Table of contents 目次

  1. About 388...883 388...883 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 388...883 388...883 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 388...883 388...883 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 388...883 388...883 について

1.1. Classification 分類

Plateau-and-depression of the form ABB...BBA ABB...BBA の形のプラトウアンドデプレッション (Plateau-and-depression)

1.2. Sequence 数列

38w3 = { 33, 383, 3883, 38883, 388883, 3888883, 38888883, 388888883, 3888888883, 38888888883, … }

1.3. General term 一般項

35×10n-539 (1≤n)

2. Prime numbers of the form 388...883 388...883 の形の素数

2.1. Last updated 最終更新日

May 16, 2016 2016 年 5 月 16 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 35×102-539 = 383 is prime. は素数です。 (Jean Claude Rosa / October 14, 2002 2002 年 10 月 14 日)
  2. 35×1012-539 = 3(8)113<13> is prime. は素数です。 (Jean Claude Rosa / October 14, 2002 2002 年 10 月 14 日)
  3. 35×1030-539 = 3(8)293<31> is prime. は素数です。 (Jean Claude Rosa / October 14, 2002 2002 年 10 月 14 日)
  4. 35×1060-539 = 3(8)593<61> is prime. は素数です。 (Jean Claude Rosa / October 14, 2002 2002 年 10 月 14 日)
  5. 35×10116-539 = 3(8)1153<117> is prime. は素数です。 (Jean Claude Rosa / October 14, 2002 2002 年 10 月 14 日)
  6. 35×10290-539 = 3(8)2893<291> is prime. は素数です。 (Jean Claude Rosa / October 14, 2002 2002 年 10 月 14 日)
  7. 35×10632-539 = 3(8)6313<633> is prime. は素数です。 (Patrick De Geest / November 29, 2002 2002 年 11 月 29 日)
  8. 35×101064-539 = 3(8)10633<1065> is prime. は素数です。 (Patrick De Geest / February 2, 2003 2003 年 2 月 2 日)
  9. 35×101494-539 = 3(8)14933<1495> is prime. は素数です。 (Patrick De Geest / July 5, 2003 2003 年 7 月 5 日)
  10. 35×105432-539 = 3(8)54313<5433> is prime. は素数です。 (discovered by: (発見: Patrick De Geest / November 29, 2002 2002 年 11 月 29 日) (certified by: (証明: Maksym Voznyy / PRIMO 4.2.1 - LX64 / May 16, 2016 2016 年 5 月 16 日)
  11. 35×107362-539 = 3(8)73613<7363> is PRP. はおそらく素数です。 (Patrick De Geest / November 29, 2002 2002 年 11 月 29 日)

2.3. Range of search 捜索範囲

  1. n≤50000 / Completed 終了
  2. n≤84795 / Completed 終了 / Ray Chandler / January 3, 2011 2011 年 1 月 3 日
  3. n≤100000 / Completed 終了 / Ray Chandler / March 28, 2011 2011 年 3 月 28 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

  1. 35×102k+1-539 = 11×(35×101-539×11+35×10×102-19×11×k-1Σm=0102m)
  2. 35×103k+1-539 = 3×(35×101-539×3+35×10×103-19×3×k-1Σm=0103m)
  3. 35×106k+4-539 = 13×(35×104-539×13+35×104×106-19×13×k-1Σm=0106m)
  4. 35×1016k+10-539 = 17×(35×1010-539×17+35×1010×1016-19×17×k-1Σm=01016m)
  5. 35×1018k+11-539 = 19×(35×1011-539×19+35×1011×1018-19×19×k-1Σm=01018m)
  6. 35×1021k+16-539 = 43×(35×1016-539×43+35×1016×1021-19×43×k-1Σm=01021m)
  7. 35×1022k+7-539 = 23×(35×107-539×23+35×107×1022-19×23×k-1Σm=01022m)
  8. 35×1028k+22-539 = 29×(35×1022-539×29+35×1022×1028-19×29×k-1Σm=01028m)
  9. 35×1030k+9-539 = 211×(35×109-539×211+35×109×1030-19×211×k-1Σm=01030m)
  10. 35×1032k+3-539 = 353×(35×103-539×353+35×103×1032-19×353×k-1Σm=01032m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 12.33%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 12.33% です。

3. Factor table of 388...883 388...883 の素因数分解表

3.1. Last updated 最終更新日

June 3, 2018 2018 年 6 月 3 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=201, 205, 207, 211, 214, 215, 216, 217, 223, 225, 226, 229, 232, 235, 237, 239, 243, 244, 245, 246, 247, 250 (22/250)

3.4. Factor table 素因数分解表

35×101-539 = 33 = 3 × 11
35×102-539 = 383 = definitely prime number 素数
35×103-539 = 3883 = 11 × 353
35×104-539 = 38883 = 3 × 13 × 997
35×105-539 = 388883 = 11 × 35353
35×106-539 = 3888883 = 71 × 54773
35×107-539 = 38888883 = 33 × 11 × 23 × 5693
35×108-539 = 388888883 = 59 × 233 × 28289
35×109-539 = 3888888883<10> = 11 × 211 × 787 × 2129
35×1010-539 = 38888888883<11> = 3 × 13 × 17 × 58655941
35×1011-539 = 388888888883<12> = 11 × 19 × 367 × 5070061
35×1012-539 = 3888888888883<13> = definitely prime number 素数
35×1013-539 = 38888888888883<14> = 3 × 11 × 1178451178451<13>
35×1014-539 = 388888888888883<15> = 61 × 6375227686703<13>
35×1015-539 = 3888888888888883<16> = 112 × 251 × 1951 × 65631023
35×1016-539 = 38888888888888883<17> = 32 × 132 × 43 × 45263 × 13136647
35×1017-539 = 388888888888888883<18> = 11 × 52142737 × 678014569
35×1018-539 = 3888888888888888883<19> = 617 × 863 × 7303475473573<13>
35×1019-539 = 38888888888888888883<20> = 3 × 11 × 293 × 2087 × 1927176652561<13>
35×1020-539 = 388888888888888888883<21> = 167 × 8539 × 4258103 × 64045097
35×1021-539 = 3888888888888888888883<22> = 11 × 311 × 2663 × 39887 × 10702122583<11>
35×1022-539 = 38888888888888888888883<23> = 3 × 13 × 29 × 191 × 90017 × 969433 × 2062943
35×1023-539 = 388888888888888888888883<24> = 11 × 35353535353535353535353<23>
35×1024-539 = 3888888888888888888888883<25> = 2267 × 2423 × 707979366406609663<18>
35×1025-539 = 38888888888888888888888883<26> = 32 × 11 × 12973 × 8408837 × 3600924272017<13>
35×1026-539 = 388888888888888888888888883<27> = 17 × 22875816993464052287581699<26>
35×1027-539 = 3888888888888888888888888883<28> = 11 × 1326137 × 48342727 × 5514591057847<13>
35×1028-539 = 38888888888888888888888888883<29> = 3 × 13 × 680446223 × 1465436890449162139<19>
35×1029-539 = 388888888888888888888888888883<30> = 11 × 19 × 23 × 80900538566442456602639669<26>
35×1030-539 = 3888888888888888888888888888883<31> = definitely prime number 素数
35×1031-539 = 38888888888888888888888888888883<32> = 3 × 11 × 1178451178451178451178451178451<31>
35×1032-539 = 388888888888888888888888888888883<33> = 277 × 5179 × 8190862063<10> × 33095598746922827<17>
35×1033-539 = 3888888888888888888888888888888883<34> = 11 × 23001353 × 15370198159010625825078001<26>
35×1034-539 = 38888888888888888888888888888888883<35> = 33 × 13 × 349 × 523877557001873<15> × 605986847024129<15>
35×1035-539 = 388888888888888888888888888888888883<36> = 11 × 353 × 15643 × 6402330641520975276319148507<28>
35×1036-539 = 3888888888888888888888888888888888883<37> = 83 × 1013 × 46252796642311265463301048881277<32>
35×1037-539 = 38888888888888888888888888888888888883<38> = 3 × 112 × 43 × 283 × 203213 × 230281 × 14860331 × 12659773676423<14>
35×1038-539 = 388888888888888888888888888888888888883<39> = 1420151 × 273836295498780685215085500688933<33>
35×1039-539 = 3888888888888888888888888888888888888883<40> = 11 × 47 × 211 × 1181 × 43688668927<11> × 690929643157340967407<21>
35×1040-539 = 38888888888888888888888888888888888888883<41> = 3 × 13 × 683 × 38616112830289<14> × 37806952307926269766031<23>
35×1041-539 = 388888888888888888888888888888888888888883<42> = 11 × 71 × 497937117655427514582444159908948641343<39>
35×1042-539 = 3888888888888888888888888888888888888888883<43> = 17 × 977 × 33127177 × 7068017589866742633623112851131<31>
35×1043-539 = 38888888888888888888888888888888888888888883<44> = 32 × 11 × 463 × 124285841 × 2475516607<10> × 14971731391<11> × 184183118927<12>
35×1044-539 = 388888888888888888888888888888888888888888883<45> = 163 × 798769981703699107<18> × 2986869134888602002715163<25>
35×1045-539 = 3888888888888888888888888888888888888888888883<46> = 11 × 48463 × 7294953955292770471360323412404381391031<40>
35×1046-539 = 38888888888888888888888888888888888888888888883<47> = 3 × 13 × 97 × 1033 × 2543 × 6995777 × 559379510583752960411772617027<30>
35×1047-539 = 388888888888888888888888888888888888888888888883<48> = 11 × 19 × 812765423161<12> × 101991772353677<15> × 22446513327889636871<20>
35×1048-539 = 3888888888888888888888888888888888888888888888883<49> = 2659 × 29063 × 50323026888428628733764247687218025792199<41>
35×1049-539 = 38888888888888888888888888888888888888888888888883<50> = 3 × 11 × 199 × 74363 × 7927782888674149<16> × 10044998323234334787265027<26>
35×1050-539 = 388888888888888888888888888888888888888888888888883<51> = 29 × 107 × 151 × 1789 × 9410861492364821<16> × 49297749069132795155709019<26>
35×1051-539 = 3(8)503<52> = 11 × 23 × 347 × 54667 × 3124843 × 259311689833133325481555036979319173<36>
35×1052-539 = 3(8)513<53> = 32 × 13 × 5281 × 1386259139<10> × 45402428524246619184499672241821315661<38>
35×1053-539 = 3(8)523<54> = 11 × 66553936148872321<17> × 130111079477482289<18> × 4082675136877464137<19>
35×1054-539 = 3(8)533<55> = 8664871 × 52041554776263869<17> × 8624087824078572702748396751417<31>
35×1055-539 = 3(8)543<56> = 3 × 11 × 113 × 461 × 8336927 × 13110745139<11> × 54876762719<11> × 3771467491430737534901<22>
35×1056-539 = 3(8)553<57> = 487 × 4759 × 201453408797<12> × 14325351577110139109<20> × 58143471628461697187<20>
35×1057-539 = 3(8)563<58> = 11 × 12239 × 25022443 × 1182973609877<13> × 975847940697088389325676248247057<33>
35×1058-539 = 3(8)573<59> = 3 × 13 × 172 × 43 × 181 × 19387 × 65437 × 78737075953<11> × 4438158226081879781059558068733<31>
35×1059-539 = 3(8)583<60> = 112 × 13339 × 26322823 × 27080982157501<14> × 338002581719867769167531497817459<33>
35×1060-539 = 3(8)593<61> = definitely prime number 素数
35×1061-539 = 3(8)603<62> = 34 × 11 × 631 × 212439397 × 166582043701<12> × 10754350380509<14> × 181748587310311711600051<24>
35×1062-539 = 3(8)613<63> = 60531194586965888009792231<26> × 6424602909994905051987478948382049493<37>
35×1063-539 = 3(8)623<64> = 11 × 772803201175238526147497448991<30> × 457471388573074664924091901070183<33>
35×1064-539 = 3(8)633<65> = 3 × 13 × 5440067 × 7331771 × 25000447794630287929435303510893696202606949195621<50>
35×1065-539 = 3(8)643<66> = 11 × 19 × 251 × 412771 × 17959587182889380015382697482194761627237146821820204947<56>
35×1066-539 = 3(8)653<67> = 59 × 11239 × 47163691 × 124347788745939564797187725221083392339795916057049613<54>
35×1067-539 = 3(8)663<68> = 3 × 11 × 353 × 647 × 624709 × 193721510988909667<18> × 42636053494245510853132965234839605787<38>
35×1068-539 = 3(8)673<69> = 54011 × 1486611607075936021<19> × 4843349367820902048515933930128911084507735493<46>
35×1069-539 = 3(8)683<70> = 11 × 211 × 2137 × 212304793 × 3693057532360494607978899288076008237584718117416543603<55>
35×1070-539 = 3(8)693<71> = 32 × 13 × 1787 × 2199222371<10> × 10904963101665883<17> × 7755713821209136772929783563427590985589<40>
35×1071-539 = 3(8)703<72> = 11 × 1249 × 14667593 × 146929327 × 13134183254743885113347750735896903432361752463315327<53>
35×1072-539 = 3(8)713<73> = 20947 × 10890886901<11> × 7212383466024759937<19> × 2363532862262367716277213125745434844797<40>
35×1073-539 = 3(8)723<74> = 3 × 11 × 23 × 389 × 27397 × 1670687 × 2877637303341329164915208865309913206006186098140352780147<58>
35×1074-539 = 3(8)733<75> = 17 × 61 × 915487 × 63665881 × 578043054933230507<18> × 11130832722739321293028165903776302423771<41>
35×1075-539 = 3(8)743<76> = 11 × 526709 × 1144319175502248278509087<25> × 586563365215192574318330822033572214580992491<45>
35×1076-539 = 3(8)753<77> = 3 × 13 × 71 × 193 × 276049 × 4770401 × 12885598697<11> × 91690990073<11> × 46770599917636057501154426627973850771<38>
35×1077-539 = 3(8)763<78> = 11 × 83 × 748283 × 1532712992028247<16> × 326519810359525826919647<24> × 1137413829290380010899546873553<31>
35×1078-539 = 3(8)773<79> = 29 × 162313242979<12> × 13741857625759<14> × 60121268806102737722905216654901309856331460832416507<53>
35×1079-539 = 3(8)783<80> = 32 × 11 × 43 × 47645922670623091<17> × 191732680176270864245766252338242180058111321778975030498209<60>
35×1080-539 = 3(8)793<81> = 2347 × 6581625250449347267351415949<28> × 25175568993682512100140225173605023620326788092861<50> (Tetsuya Kobayashi / February 13, 2003 2003 年 2 月 13 日)
35×1081-539 = 3(8)803<82> = 112 × 8231 × 68414603 × 114691243 × 5422210873843<13> × 91776626205463931531746574251819818747783044839<47>
35×1082-539 = 3(8)813<83> = 3 × 13 × 23306216161382489<17> × 42784765671367894971455000329826396797916321722995750902477183773<65>
35×1083-539 = 3(8)823<84> = 11 × 19 × 557 × 924932940007265837191<21> × 1736526907954570171471<22> × 2079851319244261131262667074583937431<37>
35×1084-539 = 3(8)833<85> = 587287 × 1607399 × 36857555529716124040716806099917<32> × 111769916129109689347127466709827207148223<42>
35×1085-539 = 3(8)843<86> = 3 × 11 × 47 × 761 × 37819241 × 8010020891<10> × 78304770521515949<17> × 1388974912758211961092245858518710780369941187<46>
35×1086-539 = 3(8)853<87> = 382060951 × 672871777 × 275751178456322353<18> × 7971017341207620209567<22> × 688223406446861135201546867179<30>
35×1087-539 = 3(8)863<88> = 11 × 47298191 × 1233334709<10> × 2491607331436812761<19> × 2432359508923354319218035584995602603631813166113267<52>
35×1088-539 = 3(8)873<89> = 33 × 13 × 1063 × 205399 × 507442489520326735761202026608417971247459963651254837151777123855718470867309<78>
35×1089-539 = 3(8)883<90> = 11 × 3331 × 9813677 × 20386049 × 10625302757621222623472071<26> × 4992890939302482276010469704288213120244705161<46>
35×1090-539 = 3(8)893<91> = 17 × 47952335419717<14> × 4770532403320234023045141180583067887954066088268944605094997307351536315047<76>
35×1091-539 = 3(8)903<92> = 3 × 11 × 27589719847714559<17> × 42713415901133096975935864920968318213615131456205099191279103058815385389<74>
35×1092-539 = 3(8)913<93> = 48630104433628241<17> × 36110145203523733400111<23> × 221457859488702300991909960640760537887983424724217133<54>
35×1093-539 = 3(8)923<94> = 11 × 331 × 16231 × 1287454501<10> × 602078654454470793355332986278019<33> × 84893503680821816210569998074023153905402067<44>
35×1094-539 = 3(8)933<95> = 3 × 132 × 25493917321<11> × 3008714662873171071863046673105176073447853470460618926241497645060335458304912289<82>
35×1095-539 = 3(8)943<96> = 11 × 23 × 647029373607399237429357978263<30> × 2375642119912604745704758266233337840478470062922736679342939497<64> (Tetsuya Kobayashi / February 8, 2003 2003 年 2 月 8 日)
35×1096-539 = 3(8)953<97> = 919 × 2969 × 36548528243<11> × 14565306523403<14> × 151958942939253617<18> × 17619112969973503555722192805470640949834749720621<50>
35×1097-539 = 3(8)963<98> = 32 × 11 × 6746039483<10> × 11678478417187<14> × 10731550118246381789641<23> × 464614480309611962189918554455496273564407467323097<51>
35×1098-539 = 3(8)973<99> = 12007 × 1783867 × 8815298231<10> × 372185033973128010202813482115176410923<39> × 5533916955442256111669146219602292866139<40> (Tetsuya Kobayashi / February 13, 2003 2003 年 2 月 13 日)
35×1099-539 = 3(8)983<100> = 11 × 211 × 353 × 49384506795892362361392808700687<32> × 96113627420138716151626982568234627268996111101043288543802093<62> (Tetsuya Kobayashi / February 13, 2003 2003 年 2 月 13 日)
35×10100-539 = 3(8)993<101> = 3 × 13 × 43 × 11568004267<11> × 220332958756985311260105686738064524561959<42> × 9098180858424752559080116907347976332211458043<46> (Tetsuya Kobayashi / February 13, 2003 2003 年 2 月 13 日)
35×10101-539 = 3(8)1003<102> = 11 × 19 × 109 × 277 × 30367 × 22961938035533817908989007<26> × 98895360059505064810903823867081<32> × 893689459460546752160815771442731<33>
35×10102-539 = 3(8)1013<103> = 4097673068353<13> × 257905405316956811489<21> × 402147203766061817812795277488039<33> × 9150455889897825973806542135100209141<37>
35×10103-539 = 3(8)1023<104> = 3 × 112 × 107 × 421 × 31212394008020989<17> × 76194909187871851836403685376860118711600794313569176926723273061365733134416027<80>
35×10104-539 = 3(8)1033<105> = 3991705529297<13> × 146346418214342184856796507<27> × 665709786703229513329511366080597508404726069876053378230305646777<66>
35×10105-539 = 3(8)1043<106> = 11 × 269 × 373 × 19237 × 7561699 × 6077658960675697<16> × 342394704577678223<18> × 11639964106999965258159988421789906574369889140254666873<56>
35×10106-539 = 3(8)1053<107> = 32 × 13 × 17 × 29 × 617 × 13654441 × 110690597 × 722974425516608798544686267892544964585252387559866409587268316925293940232734011927<84>
35×10107-539 = 3(8)1063<108> = 11 × 5507 × 32568203 × 4294814477<10> × 108993875221967<15> × 421092469176643430586616742454937529110176175434119088421806677757194227<72>
35×10108-539 = 3(8)1073<109> = 24955613 × 106043006108954260101289949<27> × 325677638986247788896731618783<30> × 4512189402248045990263929834245069469510888773<46>
35×10109-539 = 3(8)1083<110> = 3 × 11 × 2687 × 98573 × 388540920661853<15> × 2942302618757225619121<22> × 3891901598385854659144152553223495903433886724041888098586723877<64>
35×10110-539 = 3(8)1093<111> = 45557 × 4761773 × 34506911 × 51951207420504370098427095130883153595434875031798389359734270313020178790606210689770447773<92>
35×10111-539 = 3(8)1103<112> = 11 × 71 × 4979371176554275145824441599089486413430075401906387821880779627258500497937117655427514582444159908948641343<109>
35×10112-539 = 3(8)1113<113> = 3 × 13 × 149 × 5113 × 19583468368956685983247150438919547838003037789<47> × 66835816177070056531253986741132945069271600178070510203229<59> (Robert Backstrom / NFSX v1.8)
35×10113-539 = 3(8)1123<114> = 11 × 590279 × 49461673 × 1945424488451<13> × 2604449741935651902289672765816186441939237<43> × 238988143365467588036919694885621130897568457<45>
35×10114-539 = 3(8)1133<115> = 499 × 7793364506791360498775328434647071921621019817412602983745268314406590959697172122021821420619015809396570919617<112>
35×10115-539 = 3(8)1143<116> = 33 × 11 × 251 × 932419429 × 19265316263<11> × 35957592054461237113<20> × 14073859712678034905524555780921<32> × 57385753458554400468379567747041581716859<41>
35×10116-539 = 3(8)1153<117> = definitely prime number 素数
35×10117-539 = 3(8)1163<118> = 11 × 23 × 191 × 78311 × 195640517 × 2926130092509940171729<22> × 1795132230287450535267404302734737337084796531174553990788598554234370537320427<79>
35×10118-539 = 3(8)1173<119> = 3 × 13 × 83 × 12013867435554182542134349363265025915628325266879483746953626471698760855387361411457796999965674664469845192736759<116>
35×10119-539 = 3(8)1183<120> = 11 × 19 × 59123 × 6328239714121786565399934601458877134461036391553<49> × 4973245108193967724575017693998748506081153796981277738187273073<64> (Robert Backstrom / NFSX v1.8)
35×10120-539 = 3(8)1193<121> = 906918899755451370643<21> × 7464186855575079314488129<25> × 574479558024567309865412169268390046968890193711105291063724474740933449889<75>
35×10121-539 = 3(8)1203<122> = 3 × 11 × 43 × 8573 × 82734641350199<14> × 38638737454704201613523630108850152829587481708365076277454835398878971399224185041409419599154056891<101>
35×10122-539 = 3(8)1213<123> = 17 × 131 × 17989 × 5941709 × 138504105753139070994677976373968010959876765088416937<54> × 11795714986934882353751853687897868443361962489683654617<56> (Robert Backstrom / NFSX v1.8)
35×10123-539 = 3(8)1223<124> = 11 × 100769 × 437083 × 518298995640816113009217993839<30> × 15486797454637600412331517590864210809025257374969920218313868032503135369408060501<83> (Robert Backstrom / NFSX v1.8)
35×10124-539 = 3(8)1233<125> = 32 × 13 × 59 × 3187 × 26690581 × 39007499 × 1697850568574788592432033972607658815126858659544481365528735641502637398264826385155345644478909008737<103>
35×10125-539 = 3(8)1243<126> = 113 × 151 × 163 × 66103 × 179581567447772348308499781335583528429969222235388552334608141795512287359180398366804238837709407274803772796987<114>
35×10126-539 = 3(8)1253<127> = 21238873 × 1910306602674350862789205122499014041942656402732691<52> × 95849751250897363360864242888247945027506287205767796475685822305481<68> (Robert Backstrom / NFSX v1.8)
35×10127-539 = 3(8)1263<128> = 3 × 11 × 6789336569<10> × 967441192436363732299<21> × 104368062567167924060521475943285631<36> × 1719064056173273530501955045349327705484772709832689417031391<61> (Robert Backstrom / GMP-ECM 5.0c)
35×10128-539 = 3(8)1273<129> = 726911 × 314540771 × 16538502750359243805947<23> × 102842152337526204446227256011295500683822772541332018649675360839534995983907239280935740669<93>
35×10129-539 = 3(8)1283<130> = 11 × 211 × 236991747120493304195628201523559213899747720701932462648221<60> × 7069963502506850096090784078900270131507728214811893014647088805663<67> (Robert Backstrom / NFSX v1.8)
35×10130-539 = 3(8)1293<131> = 3 × 13 × 967 × 2203 × 1892599 × 45969127 × 21231139097417603028846814260178004196449<41> × 253408861992479856342989266255539492517846808470001786416987384661561<69> (Robert Backstrom / NFSX v1.8)
35×10131-539 = 3(8)1303<132> = 11 × 47 × 353 × 1271051 × 40170224584076709273427<23> × 41734291966610177011062601768929622521442510432538203650732654854646830972866209013335280550443079<98>
35×10132-539 = 3(8)1313<133> = 21733681515732203<17> × 44554943005986642571473347214559090418423030227<47> × 4016024409589958230694000930051522382794846663135446459861014104913443<70> (Robert Backstrom / NFSX v1.8)
35×10133-539 = 3(8)1323<134> = 32 × 11 × 379087 × 1389841 × 4672683570127498313<19> × 108500827292129391772619<24> × 1470574084152556171252084119367065099626838755342334414212294360970623256704933<79>
35×10134-539 = 3(8)1333<135> = 29 × 61 × 811 × 193379 × 3242780968629487<16> × 22764112724897546446781878993<29> × 41880664600671832923530139593<29> × 453404295021539861966359070136614386347053022282781<51> (Tetsuya Kobayashi / GMP-ECM 5.0.1 B1=250000 for P29(4188...) / May 11, 2003 2003 年 5 月 11 日) (Tetsuya Kobayashi / GMP-ECM 5.0.1 B1=250000 for P29(2276...) / May 22, 2003 2003 年 5 月 22 日)
35×10135-539 = 3(8)1343<136> = 11 × 263 × 8297 × 79889 × 289967 × 3038485943<10> × 2301776857809416289236425709926426496240748313932069435624550199442145722065161978657782225772001302867364047<109>
35×10136-539 = 3(8)1353<137> = 3 × 13 × 3469 × 753353 × 381555840738259694926419424927087732944137784450966472859803302404263944607439118447485527654678783344225288338617825927741921<126>
35×10137-539 = 3(8)1363<138> = 11 × 19 × 1860712387028176501860712387028176501860712387028176501860712387028176501860712387028176501860712387028176501860712387028176501860712387<136>
35×10138-539 = 3(8)1373<139> = 17 × 3065243 × 2635266659<10> × 3169790861<10> × 50571882141133<14> × 1211991847780799<16> × 310331045372790750053<21> × 88155666662105407961359170217<29> × 5328098605989505714595904987201721<34>
35×10139-539 = 3(8)1383<140> = 3 × 11 × 23 × 14271679678800373<17> × 3590117555318736745512924836977000792592974058083634246139338873519660839429834867412352566397897238506812892845414243569<121>
35×10140-539 = 3(8)1393<141> = 359 × 577 × 170623768786145750823691763<27> × 24728406160615287305877860914676618707<38> × 444958612515831389347540610612885488167438846639007749453827719018700141<72> (Greg Childers / GGNFS)
35×10141-539 = 3(8)1403<142> = 11 × 161613128179<12> × 1055190328123<13> × 2073124630234112365394930869171208888184097190181440415743616260561856941706827561286521529908757910546836554716319609<118>
35×10142-539 = 3(8)1413<143> = 35 × 13 × 43 × 97 × 1783 × 13877 × 331519 × 848126491 × 96806570414581637<17> × 4382429122455911063509486354977893058639263689068743976091796641545313924112873765957241722336429<97>
35×10143-539 = 3(8)1423<144> = 11 × 3400813033692143362347940975577<31> × 39822446802521162148555054998307315520708034161<47> × 261049071330740757048830626374673546304849204595034145153972051249<66> (Robert Backstrom / GMP-ECM 5.0c for P31) (Greg Childers / GGNFS)
35×10144-539 = 3(8)1433<145> = 5988967 × 3331470862116150238181420105341<31> × 194911559208825184272643301405844312748103162498097790663297038976218726867468864101733210811948421030895289<108> (Robert Backstrom / GMP-ECM 5.0c)
35×10145-539 = 3(8)1443<146> = 3 × 11 × 229 × 27298717 × 451785557543<12> × 23878269374991976783<20> × 287136997311615081259<21> × 461891129059265362677261053796745261<36> × 131755850794340601920283065104910552859489151397<48>
35×10146-539 = 3(8)1453<147> = 71 × 5981 × 113359 × 1480268819384325264781085684978331400775146249333139098019773<61> × 5457538228209977795726029602237625811827880296502011865351753095329546180419<76> (Greg Childers / GGNFS)
35×10147-539 = 3(8)1463<148> = 112 × 32139577594123048668503213957759412304866850321395775941230486685032139577594123048668503213957759412304866850321395775941230486685032139577594123<146>
35×10148-539 = 3(8)1473<149> = 3 × 13 × 199 × 66947 × 132169 × 912804221773<12> × 16190835571568762992847291<26> × 833062888407957005788211822150323632027691<42> × 45996251174982467974463245771940108747135325615593034517<56> (Robert Backstrom / PPSIQS Ver 1.1)
35×10149-539 = 3(8)1483<150> = 11 × 1699 × 4844311729<10> × 27534105629473<14> × 109029321480864079732436523957546499<36> × 1430846697139682430269463503032991514893487767006263760301918701766519723861008943551809<88> (Robert Backstrom / GMP-ECM 5.0c)
35×10150-539 = 3(8)1493<151> = 349 × 570839 × 7820169046626019408337901686973132613<37> × 500735370484603159398480034268787423521<39> × 4984964390311741737973491734736514419727570505785718086986996893461<67> (Tetsuya Kobayashi / GMP-ECM 5.0.1 B1=1000000 for P37 / May 26, 2003 2003 年 5 月 26 日) (Robert Backstrom / GMP-ECM 5.0c)
35×10151-539 = 3(8)1503<152> = 32 × 11 × 9533933 × 7666773050753<13> × 140622725155158557<18> × 38216431083060241665333739135682523664697959559243611573602961387549148793860793819606098522299557848953924999769<113>
35×10152-539 = 3(8)1513<153> = 379 × 4153 × 11527 × 609589 × 1311353 × 83943631 × 1466625082112506848288167<25> × 217793295390911507887302782060228908480647405772093496990572522690944322665999277579745583270879563<99>
35×10153-539 = 3(8)1523<154> = 11 × 5119 × 29729852380307<14> × 1336857265227055891602255144595312710366914084138447152868661721<64> × 1737680497099652281480746842090914423799196760175286953572897766236908421<73> (Tyler Cadigan / GGNFS-0.77.1-20060722-pentium4 / 65.51 hours on Pentium 4 3.20GHz, 1 Gig RAM, Windows XP and Cygwin / March 11, 2007 2007 年 3 月 11 日)
35×10154-539 = 3(8)1533<155> = 3 × 13 × 17 × 563 × 24761111 × 4548431451857<13> × 14893398440137806047<20> × 17214358533922899372427063091071<32> × 3608171554412812193728736389472817370855429433262407847715505733800426715835393<79> (Kenichiro Yamaguchi / GMP-ECM 6.0 B1=3000000, sigma=2696578936 for P32 / May 6, 2005 2005 年 5 月 6 日)
35×10155-539 = 3(8)1543<156> = 11 × 19 × 1491441214014575189<19> × 1247593515281516546974214094065795310195336765010951240611236847332075435919315584762561810540225910986103752062059315244498029281235383<136>
35×10156-539 = 3(8)1553<157> = 107 × 78167 × 175961 × 7662441211<10> × 1959788221232077<16> × 175964715973500921087401539899994243063150749192962258631827316544596964954631982198294262893079524207919146831929562521<120>
35×10157-539 = 3(8)1563<158> = 3 × 11 × 6917 × 9547921153<10> × 86432303214506848690151<23> × 206447158334377316458026269779764597686601009985102727032251655590272558129911390892258205047439101358073626555417478001<120>
35×10158-539 = 3(8)1573<159> = 27127 × 48923440453<11> × 42538481348207485813121172033846526577279483<44> × 6888502111425675766578155516284879416746833257639594662538596972928631754995038097561460112280873171<100> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp / 44.00 hours on Cygwin on AMD 64 3200+ / May 23, 2007 2007 年 5 月 23 日)
35×10159-539 = 3(8)1583<160> = 11 × 83 × 211 × 12821 × 493133 × 3667343 × 9916567361<10> × 87795739023710776391654822842881935398753090837730056485686711900925643044332865963782471403084732765824612347854596255097261679<128>
35×10160-539 = 3(8)1593<161> = 32 × 13 × 179 × 509 × 1518329 × 233255123 × 10300819609697368272712452531318243599707284696056811951472196635848623074352607136656139843996475904259660364288586395073591077780378894227<140>
35×10161-539 = 3(8)1603<162> = 11 × 23 × 125119 × 248243022679<12> × 49488546473936153232825763893243427397789452810325382147715621803065188363194963125094481072153577788041394627757987407413612638393838303621911<143>
35×10162-539 = 3(8)1613<163> = 29 × 69019 × 25653524357<11> × 5358784492991075088809<22> × 14133364000862519488602961781879434052188189082421506179905766468916213982694706495940435836803641593855714037747719718973841<125>
35×10163-539 = 3(8)1623<164> = 3 × 11 × 43 × 353 × 119183 × 294940614241103<15> × 2208612575674410143005854222228002123669043330246503978447621024792570864203342110857659803545183675843624707988891220556348709581112085881<139>
35×10164-539 = 3(8)1633<165> = 1279 × 2708249922211<13> × 84497846530733577040321<23> × 1328680649769788001219281214220100829360276671526278829518717995063675513480341574383829910113147108341512031324011149506234767<127>
35×10165-539 = 3(8)1643<166> = 11 × 251 × 293 × 12041 × 20047 × 1163980039<10> × 36189566249<11> × 1579409729891132095997857<25> × 299333856792768316694862634622755476736442729891970391438133170607434097847024815386365442578600679032502199<108>
35×10166-539 = 3(8)1653<167> = 3 × 13 × 1487 × 3733 × 1378751729<10> × 560590050564953<15> × 1195756684702150733<19> × 1241974992267077749180834709<28> × 156496577856073603189539481957862509719637814574141652989364822636149186671602061556864263<90> (Makoto Kamada / GMP-ECM 5.0.3 B1=400000, sigma=3545626425)
35×10167-539 = 3(8)1663<168> = 11 × 113 × 1481894566930897165561217886297315643190412863<46> × 211123754485119892507236798299021028208278038771361562866186890465260883878836081438303807062657374164385131676699256887<120> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon / 94.40 hours on Cygwin on AMD XP 2700+ / May 17, 2007 2007 年 5 月 17 日)
35×10168-539 = 3(8)1673<169> = 55865683 × 167058817 × 49490597625208871233348177<26> × 569618098720578477422424600101143173899<39> × 14781024690642080932758969397118873168017503155014627158552385373431832745996639435957011<89> (Makoto Kamada / GMP-ECM 5.0.3 B1=4000000, sigma=348951633 for P26) (Max Dettweiler / GMP-ECM 6.2.1 B1=1000000, sigma=2713672085 for P39 / March 7, 2009 2009 年 3 月 7 日)
35×10169-539 = 3(8)1683<170> = 33 × 112 × 661 × 2207 × 7726057 × 59462556413862442092449340501731601838252568471681890551614913937<65> × 17761151691851101595704380123061264611926150229274494050475365714951019876727414514520043<89> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.36 / 75.91 hours on Cygwin on AMD 64 3200+ / July 26, 2008 2008 年 7 月 26 日)
35×10170-539 = 3(8)1693<171> = 17 × 277 × 997 × 8699 × 2907767 × 8383444690149007<16> × 158736305007079783<18> × 2460786761115602336308156244387571379131565192883158316332680150004814157024407780019248632368751341323048040426780873727<121>
35×10171-539 = 3(8)1703<172> = 11 × 257 × 313 × 14547037 × 451637800707841604043591937013618243<36> × 668945230356071257795118498826470672455372523944031278211962172797587051335478238590834313058838878619295303466223808615463<123> (Patrick Keller / GMP-ECM B1=1000000, sigma=974293910 for P36 / January 28, 2006 2006 年 1 月 28 日)
35×10172-539 = 3(8)1713<173> = 3 × 132 × 823 × 2957 × 3423371497246031422544753307472705733156021261934907<52> × 9206877937016644470383489347435768756055010285968683328710645790936751051020760012596536946190038569116233788897<112> (Ignacio Santos / GGNFS, Msieve snfs / 59.97 hours / September 28, 2009 2009 年 9 月 28 日)
35×10173-539 = 3(8)1723<174> = 11 × 19 × 106607187862536784442950213557216101<36> × 12784808140356198637753477736329625023919025636230436513317350457<65> × 1365207125387356235893034572442431178138739637961647242520793682987939391<73> (Patrick Keller / GMP-ECM B1=1000000, sigma=806868188 for P36 / February 4, 2006 2006 年 2 月 4 日) (Warut Roonguthai / Msieve 1.48 snfs / October 7, 2011 2011 年 10 月 7 日)
35×10174-539 = 3(8)1733<175> = 460352558729349193535401<24> × 8447631744728168727993353604868844158085001925733720540917871392479926652602414462328199643040328826737086525693038321380707437123042691007589270210683<151>
35×10175-539 = 3(8)1743<176> = 3 × 11 × 1178451178451178451178451178451178451178451178451178451178451178451178451178451178451178451178451178451178451178451178451178451178451178451178451178451178451178451178451178451<175>
35×10176-539 = 3(8)1753<177> = 311 × 601 × 1873 × 59941189362710100228097893379657386691587779608483<50> × 18532223981490952137422454348160549941746291840869053224943714010734094291188858722189609028088976883937490178912973567<119> (matsui / Msieve 1.46 snfs / July 18, 2010 2010 年 7 月 18 日)
35×10177-539 = 3(8)1763<178> = 11 × 47 × 13107032843441144799767117<26> × 573892572672435286529551890447575578951582741097265551836279226573895477021720180455925039432456436123385054982403920192273930571789323508781679476147<150>
35×10178-539 = 3(8)1773<179> = 32 × 13 × 283 × 15767 × 25561 × 140102970446749<15> × 1045486352891699<16> × 41229218204509607<17> × 482564665332607342629250717043812650686346764376606971292392311130633672588267541502349698567277032582428011270399814667<120>
35×10179-539 = 3(8)1783<180> = 11 × 1453 × 4823708954837782458566048329<28> × 179453563604459220457786431467562201979<39> × 357310143567489075396301958980682992137751829<45> × 78666296894881512634482837271732095548749245438662779512302340659<65> (Patrick Keller / GMP-ECM B1=1000000, sigma=3030713605 for P28 / January 27, 2006 2006 年 1 月 27 日) (Wataru Sakai / GMP-ECM 6.4.2 B1=3000000, sigma=1162767319 for P39 / June 29, 2012 2012 年 6 月 29 日) (Dmitry Domanov / Msieve 1.48 gnfs for P45 x P65 / June 29, 2012 2012 年 6 月 29 日)
35×10180-539 = 3(8)1793<181> = 559975789 × 6944744693040450162906755400614094922751899348435739047441011577178899941491736330923565855967549498624643018073213320458197325543460038571219172636209971729490056379721247<172>
35×10181-539 = 3(8)1803<182> = 3 × 11 × 71 × 881 × 208945537457941<15> × 791365109293020169<18> × 21778263350111446027<20> × 1252919402408328755421374091254262320800303<43> × 4175619906214193298947641749972535268213753641612635366469178981999800565253855349<82> (Erik Branger / GGNFS, Msieve gnfs for P43 x P82 / 107.58 hours / November 19, 2008 2008 年 11 月 19 日)
35×10182-539 = 3(8)1813<183> = 59 × 182838044488969<15> × 36050139992660800838534262679338126678407007739116560188986564605019563976830090537215637815107355540645819650520704964541801881832210501374764588105660218575469861473<167>
35×10183-539 = 3(8)1823<184> = 11 × 23 × 182927 × 292727 × 1778471 × 38318383373806351537607681181826429129839905829084025565775681295070856307241<77> × 4212214256433777531277206086094423505388708957282813886269683781751264022676028788866969<88> (Dmitry Domanov / Msieve 1.40 snfs / October 14, 2012 2012 年 10 月 14 日)
35×10184-539 = 3(8)1833<185> = 3 × 13 × 43 × 1471465866831366172727<22> × 2457334707023565091577<22> × 3244644815681936725470196580769000846844432249912303714509078793<64> × 1976563644042245328066058364734390793105543677779393032501178478507225144057<76> (Dmitry Domanov / Msieve 1.40 snfs / October 15, 2012 2012 年 10 月 15 日)
35×10185-539 = 3(8)1843<186> = 11 × 137417531 × 6837248321<10> × 1511824184760613626187861<25> × 5357536891317578397637923340653722177028221135924736966224989847023<67> × 4645611590066091261137482030716284945316108885522107996668211777535933710401<76> (Dmitry Domanov / Msieve 1.40 snfs / October 16, 2012 2012 年 10 月 16 日)
35×10186-539 = 3(8)1853<187> = 17 × 167 × 38891 × 43201 × 258353 × 3531757 × 19093236250401691755151<23> × 46798654013841637262944084448702068312310525015948516144851500337426071994307118312232276876142922025568213340361021020652616448138477569077<140>
35×10187-539 = 3(8)1863<188> = 32 × 11 × 43584823 × 2097487971013<13> × 2510314626677248776229674290019314757294555463<46> × 1711699084004187407688822516597294868038941015348138931683563888897297634358722679874527495528186624665708080227552230141<121> (Ignacio Santos / GMP-ECM 6.2.3 B1=3000000, sigma=654685677 for P46 / July 23, 2010 2010 年 7 月 23 日)
35×10188-539 = 3(8)1873<189> = 28817 × 235468099 × 33289822364458007<17> × 60999723903947177<17> × 61191520856023770915728179511380334217869<41> × 461226334799672805678358305361391690435579575106981188991446293523131031705549655014689841009523462411<102> (Makoto Kamada / GMP-ECM 5.0.3 B1=4000000, sigma=3051270891 for P41 / March 12, 2005 2005 年 3 月 12 日)
35×10189-539 = 3(8)1883<190> = 11 × 211 × 223 × 67883 × 61864637177547297277611155335265220970688442096923627172830566515310468214323<77> × 1789130560448704265671930317663645215498610410613810150019458213537652776866661570925135680335943384589<103> (Robert Backstrom / Msieve 1.44 snfs / February 14, 2012 2012 年 2 月 14 日)
35×10190-539 = 3(8)1893<191> = 3 × 13 × 29 × 71843 × 88338252521<11> × 15355857839443771229812981896854168462513<41> × 352821940302557110604204129143796004098554107571304792162793007641218778671826976029782784778856565077282792072781015848064217277387<132> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4289319046 for P41 / October 11, 2012 2012 年 10 月 11 日)
35×10191-539 = 3(8)1903<192> = 112 × 192 × 27793 × 7677533033<10> × 1107106218120488212336760878947259970690955657643846891<55> × 37686564717594656743561155402859082709867164246778022495083236517002627829995734767173424015858814488650725952629473217<119> (Dmitry Domanov / Msieve 1.40 snfs / October 18, 2012 2012 年 10 月 18 日)
35×10192-539 = 3(8)1913<193> = 1637 × 3959391502285618111<19> × 1902831840384627321743557842401<31> × 315317445054668231466894928407418052176979857291002402769887593292955927140627717865032030003548506786533662654988210078682631168818914249769<141> (Makoto Kamada / GMP-ECM 5.0.3 B1=400000, sigma=1137915200)
35×10193-539 = 3(8)1923<194> = 3 × 11 × 18268740473<11> × 56283536458453<14> × 1146097621415380053689663796137077625030413257417038531550577459164108451024277330644889503817876614655610255254185446017960839053662756557916627860415043901105765930879<169>
35×10194-539 = 3(8)1933<195> = 61 × 617 × 7789 × 2163952582499<13> × 2326287941625511<16> × 6746993270905212529064277315866309<34> × 39057761165108223751807608888821277864278277187051226632566244066718880660497494906726063888182641266851221458785471976443931<125> (Patrick Keller / GMP-ECM B1=1000000, sigma=3598124478 for P34 / February 4, 2006 2006 年 2 月 4 日)
35×10195-539 = 3(8)1943<196> = 11 × 353 × 13489623807653598428959653177019<32> × 51487742095228317442924939124091581562038710193368570909271675272529836034026541<80> × 1441964135999931337354171957198566278670873568884634970575400303519352382301293319<82> (Patrick Keller / GMP-ECM B1=1000000, sigma=3511339529 for P32 / January 31, 2006 2006 年 1 月 31 日) (Dmitry Domanov / Msieve 1.40 snfs / October 21, 2012 2012 年 10 月 21 日)
35×10196-539 = 3(8)1953<197> = 33 × 13 × 84349 × 461651807 × 446380663993523863<18> × 908799301214037157739831<24> × 18926803629417875634761866211<29> × 370572601126933505818972951766246195700206529887515200446193569195537707291856741066535946708729578200520407957<111> (Makoto Kamada / GMP-ECM 5.0.3 B1=400000, sigma=3918550445 for P29) (Makoto Kamada / GMP-ECM 5.0.3 B1=400000, sigma=3915766579 for P24)
35×10197-539 = 3(8)1963<198> = 11 × 463 × 34880858002007399819<20> × 514806359815458649763079161501829743<36> × 4252269643695698168328330433254915480275845783467216219695921082588566818129129419111983198983889030956016061164536160154228767390620250443<139> (Serge Batalov / GMP-ECM B1=3000000, sigma=434895112 for P36 / October 12, 2010 2010 年 10 月 12 日)
35×10198-539 = 3(8)1973<199> = 439 × 1189189 × 7449208520413474431533227220464699594994343772339371572156643721591170290875708881235363477177513680647568312221283513403040255561793033251132743301915979275041064459001862259350363008519073<190>
35×10199-539 = 3(8)1983<200> = 3 × 11 × 16342423135017998364937<23> × 1680432475532107764751967<25> × 42911537765188938458010871625151585401868344007712344743502510578462538153562130983433601031829142022843444433726920246603473287402546847731923578596069<152>
35×10200-539 = 3(8)1993<201> = 83 × 151 × 571 × 1740838653692061284041601<25> × 3783709586990893027321821791099021866837631<43> × 8250078300143916319364235495009315472733025070766478552200417975627466641643837070288928644800624983392700339656392160053337051<127> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=875829063 for P43 / February 23, 2011 2011 年 2 月 23 日)
35×10201-539 = 3(8)2003<202> = 11 × 29520363682363363<17> × [11975982319844168730449782839262485171157872699818661307768611565121530583364243893734511939187169126204353379630235446984523166851570099294037833105635316481693892026916519803902559731<185>] Free to factor
35×10202-539 = 3(8)2013<203> = 3 × 13 × 17 × 11232017060774229075595561404937778245080504718829971<53> × 5222209037923149243932466227573968627844114122494927049151001432919018100725797239696193229020421363107772637250632029753975154088645977133324768071<148> (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs / October 10, 2012 2012 年 10 月 10 日)
35×10203-539 = 3(8)2023<204> = 11 × 331 × 1193 × 7203683333685301<16> × 1480602304152622384716173088199770229357<40> × 8394046639969030217644979015910234388511287462665520800411766363135134526838860020523777843861335135451206224289839826090964092871329937772963<142> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4039518003 for P40 / October 10, 2012 2012 年 10 月 10 日)
35×10204-539 = 3(8)2033<205> = 27556987 × 514190767 × 3678610721<10> × 124074593952247<15> × 601316103672056511504995893297782183200811919696879963903889505837691259349955419153739193400586159481084225823661991608737312709644579035666992484455251578852342321<165>
35×10205-539 = 3(8)2043<206> = 32 × 11 × 23 × 43 × 419 × 6079 × 957240499036669<15> × 132839361080747011<18> × [1226309350570212908612450950387541394326942901483194208402791721642404305998036917969276177873335026377666977706594679154485986232929810010528444012758563571660767<163>] Free to factor
35×10206-539 = 3(8)2053<207> = 163 × 5229661 × 146817247 × 105939610560912235703<21> × 29331140107368328862301069438032945109010556472705900960009928028334185046820208067103941560640415507835970182870759620155859966683828749224195932225240753940252817779741<170>
35×10207-539 = 3(8)2063<208> = 11 × 320273 × 429631 × 43482305403210292918915087568623725498893<41> × [59088688341452065764340500464522546771345709121442501242518712074975012997750967272804098884873052421281472885865332700704050805174985165963123538990449267<155>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1948056152 for P41 / October 8, 2012 2012 年 10 月 8 日) Free to factor
35×10208-539 = 3(8)2073<209> = 3 × 13 × 5831691453182123<16> × 95562485522937921422917<23> × 1789282658929354551546230131832977540819545765472897849249440515566566088899760781408793401674927633061274379316471893056033927889864702858257324526558092693219520134067<169>
35×10209-539 = 3(8)2083<210> = 11 × 19 × 107 × 109 × 48177848535950441210590803442111361885346367073<47> × 1432610062966689934006556899380092569261371851117<49> × 2311498275817239377007204419393708788803902407015498336511657927742945791974821623596429305220746133606228289<109> (Bob Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs for P47 x P49 x P109 / August 9, 2017 2017 年 8 月 9 日)
35×10210-539 = 3(8)2093<211> = 1951 × 83491987 × 1123630735111455312568606579660322592687226929829<49> × 2563995746893953727112955589311118233060071217097813<52> × 8286717966320828674003877686032477865200651074240930466170918836220480000607615800822633373448354567<100> (Bob Backstrom / for P49 x P52 x P100 / November 28, 2017 2017 年 11 月 28 日)
35×10211-539 = 3(8)2103<212> = 3 × 11 × 293681 × 435161 × 214572193083012403275631<24> × [42974649038387902488763584334497158755402497016998673117664746407587167601676687491178296671957156477241249747693642170640573931407695770219322051810468895983614405082420403381<176>] Free to factor
35×10212-539 = 3(8)2113<213> = 191 × 743 × 6161192076463<13> × 619002613838938209575246904033072954840611<42> × 28426975499693666755326147511720076512166381<44> × 25276414439697730121485613502543804895105795663432922977820863660571980493642281017161444120400091535943675827<110> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=503403126 for P44, B1=3000000, sigma=4169135290 for P42 / October 8, 2012 2012 年 10 月 8 日)
35×10213-539 = 3(8)2123<214> = 112 × 56149 × 358230217 × 1597849688995254807096241915703943788426551594827875924110046383807873887481829123853109239988404205445269943592059452222177977355489404522502459355048796061411387103079521966541011691375682461270631<199>
35×10214-539 = 3(8)2133<215> = 32 × 13 × 7787532045831235017365165797923493750593263<43> × [42681514985858485861542545085718604339649515542150950518729534397801046465971651656906703367701372007491506382498829106849638811726990616436885218445398383378415310477673<170>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2348342888 for P43 / October 8, 2012 2012 年 10 月 8 日) Free to factor
35×10215-539 = 3(8)2143<216> = 11 × 251 × 1129 × [124757075695571490955058544752911660833560480323296198855079364926601313207236723093579106198248759977046123867165652195594428434547144825605826597431479938652312046247376670590811370473942506450208150051822307<210>] Free to factor
35×10216-539 = 3(8)2153<217> = 71 × 29868306682610631841<20> × [1833819490476371359247903847403220882932007440404111786718827535559238251359410077176782990110632610475963184650193314609258155472151130674208732891153635854529501556301345793893460878764487439253<196>] Free to factor
35×10217-539 = 3(8)2163<218> = 3 × 11 × 194861 × 48152130931997515226076923581474607657<38> × [125594654873681734690235288339141543297803890892889518269184149056442188757406088651576811242229752881781182535267809283344588415909590225060631523977658008487625001204895463<174>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3332148087 for P38 / October 5, 2012 2012 年 10 月 5 日) Free to factor
35×10218-539 = 3(8)2173<219> = 17 × 29 × 1607 × 3721874214043881648490792260710742788771161243213402722827<58> × 131886713882643062908930419398664827773108400923586759556942675155019872167968792380932614920718802784794400493864431277249995403095746378158205211651461979<156> (Bob Backstrom / Msieve 1.53 snfs for P58 x P156 / June 3, 2018 2018 年 6 月 3 日)
35×10219-539 = 3(8)2183<220> = 11 × 211 × 1999703 × 5789859615982993091<19> × 3979450016735444679151<22> × 853119113182587575838044984059029571<36> × 22120220243499678394995841304375251265995328809937<50> × 1927057572108199395992984469756052597622756640823105865791312448731619344299583868563<85> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1613257862 for P36 / October 4, 2012 2012 年 10 月 4 日) (Erik Branger / GGNFS, Msieve gnfs for P50 x P85 / October 15, 2012 2012 年 10 月 15 日)
35×10220-539 = 3(8)2193<221> = 3 × 13 × 30776813 × 126129668973117037897889250697<30> × 641844565726751421889213419033137494738751978793426140412579671<63> × 400212047202679855994151924288945527841692682460665073874018385165136666168790763792387275292221631281629242426052910887<120> (Makoto Kamada / GMP-ECM 6.4 B1=1e6, sigma=1629810731 for P30 / September 28, 2012 2012 年 9 月 28 日) (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P63 x P120 / April 24, 2018 2018 年 4 月 24 日)
35×10221-539 = 3(8)2203<222> = 11 × 4349 × 8129118269380398605507826018288193500886073891362463448000353035993413091596582054158508515832038480923282026984027443903277428225692194420637740941258991385457239676600449191849513762597230061014839124749448961911597<217>
35×10222-539 = 3(8)2213<223> = 2211329686735456150831837129875558398777556276369020626987<58> × 1758620124450995545213674359669486009526677362376347065853752706382689866568902305182288989370075674166682257970346841896044639008571009780463993839417592178974058009<166> (matsui / Msieve 1.51 snfs / January 20, 2013 2013 年 1 月 20 日)
35×10223-539 = 3(8)2223<224> = 34 × 11 × 47 × 3221 × 145423 × 870997 × [2276195127252046090438502593180216274552894088874452450984132176669657716483493570930183472212258174556799444000581362743140565337500525223660567802681276800149781865696340896834812058729326556425360786929<205>] Free to factor
35×10224-539 = 3(8)2233<225> = 347 × 433 × 1709 × 38479877 × 93519663247<11> × 448371861121<12> × 619714698538605773<18> × 3435175228492218453974999<25> × 440910508627218186168050699699571898751504780212442519271584849777589365141919335366380423140000697523100689663751458256560983562680065561095269<144>
35×10225-539 = 3(8)2243<226> = 11 × 52085009 × 158448292771259505139<21> × [42838330985596766718832897425489450696515337454738475756924666114807810307591433856157572717937487452791964172466448291013796797583123958649546318951498985675848969376569418891863445180049586951603<197>] Free to factor
35×10226-539 = 3(8)2253<227> = 3 × 13 × 43 × 11502631700803<14> × 8194254476710891399<19> × [246028722055437561969368522877168094865756408880388873561498193227657706468974308039574385613172653926279763324035726028588754514336503462008335936267517661604887621916298111766131002764493507<192>] Free to factor
35×10227-539 = 3(8)2263<228> = 11 × 19 × 23 × 353 × 11261 × 60859 × 11575933 × 5008450836497253601787<22> × 12715623088618055268081532113753869<35> × 260433589115609647531868239520688312194981<42> × 1741730171281925282237310496276956996986040618759161725362881809954781699933128762454252375454635316785442133<109> (Serge Batalov / GMP-ECM B1=3000000, sigma=2946303289 for P42 / October 5, 2012 2012 年 10 月 5 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3592219442 for P35 / October 5, 2012 2012 年 10 月 5 日)
35×10228-539 = 3(8)2273<229> = 3019 × 9613 × 18747856813555253609<20> × 7147461943283106081237194367571592223123634975731470270850404804469132069737171804862793059327375987804757945142648845039925934783415022652887127360933569498977115734106594931084965927641351578879492821<202>
35×10229-539 = 3(8)2283<230> = 3 × 11 × 1713915868327863068890523586611<31> × 9971271494425309358065969726963<31> × [68955919512396316493889475590774234536780766804553400236095803912726038549592132792148686380490035051266275081833313733635446668287328918100546662710081836107558546907<167>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3569313594 for P31(1713...) / October 4, 2012 2012 年 10 月 4 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3239357472 for P31(9971...) / October 5, 2012 2012 年 10 月 5 日) Free to factor
35×10230-539 = 3(8)2293<231> = 33494889049<11> × 815947893656252491097<21> × 14229333744509199160668006353285461838079320539134532508842697277100681368682504233866407074514399102347901701979497000801037920503558332955584693027681879431487891552580569052795584643950076463258211<200>
35×10231-539 = 3(8)2303<232> = 11 × 38303 × 7912679558087020823<19> × 846336148890643962078191311818024932282473<42> × 1378267736469496012120238459698212053081213104411737575179854008744577802824691330183530128573704235985632130495461998579504099396080379880294779007225138991249128969<166> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=718503599 for P42 / February 25, 2013 2013 年 2 月 25 日)
35×10232-539 = 3(8)2313<233> = 32 × 13 × 452156869174169<15> × 63812479474863025683323<23> × [11519799501344631899778207439729818217067128613847475097552136221729272154332037088047754813658400201677467411782268414998378939295523673664299726558256334120654034560092365633804964266231858477<194>] Free to factor
35×10233-539 = 3(8)2323<234> = 11 × 44281 × 6798323813<10> × 1972537592158593211201727<25> × 17916410273918295347512346551<29> × 3323053209865901034961907980663566262522247924531267494840345421061834573712022233647330464803722624493433121933494635215177222904023022971734054706888266963929145413<166> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=154233393 for P29 / October 4, 2012 2012 年 10 月 4 日)
35×10234-539 = 3(8)2333<235> = 17 × 8277443943804609175339567<25> × 95602497405666682945081668268956221359<38> × 42531795384706727295626454541003179880783<41> × 25859894362725814582727091577428278992277660801<47> × 262827416105095669219078927420989902336340248818971848959613883614847820788408043501<84> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3778843539 for P41 / October 8, 2012 2012 年 10 月 8 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4146876337 for P38 / October 11, 2012 2012 年 10 月 11 日) (Dmitry Domanov / October 27, 2012 2012 年 10 月 27 日)
35×10235-539 = 3(8)2343<236> = 3 × 112 × 33629 × 4266622183699<13> × 75206724875274263<17> × [9928053144643554969300784396165716972095797077759500396086045837021548394844570761961749972436792896244604445965266560423737691410511214019839035108860832626144698876224599632911621177005636675909017<199>] Free to factor
35×10236-539 = 3(8)2353<237> = 3259 × 1744009 × 89528092297753<14> × 764245908232232729914104219865685462255389558630365739134186892367627551644092873701772744003969160885860283279876121585250875771674001142737063376401036369542885697759615979526713918376401908188180537080441977481<213>
35×10237-539 = 3(8)2363<238> = 11 × 244397938226794765169<21> × 1238041300804766145683161736884993521209804233<46> × [1168423219831954899428878275287027916391722793834011419404820829265291907052775797836292759222512566190770606686473855122764014463700900487280421182327692452335501266743489<172>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=768727814 for P46 / October 5, 2012 2012 年 10 月 5 日) Free to factor
35×10238-539 = 3(8)2373<239> = 3 × 13 × 97 × 181 × 123151283867<12> × 70938925440755965787<20> × 10603216083210288538596374187599<32> × 613125610762376121617201275062000917764101747978344312532306545657870126108298833062576908573864905280099751222457482711687569531125172151742513431635742090483441655657351<171> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2281734499 for P32 / October 4, 2012 2012 年 10 月 4 日)
35×10239-539 = 3(8)2383<240> = 11 × 277 × 6922778113495414727<19> × 5011230261048494245936009727521<31> × [3678987481939464421106191480151200353605799761284693476375580476329138008580486889459944114678153529006738840515659242201569262153039103980546499198309300020739793368810528034474590962467<187>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=414527949 for P31 / October 4, 2012 2012 年 10 月 4 日) Free to factor
35×10240-539 = 3(8)2393<241> = 59 × 233 × 48247673 × 851148227393<12> × 234958402800579887280099967<27> × 332214992052742565504949777867839<33> × 88252257340639383995931302975120088646013724497839087649849997011387756278347339513955934254739529270831154399698519068660138591541696797466318991612639352777<158> (Makoto Kamada / GMP-ECM 6.4 B1=1e6, sigma=3208939874 for P33 / October 2, 2012 2012 年 10 月 2 日)
35×10241-539 = 3(8)2403<242> = 32 × 11 × 83 × 14009 × 64333 × 445254393943817<15> × 11709268034110841<17> × 1007240887934617956513048249952878241243905377466371596285133731115376758760584120157512719714887570487622245737727658858770744792280792246928714251715349711856191597037802173996564228806858624162511<199>
35×10242-539 = 3(8)2413<243> = 541 × 1060107143040971477<19> × 678076212147588944176555448112526957287276544340435490983638239218216840029406480627941072067036978063909335507826610229705231138108057679270501620234666859881241526244348316512933620208389603574575028137261724620466622419<222>
35×10243-539 = 3(8)2423<244> = 11 × 421 × 2148011 × 241927447 × 28261074201072107<17> × 13399925168277392945845638551<29> × [4267151596129361035284081769983569338500230227577030197650244994286546512555082877440476766033326976454328327039240180278227606175996250563339021040060614680900484433234293349691997<181>] Free to factor
35×10244-539 = 3(8)2433<245> = 3 × 13 × 166922864582579531090089235136377458246675063<45> × [5973723250224296780694563060696388963984778876304335252276951757549849243582591461500530967765231186367922832808501351188131444211449418969223172138992402050177807685949631888874979595007496654449619<199>] (Friedhelm Baumeister / GMP-ECM B1=110000000, sigma=1942982504 for P45 / March 3, 2013 2013 年 3 月 3 日) Free to factor
35×10245-539 = 3(8)2443<246> = 11 × 19 × 28268711 × 2669065381<10> × 322466379132604472270252323<27> × 303885316953213622206482696513<30> × [251663291822991666598628329238441058233560210885995246308093154779667561671136830018138843190205096944052053603851455375271225222091235775933520858371022177012544157630443<171>] (Makoto Kamada / GMP-ECM 6.4 B1=1e6, sigma=1384578652 for P30 / October 2, 2012 2012 年 10 月 2 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=402567570 for P27 / October 4, 2012 2012 年 10 月 4 日) Free to factor
35×10246-539 = 3(8)2453<247> = 29 × 3329 × 8117 × 1634666867936972148319<22> × [3035910300129235149924434541952771172884338537671571864989902468583381192355343178973081318789626357721780591629179247899844299456366119371369982139365580205579274682467853073882446975176693650758028073790832351591981<217>] Free to factor
35×10247-539 = 3(8)2463<248> = 3 × 11 × 43 × 199 × 3089 × [44583294197321556670947288349536704246629761637324465203536983647077356077989501001328113278206067129793927030049294801954333056356306230618504342292034091844878331687618093447749153230416821365761523800621999650902361206045981644634110287<239>] Free to factor
35×10248-539 = 3(8)2473<249> = 2939 × 475028582981<12> × 2359769998459626237613178487397<31> × 1965911233078599030818748933626436041<37> × 60044416243375021849404006933098936560348815554580263007896817612130167242184776818827939884351749050882027197108158188807635062095809353300800176593820089265560955881<167> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2239419757 for P31 / October 4, 2012 2012 年 10 月 4 日) (Serge Batalov / GMP-ECM B1=3000000, sigma=1974719302 for P37 / October 5, 2012 2012 年 10 月 5 日)
35×10249-539 = 3(8)2483<250> = 11 × 23 × 211 × 7727 × 653164943 × 63487763371751<14> × 227351985707237927253897915062866850231750226181115799242910935990082027081891851394377351386840392133311462331075619170915409124375061296555699804225035661216063941827134116102912308870660160929856672105739799511852291<219>
35×10250-539 = 3(8)2493<251> = 33 × 132 × 17 × 29448737 × 1480271383<10> × [11500537223206871933069497733168247211490535523236087735128042297701567378379063411127512822179664846811235039903761503160874917467832881961365959086378510918419735085245091965786038989064852510852964436163503379497139605363102263<230>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク