33 x P105 / October 24, 2007 2007 年 10 月 24 日)
3×10164-7 = 2(9)1633<165> = 67 × 2552597274973289<16> × 1754139591152451686804312012432644493744524845024710249172627207544961301144157951346848542805329436820183510885167494526068893153304139532530922011<148>
3×10165-7 = 2(9)1643<166> = 389 × 72612871 × 4893118907011<13> × 9586550427068758139277418251508130186850823<43> × 763966565598162182661254838642609221002481461<45> × 2963709019423440832352969589339376348532317934047934059<55> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.33 for P43 x P45 x P55 / January 24, 2008 2008 年 1 月 24 日)
3×10166-7 = 2(9)1653<167> = 25411 × 4718927 × 954512749 × 611255532829942634147397320551746694935812453256656449<54> × 428796965068732802120208918501494985696065115728677764830252574676814510715480757019757325969<93> (Robert Backstrom / GGNFS-0.77.1-20050930-k8 snfs, Msieve 1.33 for P54 x P93 / January 26, 2008 2008 年 1 月 26 日)
3×10167-7 = 2(9)1663<168> = 655467036657994741996643867126553366964783<42> × 457688919841947776110399176672643492197644369408954631966772160173721908536961345672536829147905758344010973197701056308278871<126> (Jo Yeong Uk / GMP-ECM 6.1.2 B1=3000000, sigma=3265550511 for P42 x P126 / August 27, 2007 2007 年 8 月 27 日)
3×10168-7 = 2(9)1673<169> = 41 × 109 × 12707934241218043<17> × 52824566435319229836793818203408945538558827619501267406240061485986182898660755947267906681573590490007191531323540884030414758595806839731210102479<149>
3×10169-7 = 2(9)1683<170> = 19 × 43055561 × 10073117473<11> × 310792818964334717<18> × 275860320126853307413096987739888963147811740022702997<54> × 42463353702343919630941476770580199897205148009535304984674887647746788420522251<80> (matsui / GGNFS-0.77.1-20060513-prescott snfs for P54 x P80 / March 7, 2008 2008 年 3 月 7 日)
3×10170-7 = 2(9)1693<171> = 571 × 19364771 × 6500447580664317282363738571189216214014916119<46> × 4173779680365580296879466841090799172626675464658891545229584269857535434533778203229820960806843647214822728845567<115> (matsui / GGNFS-0.77.1-20060513-prescott snfs for P46 x P115 / March 31, 2008 2008 年 3 月 31 日)
3×10171-7 = 2(9)1703<172> = 73 × 26103770121167<14> × 69185802781796879642077085597448791268734799821577537651715919383668229<71> × 22755069893669253071145751833555900531496535657694741960060249774778750742959661038387<86> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon, Msieve 1.38 snfs for P71 x P86 / 16.58 hours, 2.22 hours / October 2, 2008 2008 年 10 月 2 日)
3×10172-7 = 2(9)1713<173> = 131 × 461 × 1481339 × 19066031 × 12697821007221211<17> × 907781215359903216323<21> × 2441028438556608761871741655549673371<37> × 625102233126823174647422983194808336324391991485377318806731843475223989628620169<81> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=3296257244 for P37 x P81 / August 23, 2007 2007 年 8 月 23 日)
3×10173-7 = 2(9)1723<174> = 41 × 139 × 151 × 1093 × 1685407 × 6821392519<10> × 22138926149<11> × 77680027519201<14> × 3426211144509826462542397<25> × 715354854868831667492444551<27> × 335733348651970999890000899829539707<36> × 19604311645442277565086098446148222093<38> (Makoto Kamada / Msieve 1.26 for P36 x P38 / 4.2 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / August 26, 2007 2007 年 8 月 26 日)
3×10174-7 = 2(9)1733<175> = 17 × 13707838783<11> × 37843367550258766630487<23> × 2335652610416605452519508897978433<34> × 145648266590335890831386445560195486299154390924262334577765318323875048848015754190501837612604655871004353<108> (Serge Batalov / GMP-ECM 6.2.1 B1=1000000, sigma=4118715206 for P34 x P108 / August 7, 2008 2008 年 8 月 7 日)
3×10175-7 = 2(9)1743<176> = 773 × 4729 × 149615293 × 1357303109276593<16> × 40412862702780788089192628849723087500346075023752264918482149803781630513952722107404046737066773881468287242932636884334880874995308989642226721<146>
3×10176-7 = 2(9)1753<177> = 3983827881785093<16> × 6361621691528742703<19> × 39095261597244485619068133819782484306059424743<47> × 42468855839398963583713796156992828584395131493<47> × 7129485079984366578469881481595333626428127113433<49> (Wataru Sakai / GMP-ECM 6.3 B1=11000000, sigma=3970631523 for P47(4246...), B1=11000000, sigma=2531216095 for P47(3909...) x P49 / September 3, 2011 2011 年 9 月 3 日)
3×10177-7 = 2(9)1763<178> = 23 × 1753 × 925915713899395469251986786287599<33> × 80360022181039925458264011703983589381427749270077492993109687046726845066099393288440521768615672663893061938919668184954131153418567467753<140> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=1307875811 for P33 x P140 / August 24, 2007 2007 年 8 月 24 日)
3×10178-7 = 2(9)1773<179> = 41 × 173 × 1277 × 3421157 × 968115988973227449763674672832386626010442244448659914206517852033181576471116631855105487651414173092600480303557739651720198680759948394513876215754799069497891109<165>
3×10179-7 = 2(9)1783<180> = 73 × 3683111 × 16927973 × 584455519 × 482923793970269<15> × 75814253468842025360202563<26> × 666955264597468844867283661741291944087841<42> × 4618500484221053916134988602864131972644643376658791905760135103112512419<73> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs for P42 x P73 / 25.35 hours on Core 2 Quad Q6600 / September 18, 2007 2007 年 9 月 18 日)
3×10180-7 = 2(9)1793<181> = 89 × 379 × 7669 × 18218911558565048518907704188010364273260408975797311424365795208880848437<74> × 636547581935478392192518274158705222612881545178444040160000302005921128060650521624507852845684651<99> (Wataru Sakai / for P74 x P99 / July 18, 2010 2010 年 7 月 18 日)
3×10181-7 = 2(9)1803<182> = 1936760724982998289<19> × 68808646991249141025719<23> × 1724512309637715528857993530467193207<37> × 130537703533059377398780785440600547165396660129485394210598345885209061956376547057033455498259978403289<105> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=4240482263 for P37 x P105 / August 3, 2008 2008 年 8 月 3 日)
3×10182-7 = 2(9)1813<183> = 419 × 4657 × 149394995916071445497<21> × 1029117451889188198907257077051657562342164186763426363823483311211748925087377127130025159687821783849827109878279047192103969504565570579345811841061026043<157>
3×10183-7 = 2(9)1823<184> = 41 × 1151 × 54986573 × 11349541095622322797<20> × 101865499526035948449977571645560665716712455648930126519740714243444955908259088083826485783758803608012602912655869192906249511905548209295610839024183<153>
3×10184-7 = 2(9)1833<185> = 43 × 436988932087<12> × 1596549402916574016883694745270397851459235778990999918228926214112346987261629259980744612543824954064232287399971026376854119964045474194708452102759525007064875700732973<172>
3×10185-7 = 2(9)1843<186> = 229 × 4679 × 38576168540177<14> × 3156872466842098507811557111<28> × 2299093318610349359260445136357948350931575621414831473913776195298914528490153824765167995755012801405339136452353580268760527144132086709<139>
3×10186-7 = 2(9)1853<187> = 59 × 18149 × 2801667178749167671375646601437628818322156237771890126084361934308375770808682553364755587224771220527628640883234916991270938960077176591883943738787494478380935215182047663829823<181>
3×10187-7 = 2(9)1863<188> = 19 × 73 × 1471 × 8087 × 2684475081689940476726062783<28> × 677306589355946429738517894949420454571084119778696051252547689181773844742676115175168648255986594277487583912011488270257527279428358527016188630029<150>
3×10188-7 = 2(9)1873<189> = 41 × 797 × 16300343009<11> × 4796490522412971876641932518607628488439561046089<49> × 1548673479290345529774086700765886016829551091546368457457<58> × 75822636452665473690053506995583104798022226107761589852599634157837<68> (Dmitry Domanov / Msieve 1.40 snfs for P49 x P58 x P68 / April 2, 2012 2012 年 4 月 2 日)
3×10189-7 = 2(9)1883<190> = 29 × 4139 × 116881 × 184949 × 349757439117349435285448300528377<33> × 3305711616124445048311225343825846971474411661265757514018027000415495130450466308113753852376938088222883119475153546917208332615074442720531<142> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=3188158830 for P33 x P142 / September 18, 2008 2008 年 9 月 18 日)
3×10190-7 = 2(9)1893<191> = 17 × 8677 × 203377421038716281718403622829793436332698343829868008053745873133164756048783464059820078774854415662773118928336576073324339531825176768875119484234860245815509562128412503643845460277<186>
3×10191-7 = 2(9)1903<192> = 83 × 49033 × 2586047 × 337445182074243533<18> × [84472442371853755570598610642670278068996299561350872616834134266116465590055271388113540351841293220600893956637689213302570537404174146409794186156823212514537<161>] Free to factor
3×10192-7 = 2(9)1913<193> = 12648047 × 135631362211<12> × 2333106755322571<16> × 749554212448962449640869342236440428456031602228118119314157107776761347998286353324804275619138551461703244358095110448988070177519306688883700997316121619799<159>
3×10193-7 = 2(9)1923<194> = 41 × 364541 × 7785800216772576316291503712882966307<37> × 257802878319858510467556950027222406520466634448254185169836969158945420710729762366838181616309841193336589551434596424788675155977440139488578094679<150> (Robert Backstrom / Msieve 1.42 snfs for P37 x P150 / 17.56 hours, 5.71 hours / February 3, 2010 2010 年 2 月 3 日)
3×10194-7 = 2(9)1933<195> = 1971621683<10> × 204338781059399207261<21> × 112071493021442909393674585029677197<36> × 6644337938019891239477287115706515132728307180369419919904025437013944643157929741455683656766105933130195700587489543602655323963<130> (Ignacio Santos / GMP-ECM 6.3 B1=1000000, sigma=2274255721 for P36 x P130 / October 20, 2010 2010 年 10 月 20 日)
3×10195-7 = 2(9)1943<196> = 73 × 367 × 1013 × 919621 × 3410320049990177024859778486328134861<37> × 710588370560844311211918946607363690651<39> × 49602180799616044206014822452439128530879215132254198474045971548246026243176361683054309676103107706734841<107> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=3556153323 for P37 / October 22, 2008 2008 年 10 月 22 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2230358255 for P39 x P107 / January 31, 2012 2012 年 1 月 31 日)
3×10196-7 = 2(9)1953<197> = 26358873989007219801079<23> × [1138136629527926185494163100278909144228558660475166767396335709851632501516920808886668131717636797745150831060574461448133565709914093606153528200547329751721513549069076367<175>] Free to factor
3×10197-7 = 2(9)1963<198> = 67 × 25681669240470105277<20> × 21451079937695822139779<23> × 1876671100474280819361703093<28> × 18169475745070368235047593594222882815709<41> × 238365545013807894815720084404080433701714960158653579266908647472548106703098919265349<87> (Erik Branger / GMP-ECM B1=3000000, sigma=3289226908 for P41 x P87 / March 17, 2009 2009 年 3 月 17 日)
3×10198-7 = 2(9)1973<199> = 41 × 383 × 10834836709<11> × 134241485743<12> × 197835467070393370849<21> × 8802500075758542671486418965401185017<37> × 212384281450897086772265884641508716928053917665171493<54> × 355137834167487756278128779591238230732495635751474304374346577<63> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4094058691, Msieve 1.48 gnfs for P37 / February 1, 2012 2012 年 2 月 1 日) (Warut Roonguthai / Msieve 1.48 gnfs for P54 x P63 / February 2, 2012 2012 年 2 月 2 日)
3×10199-7 = 2(9)1983<200> = 23 × 152170079 × 430353680327<12> × 652471876769<12> × 30526487399392689651774263149155078397800384026240819127615231748059649647496871761812017238455192441281727869964822415945908995001717358864083535426067788205120876583<167>
3×10200-7 = 2(9)1993<201> = 15732113 × 863755526189<12> × 418832359443925351<18> × 44951452064325790309<20> × 1172625691123156425388693186951653980645423936681982313045099032078087799518542737600953819175328745280211938295747161126993519127664881504854511<145>
3×10201-7 = 2(9)2003<202> = 521 × 233394659 × [24671333158636319516876476348237369492019236881661891739415249273256376726439974968932816773169180977573516716909517424591051007295861831444208276977470838378345913175482377677958902831698587<191>] Free to factor
3×10202-7 = 2(9)2013<203> = 127 × 142510913 × 1657560585840502487621869207501035763612785472930570874560896889094939189387237439916171335401106755114885579180364657793737594230558837560354987619536052846416436319583723531912541637298259143<193>
3×10203-7 = 2(9)2023<204> = 41 × 73 × 8377 × 9157 × 113891 × 25064964032797084420001<23> × 457737313401546278990821024689490224470963777129144349488624304526392921837237498596975563041409177524264564324068642247149428430106546569401704576797956961063477599<165>
3×10204-7 = 2(9)2033<205> = 47 × 51002248147<11> × [1251509287395933762454688244747339128985240673029796643238630359255346418449571917797814257017839725235601103745104164163331868503813717799325497784591659153073320732849844419515409505824484077<193>] Free to factor
3×10205-7 = 2(9)2043<206> = 19 × 43 × 76095278622943<14> × 379686982565830365683<21> × 19966634947280063053570543<26> × 1910164605056801962748138593116089338303<40> × 33322694205473186360630508231473886318964276051293618476244343062950816827174736558690905758801698242429<104> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3923420883 for P40 x P104 / February 1, 2012 2012 年 2 月 1 日)
3×10206-7 = 2(9)2053<207> = 17 × 25037 × 25407727 × 34020442763937085042613013879977609<35> × 140801971426578408284257519554963371219<39> × 3720062413835938154892961663649333092219<40> × 1556773055168491112293724763683697991118982438007128124441991213392696189274386379<82> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=719488498 for P35 / January 24, 2012 2012 年 1 月 24 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2209714618 for P39 / January 27, 2012 2012 年 1 月 27 日) (Warut Roonguthai / Msieve 1.48 gnfs for P40 x P82 / January 28, 2012 2012 年 1 月 28 日)
3×10207-7 = 2(9)2063<208> = 4283 × 9176425667667057667376017012781<31> × [76330767518451986798699896620642609907033541142209241008559334631604494380120898044100935293019833994137547168800074791371324296185047184739934177802725003143776336307620391<173>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2814858925 for P31 / January 24, 2012 2012 年 1 月 24 日) Free to factor
3×10208-7 = 2(9)2073<209> = 41 × 294499 × [2484583367254797916825921558887234616474328166587008163264292006788875592687009827935148067503479866054454282382341105303351479349923669457985653849998579646508386007190881181508836130877582175731434427<202>] Free to factor
3×10209-7 = 2(9)2083<210> = 2909 × 403011210473<12> × 21909999990167<14> × 13551971611337418206009782826461843803479<41> × 446743347437958316597541882113096328269014841349869967<54> × 1929112041292261523812283490804809257532580123845026970901914305722645611322339668669179<88> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=4097466950 for P41 / March 13, 2012 2012 年 3 月 13 日) (Erik Branger / GGNFS, Msieve gnfs for P54 x P88 / October 12, 2016 2016 年 10 月 12 日)
3×10210-7 = 2(9)2093<211> = 509 × 677 × 8705922639171428322687924595102047923202154425655773622795587838406467920126061759815202282112521148137077653927967196083495602058080111900125655483425374282124129044989306225024884428876964999289016317801<205>
3×10211-7 = 2(9)2103<212> = 73 × 69691 × 20114242391466369353<20> × 293168981967499126248709642324438392387177720156668466369590826623092732715607816014197928903546518245624796619942586938235279660512085869033613932066583830291233246222436414078707055467<186>
3×10212-7 = 2(9)2113<213> = 3282134877039854878814019195676899277<37> × 91403921910292996094060030519972426291085521451904777869899345682975027290828057305767709673906818534726336097672280874573526027190457557009438433080073254715512952353747084509<176> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=1434698600 for P37 x P176 / January 24, 2012 2012 年 1 月 24 日)
3×10213-7 = 2(9)2123<214> = 41 × 8111 × 13248608423<11> × 1363459054308970043<19> × [499402407986336496549902704776879520789888286726894932753227849004497760800962898262973565656757876826626920019873340399204460968244687532282597114466694406114261120364951783174187<180>] Free to factor
3×10214-7 = 2(9)2133<215> = 21467 × 16257107 × 995844674781007863169<21> × [86320714990293800010749818046340807763651604552110172894994317936714893773925567686362223239676278929994923373190030160159267304804903896027114964773493364197867727893371286698389113<182>] Free to factor
3×10215-7 = 2(9)2143<216> = 236215723 × 8021597989<10> × 24172029941407032416749<23> × [6549956811177379504493563411098892128610069016102969764609229823054273644576303133258597325393112199860064679160260118721576170215024978928696358373424668327507909719545125931<175>] Free to factor
3×10216-7 = 2(9)2153<217> = 1789 × 468369787 × 468235685123015091319<21> × 7646409147693497823720900010289541174715115687455892523436809188347983184687891187288539985299413772207552854172000009650480139185886275766706849693551394620668071927891630512967148929<184>
3×10217-7 = 2(9)2163<218> = 29 × 113 × 223 × 147151 × 33473290350093451584824251859118439513363<41> × [8334476528180445435404264660889521962100082600513253900453235757768392141658209378419263021820580103343742098520650898973160515979443677290611181014944273782678245791<166>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=350618792 for P41 / January 31, 2012 2012 年 1 月 31 日) Free to factor
3×10218-7 = 2(9)2173<219> = 41 × 296415731 × 69616104641<11> × 21455402599979<14> × 16526837721807175967441384794956708531173569746719657717214301128261567531928973048922635410444123260047231816557340265224086659802760223527813205395774869460879220627027132543330248897<185>
3×10219-7 = 2(9)2183<220> = 73 × 139 × 149 × 28701749099324614652788368428060660519<38> × 441426639483080898840742904280498164833<39> × 113745001633004253174470445372996446299551901489<48> × 1376886374731729274464750179379578942804011688188225140564924908333408151197752361104350577<91> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2119486916 for P38 / January 27, 2012 2012 年 1 月 27 日) (Dmitry Domanov / GMP-ECM B1=43000000, sigma=3258675652 for P39 / March 13, 2012 2012 年 3 月 13 日) (Erik Branger / GGNFS, Msieve gnfs for P48 x P91 / September 19, 2012 2012 年 9 月 19 日)
3×10220-7 = 2(9)2193<221> = 193 × 1066464089<10> × 16604002291196068357904972331980013317<38> × [8778188955096475242553312900814591754941201338011240283950666119381325031311357544255986816762643558596600338546567682168768119107365551970117312203225550089175937535282477<172>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1027007255 for P38 / January 27, 2012 2012 年 1 月 27 日) Free to factor
3×10221-7 = 2(9)2203<222> = 23 × 61 × 163 × 173 × 263 × 3530177383<10> × 24660379901145229377894032265860448289<38> × 331190473992209746021357413907924708648088398186690935658134012622838434937036869482396079471853987826679800104756039702063432146623704454073062870420122129908245949<165> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=4053945542 for P38 x P165 / January 31, 2012 2012 年 1 月 31 日)
3×10222-7 = 2(9)2213<223> = 17 × 1297 × 136060592317111887160415438341874914962129801805070524740351036328178148668873871830922037280602294888657081953830105673726699623565694589323778856183953920812735271440881672638214885028799492040455349448954601115696857<219>
3×10223-7 = 2(9)2223<224> = 19 × 41 × 16273 × 175649 × 17326129109<11> × 16579228606711<14> × [46903432303585223533993368870949105520672805427223553853690911702934772407093140428301184256777588289271298043617345413550104083061858574424715417402425758336569687310190461953556254508329<188>] Free to factor
3×10224-7 = 2(9)2233<225> = 89 × 1129 × 1637 × 45954011195115144437690305175741401<35> × [39688547125860803422629338050241867528730344957795426757011778987213528367608224564259545043972367080182716352551929137259233198870436472173395770976510203725910155629046119012880269<182>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=785042173 for P35 / January 27, 2012 2012 年 1 月 27 日) Free to factor
3×10225-7 = 2(9)2243<226> = 15787 × 303655796118331<15> × 625806501176712341747147422155504283629032464489558791357637539472752498438797926829857163156122642446011340662207468456527769308779600863647032726593062205897963103305208396870680665166111671557157822321169<207>
3×10226-7 = 2(9)2253<227> = 43 × 25300889 × 246534229 × [111850979660133884014053903234277684495183759381308048526255263809359525236178665974946062150219608558928599158457101177681859852757058589659060760700130749150284653034219210109948216536011150354371368047112471<210>] Free to factor
3×10227-7 = 2(9)2263<228> = 73 × 2297 × 2447 × 204534298629473<15> × 312011515408633613<18> × 1591423009318225351<19> × [7199146782293787557878627437360587912942909941983443983394572273520195280425654821471060601854165078105500561478710497418085781729138914326212796868971564723842897110901<169>] Free to factor
3×10228-7 = 2(9)2273<229> = 41 × 1065117019<10> × 68697364141279459896351264026768096108796959400731096295924526177092009565451484661430724048143983048417587223560932807771772851286415387914040745711784716803691705045575590138342417351545208308302480266449781583267267<218>
3×10229-7 = 2(9)2283<230> = 65423 × 74071 × 121794681863<12> × 1244731013927<13> × 6494499243223<13> × 6287718429214615879783734186815611797510696570952013143357101241665603313954482710295759639914727953554569929870155995478915100574808693973520060998894936643568737129204340346745288727<184>
3×10230-7 = 2(9)2293<231> = 67 × 4012524873012221<16> × 925754266077601678423131145817849<33> × 1205405010664885266422618638597295738227310639865031095012105197859742854498310930725229058988299889321026189712680131190238473087241773150307106168220149064706202171114267287746951<181> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2364517864 for P33 x P181 / January 27, 2012 2012 年 1 月 27 日)
3×10231-7 = 2(9)2303<232> = 101561 × 4593015444705181782255967030052753<34> × 6431264636680521122701411234500838562852037556353553846684282922035866974209834208951813181991395555534211062754992938311962269114769075488552495516455963490620689107471993202457889789943878321<193> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2850638255 for P34 x P193 / January 24, 2012 2012 年 1 月 24 日)
3×10232-7 = 2(9)2313<233> = 83 × 41672280807063874197742935012787460075470052599<47> × 6313792612099629428038285076830565035628798778734915557377664806295499<70> × 1373743273191727061873006501827524212705989811345498992733915152201502086641542037698058205937167726229585487787871<115> (matsui / Msieve 1.52 snfs for P47 x P70 x P115 / April 12, 2014 2014 年 4 月 12 日)
3×10233-7 = 2(9)2323<234> = 41 × 52628179270046041<17> × 650480769022243902131512412795301725119<39> × 7972182533451401935335144380169222572678609<43> × 26810650867897583524571427389811788172487997471587593554418248438010498250560953024973563600634727716688499909168667118351843810614743<134> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1164636875 for P43 / January 27, 2012 2012 年 1 月 27 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3931956988 for P39 x P134 / February 1, 2012 2012 年 2 月 1 日)
3×10234-7 = 2(9)2333<235> = 185783893 × 2860919496192206027<19> × [5644267112576188985592388967137531812665020033888980559090334549334713166297922688385943176184991650402512809220970242439056591950861067800213058775906029938578450954011498350523804158174724759119164819804063<208>] Free to factor
3×10235-7 = 2(9)2343<236> = 73 × 227 × 1810391648059863617162512823607507090700621567799167219841892462736105244101140546738277714078812383078872729467141391587713475348500392251523746303783718544445114959869651801339689819564299076700259489469555247118459960171383742683<232>
3×10236-7 = 2(9)2353<237> = 1919921994453070691<19> × 28045545907756312520697910047953<32> × 5571521013693889156792937834676386997553152579864737884280218339010073082767048355649205341457182322750175738049498245072040976313645444378983003192647417256022306151204068657311395093891<187> (Serge Batalov / GMP-ECM B1=3000000, sigma=3632593255 for P32 x P187 / January 24, 2012 2012 年 1 月 24 日)
3×10237-7 = 2(9)2363<238> = 5861 × 236452751 × 197605083621776080059463<24> × [10954865480653114014875027315105727689031826491077652737527835228965912838853887387902549907421742635369717716574602849476835957869779171829747890999605113689514166665559491327463696504827389328049208701<203>] Free to factor
3×10238-7 = 2(9)2373<239> = 17 × 41 × 176677 × 6597828427<10> × 17829065178507126274547<23> × [2070994139566605854334726674641366549959728174779705474337047343515426530478337783884363157095381576802760969274772489499192487512391673889365728670179168855198300341734520578027451748683898862022013<199>] Free to factor
3×10239-7 = 2(9)2383<240> = 1081901412368713634260297157<28> × 1087834338566305870313819449105543724677<40> × [254900568075334469074379132513091056564374798390858960851877134943908286798911094607931749535730686685658657656026088878252888338822537348537650887726873486538876951843064737<174>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2789588278 for P40 / February 1, 2012 2012 年 2 月 1 日) Free to factor
3×10240-7 = 2(9)2393<241> = [2999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993<241>] Free to factor
3×10241-7 = 2(9)2403<242> = 19 × 619 × 164959063 × 1108517857<10> × 515554889909170182700653131<27> × [27057222922416577022195566912371500732796279565279536037705196987934688016708479216804119857526571105943185223009039528489609101420288946268183266951351667530798618320445924872140100400819018653<194>] Free to factor
3×10242-7 = 2(9)2413<243> = 503 × 2967131 × [201009483967159598494356685203870716614951404486531548140679593620975550845937592265237604838447830145603102500445214230959828735041829835752343217974484074535514671547223392914485239439076790295005893976637778590911765035715267956701<234>] Free to factor
3×10243-7 = 2(9)2423<244> = 23 × 41 × 73 × 97 × 3249488597<10> × 334059321997<12> × 50703343536962500546867779788535271979<38> × [8162811279978986449936185496666462568085060844574156135360054926838434261586662548266181848120955526162930637021030427444698805536798239582979616643804656577458708258389845716461<178>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3733424734 for P38 / January 31, 2012 2012 年 1 月 31 日) Free to factor
3×10244-7 = 2(9)2433<245> = 59 × 127 × 587 × 3049 × 49559 × 2601413 × 17866427 × 971181601769620821913101289954809214649701903576746356626297566395649246155667074271400343978995829747207798388292600920003322979970209646566465500633301171295913954358113412777437131143255525823812074332356499205303<216>
3×10245-7 = 2(9)2443<246> = 29 × 1049 × 4796111 × 573759378277<12> × 264073475062169564201253001<27> × 141572842634311544394758566797209<33> × 263793040919382910157206964356217<33> × 7997849521795649410272834526716328440021703<43> × 45434677496796700479371157072170966153744120026625416816996294663260383488250739706078321<89> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=3631695551 for P33(1415...), B1=1e6, sigma=2049658447 for P33(2637...) / January 24, 2012 2012 年 1 月 24 日) (Erik Branger / GGNFS, Msieve gnfs for P43 x P89 / February 13, 2012 2012 年 2 月 13 日)
3×10246-7 = 2(9)2453<247> = 1593968066388457<16> × 2495173065914197<16> × 2358160984108031567<19> × [319865584136715785402183782624896018081174359052980731185817284140826598841532554087959113177970119690625750111188683485106024141095558011568741059641490059357258921919282316116951953614442796050851<198>] Free to factor
3×10247-7 = 2(9)2463<248> = 43 × 64059103 × 244205869 × [44598047827344607256979648308707417564232949866651846516000733908425660590356007515952354677789942362990786614868525986817441639633370838644109476788625654135084988723005660531490881913321154058552543573877923575059562833570447593<230>] Free to factor
3×10248-7 = 2(9)2473<249> = 41 × 151 × 467 × 761 × 4942073959243<13> × 4468813744772248631980589<25> × [6173869122760316369510568089003408637392864391664520359586458029791558785494838585416516451055979717489159586016695386493503643942512362833836425667061898720701837592854135266416322753511146170365474427<202>] Free to factor
3×10249-7 = 2(9)2483<250> = 2213399 × 1293780824417<13> × 1406871452769857<16> × 677372246383580329<18> × 228583545321445211954459202013<30> × 4869178824519285585809006414302711<34> × 987684709495362895203165977420899510628196981008649126905529995945945825777765948532338199812268170540997263619113792963969656706885749<135> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=745518297 for P30 / January 24, 2012 2012 年 1 月 24 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=650034800 for P34 x P135 / January 27, 2012 2012 年 1 月 27 日)
3×10250-7 = 2(9)2493<251> = 47 × [638297872340425531914893617021276595744680851063829787234042553191489361702127659574468085106382978723404255319148936170212765957446808510638297872340425531914893617021276595744680851063829787234042553191489361702127659574468085106382978723404255319<249>] Free to factor
3×10251-7 = 2(9)2503<252> = 73 × 164630024765241636122730186763<30> × [24962573181629919871815348892044491430159022285817161010394690983057217033779049852203500403197484731472280519905465249372051990376642133382928453692234710350239119183911618147061243828746784634679572681182733777526265907<221>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=179459057 for P30 / April 20, 2016 2016 年 4 月 20 日) Free to factor
3×10252-7 = 2(9)2513<253> = 479 × 2309009013098824767229<22> × [2712439830754963425070673926599560310098125793496629627746876107925116969175977053106052012065805398499460376143002051884749181226088255581349926571853771427080156741527085850927196571684354668129792098962724582496109745594459123<229>] Free to factor
3×10253-7 = 2(9)2523<254> = 41 × 521 × 577807 × 22861869047528807<17> × [106317594774803849144608234619170402018499139824440683030910266256270699577928288501163176400375287314404009017069443184155801401359042218733690576238271691396157254799578133336812712110790096785208147588857008660702167697991937<228>] Free to factor
3×10254-7 = 2(9)2533<255> = 17 × 214163 × 2986300439717727073<19> × [27592712336558221441926586631306364196906048680787188184669934011338565787178654770955384456651333490190931832874815682433225827597632385657372555889509260169610516553377929859608203411689300623628903452754495772586497130341824371<230>] Free to factor
3×10255-7 = 2(9)2543<256> = 165329707 × [18145559285361825506652594503176613020913416365033538709410523542511328590209138881495749581168736965099684111821476826303212404531751816387117894063648222639141312940208622035482104858505555810366251964627264475827081699237512106641548696387637099<248>] Free to factor
3×10256-7 = 2(9)2553<257> = 5934414644550671<16> × 4144173639082847417<19> × 375064765917692558944883<24> × 685746832539959330892330331890410701<36> × [4742805829503361352225969592007215675927407523271880597649008873245187445692592289043549462508334751534358907195260073678578087646714664163856199818499137751002153<163>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=1304903430 for P36 / April 20, 2016 2016 年 4 月 20 日) Free to factor
3×10257-7 = 2(9)2563<258> = 341072496112172449<18> × 6399383107280295134571998201<28> × [137447373292043675421532987613256248105704843315908776770701523063847481894994503051724908125797813769930420017242636287525561814758511108380310978542456302079002769528494544688506387175361064083341428787520412257<213>] Free to factor
3×10258-7 = 2(9)2573<259> = 41 × 16997430125344645121<20> × 4304811443125932009679809515402217287245036904220829924241998896334389418421812081673976701771729867569246702000723201183524826635986174768185330555066175954180105076233401426471573643951887651339467500469164039843109465939722219497970513<238>
3×10259-7 = 2(9)2583<260> = 19 × 73 × 62641543 × 345288684950941330870549572374378915374721932485981941395723004158922298922767850813761791726694191928210786981077478357513234933623243940691403812154116410699593849480343603944572785172374295820501726205284903507405965868625007654173975324306291773<249>
3×10260-7 = 2(9)2593<261> = 1801 × 818691500009<12> × 20617308780770940583<20> × [9868594068292854716822732703952814506702565695093373921374878441995267854411480596127165317550726115196097774440791310981362354056497323921312356797269951338641032998222891735446408444049707942901771096176952638953765613560719<226>] Free to factor
3×10261-7 = 2(9)2603<262> = 32279069833<11> × 185889792113<12> × 3231156598147<13> × 437774497355432165006903245909<30> × 652697125402544228798613477479<30> × 541532513751740781223726662108865538794306502605973337320973741157570617287454082509698315875863216537221886336736138693400021964352499345827545065239222569500422623401<168> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=752880454 for P30(6526...), B1=25e4, sigma=1657512798 for P30(4377...) x P168 / April 21, 2016 2016 年 4 月 21 日)
3×10262-7 = 2(9)2613<263> = 10357 × 271451 × 1639351318515719385825953<25> × 6509142783529189459514808682899372361954664626442505722831842541844105857542571740327875674510084834781267476326674097500517377179606163858761239725816520162184952550874719130054524987035764144927811409520565278657332747940778383<229>
3×10263-7 = 2(9)2623<264> = 41 × 67 × 26647 × 78856991 × [51972555536383596944994741322468425220575649604341182154047258327055254910903157007048508492628801955528273542246853885707708137107044783790642579150141317470703978494592677741305607866493980284110551326828441580352233185076994914847343883193449347<248>] Free to factor
3×10264-7 = 2(9)2633<265> = 173 × 237256883 × [73089725546245778103473964938937446190039096712334563725911237205238169239365677340076044960957462622724616165693834205173092023708922452894349731740932820031457564984653792885342956489799988116629009689714171550041704840253777916557419321925133088080527<254>] Free to factor
3×10265-7 = 2(9)2643<266> = 23 × 139 × 35593 × 3263340349609<13> × 80788892203734098032541706347507965511057481824069228933015844861474678208065811100174082636299313260103712197159938805586306826444166338038289409656786167890917979008710063084210029500351517580952282744198088674889368328920527841361478549776637<245>
3×10266-7 = 2(9)2653<267> = 976621 × 11169441832369<14> × 376841554045163542666958351299<30> × 1335133210268668848600976552768901<34> × 11004854290195043491203256077427691<35> × 3967118322181098507540262098513076986918764993<46> × 1252047744194490588840009127361144230190653963298422170780485451132702762429158376026922725901263263689961<106> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=1048998736 for P30, B1=1e6, sigma=3297475260 for P34, B1=1e6, sigma=1568225149 for P35 / April 21, 2016 2016 年 4 月 21 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1862894295 for P46 x P106 / April 28, 2016 2016 年 4 月 28 日)
3×10267-7 = 2(9)2663<268> = 73 × 3947 × 27185172613<11> × 45051243445755512111<20> × 96350832676846977239459005883639<32> × [88234193163396850313093811997203354425684437318773518077854415657632246014337803442703771455879024917463550979763817698113963387887125874852298177850276124355224910365546011915987566062752076265737039<200>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1822697706 for P32 / April 21, 2016 2016 年 4 月 21 日) Free to factor
3×10268-7 = 2(9)2673<269> = 41 × 43 × 89 × 6301 × 251713494595411<15> × [120548818179354490728342505601039213979684760065557238009056241415934337082393104731772569429256231630598265386124495201758274014477194479114503902762890689795647261312314764871165356964007003800401811587281646976426299288987429636876655818961309<246>] Free to factor
3×10269-7 = 2(9)2683<270> = 8929 × 21474366372390839572842678634482697<35> × 1564581077493744088159623570922168976237618450341363532296746801699840371020713607533580439489620479672739874325096760665394297025041178927519111695102660667712970356222028920282019709115750160272239942649999243831416488289383042961<232> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1631517759 for P35 x P232 / May 11, 2016 2016 年 5 月 11 日)
3×10270-7 = 2(9)2693<271> = 17 × [176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529<270>] Free to factor
3×10271-7 = 2(9)2703<272> = 2436294367633281626084249<25> × 981684685658319614347794958737335273<36> × 12543521470064076691039343649887719644067505931387638081537530198663631370049047664921461085534697493285367080889068674542617211389909006315363696712656456171290419129493775181953981481463408705339286230698727609<212> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2555137016 for P36 x P212 / April 22, 2016 2016 年 4 月 22 日)
3×10272-7 = 2(9)2713<273> = 224699 × 421847 × 443015159 × 926608091 × [7709930709628279350816471110729951958609520129000619580826978719555463173888311739319603928329068183092512570736286248745275752675014165240347487841085500368248628456435885268752107240918295388770366497786927428693424550668308339193099388988049<244>] Free to factor
3×10273-7 = 2(9)2723<274> = 29 × 41 × 83 × 3075817 × 310017606783458183822754997712063<33> × [31879716850663381944183869071085896287635612366573265857798799861579604765758883449962421953986781080615531245055237742062072614856290913251580344537757009239021208699084864946782679606472894340515034534076844596438094533930035409<230>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1363520405 for P33 / April 22, 2016 2016 年 4 月 22 日) Free to factor
3×10274-7 = 2(9)2733<275> = 297237313 × 1236871552841994832590913476518783<34> × [81600595264211185956556806634672356932282117533756619231786365500302534077620290947560113879829056644930758752297788396087492113752852483786511158637591824125046725157820414504472984072600914563072545153667998662149484203664130599367<233>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=31045889 for P34 / April 22, 2016 2016 年 4 月 22 日) Free to factor
3×10275-7 = 2(9)2743<276> = 73 × [4109589041095890410958904109589041095890410958904109589041095890410958904109589041095890410958904109589041095890410958904109589041095890410958904109589041095890410958904109589041095890410958904109589041095890410958904109589041095890410958904109589041095890410958904109589041<274>] Free to factor
3×10276-7 = 2(9)2753<277> = 109 × 4999 × 30097 × 233327 × 3253021 × [241010824095336472527744513000796145790921523472722369706457493130363598102352755601820220778583011900066336749473435901264776355966665021864870782829510818520554299526239573299891227219224737091456466011047477996264488185999567563876831195814918772783177<255>] Free to factor
3×10277-7 = 2(9)2763<278> = 19 × 123791 × 13541576011<11> × 35428036379<11> × 230120255546290857280019<24> × [115533369894753724933240381727197060432230415753558083260198349924662022213016443610798752312466943163021620624918366404111630806567954563001630908086235960422394931507430794892998460503542621884756856997859547620181816884880647<228>] Free to factor
3×10278-7 = 2(9)2773<279> = 41 × 51131 × 461119 × [310341670935520582083176755980706492130077874865786301322918414201445437522718373035688087435011156687055591338658080784210671043894499409424165165306040392701633249788414113273613675718655866814364622145075724345693147002316564123542256452013119425850493553322926557<267>] Free to factor
3×10279-7 = 2(9)2783<280> = 821 × 43067 × 91897056073177125395417701<26> × 923276705407753118422743097387883454817917702510091259172329141237283582173299911101816957903903434596993626777442961421197126775732624542536552572850068411222133744721597907853469847554535262993871654651829437161334480025343652282809635307521699<246>
3×10280-7 = 2(9)2793<281> = 31360868873<11> × 6816494935615276834213<22> × 140336955865902692306616325103233216894970642997605565431366695462884932751014790240495439027840571540177562299300863868514312351904676984150406971594138660312145447915196772698279627468378481265103461165715222101558581852023265892223552393954056157<249>
3×10281-7 = 2(9)2803<282> = 61 × 143419 × 35263889 × 270185225753<12> × 216661481185057<15> × 8745389356589343799927<22> × [1899468383429974571274582159407668249719239498401771849438363827890313017703442578985675621055161979482593217947178795150546172287298810059137732498409497539971401526324400295093126193533306616492511928626705822734388729<220>] Free to factor
3×10282-7 = 2(9)2813<283> = 360948319 × 2696869808964507494093807<25> × [3081883727204805700422383629595968090809728530224438295568252028726197008181887525702335742765820650297941965098258612296716432348820498018775570630135997370070791746472619856563395827795497410701595366848295940868862758615728538460459251680812997321<250>] Free to factor
3×10283-7 = 2(9)2823<284> = 412 × 73 × [244472875734437264185538614490722254365878105824158809580077090446814925883973173176436074417543373562703218077954250975854228973295412873941636175466332010463439081433914907141052700202912486859582929273997050027299471123678827834051811951463985070856388483697733736441941766561<279>] Free to factor
3×10284-7 = 2(9)2833<285> = 167 × 2099 × 6904144068780579773<19> × 276497676187687965663333164759381039260993<42> × 448322994193235574531733091234625637155003499830941689302710527193148089888650156360178109495754120143177573772434211932317641018702950589911721842031001268039076574670946913974690780729924470036385483794206205004386889<219> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1407672742 for P42 x P219 / April 23, 2016 2016 年 4 月 23 日)
3×10285-7 = 2(9)2843<286> = 661 × [4538577912254160363086232980332829046898638426626323751891074130105900151285930408472012102874432677760968229954614220877458396369137670196671709531013615733736762481089258698940998487140695915279878971255673222390317700453857791225416036308623298033282904689863842662632375189107413<283>] Free to factor
3×10286-7 = 2(9)2853<287> = 172 × 127 × 124055701587509<15> × 3685826327586338538838017187580821<34> × [1787590730455598784035327805352714239474370752227889227819952680628535311944743577149301329057588193984320383948008000848433698035096472744400033077383596895158882295147381062766601770623003330435071148999990586888544450895704980010879<235>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=2605470592 for P34 / April 23, 2016 2016 年 4 月 23 日) Free to factor
3×10287-7 = 2(9)2863<288> = 23 × 122819 × 260137700003<12> × [408248469781485622796785168226570399307268161459585090985832619482599973671295687644154250777159453889323499136741022032897907665388761666425122746019050408420023286060016800291834130592317300890555594459062850236828451472694794664669793036915654083198133425713836027863<270>] Free to factor
3×10288-7 = 2(9)2873<289> = 41 × 739 × 942917 × 25621303 × 1134402408569<13> × 8608257213925292367048616771<28> × [419697039932042876982893750556753040316960525323238627453655563271982023882926955112450202911578738424416583118731370828881301271563143071675707874914640521538604321702969159499321991028797584541304038655536866552248028564535326443<231>] Free to factor
3×10289-7 = 2(9)2883<290> = 43 × 178594909 × [3906463081792836338860575664105882498379562978888824902904498754203986960259047265399360708644862050142709822005164798125140233967556256626840145766404093963309173403093464855812909264747242586150194262542852163258888967572144863270977530600296401297702711528124268375213263764839<280>] Free to factor
3×10290-7 = 2(9)2893<291> = 679501 × 441500454009633539906490203840759616247805374826527113278714821611741557407568200782633138141077055074238301341719879735276327775823729472068473777080534097815897254014342878082592961599762178422106810733170370610197777486714515504760110728313865616091808547743123262511754949588006493<285>
3×10291-7 = 2(9)2903<292> = 73 × 7247 × 10979658574658692861810657<26> × 2716339301281868834001344249<28> × [190137281645685173638220620560246709224516924844885074693777958944060373439987530450995298980090464831723497976771522304229068965902302730692302482089100700815653066720101568062318583871535668917926839390752226543108637823510739899671<234>] Free to factor
3×10292-7 = 2(9)2913<293> = 4493 × 11965584711350604847<20> × 1120566066952019321773874194219<31> × [497981768722057340755442504605620074517908807223943266560729470240059984642825985746591797749503339841991351263451448679977987540734972795492754731440385789667999033110199734358890455848094792575992069089070387610416068830410622816319376857<240>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=3639454421 for P31 / April 24, 2016 2016 年 4 月 24 日) Free to factor
3×10293-7 = 2(9)2923<294> = 41 × 1999 × 7193 × 87539 × 51743203214331557491601<23> × 1739193938984621157006851<25> × 1334124102827905764288733313084089<34> × [48418954564512841981879652718491032438323713252712513740432250016635443219860829945063665492987409085795721194139520252500064380687223587607840175750825435279458976423467229053833865810067475291041559<200>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3679921684 for P34 / April 24, 2016 2016 年 4 月 24 日) Free to factor
3×10294-7 = 2(9)2933<295> = 293 × 8609 × 12583 × [94518480226174277009842033951158387760968146398466454217968057981248645123466803401527827546304130791636247247257999047634376746194166945736601590389416583083756685053565382835805574523472532248530352165251404059177123048144127386493314676655244978636495321185842346375819568005264083<284>] Free to factor
3×10295-7 = 2(9)2943<296> = 19 × 4639291 × 6160999979<10> × 46130083942572044799431<23> × [1197513965863387498317856681138090921872010481632308833551669587311606122821947271418680443356759567338570644562576084023255731466021740196443304122547816811206704328185264763206593650228987503904345651358840996087223477654105954656749535680588099230058333<256>] Free to factor
3×10296-7 = 2(9)2953<297> = 47 × 67 × 25541 × 7008619 × 15102509458463972819903<23> × [35239450601108066654671771653301477065657297387163950621616535421169822441604122036148327705661623005075395444164530208895742501557526048458397640779457589437846133283794876788560435762226271653289458796375854365859811528906415239713012331128639015115699595861<260>] Free to factor
3×10297-7 = 2(9)2963<298> = 301127 × 14979061 × 8979932874083465861817488938457<31> × [74065145029726721008275828002969482708775153501556167478626039263496859384875325905142710326854151427783038685948758781994403985922699432484729128526823352983650690468677558769112158034707344486613711396742479386059211890990733449904913037342857419405467<254>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=464049648 for P31 / April 25, 2016 2016 年 4 月 25 日) Free to factor
3×10298-7 = 2(9)2973<299> = 41 × 1117633926439<13> × 7608554627540027489<19> × 59392764033480623242261<23> × [1448778930042566109150558078840250383255331209014364135494860595088817158260261915792122379930536108049205917080495693553843228542884325866018096514609509860483659556376177518080010081679859944717942838729736389326575042686258264675044948766283<244>] Free to factor
3×10299-7 = 2(9)2983<300> = 73 × 1077059 × 42121378031<11> × [90585008521414863843235418066922679664641766515580335291218894589622938221574374342378128325965453854260828588584262002447801256009963088407794069872121782161168175276222951180803577999003688973306879637539216956106280266140839092794564932043845433174065055709844994173315055295029<281>] Free to factor
3×10300-7 = 2(9)2993<301> = 177949 × 993557 × 15688181 × 153526095781<12> × 1488285863180865923<19> × 12791252491718015177647420555898011597<38> × 307744160284198424654378950697738104493481149<45> × [1202510478719796470309646445568640701590736078586062717873137060148545422874532311084667540206857309697091242914943841786950033964708533541630044926290986494573206160361139<172>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=969462061 for P38 / April 26, 2016 2016 年 4 月 26 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3094346061 for P45 / April 28, 2016 2016 年 4 月 28 日) Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク