Table of contents 目次

  1. About 377...771 377...771 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 377...771 377...771 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 377...771 377...771 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 377...771 377...771 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

37w1 = { 31, 371, 3771, 37771, 377771, 3777771, 37777771, 377777771, 3777777771, 37777777771, … }

1.3. General term 一般項

34×10n-619 (1≤n)

2. Prime numbers of the form 377...771 377...771 の形の素数

2.1. Last updated 最終更新日

May 11, 2015 2015 年 5 月 11 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 34×101-619 = 31 is prime. は素数です。
  2. 34×105-619 = 377771 is prime. は素数です。
  3. 34×1071-619 = 3(7)701<72> is prime. は素数です。
  4. 34×10112-619 = 3(7)1111<113> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 2, 2005 2005 年 1 月 2 日)
  5. 34×10115-619 = 3(7)1141<116> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 2, 2005 2005 年 1 月 2 日)
  6. 34×10173-619 = 3(7)1721<174> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 2, 2005 2005 年 1 月 2 日)
  7. 34×10263-619 = 3(7)2621<264> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 2, 2005 2005 年 1 月 2 日)
  8. 34×10310-619 = 3(7)3091<311> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 2, 2005 2005 年 1 月 2 日)
  9. 34×10358-619 = 3(7)3571<359> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 2, 2005 2005 年 1 月 2 日)
  10. 34×1010499-619 = 3(7)104981<10500> is PRP. はおそらく素数です。 (Erik Branger / PFGW / June 10, 2010 2010 年 6 月 10 日)
  11. 34×1022925-619 = 3(7)229241<22926> is PRP. はおそらく素数です。 (Erik Branger / PFGW / June 10, 2010 2010 年 6 月 10 日)
  12. 34×1037957-619 = 3(7)379561<37958> is PRP. はおそらく素数です。 (Erik Branger / srsieve and PFGW / May 1, 2013 2013 年 5 月 1 日)

2.3. Range of search 捜索範囲

  1. n≤30000 / Completed 終了
  2. n≤50000 / Completed 終了 / Erik Branger / May 1, 2013 2013 年 5 月 1 日
  3. n≤100000 / Completed 終了 / Bob Price / May 11, 2015 2015 年 5 月 11 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

  1. 34×103k-619 = 3×(34×100-619×3+34×103-19×3×k-1Σm=0103m)
  2. 34×106k+2-619 = 7×(34×102-619×7+34×102×106-19×7×k-1Σm=0106m)
  3. 34×1013k+2-619 = 53×(34×102-619×53+34×102×1013-19×53×k-1Σm=01013m)
  4. 34×1015k+1-619 = 31×(34×101-619×31+34×10×1015-19×31×k-1Σm=01015m)
  5. 34×1018k+9-619 = 19×(34×109-619×19+34×109×1018-19×19×k-1Σm=01018m)
  6. 34×1021k+9-619 = 43×(34×109-619×43+34×109×1021-19×43×k-1Σm=01021m)
  7. 34×1022k+10-619 = 23×(34×1010-619×23+34×1010×1022-19×23×k-1Σm=01022m)
  8. 34×1028k+9-619 = 29×(34×109-619×29+34×109×1028-19×29×k-1Σm=01028m)
  9. 34×1032k+4-619 = 353×(34×104-619×353+34×104×1032-19×353×k-1Σm=01032m)
  10. 34×1033k+17-619 = 67×(34×1017-619×67+34×1017×1033-19×67×k-1Σm=01033m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 17.59%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 17.59% です。

3. Factor table of 377...771 377...771 の素因数分解表

3.1. Last updated 最終更新日

June 22, 2017 2017 年 6 月 22 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=187, 192, 195, 196, 201, 204, 207, 211, 213, 216, 217, 218, 222, 223, 225, 227, 228, 229, 230, 231, 232, 233, 237, 238, 241, 243, 247, 248, 250, 252, 253, 254, 255, 256, 258, 259, 264, 265, 266, 268, 269, 270, 272, 273, 276, 277, 278, 279, 281, 282, 283, 284, 285, 286, 287, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300 (66/300)

3.4. Factor table 素因数分解表

34×101-619 = 31 = definitely prime number 素数
34×102-619 = 371 = 7 × 53
34×103-619 = 3771 = 32 × 419
34×104-619 = 37771 = 107 × 353
34×105-619 = 377771 = definitely prime number 素数
34×106-619 = 3777771 = 3 × 521 × 2417
34×107-619 = 37777771 = 179 × 211049
34×108-619 = 377777771 = 7 × 53968253
34×109-619 = 3777777771<10> = 3 × 19 × 29 × 43 × 53149
34×1010-619 = 37777777771<11> = 23 × 1642512077<10>
34×1011-619 = 377777777771<12> = 18229 × 20723999
34×1012-619 = 3777777777771<13> = 33 × 197 × 710242109
34×1013-619 = 37777777777771<14> = 347 × 108869676593<12>
34×1014-619 = 377777777777771<15> = 7 × 53968253968253<14>
34×1015-619 = 3777777777777771<16> = 3 × 53 × 367 × 2113 × 2287 × 13397
34×1016-619 = 37777777777777771<17> = 31 × 109 × 11180165071849<14>
34×1017-619 = 377777777777777771<18> = 67 × 5638474295190713<16>
34×1018-619 = 3777777777777777771<19> = 3 × 157 × 8020759613116301<16>
34×1019-619 = 37777777777777777771<20> = 5413301 × 6978695213471<13>
34×1020-619 = 377777777777777777771<21> = 7 × 480532957 × 112309162529<12>
34×1021-619 = 3777777777777777777771<22> = 32 × 71 × 1741 × 4871 × 191747 × 3635717
34×1022-619 = 37777777777777777777771<23> = 233 × 8849 × 87123367 × 210305989
34×1023-619 = 377777777777777777777771<24> = 97 × 223 × 518209 × 33701936731349<14>
34×1024-619 = 3777777777777777777777771<25> = 3 × 1033 × 2591 × 202639 × 2321797743521<13>
34×1025-619 = 37777777777777777777777771<26> = 1506007 × 25084729206290394253<20>
34×1026-619 = 377777777777777777777777771<27> = 72 × 683 × 1009 × 11187381744233703457<20>
34×1027-619 = 3777777777777777777777777771<28> = 3 × 19 × 1087 × 60972219980596487641469<23>
34×1028-619 = 37777777777777777777777777771<29> = 53 × 56432780143<11> × 12630748620781649<17>
34×1029-619 = 377777777777777777777777777771<30> = 311 × 1214719542693819221150410861<28>
34×1030-619 = 3777777777777777777777777777771<31> = 32 × 432 × 103 × 16488503 × 133671411713934859<18>
34×1031-619 = 37777777777777777777777777777771<32> = 31 × 13433653 × 75692869661<11> × 1198465722677<13>
34×1032-619 = 377777777777777777777777777777771<33> = 7 × 23 × 307 × 7643146008816593719581964873<28>
34×1033-619 = 3777777777777777777777777777777771<34> = 3 × 149 × 2649212117<10> × 3190157696443446764929<22>
34×1034-619 = 37777777777777777777777777777777771<35> = 1571 × 223253522052731<15> × 107711457726389371<18>
34×1035-619 = 377777777777777777777777777777777771<36> = 19812827 × 19067333388505223296896388273<29>
34×1036-619 = 3777777777777777777777777777777777771<37> = 3 × 353 × 11197 × 9557015979499<13> × 33336227950398823<17>
34×1037-619 = 37777777777777777777777777777777777771<38> = 29 × 883 × 362977 × 667781 × 538048253 × 11312102078573<14>
34×1038-619 = 377777777777777777777777777777777777771<39> = 7 × 33975869 × 464608269764629<15> × 3418856388835453<16>
34×1039-619 = 3777777777777777777777777777777777777771<40> = 33 × 23921713 × 51991907581<11> × 112497951881467454741<21>
34×1040-619 = 37777777777777777777777777777777777777771<41> = 1987 × 430643419361<12> × 44148985189958276846014553<26>
34×1041-619 = 377777777777777777777777777777777777777771<42> = 53 × 8678353 × 51991410719<11> × 15797618615200893790001<23>
34×1042-619 = 3777777777777777777777777777777777777777771<43> = 3 × 47 × 27641166909197<14> × 969306045762156606043204723<27>
34×1043-619 = 37777777777777777777777777777777777777777771<44> = 183485713 × 205889478587238984529426428845595067<36>
34×1044-619 = 377777777777777777777777777777777777777777771<45> = 7 × 59 × 231893 × 298111069 × 11748180641<11> × 1126289406580511911<19>
34×1045-619 = 3777777777777777777777777777777777777777777771<46> = 3 × 19 × 254753 × 15150683 × 17171571140067737150121267974297<32>
34×1046-619 = 37777777777777777777777777777777777777777777771<47> = 31 × 109557191 × 11123304474204173586725063364770082851<38>
34×1047-619 = 377777777777777777777777777777777777777777777771<48> = 8191 × 78579111587213143<17> × 586938188433448415687527667<27>
34×1048-619 = 3777777777777777777777777777777777777777777777771<49> = 32 × 8297 × 15112442382873337<17> × 3347635386599268471985497971<28>
34×1049-619 = 37777777777777777777777777777777777777777777777771<50> = 6559457 × 9619198867<10> × 598728063423332718852705756543209<33>
34×1050-619 = 377777777777777777777777777777777777777777777777771<51> = 7 × 67 × 673 × 102673 × 25417913977<11> × 458619317035470282729707494823<30>
34×1051-619 = 3(7)501<52> = 3 × 43 × 1693 × 90179727720451003<17> × 191814228555470691515556373381<30>
34×1052-619 = 3(7)511<53> = 4591159 × 8228374965401498353199655637667477379410684269<46>
34×1053-619 = 3(7)521<54> = 116575254479<12> × 3240634382194988901387065337325994427587749<43>
34×1054-619 = 3(7)531<55> = 3 × 23 × 532 × 2826521 × 3641081 × 1662318458499953<16> × 1139301826025762011367<22>
34×1055-619 = 3(7)541<56> = 2589854087<10> × 45984069619<11> × 317214993940972669264928001927862607<36>
34×1056-619 = 3(7)551<57> = 7 × 71 × 3217 × 245381442925777<15> × 962913425725885871391134235116255227<36>
34×1057-619 = 3(7)561<58> = 32 × 107 × 181 × 373 × 1453 × 117646333740889<15> × 339921552704259938578277233349677<33>
34×1058-619 = 3(7)571<59> = 521 × 206197 × 70271797909<11> × 180773883500461<15> × 27682135421648641643924567<26>
34×1059-619 = 3(7)581<60> = 516962249476195408441540506191<30> × 730764728296032636441461209381<30>
34×1060-619 = 3(7)591<61> = 3 × 727 × 1403706889355045891773<22> × 1233969173873483449100470647162514267<37>
34×1061-619 = 3(7)601<62> = 31 × 12995861 × 50730164242913<14> × 113956351543753<15> × 16220522939127603358550329<26>
34×1062-619 = 3(7)611<63> = 7 × 163 × 514663687400509<15> × 643320270562763446667027717312442852227379659<45>
34×1063-619 = 3(7)621<64> = 3 × 19 × 26025521906315209909<20> × 2546608031819181992634442335726953733558167<43>
34×1064-619 = 3(7)631<65> = 103 × 2744111 × 15453906100214210099<20> × 8648867406238339856742737676115168513<37>
34×1065-619 = 3(7)641<66> = 29 × 82012490743<11> × 158839462200866320414547442630920389291476402038163793<54>
34×1066-619 = 3(7)651<67> = 34 × 587 × 16693 × 112877 × 227281 × 24508897895470959410131<23> × 7569836888471782550328683<25>
34×1067-619 = 3(7)661<68> = 53 × 55117 × 1238134409<10> × 10444969441532052015094893018013886116265913459193219<53>
34×1068-619 = 3(7)671<69> = 72 × 353 × 133862671395227303<18> × 163157159022472143645781878921578487021056853581<48>
34×1069-619 = 3(7)681<70> = 3 × 8943688082832233<16> × 140798655721956334166776498881777567034943568296176529<54>
34×1070-619 = 3(7)691<71> = 270509455125602846141<21> × 527457944771590196491921<24> × 264768380961596209869684311<27>
34×1071-619 = 3(7)701<72> = definitely prime number 素数
34×1072-619 = 3(7)711<73> = 3 × 43 × 81097 × 425939 × 68502851249641009<17> × 12376158234521314358384703964996389634851217<44>
34×1073-619 = 3(7)721<74> = 18544560519101<14> × 51199595604259<14> × 182098981906691189113<21> × 218497168606122057260146613<27>
34×1074-619 = 3(7)731<75> = 7 × 7451 × 81876807479<11> × 975542756129<12> × 2462350842867999143<19> × 36827027220286052421778997831<29>
34×1075-619 = 3(7)741<76> = 32 × 68216330156111<14> × 6153263968600493386518469453823861552121848766365167308967229<61>
34×1076-619 = 3(7)751<77> = 23 × 31 × 4036806363661<13> × 1550335643427676852481807801<28> × 8466096765169381679011089012151447<34>
34×1077-619 = 3(7)761<78> = 56401 × 175254631 × 38219068739852385068174749794957517618222422363485729189547358541<65>
34×1078-619 = 3(7)771<79> = 3 × 1373 × 1420561 × 643687259 × 1003020513898508171207781887330931042472409940010869284313991<61>
34×1079-619 = 3(7)781<80> = 24761130956549237<17> × 1525688703156173117875512548661760928174319623386353491679660383<64>
34×1080-619 = 3(7)791<81> = 7 × 53 × 10160053 × 92027587 × 2173973763290229163103<22> × 500949781199586751790272322897476165217897<42>
34×1081-619 = 3(7)801<82> = 3 × 19 × 203571092316829<15> × 325570798705339319412123858376142090650189569549980460562278871007<66>
34×1082-619 = 3(7)811<83> = 12897682361725783497503<23> × 15198993902075383867520993<26> × 192712501910993922226730987214881749<36>
34×1083-619 = 3(7)821<84> = 67 × 72869 × 77378230731733838822556400594110055558252414479588043761577006576262038374277<77>
34×1084-619 = 3(7)831<85> = 32 × 99901 × 271649108449<12> × 15467345215376685666182451778675104582852040366014682822380561763631<68>
34×1085-619 = 3(7)841<86> = 433 × 87246599948678470618424429047985629971773158840133435976392096484475237362073389787<83>
34×1086-619 = 3(7)851<87> = 7 × 3547 × 4259 × 3572477802905640987527052049664010616630693864112499704863423863629931504704461<79>
34×1087-619 = 3(7)861<88> = 3 × 304751 × 159035595388642274466108154499<30> × 25982185219441789442177565607395943922804686825542493<53> (Makoto Kamada / GGNFS-0.70.3 for P30 x P53 / 0.17 hours)
34×1088-619 = 3(7)871<89> = 47 × 31143689 × 369517081 × 1756432361<10> × 7774328843584339212217<22> × 5114929362130028461459068613554233438021<40>
34×1089-619 = 3(7)881<90> = 31081 × 174157 × 619057 × 212889013 × 15286806841<11> × 2435580529925299<16> × 14223200439676829495998595777803180374377<41>
34×1090-619 = 3(7)891<91> = 3 × 2081 × 86725276264735369<17> × 45817584646148463976498820840939<32> × 152287827028005499014186431190234751667<39>
34×1091-619 = 3(7)901<92> = 31 × 71 × 3424228847640203<16> × 5012490740454452658013249141581665051784559518188183089863224594277610057<73>
34×1092-619 = 3(7)911<93> = 7 × 131 × 411971404337816551557009572276747849266933236398885253847085908154610444686780564643160063<90>
34×1093-619 = 3(7)921<94> = 33 × 29 × 43 × 53 × 6011 × 71147 × 2142241 × 6350915209591522331<19> × 371205558162922953829<21> × 980184630128698546579124928690701<33>
34×1094-619 = 3(7)931<95> = 2797043 × 207413189 × 65117976360988049101085179335644543076210767611047766583118275222252231843815573<80>
34×1095-619 = 3(7)941<96> = 541 × 2339 × 4065473 × 46404649 × 1244787137897197749662771243131883<34> × 1271280118971623529285417737158686125420719<43> (Makoto Kamada / msieve 0.83 for P34 x P43 / 8.6 minutes)
34×1096-619 = 3(7)951<97> = 3 × 157 × 711947531370719073310319<24> × 11265942024791994716520084683583244442873137345796877592624811131606979<71>
34×1097-619 = 3(7)961<98> = 32559307102712288254101539320194387157<38> × 1160275851651363158579812816669515953466739642583534954275903<61> (Makoto Kamada / GGNFS-0.70.5 for P38 x P61 / 0.45 hours)
34×1098-619 = 3(7)971<99> = 7 × 23 × 103 × 756463 × 59748950086167480708373<23> × 504028782986977404590197275848850477904310269339280610134360038663<66>
34×1099-619 = 3(7)981<100> = 3 × 19 × 1973 × 121493 × 276492407816438524603714362068846776791671403004992434978365503535914752804539416329448827<90>
34×10100-619 = 3(7)991<101> = 353 × 105239 × 1016915786957494532215791934699123615693849582357023143295490816243996237614971414661729708013<94>
34×10101-619 = 3(7)1001<102> = 401 × 147011373611<12> × 4466095890704034791693<22> × 1434871653575174027245452992531515075920985729011070948691774954677<67>
34×10102-619 = 3(7)1011<103> = 32 × 59 × 106391 × 1546945859749217<16> × 2139045081844353098866935959<28> × 20208865961113797340821728490504607923617420726313817<53>
34×10103-619 = 3(7)1021<104> = 521789699 × 11486604091<11> × 32142864271933<14> × 1731689303203199416099<22> × 113238655756183071915970766110157096823693036649757<51>
34×10104-619 = 3(7)1031<105> = 7 × 557 × 15647 × 6192301444177467010208994235162230839756739663100591294304958392314776930982376551639804563171407<97>
34×10105-619 = 3(7)1041<106> = 3 × 229 × 46027 × 80746369446068409401566531<26> × 36276119219268755116950982648121<32> × 40787132773981465967697565475901713516429<41> (Makoto Kamada / GMP-ECM 6.2.1 B1=25e4, sigma=183124439 for P32 x P41 / November 27, 2008 2008 年 11 月 27 日)
34×10106-619 = 3(7)1051<107> = 31 × 53 × 388963 × 68750682316008414388273<23> × 859831873904364191764586181596766068329242461110695066520468191640014783803<75>
34×10107-619 = 3(7)1061<108> = 113 × 1303 × 4843051200778160266578901<25> × 529778693499850822538695367479399893285542541876316736952865802362958148904489<78>
34×10108-619 = 3(7)1071<109> = 3 × 823 × 9787 × 20051 × 84697 × 20242909076256707083<20> × 4547667879277539789967399385776975384904970869744225951356200300762461557<73>
34×10109-619 = 3(7)1081<110> = 355457 × 102274718124055259233175468223737<33> × 1039156707415436687110020687405007603981945643618063760550394061953391619<73> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P33 x P73 / 0.91 hours / November 30, 2008 2008 年 11 月 30 日)
34×10110-619 = 3(7)1091<111> = 72 × 107 × 197 × 521 × 1805747 × 4153958561895477851<19> × 93590881664990057453118716348815900105890206136198321137837859841473814370773<77>
34×10111-619 = 3(7)1101<112> = 32 × 71569 × 5865012595114548008491848236244087334177550146288939155496836429456232257258772463213864751774554435855651<106>
34×10112-619 = 3(7)1111<113> = definitely prime number 素数
34×10113-619 = 3(7)1121<114> = 4597 × 1177427 × 69795578829526866590866323747476274264231522331562738171440358344045337581688561478879638883084703949509<104>
34×10114-619 = 3(7)1131<115> = 3 × 43 × 744203 × 7399208511904294297357<22> × 5318265504288630811474969107991445954842252942829199798546515619578215901202679901669<85>
34×10115-619 = 3(7)1141<116> = definitely prime number 素数
34×10116-619 = 3(7)1151<117> = 7 × 67 × 9601493089921<13> × 11683135412823735779<20> × 1218618143019796408559<22> × 852804741113492360722051<24> × 6909524084434010241818753713517458889<37>
34×10117-619 = 3(7)1161<118> = 3 × 19 × 108294229 × 49979783669<11> × 2151395009201<13> × 2465847308261645242858762507<28> × 2308211120199369747359753525941625021519097299401197869729<58>
34×10118-619 = 3(7)1171<119> = 149459 × 13428263 × 2387462326774439319883811549<28> × 454432905009398970534306051284305682887<39> × 17349549363685129917721943739039034252301<41> (Makoto Kamada / Msieve 1.39 for P39 x P41 / 19 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / November 29, 2008 2008 年 11 月 29 日)
34×10119-619 = 3(7)1181<120> = 53 × 97 × 569 × 409705573822798716046313501<27> × 792246144585103935358792782500741713<36> × 397873056847156620893313883848623187566975367724723<51> (Sinkiti Sibata / Msieve 1.38 for P36 x P51 / 5.9 hours / December 1, 2008 2008 年 12 月 1 日)
34×10120-619 = 3(7)1191<121> = 33 × 23 × 28591444752219659<17> × 212769173323503267400222641991517482073473692029508381066177048385053578631942234170815448925856675589<102>
34×10121-619 = 3(7)1201<122> = 29 × 31 × 9521 × 201247 × 9024388695383<13> × 493970685756637<15> × 93494898792724001<17> × 68828385323476189007<20> × 688302684466433009429<21> × 1110735891143434587379759<25>
34×10122-619 = 3(7)1211<123> = 7 × 815245101135505697874744698170121827541490300092074703<54> × 66198808055497474948864240487892379026886542832166295547558599332851<68> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P54 x P68 / 3.14 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / December 1, 2008 2008 年 12 月 1 日)
34×10123-619 = 3(7)1221<124> = 3 × 368729 × 855527 × 3320980781<10> × 4606221795475799253751<22> × 260953381453863988860796763685418953877019664103354130787172907089309163607527909<81>
34×10124-619 = 3(7)1231<125> = 109 × 42875453 × 183902059423947183572586572945500757182382783851<48> × 43955638737725434720351420594271267744658778646152810611533781011273<68> (Erik Branger / GGNFS, Msieve snfs for P48 x P68 / 3.40 hours / December 1, 2008 2008 年 12 月 1 日)
34×10125-619 = 3(7)1241<126> = 19740494857472588967332701859237<32> × 19137198966153239867624204437561859299473983704016534407164186992343276916354282103061304370383<95> (Sinkiti Sibata / GGNFS-0.77.1-20050930-pentium4 snfs for P32 x P95 / 3.62 hours on Pentium 4 3.06GHz, Windows XP and Cygwin / December 1, 2008 2008 年 12 月 1 日)
34×10126-619 = 3(7)1251<127> = 3 × 71 × 88852876601<11> × 34432799348899478768254695087862221172954561711851166729<56> × 5797129202738537298544666505195713087675830414976894319423<58> (Erik Branger / GGNFS, Msieve snfs for P56 x P58 / 3.47 hours / December 1, 2008 2008 年 12 月 1 日)
34×10127-619 = 3(7)1261<128> = 5197 × 313933 × 50463508201<11> × 1862989053281<13> × 64536987085693<14> × 3816368405677119454445219094950310331160255949626771099173894485008300832554060087<82>
34×10128-619 = 3(7)1271<129> = 7 × 283 × 175573 × 3217647643979<13> × 337563684209787374108982519211241217527638755467532206291010847952786330061587296026755984210635730037975073<108>
34×10129-619 = 3(7)1281<130> = 32 × 13693 × 349397 × 263963331926553076873883111669446861<36> × 332378188548304164888481711164765467046216478192033437865048279353333268196436141599<84> (Sinkiti Sibata / GGNFS-0.77.1-20060513-nocona snfs for P36 x P84 / 4.21 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / December 1, 2008 2008 年 12 月 1 日)
34×10130-619 = 3(7)1291<131> = 14978936330093<14> × 2522060107958495220316998151115600405901720455475687156179970148271071565065432661614544197761979883346357320995873847<118>
34×10131-619 = 3(7)1301<132> = 966131147 × 527710385980739827<18> × 13131336020642782627<20> × 56428144221111607003513518247319619083692476756145086341261565534939601400726544800617<86>
34×10132-619 = 3(7)1311<133> = 3 × 53 × 103 × 353 × 1871 × 154959011 × 1467803989071718082013470577567538313<37> × 1535566631427295729877492951417765852836324576562696402832211952890951456321847<79> (Sinkiti Sibata / GGNFS-0.77.1-20060513-nocona snfs for P37 x P79 / 6.28 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / December 1, 2008 2008 年 12 月 1 日)
34×10133-619 = 3(7)1321<134> = 153962383 × 105954652313<12> × 242858635321<12> × 161803335731828507203<21> × 26799939804329649021518979639474619438057<41> × 2199008524395165291774974383767263037749039<43> (Robert Backstrom / Msieve 1.38 for P41 x P43 / 0.27 hours / November 30, 2008 2008 年 11 月 30 日)
34×10134-619 = 3(7)1331<135> = 7 × 47 × 983 × 8840599 × 15385757 × 709488407 × 2753889482387<13> × 191074700547427<15> × 5713666203469977227621<22> × 4026025927688839437540151576140198245119681851997694410157<58>
34×10135-619 = 3(7)1341<136> = 3 × 19 × 43 × 283730050827487133<18> × 2010567495306308221<19> × 22454387903681832996436976911<29> × 120328328124111062895972631088949944918737549539380337913590689086927<69>
34×10136-619 = 3(7)1351<137> = 31 × 523 × 5657 × 2879993487954253543<19> × 12216635234419646814532430479735488014714813815991<50> × 11706949192302675700783525796475048637254599157547420427413687<62> (Sinkiti Sibata / GGNFS-0.77.1-20050930-pentium4 snfs for P50 x P62 / 9.39 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / December 1, 2008 2008 年 12 月 1 日)
34×10137-619 = 3(7)1361<138> = 167 × 2262142381902860944777112441783100465735196274118429807052561543579507651363938789088489687292082501663339986693280106453759148369926813<136>
34×10138-619 = 3(7)1371<139> = 32 × 106123 × 3955345084663579868829123624659622197070880830920281997491147879533683427906797644429134932293217176481564660061938377352252446875353<133>
34×10139-619 = 3(7)1381<140> = 3637 × 1268429 × 8188925948111709323977393143603254948129957309794478414880265242197814884211201408309364822161340732211070372584594128377227100827<130>
34×10140-619 = 3(7)1391<141> = 7 × 38729 × 1227075583<10> × 113910217004608229<18> × 19307640926740728658468249492603981<35> × 516343693603233874370126179965698886505664770083775458430131775655309376971<75> (Robert Backstrom / GMP-ECM 6.2.1 B1=1040000, sigma=3595781433 for P35 x P75 / December 1, 2008 2008 年 12 月 1 日)
34×10141-619 = 3(7)1401<142> = 3 × 246187 × 350445553 × 1433419843<10> × 1815542817022602588043<22> × 35772306056931993157275242393<29> × 156784324024507187270172039341078670116023139529730805595035219891891<69>
34×10142-619 = 3(7)1411<143> = 23 × 5903 × 4580461245279774991<19> × 13574799965822567162393<23> × 4475001000078309810247816101744356692437688357965726783701101563970815134480431442005393658610293<97>
34×10143-619 = 3(7)1421<144> = 163 × 60077 × 1387821481<10> × 28217205843890219947899894994855070009<38> × 985128659698187157995681645130669968509955434063183873242657897532139829137743789608925949<90> (Sinkiti Sibata / GGNFS-0.77.1-20060513-nocona snfs for P38 x P90 / 17.77 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / December 1, 2008 2008 年 12 月 1 日)
34×10144-619 = 3(7)1431<145> = 3 × 56150330479<11> × 372942956963322243857<21> × 21661518727678594480814735512079782966721573328871<50> × 2776077101002108005261699224078097855558784029617067090671671489<64> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P50 x P64 / 10.83 hours on Core 2 Quad Q6700 / December 1, 2008 2008 年 12 月 1 日)
34×10145-619 = 3(7)1441<146> = 53 × 3727 × 8179 × 1830077 × 13739340594595733309438066747<29> × 929963031221481203696566893363088724906215325814887161573693245927664955730631117129672109700996467141<102>
34×10146-619 = 3(7)1451<147> = 7 × 1117 × 10529 × 35214371 × 130310116594294504502815199974305214499586576608467837200035555491713111111920558095268626537627494133507977707931327026371039376651<132>
34×10147-619 = 3(7)1461<148> = 35 × 136621 × 229396003666241020967296200838396591<36> × 496051567622998067919651156246881008431154204658997849229474790386382145887920573758035262566826859064227<105> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=2648012166 for P36 x P105 / December 1, 2008 2008 年 12 月 1 日)
34×10148-619 = 3(7)1471<149> = 313 × 1783 × 129130052813<12> × 1581076933856760384720660253<28> × 331558674984441052267436212273183718731469222756419651224229262843156418627999947420017336317703200302141<105>
34×10149-619 = 3(7)1481<150> = 29 × 67 × 948232092733249950554056411032673040477<39> × 205044893122722355563983803137691979462044995543930554941591189105064744137537173790203999128478533860189361<108> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs for P39 x P108 / 28.30 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / December 2, 2008 2008 年 12 月 2 日)
34×10150-619 = 3(7)1491<151> = 3 × 389 × 30137 × 38659272836953<14> × 67606737734777<14> × 100407816699053448695811907<27> × 1973252236706869812819161804219996164666783<43> × 207430084791366627386951998914230244772682187809<48> (Sinkiti Sibata / Msieve 1.38 for P43 x P48 / 1.39 hours / November 30, 2008 2008 年 11 月 30 日)
34×10151-619 = 3(7)1501<152> = 31 × 85413659 × 2512923666807739522019<22> × 552414667069372497692778901<27> × 4219687194429644317151362254455770822763<40> × 2435693468651238851330439053636574682409976561582029267<55> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=2347407703 for P40 x P55 / November 30, 2008 2008 年 11 月 30 日)
34×10152-619 = 3(7)1511<153> = 72 × 1156845484056134377<19> × 18140064527049332303648755303293357509352299892563197159<56> × 367388996167468745630067954460328243858151569259818255011945437791324718164453<78> (Sinkiti Sibata / GGNFS-0.77.1-20050930-pentium4 snfs for P56 x P78 / 48.81 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / December 4, 2008 2008 年 12 月 4 日)
34×10153-619 = 3(7)1521<154> = 3 × 19 × 3281269067<10> × 322680783850547831<18> × 3878464157508596543399<22> × 16139379065786243185318229006447278105278889084234488008833738052619351238234859023981051068997076393161<104>
34×10154-619 = 3(7)1531<155> = 6379 × 183454113598076963373718986643971415060501020624289499571323<60> × 32281696568612383429921930458932642651082130545296673862354073357067506441085413828479488563<92> (Serge Batalov / Msieve-1.38 snfs for P60 x P92 / 20.00 hours on Opteron-2.6GHz; Linux x86_64 / December 1, 2008 2008 年 12 月 1 日)
34×10155-619 = 3(7)1541<156> = 1445178858863<13> × 261405552303052572154528023138586555359902435344222269321154128974686235323146110330035484481850311340453445168630092564812491807394401660971717<144>
34×10156-619 = 3(7)1551<157> = 32 × 43 × 6028933 × 1402421333<10> × 9966402979697060305647496423630143597597319309<46> × 115842529545143837157184112972896281967285587268931776950834834580235894383922902897517477333<93> (Sinkiti Sibata / GGNFS-0.77.1-20060513-nocona snfs for P46 x P93 / 42.40 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / December 2, 2008 2008 年 12 月 2 日)
34×10157-619 = 3(7)1561<158> = 108685226485233581851<21> × 525635717350307831412930905071935105423234178396363<51> × 661273356310180256351138419233820506936333700070566891354943514978567534279994118905267<87> (Sinkiti Sibata / GGNFS-0.77.1-20060513-nocona snfs for P51 x P87 / 50.62 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / December 2, 2008 2008 年 12 月 2 日)
34×10158-619 = 3(7)1571<159> = 7 × 53 × 3733 × 51058354870221649438611241<26> × 15773686940889973900202381054990761<35> × 338691637215285484915002611423828098986479112377345144665570421220398830743417389565760881397<93> (Sinkiti Sibata / GGNFS-0.77.1-20060513-nocona snfs for P35 x P93 / 60.61 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / December 3, 2008 2008 年 12 月 3 日)
34×10159-619 = 3(7)1581<160> = 3 × 461 × 1424499695196759996786287319127759813<37> × 70223475270970631308833714247375703978882183<44> × 27306720714056958176389348613507388851630448512655938025187958253361469703103<77> (Makoto Kamada / GMP-ECM 6.2.1 B1=25e4, sigma=2482622457 for P37 / November 28, 2008 2008 年 11 月 28 日) (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs for P44 x P77 / 29.67 hours on Core 2 Quad Q6700 / December 6, 2008 2008 年 12 月 6 日)
34×10160-619 = 3(7)1591<161> = 59 × 855397 × 24204888263649090497<20> × 30925276479033341397575226695821553552722319840752460623992726530792065215471845492852701116735369871413521344399602329257725417593341<134>
34×10161-619 = 3(7)1601<162> = 71 × 5248339198924568488090626332597551156263673436410591970891881<61> × 1013809048890795600319731355237825745864782625364859636226664234782284012321457252955340518891623221<100> (Serge Batalov / Msieve-1.38 snfs for P61 x P100 / 24.00 hours on Opteron-2.6GHz; Linux x86_64 / December 2, 2008 2008 年 12 月 2 日)
34×10162-619 = 3(7)1611<163> = 3 × 521 × 7163179 × 508482292810519141237018117535724632563288268983<48> × 69697565335453954183157841146626227272181807013267<50> × 9520903958691570180369995997915148223742970595209791943<55> (Serge Batalov / Msieve-1.38 snfs for P48 x P50 x P55 / 26.00 hours on Opteron-2.6GHz; Linux x86_64 / December 3, 2008 2008 年 12 月 3 日)
34×10163-619 = 3(7)1621<164> = 107 × 37591 × 343145641477<12> × 1405224035648099<16> × 19478014927546122575311417091933061554715383903031218280716204148523880283592098162528731212949361444684675917811818365272079222921<131>
34×10164-619 = 3(7)1631<165> = 7 × 23 × 353 × 1011600001<10> × 1844691721343774408357773<25> × 10238952342665722552924471286551411529<38> × 347894597654053818724629590777249720177493714919264286922036675658099324234379842682033311<90> (Erik Branger / GMP-ECM B1=3000000, sigma=3670331619 for P38 x P90 / February 2, 2009 2009 年 2 月 2 日)
34×10165-619 = 3(7)1641<166> = 32 × 487 × 27496583 × 30098808281<11> × 956914528631433839511268190217967<33> × 1088337918135655310818400649146703474789072927558395268567118427717085259345020649779270004337332486830820814357<112> (Makoto Kamada / GMP-ECM 6.2.1 B1=25e4, sigma=646600595 for P33 x P112 / November 28, 2008 2008 年 11 月 28 日)
34×10166-619 = 3(7)1651<167> = 31 × 103 × 46337873 × 1191262139747<13> × 70780225828628529902366299<26> × 3028182956338519260758891917509568850591607620874689651156625557760218476923825736469728940379554360229559692796581763<118>
34×10167-619 = 3(7)1661<168> = 919 × 1021 × 1607 × 151901 × 1649372101758068457807559369764023849982303130979177687045533879441454231765134825703916515284706646009133227882643964344069393292241016328846338197708947<154>
34×10168-619 = 3(7)1671<169> = 3 × 1097 × 20991966089<11> × 8291386833099767<16> × 6595203971737917482955980818087954674654844351037098700705153089602291733512854747996668780573396406812376724705631531803225763502204601887<139>
34×10169-619 = 3(7)1681<170> = 11317942006879836402511210783641114135063226371491831011<56> × 3337866350155691145550968735711381661348565396657188332750832547393613263199497115692457216756403748695193991635161<115> (Erik Branger / GGNFS, Msieve snfs for P56 x P115 / 107.44 hours / December 10, 2008 2008 年 12 月 10 日)
34×10170-619 = 3(7)1691<171> = 7 × 1549 × 1104921407<10> × 10187536427529899<17> × 391353153935485813<18> × 6725886983982318771880439066030047436221<40> × 13026818417600827639174618332243277437991<41> × 90267127858585686761229484150679606606868203<44> (Jo Yeong Uk / GMP-ECM 6.2.3/YAFU 1.10 B1=1000000, sigma=7372562557 for P44, Msieve 1.38 for P40 x P41 / July 25, 2009 2009 年 7 月 25 日)
34×10171-619 = 3(7)1701<172> = 3 × 19 × 53 × 626024926232038117<18> × 1997533431697865905654008225230817328292049801774183993637889431827233193594796224484151703385622080760631579073050932725582301347284366740453452976203<151>
34×10172-619 = 3(7)1711<173> = 5744470943<10> × 3147389907072725501475427<25> × 2016075471297263357433670182919782746514370053032286745307<58> × 1036403896252365941394016089685566199270907669052478769232339425284055635821282373<82> (Wataru Sakai / for P58 x P82 / July 1, 2010 2010 年 7 月 1 日)
34×10173-619 = 3(7)1721<174> = definitely prime number 素数
34×10174-619 = 3(7)1731<175> = 33 × 157 × 325477 × 509023 × 3309064926743<13> × 1625586155907600811353106940772003569286621399417284106125131072477457806722446652600527607589211508438972818696534090180767243228896595668177481913<148>
34×10175-619 = 3(7)1741<176> = 577 × 3181 × 1173984149197<13> × 17532130397285345219316053832234625449750759967420318179883699596950091727486381007085725651439921799738266134295677791228136449158146208975437619183309414739<158>
34×10176-619 = 3(7)1751<177> = 7 × 479248613373083759<18> × 499341947853186103373970690673211961639104761614762527051<57> × 225517086181755120922521703773556643677946183702247255862428478874135274372662725387066213806217489817<102> (Robert Backstrom / Msieve 1.44 snfs for P57 x P102 / January 9, 2012 2012 年 1 月 9 日)
34×10177-619 = 3(7)1761<178> = 3 × 29 × 43 × 145489241 × 1635611202943<13> × 559523746530505543<18> × 7584364934750304179597649842302481669958437436257315793834258269102813520599288702113912174395686657625622828804538885666214441307571959<136>
34×10178-619 = 3(7)1771<179> = 23761 × 1589906896922594915103647901089086224391977516845998812246024063708504599039509186388526483640325650342063792676140641293623070484313697983156339286131803281754883118462092411<175>
34×10179-619 = 3(7)1781<180> = 712973 × 123772487 × 9661414283<10> × 8817178567145514939621453230301761796046416224549<49> × 17235329462099804757442662543762131272020976937058889<53> × 2915743227488385559638756086536214557859733485667495167<55> (Dmitry Domanov / Msieve 1.50 snfs for P49 x P53 x P55 / June 17, 2013 2013 年 6 月 17 日)
34×10180-619 = 3(7)1791<181> = 3 × 47 × 942049 × 65865975887<11> × 431800033038615542938544271451737037853874116438829845769835639810154795424407586035214563050964297024230857839097369689211380349730831731386731866165922543770137<162>
34×10181-619 = 3(7)1801<182> = 31 × 149 × 49987337779<11> × 215547582689<12> × 1465179240003105156300934859<28> × 518077253013573524062264521063488749669478756936692851749477350102902721120782655854252254917468154486508628920608836097933824721<129>
34×10182-619 = 3(7)1811<183> = 7 × 67 × 2659 × 1123217 × 2059723 × 6626639 × 1811738802835989946288317078739<31> × 10906460805787986550444367666582270569551127015853077788077318580292111100295795679452047285174252604757786337511084242119148891<128> (Makoto Kamada / GMP-ECM 6.2.1 B1=25e4, sigma=460354136 for P31 x P128 / November 28, 2008 2008 年 11 月 28 日)
34×10183-619 = 3(7)1821<184> = 32 × 1004687 × 12296129 × 33977756886636081667062071290832366985421578833068319150885108286269778778566080442839549655267268956901579362209848030436210028345583892977974800180989362446291618769853<170>
34×10184-619 = 3(7)1831<185> = 53 × 311 × 23615038763529760781379918751679533732906278799<47> × 97053563553730131755939148516339510463922823914532883145382285182480013642372594307251426540528959234992499729986560196434786562183063<134> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp, Msieve 1.39 snfs for P47 x P134 / 79.46 hours, 32.14 hours / December 29, 2008 2008 年 12 月 29 日)
34×10185-619 = 3(7)1841<186> = 179 × 307 × 17669 × 57027683191<11> × 476300086583<12> × 14324076826606485308330510009447602890292355712952597652918693419272835677109639520627803474159763322681233188188574424346167368806985127693880791112234151<155>
34×10186-619 = 3(7)1851<187> = 3 × 23 × 193 × 347 × 307669 × 1550013523045816333471<22> × 1714278214018514881916549426307393730145301310138174733199365352065702296767143710953332305091468996009461907487779157104952214522649951838766022214174871<154>
34×10187-619 = 3(7)1861<188> = 16428091 × 818298797263<12> × [2810201070493268789337774245915179921112798166069264780260565241757752371708148931558625196712265426867304985558402094896665655842518621934360889622294672207450327824287<169>] Free to factor
34×10188-619 = 3(7)1871<189> = 7 × 1069597 × 1107101 × 235193513 × 302625769 × 322589241274771<15> × 871319781780992263<18> × 2278097199638016814152232209342302937738728220760684334076507064805286813532050249800009291532624300877143695317434015775932929<127>
34×10189-619 = 3(7)1881<190> = 3 × 19 × 1951 × 9199 × 140177 × 43664787877<11> × 17268776936283601<17> × 124302643102278005093<21> × 3329405600056896389444381<25> × 69966787580143993614754142851314738917569579<44> × 1206576783959699309894410254281895913576361725987222092406549<61> (Serge Batalov / pol51; Msieve-1.38 gnfs for P44 x P61 / 2.50 hours on Opteron-2.6GHz; Linux x86_64 / December 1, 2008 2008 年 12 月 1 日)
34×10190-619 = 3(7)1891<191> = 1151 × 3253 × 12805623599<11> × 642137304409850560978425377<27> × 1227010806925876933291642995989476828175979213831782339211930625457918510166770701234851521538325547405436893223074576051195025324340322337106425359<148>
34×10191-619 = 3(7)1901<192> = 41225961333591431240509<23> × 1288189075390025589228279636700325250062519<43> × 7113543707072176519437732278645856290574213517300502745599494019578893070575294121771649032451284640460067340577964953169983601<127> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3609294861 for P43 x P127 / September 9, 2013 2013 年 9 月 9 日)
34×10192-619 = 3(7)1911<193> = 32 × 3533 × 797439971587867<15> × 5639483166306901179798816719<28> × [26418791978814970831542819583891294783385354615760421669709934150784142724787661482579399836080971964830225870407234821376836573766640098403040291<146>] (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=4250593911 for P28 / December 1, 2008 2008 年 12 月 1 日) Free to factor
34×10193-619 = 3(7)1921<194> = 499 × 252979 × 726362926437756613<18> × 64441899608603441838530940308827301<35> × 6393363344781734699457243953120328046038805518157243183050049533559795705523737529952692535286543441922449798952192281291151947170827<133> (Rich Dickerson / GMP-ECM 6.3 [config GMP 5.0.1] [ECM] B1=3000000, sigma=4085983029 for P35 x P133 / October 18, 2010 2010 年 10 月 18 日)
34×10194-619 = 3(7)1931<195> = 73 × 2958269 × 6523866070105632948074158221551731914578299393957609038107<58> × 1393962376130499692977651708509318837485073576997462442455245197<64> × 40940065791235876713046196839525542012277128008593433479782312847<65> (matsui / Msieve 1.48 snfs for P58 x P64 x P65 / February 24, 2011 2011 年 2 月 24 日)
34×10195-619 = 3(7)1941<196> = 3 × 631821808003699<15> × [1993060770152914581686081383600488896422076413721056615704700510808844338069725735159713486440631816673405110083481534016724634906763767221436490973903144665033137835507098676159843<181>] Free to factor
34×10196-619 = 3(7)1951<197> = 31 × 71 × 353 × 467 × 83171474745839<14> × [1251844474935331110188843336493893182011736619332264141336086034812144950479187819179265523025350603926192154721546751760196882540542051677217722465789544438005546298479143039<175>] Free to factor
34×10197-619 = 3(7)1961<198> = 53 × 2609 × 56341487615567424172097382107614234772961319089652694968267<59> × 48490666018330723952441203484768765874644553021449180019020693547864272813387549323666784847520561948843536134735727306666727123987469<134> (Robert Backstrom / Msieve 1.42 snfs for P59 x P134 / March 29, 2010 2010 年 3 月 29 日)
34×10198-619 = 3(7)1971<199> = 3 × 43 × 2687 × 5968939 × 38105528752723700919153806322731<32> × 47917472025515084936253091068040645829165545942645244660993199310349576589419386240479483830592013034148549763083512771249504720351602315724197904591349053<155> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=4028002106 for P32 x P155 / December 1, 2008 2008 年 12 月 1 日)
34×10199-619 = 3(7)1981<200> = 186898722664183<15> × 202129673436326038044382351910066962036764343050529399111931915122552323262732679660410938512929261246874027608627765248157035402099183606538174789854546096510043486329711579819421941037<186>
34×10200-619 = 3(7)1991<201> = 7 × 103 × 118171381 × 1875677854860306128521<22> × 2363908057800953015627151761435751285060701564362677310468297464409573283350267147037666354708355778900438476280906331784218105814218401954486840087993951126920673938551<169>
34×10201-619 = 3(7)2001<202> = 33 × 5153 × 1460825255216071521811<22> × [18587211148707867618837995855542807453339648720920322276813468406993922164237861302500222030647603661104859803847097763766912210622633818349915487529057987726822454991065752331<176>] Free to factor
34×10202-619 = 3(7)2011<203> = 3469 × 35951 × 302915246262553512751263174172726947222972405193499359344499817440553958715561702632466505451787082395105700007773607053572524014142931098850865978248826844220117529672247815041368988179089776409<195>
34×10203-619 = 3(7)2021<204> = 8831 × 72901 × 112501 × 10440322124787126683053<23> × 194878783642531137396506518706737<33> × 2563646825834120049987006706226367115513825431483244228135665471944472805150771543742942888716968688007800024055831525531246269818486481<136> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=802463135 for P33 x P136 / December 1, 2008 2008 年 12 月 1 日)
34×10204-619 = 3(7)2031<205> = 3 × 456944495438603<15> × 1512768834429399909066535514857<31> × [1821709546286074516473557552513973715632831422256577038778502292556731957589880120180743562987930254113335165727299848149500511188794201681110980467838132947667<160>] (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=2899500130 for P31 / December 1, 2008 2008 年 12 月 1 日) Free to factor
34×10205-619 = 3(7)2041<206> = 29 × 10631 × 6653243940397392494635175065150674777204673885975283838243914877021705541471<76> × 18417507036875378011545196305661182023918816674371806336236801413263317602935876713906011448012567514226718926734700609166399<125> (Lionel Debroux / ggnfs-lasieve4I14e on the RSALS grid + msieve (Lionel Debroux + Jeff Gilchrist) for P76 x P125 / December 20, 2009 2009 年 12 月 20 日)
34×10206-619 = 3(7)2051<207> = 7 × 257 × 269 × 5325881790641205727635740566901<31> × 146575519236526588506011880409898832443782727521732876463480541192206690032128336726912575435797429936077052029587018743874894848841856465793752219084377495506068083665741<171> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1114608259 for P31 x P171 / September 9, 2013 2013 年 9 月 9 日)
34×10207-619 = 3(7)2061<208> = 3 × 19 × 28813957 × 516535501875028886947<21> × [4453059232353233332152539351677727932539061959666447247151684065822717361368489653786068745793863066752404391314992658036336439287229127730745976742285438198169807837254034650157<178>] Free to factor
34×10208-619 = 3(7)2071<209> = 23 × 197 × 2693 × 27197 × 82651 × 16430419 × 148657669 × 12216002498851671741971<23> × 3416200736183833030263820649837<31> × 13512273466012153314745963187164765853011865477432702729469454815074059758998202158855335766904071795298801479334810034721443<125> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=858472670 for P31 x P125 / September 9, 2013 2013 年 9 月 9 日)
34×10209-619 = 3(7)2081<210> = 659 × 829 × 25200163 × 14480203484217579563523003928561<32> × 1895040289404382734457324266658987610006831577065125226693291574886920841190862511725585930457318893131434618704737411705059463454996730055376621044281555931671045327<166> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=826369852 for P32 x P166 / June 4, 2013 2013 年 6 月 4 日)
34×10210-619 = 3(7)2091<211> = 32 × 53 × 33578659 × 235860209756729143824486792548102451877979598179360180748805694251329189173258564411487916268907855365254172592379642317457333691904756406275719854580057192712387240412321038267521776960870891102031597<201>
34×10211-619 = 3(7)2101<212> = 31 × [1218637992831541218637992831541218637992831541218637992831541218637992831541218637992831541218637992831541218637992831541218637992831541218637992831541218637992831541218637992831541218637992831541218637992831541<211>] Free to factor
34×10212-619 = 3(7)2111<213> = 7 × 40918500019357<14> × 370230968702820482713464067055947<33> × 3562426552651644383165652772003287809006822958719707634622394403832857303389470178613362132825541401168753873834892285597073987285428804682534664771918379527138258307<166> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1880748345 for P33 x P166 / September 9, 2013 2013 年 9 月 9 日)
34×10213-619 = 3(7)2121<214> = 3 × 31886433853579<14> × [39492006696067624611274403480385065675914746709913450568711967132500115841334240161921525561872831360014766775864037519781845061233149964968748474035960859595609978905388667185712058528037490206431883<200>] Free to factor
34×10214-619 = 3(7)2131<215> = 263 × 521 × 836981023 × 850442843 × 2584410345767<13> × 124841156111599194515009864909<30> × 25227931210100098713560204058367676870911381<44> × 47586230398768721135960501839587279677892495061479576371152416527759368765842100081547248643493218404868951<107> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2112474848 for P30 / June 4, 2013 2013 年 6 月 4 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4282394757 for P44 x P107 / September 25, 2013 2013 年 9 月 25 日)
34×10215-619 = 3(7)2141<216> = 67 × 97 × 38858669 × 6574214093<10> × 864853114767245959<18> × 85676227145153543130594905327333<32> × 3070827486530080632799556291504818597697011401217473510410221981111221795654972749571563271273129356838629186119043405356914375185618204610228571<145> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3103594806 for P32 x P145 / September 9, 2013 2013 年 9 月 9 日)
34×10216-619 = 3(7)2151<217> = 3 × 1072 × 23459 × 137447 × 1082925395747326399048799<25> × 72088530024297306798423295693<29> × [436956424244988096581215853086329426625412014949657236849999469495135714292029955980170344086403179440786872509702247576023489272477151164674617638063<150>] Free to factor
34×10217-619 = 3(7)2161<218> = 7036738071908437241<19> × 4698340276326859060457218801317331<34> × [1142669287738592675125754083311252755803567891812445010851030264893240762515434422761917422905858800405369648972758653999902341728573718313362036252631593408227674001<166>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1437831130 for P34 / September 9, 2013 2013 年 9 月 9 日) Free to factor
34×10218-619 = 3(7)2171<219> = 7 × 59 × 6333130342290171967<19> × 13105614055452489680016637<26> × [11020734888150606767818583257418135003364160885087874127416572493441534917891978680427471121072276527424082160313400996433480125835190441215328047038325480379670970500461773<173>] Free to factor
34×10219-619 = 3(7)2181<220> = 32 × 43 × 113 × 3389847137<10> × 3430364961739<13> × 19271357858312059<17> × 25189947092248245403<20> × 416854465706954628919<21> × 1000686721674184878537037<25> × 16009971912233415420843595534604560379341607<44> × 2291468122857226948855047152632560400783431368405690487193786833463711<70> (Dmitry Domanov / Msieve 1.50 gnfs for P44 x P70 / June 10, 2013 2013 年 6 月 10 日)
34×10220-619 = 3(7)2191<221> = 124022819 × 964228607080724077<18> × 2229536762217004383431<22> × 5175465522702529618163<22> × 157153895136579651421324259593<30> × 1890746292376459036726324826434303786546340518618290533<55> × 92136631890981038182664414362503925894225222252233741631290756414781<68> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3694937035 for P30 / June 5, 2013 2013 年 6 月 5 日) (Dmitry Domanov / Msieve 1.50 gnfs for P55 x P68 / June 11, 2013 2013 年 6 月 11 日)
34×10221-619 = 3(7)2201<222> = 289278327765455766670023187397287117<36> × 1305931836290468877093809082655003682883139066532159310442774734554050630094515222070182884328840772367974544297880321357297509901034281606221720801428451077723521978147198224874071498263<187> (matsui / Msieve 1.52 snfs for P36 x P187 / August 23, 2013 2013 年 8 月 23 日)
34×10222-619 = 3(7)2211<223> = 3 × 131 × 190693231932230837<18> × [50409057541338956243216866328116710200991620226679499891958818097317422932709715356549610188511617038720023640034368941655601772362974579250634118186178366365406530905339788387381827034392005228021286631<203>] Free to factor
34×10223-619 = 3(7)2221<224> = 53 × [712788259958071278825995807127882599580712788259958071278825995807127882599580712788259958071278825995807127882599580712788259958071278825995807127882599580712788259958071278825995807127882599580712788259958071278825995807<222>] Free to factor
34×10224-619 = 3(7)2231<225> = 7 × 163 × 331093582627324958613302171584380173337228551952478332846431005940208394196124257473950725484467815756159314441523030480085694809621189989288148797351251338981400331093582627324958613302171584380173337228551952478332846431<222>
34×10225-619 = 3(7)2241<226> = 3 × 19 × 579569077 × 383881943140823<15> × 373006124918752574103427<24> × 405591254246060743866755045617<30> × [1969038088088390191000025083254097780262539849753045399623911736136561547694693357401582314253255649000492773785905447827684404493549485925588464027<148>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3502399564 for P30 / June 5, 2013 2013 年 6 月 5 日) Free to factor
34×10226-619 = 3(7)2251<227> = 31 × 47 × 83769089 × 8476048216538869567<19> × 292392740764612164723581<24> × 27741499721441719961419816673<29> × 399940928201086471789457465137<30> × 20875957936165128247540397721048875809<38> × 539213627731125097468701945393164305293128001346705687743292814499402883692889<78> (Ignacio Santos / GMP-ECM 7.0 B1=1000000, sigma=1 for P30 / June 10, 2013 2013 年 6 月 10 日) (Erik Branger / GGNFS, Msieve gnfs for P38 x P78 / June 13, 2013 2013 年 6 月 13 日)
34×10227-619 = 3(7)2261<228> = 2341449012811507650669067849387<31> × 3075452794054547369165071793440132759<37> × [52461733535023469582898980803025972072154673059207507371871956720157538980469774456355318868362574913046398308516905643172573624898578282415411269306626660506087<161>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1978628426 for P31 / June 5, 2013 2013 年 6 月 5 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1650270892 for P37 / September 9, 2013 2013 年 9 月 9 日) Free to factor
34×10228-619 = 3(7)2271<229> = 34 × 353 × 6364744973<10> × 11046383483442407<17> × 124486870401646309877<21> × [15095656734200223160966464589706099337424536753442079676877817145835094809622507047375525174652866693750805758396073491825988296478557958852791476653161798482775684558027778807101<179>] Free to factor
34×10229-619 = 3(7)2281<230> = 234271 × 712358050687<12> × [226370348479264789711824425834248193834313819532055442011586954417015288911500373528799945521704959991444122815163503561375209619599467734316727793456478707566496087254917089226421494227870628960240858326988322123<213>] Free to factor
34×10230-619 = 3(7)2291<231> = 7 × 23 × 899893 × 14245471 × 252311013575432721603149321<27> × [725448583105549155653227353845976158230069052571194455673998694115364344268364070784955956846883043365879872546397976988298121784186582570010419519058800585636900936777286232979952565671897<189>] Free to factor
34×10231-619 = 3(7)2301<232> = 3 × 71 × 5441 × 395151486181325171240953<24> × [8249249869725981573724879191607034705460003069823935986572845495585875149592307408701395405331040744521420808327332185363571890721582298633735414488179725111485980508063535290308472470105310781340641079<202>] Free to factor
34×10232-619 = 3(7)2311<233> = 109 × 1018957 × 2833686127<10> × 595552570813817440321<21> × [201549722630690675340956277518371646177348988349562423173783797490460143028181680966688419514757712759918989471124345500778769460680632464353699969394201392473374184231365759511833304707983668701<195>] Free to factor
34×10233-619 = 3(7)2321<234> = 29 × 13229087035211<14> × 2867837588211136781<19> × [343363386247628764825292901937432347672982068065719353116223773207005850401602985045813558240830998938546823730258243613746845480815198180437463069933430387302085613988538651329351750278216902135310889<201>] Free to factor
34×10234-619 = 3(7)2331<235> = 3 × 103 × 2837 × 4309417712746129540842949989080696001380027648717054660020530572973841707736051207036214445244221672898211426877356633594420672935855458073991941642372324311060361380164536103224242958886760797024271020800925561526634039304677987<229>
34×10235-619 = 3(7)2341<236> = 3380748994968333957123804301900685496466615799415481997<55> × 11174381130927948766508379714310349708364862386480932354256341257137701617948309267292124414937405778788829379448498322602392634524054950988953349096683073725985838644712170949782743<182> (matsui / Msieve 1.53 snfs for P55 x P182 / May 5, 2016 2016 年 5 月 5 日)
34×10236-619 = 3(7)2351<237> = 72 × 53 × 863 × 1782173 × 219489838716949<15> × 430912788438756003106196364131637011641424664527413414730974852964390786250959263676871162247053684037586169474810755189341292729941366701818020823773444466909064068888171612655184701494479566696289076004140593<210>
34×10237-619 = 3(7)2361<238> = 32 × 181 × 211781 × 2817169082038071583127<22> × [3887007827586275655005858574024015574090699941257684472875087988375003090604575019278592383750432980052588136324431488205504260620647681733571121180005432973023957168997254243347623481838322124393116703127677<208>] Free to factor
34×10238-619 = 3(7)2371<239> = 2386578937<10> × [15829259695581473984062810731903219582373184154929872230653051212182795602112438226792989490704525470207725116522210292924318127331975936976006998832311314317854376411844523782360766631444454827926681638093153831340370108100798083<230>] Free to factor
34×10239-619 = 3(7)2381<240> = 461774095883<12> × 32745194474775451<17> × 24983844425178078485680551700488212252895560482942578524998617937140980208918010540831012204152080709370572803911256038538754388169174431231069633627233833473386170598236308355853350876632183872345044685092825587<212>
34×10240-619 = 3(7)2391<241> = 3 × 43 × 2758631 × 270530511770507<15> × 13716327115071269261<20> × 247097298048767763388488824395669<33> × 11577932160824250497188109515814455749791963295280795395090249658688304263708056559476853174849226803966492980708566455931941875469753668287525259461821365876376704583<167> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3135287845 for P33 x P167 / September 9, 2013 2013 年 9 月 9 日)
34×10241-619 = 3(7)2401<242> = 31 × 1894649923040434143140325415207121867<37> × [643199557877127676449912182337359429427351672904826477565430220498609802452713138631818020585896657170594680348602091199299722753181973405382088593797373321035373296966080168992094956747311448967806605823<204>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2405215450 for P37 / September 9, 2013 2013 年 9 月 9 日) Free to factor
34×10242-619 = 3(7)2411<243> = 7 × 3313 × 1144519 × 4512217 × 482772359821780901<18> × 3475025390760610113992771<25> × 1880197920076475455023029784344927976138149615716614350881639687933302378613726847607353751676150653991667860016641934649221213928453258564750854735162463863699769616497228329326032557<184>
34×10243-619 = 3(7)2421<244> = 3 × 19 × 373 × 1163 × 3511 × 49858177 × 1329294787159194399823<22> × [656575206933469333862823431656644899998015213299779275402310539952467094778814642561663711976835882984611042036405037781940667025339597921821153850202040762242490300705041554384165620745284131150547484237<204>] Free to factor
34×10244-619 = 3(7)2431<245> = 5479 × 12007 × 22993 × 156774287602079160003031<24> × 601792019503962414630263671<27> × 264718136594227859627905675743929365620686891965043617182412456735273483128510167687554444195864068580580762418052622612670435236848822766331378494543315379006793494096774020439105499<183>
34×10245-619 = 3(7)2441<246> = 223 × 1021253658403818624203014471<28> × 1658814867811084163137512181170897703010665075279994003192632256346161000777946608407185369767946314064346918722921937956331003731878178501030768936878922403336905135947571918401780845912162239644900178254686479452387<217> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1612790347 for P28 / September 9, 2013 2013 年 9 月 9 日)
34×10246-619 = 3(7)2451<247> = 32 × 2168328203455469949198799609<28> × 685075564504913756904392677514982851<36> × 282572830688439509927048939983296729640456364593097466827413730474153551491871018969628905821286052792692679659398585529211257772792768469882183919755077739119375704525908649402341241<183> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=522203937 for P36 x P183 / September 9, 2013 2013 年 9 月 9 日)
34×10247-619 = 3(7)2461<248> = 34163397197<11> × 365085847387<12> × [3028868088184684768406801698865482856173622097101826806762951856965180107813218579897245217920772700234815422214928610305359266846275490201202444289639721499353118559030105522651329760322326070601980612118432362486502097609589<226>] Free to factor
34×10248-619 = 3(7)2471<249> = 7 × 67 × 165420833 × 163553036976362733903015168971895141134443<42> × [29772461929803633865630672217404806770105676842703718373144300622646109980505710156983525356113382275231020058534860389142820667022981570538418787516158873181173641943303919062427391889348978263261<197>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2680138152 for P42 / November 22, 2013 2013 年 11 月 22 日) Free to factor
34×10249-619 = 3(7)2481<250> = 3 × 53 × 6106483 × 21719023 × 97258936982160497<17> × 1511602168208502503214980253013544735411<40> × 1218542892719184293253098964597439271184768711070473324524480076095929414496530769263279887322962724335745703037721023137679855348096439375008202504736035145097169980382512162323<178> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2599268453 for P40 x P178 / November 26, 2013 2013 年 11 月 26 日)
34×10250-619 = 3(7)2491<251> = 754183 × [50090996187633210742986487069819629689051301577704320805133207428141151123504212873769069016111179617914720668296391960277250717369362313626504147902800484468329010038382962461070824690794910224412082714378045882468549115768689797804747359431037<245>] Free to factor
34×10251-619 = 3(7)2501<252> = 8353 × 17333 × 32603742433<11> × 80029985018079623153615297988361883975627182593968964032550740620623737882471999585880784075363078179483455049517219230551683659913444297519550820027349544483282895738146640629859914537415978501420275192378259469271330508370916888863<233>
34×10252-619 = 3(7)2511<253> = 3 × 23 × 157 × 6483913043<10> × 13205954269913362219<20> × [4072683804596096965141596794139016729046990097333092711927934921567783463484289755223375554918739555054509251670121639138673010347711539461554349669216648390998338338269892157930381697732103554481360626175539302094192811<220>] Free to factor
34×10253-619 = 3(7)2521<254> = 2399 × 415447 × [37904479071031122747135120747739848137936506828518605007249445113738881709507417618758869255819133838044114422720541327083128215056451580483927637041953151353289396519184440088887577572287050369835356823758644138330836934865595455831426327497107<245>] Free to factor
34×10254-619 = 3(7)2531<255> = 7 × 233 × 937 × 377171 × 1369619 × 37978406347256228378007147019<29> × 301945503665141594270923602417547<33> × [41729145019770480653281522519329754709208335098235744164570665895220443067537508069899020137380589917712633261313970204189515928275575811096886287253607480556631376353673495949<176>] (Makoto Kamada / GMP-ECM 7.0.4 B1=1e6, sigma=11563925153713282579 for P33 / April 24, 2017 2017 年 4 月 24 日) Free to factor
34×10255-619 = 3(7)2541<256> = 33 × 8581 × [16305523304189608298168554030989126613827179676795753658072217162714255775152588525803250841772640578788528392951601849813661438828150814580782597978211025123454392252382644592824706512569879957778286126445496630271779503285802732901620625144171998333<251>] Free to factor
34×10256-619 = 3(7)2551<257> = 31 × 134589431997413<15> × [9054484997417666279521205901265264256850454498174196311477990816513635288865320514058831345603035084676011340935369077716431984027423124583191171018820661918080764272790102346261846274882653697909506469343918729479672004148922555173024983057<241>] Free to factor
34×10257-619 = 3(7)2561<258> = 47317 × 200509080133421561941<21> × 39818524357249052772954941361280602352820010552205040994743616754650225984599625617457423487509865119424336316120738702449843111537657295256656334491348391915859561760611703527493329598459743494022997578706810925724162371601419967043<233>
34×10258-619 = 3(7)2571<259> = 3 × 1019 × 3517 × 3240043 × 109638442617015865569826469713<30> × 25703469510287586763181885173313<32> × [38482494805311828266678478744628095340047610723815635854406744651704733026258945108145329334402976008226122762781903094635482030626266846533982461735509622490413743015616065679503680277<185>] (Makoto Kamada / GMP-ECM 7.0.4 B1=25e4, sigma=10852947423077193591 for P30, B1=1e6, sigma=18327511461235044706 for P32 / April 25, 2017 2017 年 4 月 25 日) Free to factor
34×10259-619 = 3(7)2581<260> = [37777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777771<260>] Free to factor
34×10260-619 = 3(7)2591<261> = 7 × 353 × 152884572148028238679796753451144385988578623139529655110391654301002742929088538153693961059400152884572148028238679796753451144385988578623139529655110391654301002742929088538153693961059400152884572148028238679796753451144385988578623139529655110391654301<258>
34×10261-619 = 3(7)2601<262> = 3 × 19 × 29 × 43 × 75773 × 652014752161<12> × 477285538060047217036177749170985190757<39> × 2253953328368027178283544357776679796402195071683988189934937679059799142049163320059560314534552694943913806249430560045941756394611576727654412277096108130283467735571095544901848796647091372622994669<202> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=4044866040 for P39 x P202 / May 24, 2017 2017 年 5 月 24 日)
34×10262-619 = 3(7)2611<263> = 53 × 712788259958071278825995807127882599580712788259958071278825995807127882599580712788259958071278825995807127882599580712788259958071278825995807127882599580712788259958071278825995807127882599580712788259958071278825995807127882599580712788259958071278825995807<261>
34×10263-619 = 3(7)2621<264> = definitely prime number 素数
34×10264-619 = 3(7)2631<265> = 32 × 524063 × 5864575984739<13> × [136575809058995060268177820989123245741259860449984781062213404138003956489006623010808031115222924348265303355842460406450088592775244756943999891738590080523352864001533953220226670147250942624013130182673371586610574890563917852422404494532367<246>] Free to factor
34×10265-619 = 3(7)2641<266> = 4834716399887820475225908532100529728143103<43> × [7813856005836109111005074255312091443140983172362813950100197014205463754735126402691567834661321649354167907132200023866605743266502591287413942447652549688084059213909435841097302317277326932098182272533481991560339230357<223>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=495039345 for P43 / May 24, 2017 2017 年 5 月 24 日) Free to factor
34×10266-619 = 3(7)2651<267> = 7 × 71 × 521 × 31498349 × 197314421 × [234744636122500202366901636506269331091294561124449120277815129235875216834714435698015690054533932782157493076329150796733503390367627992698958261973727097490685023765942154445191333625689574630432663368540169406944342038336821287535421705787027<246>] Free to factor
34×10267-619 = 3(7)2661<268> = 3 × 34607 × 296551 × 1891160546003<13> × 113380934072368489<18> × 35832225863399667607<20> × 2398003790814539017675855344107<31> × 2204291452702065774604922539289645965783<40> × 2590948513931345422771288251180147356873988228984332899<55> × 1166089609953889869772266432899725147479645923090817857872211367330212715203642362691<85> (Makoto Kamada / GMP-ECM 7.0.4 B1=25e4, sigma=13338169862347436487 for P31 / April 26, 2017 2017 年 4 月 26 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3295244235 for P40 / May 23, 2017 2017 年 5 月 23 日) (Erik Branger / GGNFS, Msieve gnfs for P55 x P85 / June 10, 2017 2017 年 6 月 10 日)
34×10268-619 = 3(7)2671<269> = 103 × 1949 × 4801 × 85601 × 270249100876188182282537<24> × 144489981987896790073124749<27> × 238804216446608810399748131<27> × [49105802673969326731721420369566994762345656013834158430716935304669507623716386173750104673293427593254035947050213658582540828346924694497691946626618905409482540136769287941631<179>] Free to factor
34×10269-619 = 3(7)2681<270> = 107 × 283 × 1511 × 7121 × 7236891143984617<16> × [160217040102662178697176228986012020850900861088423889614781827938837567792598890209455017792346110960190613010577373335824449467583904475229502221402861527563044540582052922755385191907992767269882907752386275701288338633953426049268423403933<243>] Free to factor
34×10270-619 = 3(7)2691<271> = 3 × 6047 × 28542303883988236404711042797585279035021<41> × [7296022398779483133922642907461753739959240994336868219766761534933433845209762738639717021618627492178117126299972615276561114201038915094884780885765759789632465906577497783107443643631003202895924552770805065017954537510211<226>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=755658100 for P41 / May 26, 2017 2017 年 5 月 26 日) Free to factor
34×10271-619 = 3(7)2701<272> = 31 × 647 × 39079 × 48197775133798097589501867498425538518706649555736362704578215523637029764153428597350104439836904416284693025932641241605692791866241905288035725498506458897444080447616967731141733887915816210013720394021002090072845064074077609050111093128662966853199130166757<263>
34×10272-619 = 3(7)2711<273> = 7 × 47 × 4220243 × 33381331 × 21767365245888712569815534618176253<35> × 29841735256224996678824742505882901<35> × [12547854223716200666273714620779429086966550877284013919543778866562916681813491928113879814009139838990917094626869139749823126318465078589117274677778239038742827255085861166286689932251<188>] (Serge Batalov / for P35(2176...) x P35(2984...) / May 23, 2017 2017 年 5 月 23 日) Free to factor
34×10273-619 = 3(7)2721<274> = 32 × 30322709 × 99717601 × 733841593853775432297539<24> × 9057032064713876888396594729<28> × [20886508606042249944039333744230978115901056554746242531689976049419654457509565176252284282040891532873364964193171090219644043806605415598685166896799472633179048387954642078610505980498344559506260617861<206>] Free to factor
34×10274-619 = 3(7)2731<275> = 23 × 673 × 1305321850279<13> × 109573496911408539539495044041757<33> × 19290613873777950813495651082200967913473<41> × 12135242169758107606858796916302417468435904907<47> × 72891331233835258026915507035915512838583049745216191004209986551594219471258541479371058167707194342314905526355908022476557271547191948853<140> (Makoto Kamada / GMP-ECM 7.0.4 B1=1e6, sigma=4132042287120006890 for P33 / April 27, 2017 2017 年 4 月 27 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3884829489 for P41 / May 23, 2017 2017 年 5 月 23 日) (Dmitry Domanov / GMP-ECM B1=43000000, sigma=1673002495 for P47 x P140 / June 6, 2017 2017 年 6 月 6 日)
34×10275-619 = 3(7)2741<276> = 53 × 1777 × 65267215621053138778574405797<29> × 3834060517302167857228559390057696047<37> × 16029466236968027245302091335475127661916004200369368197003252394104858812034302925193592506770814727648674032240277722460102682994130339862556419862315874307338103047751635412219150361715900650500196531149<206> (Makoto Kamada / GMP-ECM 7.0.4 B1=1e6, sigma=6673344258272025150 for P37 x P206 / April 28, 2017 2017 年 4 月 28 日)
34×10276-619 = 3(7)2751<277> = 3 × 59 × 905163183212111339<18> × 19895960457922734935615237<26> × [1185144624607956523856773296135197720433021853978688265098238319990851800819217889276232805263231564972697261366492601644182011170280472038021622590312928619688846734221766036268536419927634153627482450108397655439086057528059546461<232>] Free to factor
34×10277-619 = 3(7)2761<278> = 821 × 10445375429<11> × [4405236169988276441562114951116982211085192763667351645137982826219978562001362308387506939863438210285076303474018356590400870374464361007389732029708309447663343710809790996486911872131838615971851669071653423905616865048816164425182067755841490442860570005091219<265>] Free to factor
34×10278-619 = 3(7)2771<279> = 72 × 1009 × 42470409419<11> × 3302602687842816962103211249740802339<37> × [54476147068322874964826075958045011327543700480838780690945935418693823981824159534631362386859526619472677078691457896705091338550468348707845551990372658679077791707286075608913117023295017332531921310898499363657867144620491<227>] (Makoto Kamada / GMP-ECM 7.0.4 B1=25e4, sigma=6640709137390278609 for P37 / April 28, 2017 2017 年 4 月 28 日) Free to factor
34×10279-619 = 3(7)2781<280> = 3 × 19 × 2843 × 378289 × 3013211 × 89851455972275871756587058702678469582409<41> × [227617849675483441864722380040192845402147024046310134722092146753582273736133256844299426907298773279473827428034060870119105134962189919834918018655203326180801966706003212016660670050538521106701368180640297492126720211<222>] (Serge Batalov / for P41 / May 23, 2017 2017 年 5 月 23 日) Free to factor
34×10280-619 = 3(7)2791<281> = 11116587972730713906582733<26> × 35362175281950828380727992574503<32> × 96100561657533179780396161826516226609850845236716186804243386397062848223270310112607300943847475790901680677430702729627260354122514551769815425059861350708526454498638109574424112701216368313463605617588913152765217616529<224> (Makoto Kamada / GMP-ECM 7.0.4 B1=25e4, sigma=8612193269286682599 for P32 x P224 / April 29, 2017 2017 年 4 月 29 日)
34×10281-619 = 3(7)2801<282> = 67 × 4927307299<10> × [1144331772514989043544300839210192243882269619066659548498023340396013419883757632284253611427715461762693339007576499271405064215014700359628450832106536504118878217674256386011274248547911067661665166720159783302588199474577745877594486581501665155461792998044590934387<271>] Free to factor
34×10282-619 = 3(7)2811<283> = 33 × 43 × 1174469 × 368070634751<12> × [7527165407094508274630285275720263563281963199276849387632421188175512317485938331816710323222300850616319819384490990800428145706076127973136091719854253927263710461525477777643353737083098178199266865614239634691301483392912300873032154737808697525395788340169<262>] Free to factor
34×10283-619 = 3(7)2821<284> = 2591 × 5361471151<10> × 114955082211806861<18> × 13391047435894954442764043512100086633<38> × [1766616556608068275510438958886704502841216560450901161557522473524119802268371428645139088776548396939296002446416680053342784795926783611978720253170688997373044006323156597427844669036090794708868707198651439269487<217>] (Makoto Kamada / GMP-ECM 7.0.4 B1=1e6, sigma=5935588649775601933 for P38 / April 29, 2017 2017 年 4 月 29 日) Free to factor
34×10284-619 = 3(7)2831<285> = 7 × 157379633 × 311143837 × 970771430357<12> × [1135302644931191403476531945213623658216537556148102652698903444489716742683999287388064510499873239777729038595210716828130784808709195125572382516494141308144375814217139008686745045500005144724247183437959446358416634038568982775304942488860856525005549<256>] Free to factor
34×10285-619 = 3(7)2841<286> = 3 × 229746031 × 12132047457421802300326007885559413<35> × [451786276864899949589725618998817840044670773608291266260661605432247094709573060247648947899236599030615326985359666220248700238421301526066357807338514269577619438394407513173044290499937036128038389986367578214275552743129602285360760701019<243>] (Makoto Kamada / GMP-ECM 7.0.4 B1=1e6, sigma=11466888474182624842 for P35 / April 30, 2017 2017 年 4 月 30 日) Free to factor
34×10286-619 = 3(7)2851<287> = 31 × 4418303429<10> × 13831464864353490018321993031713412499592227<44> × [19941186625358620940415196755346304172440211658154389169830082238553449506906169770082931604348771983973866637679548176302889494222098942415150128057625543337070592605350761054814087691190942916677188459251484242366312921525322022427<233>] (Makoto Kamada / GMP-ECM 7.0.4 B1=1e6, sigma=4430883619365467906 for P44 / May 1, 2017 2017 年 5 月 1 日) Free to factor
34×10287-619 = 3(7)2861<288> = 96149210255156717387929<23> × [3929078322902986416069174459494139997548651271994576308309937292774952253597169200550666940332206144197726566457746984132858386360108525910293860766065778508205544428870108336823279883136504362636006265325902856952919272401074364219965149035263289818371042435003299<265>] Free to factor
34×10288-619 = 3(7)2871<289> = 3 × 53 × 6133 × 2123980693<10> × 15423521159817371<17> × 1263892537132623528367<22> × 93566863343782213866922656744405078857875250202255559086019981230615939107853667450685290369247540270307459451123721162187680615937110511543088359450370975485675866952400788994102560060470201318956813869314246326967830897090875779429993<236>
34×10289-619 = 3(7)2881<290> = 29 × 266423328038137<15> × 1047247488200099<16> × [4668924308502259802427451119122625185855829784640838956944572198927970022554529678349809058918018460025196240115510750221460897395409958036430614418923911836231694744910289253707658015575330670538361993085993612830049558942742126006753114623548667607550866773<259>] Free to factor
34×10290-619 = 3(7)2891<291> = 7 × 44939 × 6427045139257<13> × 204737444779858004802409313<27> × [912654363581685075062292412241329010089544641415180095418731173401378097672884834004175573052423575489257661571590777901250303975318914707049715410532190463759292718780486009022713281283678400512822962097242615071432960654751495222715315750022447<246>] Free to factor
34×10291-619 = 3(7)2901<292> = 32 × 5623 × 18915685727<11> × [3946423829109864115802007241846633930770471347253380717539538303399097995450312138882829708483873471998393946849840144892053353633631477907605071226872454362625786961000456444865838302550317186999136975116200118191248075477458782371967908521908093272100778223177063359759712539<277>] Free to factor
34×10292-619 = 3(7)2911<293> = 353 × 8291 × 152723513 × 167532885963252357191857036111<30> × 446707601466008631333827762953<30> × [1129341972476570989945736786502770307919319968200171630606907864817648053461964783484897478558770314657992246781279197754624922831335335629002047464569057597874105233473828062950963568718307948721672795249205098650379063<220>] (Makoto Kamada / GMP-ECM 7.0.4 B1=1e6, sigma=941411522768383569 for P30(4467...), B1=25e4, sigma=11869758069183473394 for P30(1675...) / May 2, 2017 2017 年 5 月 2 日) Free to factor
34×10293-619 = 3(7)2921<294> = 1151242272293<13> × [328147937988182588162676743202592800570319995347316450121642213197098976323054768540607176901318539270673554429271709656263531338165250325081321746782549091430939823923102442652756206367411958021053342695193482582687936063774256988968452749804883052526538083364873279559239383860047<282>] Free to factor
34×10294-619 = 3(7)2931<295> = 3 × 5449 × 1082385463<10> × 2488328653957<13> × 20930251534172131<17> × [4099531293393131110751770697763777722108933878854076331244079228800251840200676000196580891780254301090241907390512209080986248791019749704419245058459877786927218483128817231253252039564322452712709010227119464443104603631473566598376669438705892798233<253>] Free to factor
34×10295-619 = 3(7)2941<296> = 383 × 169949373659523195033344467<27> × 210479496982663630161287117077516903<36> × [2757453948329475099498228133710898631666781474476314980401607598086171625579285953725514193432422453466373864415596579267317828581280827913167360378101919382897548136992216986437395221774267011892877610629333881099212367113203028337<232>] (Makoto Kamada / GMP-ECM 7.0.4 B1=1e6, sigma=11144538106722670289 for P36 / May 3, 2017 2017 年 5 月 3 日) Free to factor
34×10296-619 = 3(7)2951<297> = 7 × 23 × 658261 × 1060484185477<13> × 279573506475228751286403283<27> × 35610357057267270137253736709435118838603891<44> × 347044335703982602982261171980056699415157339<45> × 972861255178241218794249242756383511549467370063012242282790755250465099769881341264756379084660296681131233144427996622626111740334083972961055707991277650773089<162> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1536107231 for P45 / June 1, 2017 2017 年 6 月 1 日) (Dmitry Domanov / GMP-ECM B1=43000000, sigma=2408665872 for P44 x P162 / June 22, 2017 2017 年 6 月 22 日)
34×10297-619 = 3(7)2961<298> = 3 × 19 × 142213793 × 136622064491197<15> × [3411135636807970473920687304104171279492854984183112801114974430946126697347019449683567384937118519830245544404368608037456253476182935316027769599418744588174006560069542104987479543998495259403091540835256490349918310184995791460218075278133667474120841503343990042541343<274>] Free to factor
34×10298-619 = 3(7)2971<299> = 6554590391<10> × 15631136466731<14> × [368723057148210132456501421131927334147361055183606599457148538113409172824333427465676370997078302466549209657669981830868762983424177739687605920173903240792833488878033738286206428157122899116067531736309038475545322210931225181793139466084224549426473595201537825667546951<276>] Free to factor
34×10299-619 = 3(7)2981<300> = 639883052132904681930421739299373833<36> × [590385659564730524347510013999846726431041680911561759635537327314986078462558096041170790381664742477747090494725655558645751921596462079509460423227570274116895651391966153632793238408082951973207160513815329887652433181586174596650914107943750837116574885887187<264>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3176036381 for P36 / May 22, 2017 2017 年 5 月 22 日) Free to factor
34×10300-619 = 3(7)2991<301> = 32 × 1429 × 35993 × 930583 × 361078870914986271760592249<27> × [24287702393821611288593448713258401821760789147191344889572852333608583421985429594632008689709600948736375165703706013763433979455015101606324305154860464671060685451138778544722065926911605421887402631156134249515845646702086388678867416111505399085104798081<260>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク