Table of contents 目次

  1. About 499...993 499...993 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 499...993 499...993 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 499...993 499...993 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 499...993 499...993 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

49w3 = { 43, 493, 4993, 49993, 499993, 4999993, 49999993, 499999993, 4999999993, 49999999993, … }

1.3. General term 一般項

5×10n-7 (1≤n)

2. Prime numbers of the form 499...993 499...993 の形の素数

2.1. Last updated 最終更新日

September 16, 2015 2015 年 9 月 16 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 5×101-7 = 43 is prime. は素数です。
  2. 5×103-7 = 4993 is prime. は素数です。
  3. 5×104-7 = 49993 is prime. は素数です。
  4. 5×108-7 = 499999993 is prime. は素数です。
  5. 5×1014-7 = 4(9)133<15> is prime. は素数です。
  6. 5×1016-7 = 4(9)153<17> is prime. は素数です。
  7. 5×1024-7 = 4(9)233<25> is prime. は素数です。
  8. 5×1061-7 = 4(9)603<62> is prime. は素数です。
  9. 5×1080-7 = 4(9)793<81> is prime. は素数です。
  10. 5×1087-7 = 4(9)863<88> is prime. は素数です。
  11. 5×10104-7 = 4(9)1033<105> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / December 3, 2004 2004 年 12 月 3 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 3, 2005 2005 年 1 月 3 日)
  12. 5×10108-7 = 4(9)1073<109> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / December 3, 2004 2004 年 12 月 3 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 3, 2005 2005 年 1 月 3 日)
  13. 5×10144-7 = 4(9)1433<145> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / December 3, 2004 2004 年 12 月 3 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 3, 2005 2005 年 1 月 3 日)
  14. 5×102157-7 = 4(9)21563<2158> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Ray Chandler / Primo 3.0.9 / September 7, 2010 2010 年 9 月 7 日)
  15. 5×103325-7 = 4(9)33243<3326> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 18, 2004 2004 年 12 月 18 日) (certified by: (証明: Mathew / PRIMO 4.0.0 - alpha 16 - LG64 / August 12, 2012 2012 年 8 月 12 日)
  16. 5×104122-7 = 4(9)41213<4123> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 19, 2004 2004 年 12 月 19 日) (certified by: (証明: Mathew / PRIMO 4.0.0 - alpha 16 - LG64 / August 12, 2012 2012 年 8 月 12 日)
  17. 5×1020718-7 = 4(9)207173<20719> is PRP. はおそらく素数です。 (Dmitry Domanov / Prime95 v25.11, pfgw / March 8, 2010 2010 年 3 月 8 日)
  18. 5×1051163-7 = 4(9)511623<51164> is PRP. はおそらく素数です。 (Dmitry Domanov / Prime95 v25.11, pfgw / March 8, 2010 2010 年 3 月 8 日)
  19. 5×10140744-7 = 4(9)1407433<140745> is PRP. はおそらく素数です。 (Bob Price / September 15, 2015 2015 年 9 月 15 日)

2.3. Range of search 捜索範囲

  1. n≤100000 / Completed 終了 / Dmitry Domanov / March 8, 2010 2010 年 3 月 8 日
  2. n≤200000 / Completed 終了 / Bob Price / September 15, 2015 2015 年 9 月 15 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

  1. 5×106k+5-7 = 13×(5×105-713+45×105×106-19×13×k-1Σm=0106m)
  2. 5×1015k+7-7 = 31×(5×107-731+45×107×1015-19×31×k-1Σm=01015m)
  3. 5×1016k+2-7 = 17×(5×102-717+45×102×1016-19×17×k-1Σm=01016m)
  4. 5×1018k+10-7 = 19×(5×1010-719+45×1010×1018-19×19×k-1Σm=01018m)
  5. 5×1021k+1-7 = 43×(5×101-743+45×10×1021-19×43×k-1Σm=01021m)
  6. 5×1022k+6-7 = 23×(5×106-723+45×106×1022-19×23×k-1Σm=01022m)
  7. 5×1028k+2-7 = 29×(5×102-729+45×102×1028-19×29×k-1Σm=01028m)
  8. 5×1030k+19-7 = 211×(5×1019-7211+45×1019×1030-19×211×k-1Σm=01030m)
  9. 5×1033k+17-7 = 67×(5×1017-767+45×1017×1033-19×67×k-1Σm=01033m)
  10. 5×1034k+25-7 = 103×(5×1025-7103+45×1025×1034-19×103×k-1Σm=01034m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 25.00%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 25.00% です。

3. Factor table of 499...993 499...993 の素因数分解表

3.1. Last updated 最終更新日

August 21, 2017 2017 年 8 月 21 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=191, 198, 202, 210, 211, 213, 214, 215, 218, 220, 221, 229, 232, 235, 237, 238, 240, 241, 242, 244, 246, 247, 249 (23/250)

3.4. Factor table 素因数分解表

5×101-7 = 43 = definitely prime number 素数
5×102-7 = 493 = 17 × 29
5×103-7 = 4993 = definitely prime number 素数
5×104-7 = 49993 = definitely prime number 素数
5×105-7 = 499993 = 13 × 38461
5×106-7 = 4999993 = 23 × 149 × 1459
5×107-7 = 49999993 = 31 × 1612903
5×108-7 = 499999993 = definitely prime number 素数
5×109-7 = 4999999993<10> = 61 × 81967213
5×1010-7 = 49999999993<11> = 19 × 59 × 173 × 347 × 743
5×1011-7 = 499999999993<12> = 13 × 113 × 401 × 848797
5×1012-7 = 4999999999993<13> = 389 × 2897 × 4436821
5×1013-7 = 49999999999993<14> = 199 × 251256281407<12>
5×1014-7 = 499999999999993<15> = definitely prime number 素数
5×1015-7 = 4999999999999993<16> = 167 × 6763 × 4427047133<10>
5×1016-7 = 49999999999999993<17> = definitely prime number 素数
5×1017-7 = 499999999999999993<18> = 13 × 67 × 76541 × 7499938763<10>
5×1018-7 = 4999999999999999993<19> = 172 × 79549 × 217489070413<12>
5×1019-7 = 49999999999999999993<20> = 211 × 47964907 × 4940420809<10>
5×1020-7 = 499999999999999999993<21> = 62011 × 8063085581590363<16>
5×1021-7 = 4999999999999999999993<22> = 47 × 2485243763<10> × 42805852813<11>
5×1022-7 = 49999999999999999999993<23> = 31 × 43 × 107 × 350554928451739103<18>
5×1023-7 = 499999999999999999999993<24> = 13 × 157 × 4285783 × 57160605654631<14>
5×1024-7 = 4999999999999999999999993<25> = definitely prime number 素数
5×1025-7 = 49999999999999999999999993<26> = 103 × 2029091 × 239238601523481941<18>
5×1026-7 = 499999999999999999999999993<27> = 811 × 3469 × 177723497072360832727<21>
5×1027-7 = 4999999999999999999999999993<28> = 84719 × 59018638085907529597847<23>
5×1028-7 = 49999999999999999999999999993<29> = 19 × 23 × 5813 × 5030693 × 24760837 × 158013833
5×1029-7 = 499999999999999999999999999993<30> = 13 × 63961571 × 4098523619<10> × 146716881589<12>
5×1030-7 = 4999999999999999999999999999993<31> = 29 × 853 × 29224597 × 6916309894920115637<19>
5×1031-7 = 49999999999999999999999999999993<32> = 52631 × 950010450114951264463909103<27>
5×1032-7 = 499999999999999999999999999999993<33> = 36821 × 22773034862191<14> × 596284491707963<15>
5×1033-7 = 4999999999999999999999999999999993<34> = 13686811221215221<17> × 365315186947983733<18>
5×1034-7 = 49999999999999999999999999999999993<35> = 17 × 163 × 352760184001<12> × 51150975210032598083<20>
5×1035-7 = 499999999999999999999999999999999993<36> = 13 × 269 × 142979696883042607949671146697169<33>
5×1036-7 = 4999999999999999999999999999999999993<37> = 170207 × 29375995111834413390753611778599<32>
5×1037-7 = 49999999999999999999999999999999999993<38> = 31 × 1063 × 2843 × 3889 × 4057 × 96320408521<11> × 351185777699<12>
5×1038-7 = 499999999999999999999999999999999999993<39> = 1096031 × 4732361 × 96398283295796653726064623<26>
5×1039-7 = 4999999999999999999999999999999999999993<40> = 159707 × 31307331550902590368612521680327099<35>
5×1040-7 = 49999999999999999999999999999999999999993<41> = 1303 × 2027 × 4044737505261239<16> × 4680384127290328027<19>
5×1041-7 = 499999999999999999999999999999999999999993<42> = 132 × 4107291845023<13> × 720323754262034254685348239<27>
5×1042-7 = 4999999999999999999999999999999999999999993<43> = 97 × 5569 × 133981 × 69084057543745736483347187695021<32>
5×1043-7 = 49999999999999999999999999999999999999999993<44> = 43 × 887 × 112243463 × 11679301546872137886359916851371<32>
5×1044-7 = 499999999999999999999999999999999999999999993<45> = 139 × 10607 × 5770863677<10> × 58765416691843323893109869833<29>
5×1045-7 = 4999999999999999999999999999999999999999999993<46> = 511963 × 3468739 × 46466621 × 60592477965204159315368669<26>
5×1046-7 = 49999999999999999999999999999999999999999999993<47> = 19 × 35899 × 92667762961<11> × 731692441637329<15> × 1081127226244537<16>
5×1047-7 = 499999999999999999999999999999999999999999999993<48> = 13 × 379 × 101481631824639740207022528922265070022325959<45>
5×1048-7 = 4999999999999999999999999999999999999999999999993<49> = 144383 × 2117500795169<13> × 16354239777786206684045801912359<32>
5×1049-7 = 49999999999999999999999999999999999999999999999993<50> = 211 × 236966824644549763033175355450236966824644549763<48>
5×1050-7 = 499999999999999999999999999999999999999999999999993<51> = 17 × 23 × 67 × 257 × 10296852839632129<17> × 7212416777499355558371690773<28>
5×1051-7 = 4(9)503<52> = 2239 × 3877 × 169629371 × 3395619805909712588457382206728570561<37>
5×1052-7 = 4(9)513<53> = 31 × 6329 × 33172597 × 53305951 × 144117940212771122741699560858781<33>
5×1053-7 = 4(9)523<54> = 13 × 173 × 48337 × 55073 × 83514545439888039279524550000351707653057<41>
5×1054-7 = 4(9)533<55> = 3389 × 27457 × 33461 × 20307032651890929827<20> × 79078781486807268141203<23>
5×1055-7 = 4(9)543<56> = 31795652723<11> × 732235434871942069<18> × 2147590715171202669692733239<28>
5×1056-7 = 4(9)553<57> = 882031 × 331377063839<12> × 1710660035863004466380076878182790096777<40>
5×1057-7 = 4(9)563<58> = 1879 × 535813476231525443437<21> × 4966261593406823490099203567799691<34>
5×1058-7 = 4(9)573<59> = 29 × 65476057051<11> × 26332342060419632684040341468429541782174538167<47>
5×1059-7 = 4(9)583<60> = 13 × 103 × 21163 × 239237 × 462901 × 3798868031743584581<19> × 41941264662555911780917<23>
5×1060-7 = 4(9)593<61> = 29101 × 13043017573<11> × 104658839875118648989<21> × 125865902918367221277233869<27>
5×1061-7 = 4(9)603<62> = definitely prime number 素数
5×1062-7 = 4(9)613<63> = 967 × 3387226238955047271972682201<28> × 152650884593843919399635945157079<33>
5×1063-7 = 4(9)623<64> = 86216671301<11> × 1307364546157<13> × 44359030895215188224016890308418205668249<41>
5×1064-7 = 4(9)633<65> = 19 × 43 × 293 × 3793 × 230471 × 905783 × 1496149100546002339<19> × 176312115851761015563271223<27>
5×1065-7 = 4(9)643<66> = 13 × 38726319459822019<17> × 993162763671402757165153499347326633952961637919<48>
5×1066-7 = 4(9)653<67> = 17 × 22699 × 1503659 × 96971893581949<14> × 416575266147026821<18> × 213317086472810637274561<24>
5×1067-7 = 4(9)663<68> = 31 × 47 × 571 × 1048613 × 1752917 × 1560644909<10> × 20950464386167750432212296269213354218271<41>
5×1068-7 = 4(9)673<69> = 59 × 311 × 6131 × 103398841918382830739<21> × 42984374654409517358576633764168178249173<41>
5×1069-7 = 4(9)683<70> = 61 × 67767248279<11> × 1155499459489<13> × 154458187190039<15> × 6777033586715618523743101096957<31>
5×1070-7 = 4(9)693<71> = 37101184972585473808449658591<29> × 1347665850482824760328258132744229906576423<43>
5×1071-7 = 4(9)703<72> = 13 × 9465499 × 4063339762810017891128776038277375713468623097581908945155616039<64>
5×1072-7 = 4(9)713<73> = 23 × 109 × 1277 × 10211 × 68899 × 14953022203397<14> × 148461758415656846153369297317127124558365539<45>
5×1073-7 = 4(9)723<74> = 3067 × 179120169079558440491<21> × 91014741057644444189576390657225110196017315532369<50>
5×1074-7 = 4(9)733<75> = 2927 × 153855659 × 375347857 × 2958011557133230463311851690373741277332037527370911093<55>
5×1075-7 = 4(9)743<76> = 107 × 2657 × 81199 × 216592787940278489897742928147021498149051251110376951758856811493<66>
5×1076-7 = 4(9)753<77> = 397 × 73354987151<11> × 1716919179927286202844112758186223459536934511434710652213360019<64>
5×1077-7 = 4(9)763<78> = 13 × 4623523 × 43723913 × 1197095550647<13> × 34460738273033<14> × 81377972988944869<17> × 56672757728493222581<20>
5×1078-7 = 4(9)773<79> = 16766065568376651346511197700054717<35> × 298221427061024988706460366279980266175899629<45> (Makoto Kamada / GGNFS-0.70.1 / 0.10 hours)
5×1079-7 = 4(9)783<80> = 211 × 714169 × 55250600379726167188919<23> × 6005505272555399767145053157832039662696284665533<49>
5×1080-7 = 4(9)793<81> = definitely prime number 素数
5×1081-7 = 4(9)803<82> = 499 × 759691 × 71582796316739<14> × 184256924376313044271953621765123546709859837783983922565443<60>
5×1082-7 = 4(9)813<83> = 17 × 19 × 31 × 128677 × 54072751199<11> × 757903833481<12> × 946917821867908179868309943760352685816913647409247<51>
5×1083-7 = 4(9)823<84> = 13 × 67 × 47186149 × 2671373518318949<16> × 4554101420064112391474936550051041609255757926678280454583<58>
5×1084-7 = 4(9)833<85> = 313 × 358526237 × 579199171 × 43603351973<11> × 526236223495249<15> × 3352557044844704360277322028071054780459<40>
5×1085-7 = 4(9)843<86> = 43 × 1033 × 275027 × 3557681 × 76488851023235281<17> × 1487085545710633687727<22> × 10114043139228676295960887955663<32>
5×1086-7 = 4(9)853<87> = 292 × 594530321046373365041617122473246135552913198573127229488703923900118906064209274673<84>
5×1087-7 = 4(9)863<88> = definitely prime number 素数
5×1088-7 = 4(9)873<89> = 117643 × 1661574551308575217<19> × 4818951778772834132066222017<28> × 53080071723854930090919480862491195259<38>
5×1089-7 = 4(9)883<90> = 13 × 415051745011<12> × 788529654001610970298617524900339569<36> × 117518537356735510440202494870970890162079<42> (Makoto Kamada / msieve 0.83 / 20 minutes)
5×1090-7 = 4(9)893<91> = 139 × 35971223021582733812949640287769784172661870503597122302158273381294964028776978417266187<89>
5×1091-7 = 4(9)903<92> = 78929 × 633480723181593584107235616820180161917672845215320097809423659238049386157179237035817<87>
5×1092-7 = 4(9)913<93> = 13898534876321<14> × 3440273961349995002617157311<28> × 10457020387658725328682433938865903245784520194806503<53>
5×1093-7 = 4(9)923<94> = 103 × 5252783213<10> × 529577956675289<15> × 17450722103182341305546808006419221258709763956695822515873760047283<68>
5×1094-7 = 4(9)933<95> = 23 × 114102294660144869195038986600073<33> × 19052316607245177866563142667749361827148622136459302807712567<62> (Makoto Kamada / GGNFS-0.70.7 / 0.37 hours)
5×1095-7 = 4(9)943<96> = 13 × 179 × 147551 × 163042062190369536263<21> × 16702468335085249058640040679<29> × 534750435614048618897064585714381069217<39>
5×1096-7 = 4(9)953<97> = 173 × 2503 × 186635591099<12> × 198114429219251<15> × 312285973075481428509859788775946627773582677365627687792625200603<66>
5×1097-7 = 4(9)963<98> = 31 × 10267687 × 483293389 × 46219880844617<14> × 7032277715429545805640961265902597701817957505147814072768352022813<67>
5×1098-7 = 4(9)973<99> = 17 × 6548897 × 31381979430881<14> × 143110859351174569058512918213859993696399069726919602709362823783032098001897<78>
5×1099-7 = 4(9)983<100> = 4647535350279428239<19> × 193967957401516739303981<24> × 5546478196456947532042934374127753263211897346871605349427<58>
5×10100-7 = 4(9)993<101> = 19 × 310649677693<12> × 1918486924742347345734133949848177<34> × 4415568763140683818638576264263176498579946980278990127<55> (Makoto Kamada / GGNFS-0.70.7 / 0.54 hours)
5×10101-7 = 4(9)1003<102> = 13 × 157 × 907 × 72421 × 2049527364858239384321700008279<31> × 1819707034429694933633507125502307907447534493137381455537521<61> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=4016183088 for P31 / September 11, 2007 2007 年 9 月 11 日)
5×10102-7 = 4(9)1013<103> = 317257 × 911565062767<12> × 17289049565015714866216774819650309685722023179251734283300928716766662833652643607647<86>
5×10103-7 = 4(9)1023<104> = 1054033 × 11594362361<11> × 4410131384499304810512717460695947827<37> × 927721024511601037911354571948957412235819374408843<51> (Sinkiti Sibata / Msieve v. 1.26 for P37 x P51 / 6.29 hours on Pentium3 750MHz, Windows Me / September 18, 2007 2007 年 9 月 18 日)
5×10104-7 = 4(9)1033<105> = definitely prime number 素数
5×10105-7 = 4(9)1043<106> = 94496578100629<14> × 34485434914764315953179<23> × 75180227371604432835867829<26> × 20408664194956440645663064675717247969868787<44>
5×10106-7 = 4(9)1053<107> = 43 × 541 × 701 × 1688573 × 166618913 × 10897882677034909209294504894905091911316444503877455753872874329547523263248540221839<86>
5×10107-7 = 4(9)1063<108> = 13 × 636360113413<12> × 463686938737063<15> × 2781475007266589773<19> × 46862308287772426188402823215210430717710093400376526499970203<62>
5×10108-7 = 4(9)1073<109> = definitely prime number 素数
5×10109-7 = 4(9)1083<110> = 211 × 40638029 × 5831159396154517312667288943817549980700209396549059388570499739709931417927848645793216256550405647<100>
5×10110-7 = 4(9)1093<111> = 479 × 1043841336116910229645093945720250521920668058455114822546972860125260960334029227557411273486430062630480167<109>
5×10111-7 = 4(9)1103<112> = 56737 × 8860929797<10> × 16330700522802309872083<23> × 108683402929053105713489129<27> × 5603460275962177162975326602918912342098725489391<49>
5×10112-7 = 4(9)1113<113> = 31 × 199 × 1726577810038023749<19> × 6338023959737574815597795059605732175772951<43> × 740653709666671254036993453169242903252989973403<48> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs / 1.95 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / September 18, 2007 2007 年 9 月 18 日)
5×10113-7 = 4(9)1123<114> = 13 × 47 × 160507 × 5098410695886460514741458013104281862494701094303497804425516334150530392253262694785163017144415450236009<106>
5×10114-7 = 4(9)1133<115> = 17 × 29 × 419 × 1128509 × 841335827347<12> × 5222106247087<13> × 4881900777010142662031771371698492484449667338927809457587940893238989032627879<79>
5×10115-7 = 4(9)1143<116> = 163 × 667712741 × 70826965683904909546478403073<29> × 6486256219362160791376151729115588151998726511950211431157707264717123110327<76>
5×10116-7 = 4(9)1153<117> = 23 × 67 × 100829 × 14243447 × 885300919 × 255197189223493082856519016310912052371661839729900418698259034228723460643852652649778842009<93>
5×10117-7 = 4(9)1163<118> = 8761 × 24329 × 92353 × 36290089456341223<17> × 447805373261740949269<21> × 659243142383270449591226863<27> × 23709265388135820837211392460156027023629<41>
5×10118-7 = 4(9)1173<119> = 19 × 18973 × 27407 × 500519 × 43963897 × 229986395611119844406207233493384206475870468549130003646531312275615822741149642479975544419039<96>
5×10119-7 = 4(9)1183<120> = 132 × 1108453 × 55111498823<11> × 48431039903573129525530940979134099221230901993607942118717921853010301225378553817053265672363899163<101>
5×10120-7 = 4(9)1193<121> = 131 × 38167938931297709923664122137404580152671755725190839694656488549618320610687022900763358778625954198473282442748091603<119>
5×10121-7 = 4(9)1203<122> = 281243 × 22344011 × 33910627 × 4647334392013<13> × 50487911219871609964463763562996389377126375643668830965066589421730982504228440199433191<89>
5×10122-7 = 4(9)1213<123> = 18701 × 93529 × 8183225572771329171976649<25> × 34932877456214753222916083317913202354532411073838371810692549446482878447312404028822333<89>
5×10123-7 = 4(9)1223<124> = 113 × 889867277477<12> × 3323194013521<13> × 45712463552621<14> × 106202306503847201<18> × 816466141480652325139<21> × 1896620487565250106911<22> × 1990322414978772708655037<25>
5×10124-7 = 4(9)1233<125> = 38611 × 450361 × 2871839245138288177663<22> × 96307871964544146356044436726531<32> × 10396239289011278195567666108316680054766182724101112004334711<62> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs / 2.52 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / September 18, 2007 2007 年 9 月 18 日)
5×10125-7 = 4(9)1243<126> = 13 × 2857 × 1574782569067<13> × 5838950571776281<16> × 292924442772209379166691899342190629<36> × 4998105296856734377409878285199029073331658288276776782731<58> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon gnfs for P36 x P58 / 6.66 hours on Cygwin on AMD XP 2700+ / September 19, 2007 2007 年 9 月 19 日)
5×10126-7 = 4(9)1253<127> = 59 × 443 × 64069667569308563<17> × 2985807439808549402240060899147545904877923827320044411718831371061642167764003760029209151616134146348603<106>
5×10127-7 = 4(9)1263<128> = 31 × 43 × 103 × 20522387151637323913397836943<29> × 17744948937476731372135347675897562789446075044512475819147521086224193210459696219926237686349<95>
5×10128-7 = 4(9)1273<129> = 107 × 131730407729<12> × 94196732126408608783907<23> × 376586159111950198076153416272247530324334892097736740791964622590496260987796144883295672233<93>
5×10129-7 = 4(9)1283<130> = 61 × 3347 × 922379141 × 3756593053<10> × 9451394023069<13> × 747799144186381110136249098524659330519902004795953457052035634572552874340864723206643341467<93>
5×10130-7 = 4(9)1293<131> = 17 × 160668811253268490388087<24> × 6467580254270363725519254058868497565332259571617<49> × 2830399090682433194863117944409611442158552826222489705151<58> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 3.74 hours on Core 2 Duo E6300 1.86GHz, Windows Vista and Cygwin / September 20, 2007 2007 年 9 月 20 日)
5×10131-7 = 4(9)1303<132> = 13 × 8053 × 4776050970015952010239853279714201109954245431707247179741902205580337953366638328764244572018072576870540362406747604810438537<127>
5×10132-7 = 4(9)1313<133> = 1803259 × 21637095769<11> × 704898240089<12> × 66744018120546449161802491041419358230857<41> × 2723793341179006978601831413759133998675258378764478782653155571<64> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 2.35 hours on Core 2 Quad Q6600 / September 19, 2007 2007 年 9 月 19 日)
5×10133-7 = 4(9)1323<134> = 401238263593464253441<21> × 162299914415288288281496198151331987381<39> × 767802233705694607885077764652977937099475049390304533874402633274801489333<75> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 2.90 hours on Core 2 Quad Q6600 / September 19, 2007 2007 年 9 月 19 日)
5×10134-7 = 4(9)1333<135> = 1723 × 6271 × 109843567 × 64745642610161<14> × 27318082727785891<17> × 238183974037552708162730344106983506093311068864900283347267035738831195232929519606833513<90>
5×10135-7 = 4(9)1343<136> = 797 × 270450534004642722167<21> × 1146290454082517684833<22> × 44098221600025182406699<23> × 458889465955324560904459706434155409522020550275117434515042089214321<69>
5×10136-7 = 4(9)1353<137> = 19 × 139 × 6967 × 304949 × 43352727754257453263558076969496197958853012323126787749<56> × 205547477085329019216150576259951986360308957854427429660726601104519<69> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 3.57 hours on Core 2 Quad Q6600 / September 19, 2007 2007 年 9 月 19 日)
5×10137-7 = 4(9)1363<138> = 13 × 673573 × 7297977952249711<16> × 9394428712264339107505356592635883<34> × 832854352226576752484715428137571713119476790537271630219939252608157903031281189<81> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 3.58 hours on Core 2 Quad Q6600 / September 19, 2007 2007 年 9 月 19 日)
5×10138-7 = 4(9)1373<139> = 23 × 97 × 76129 × 335507 × 589299164638605947647771819491726255852140418406087<51> × 148895954377143576247780304403642128934646012521450079487879648263630397923<75> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 5.39 hours on Core 2 Quad Q6600 / September 19, 2007 2007 年 9 月 19 日)
5×10139-7 = 4(9)1383<140> = 173 × 211 × 647 × 162643631237<12> × 29744296532640139<17> × 134842814492239828697<21> × 3245402695139569689360206975033043528955418172174213055002952183653414702901833017863<85>
5×10140-7 = 4(9)1393<141> = 3373 × 1903723828713677<16> × 77866332008327971949596506994505948866601940202923856949168853767263785352148287877408555171270086954169900145155626110833<122>
5×10141-7 = 4(9)1403<142> = 11923606613227<14> × 6132918427402613853147289<25> × 68374659536092650276910729465562168851654618520575858973205281384056260566506199343187440865506285500131<104>
5×10142-7 = 4(9)1413<143> = 29 × 31 × 1979 × 3277843 × 2223141064464610943664418818229457665011638221<46> × 3856642203506996485674317701132711550770098652412611342040704528870940226564907142911<85> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs / 19.11 hours on Cygwin on AMD XP 2700+ / September 20, 2007 2007 年 9 月 20 日)
5×10143-7 = 4(9)1423<144> = 13 × 665794015879030348762037<24> × 2457983453888362366242036666452627350164707<43> × 23502161675736277599130693612709951586027071255823077510499322192862480222179<77> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 8.30 hours on Core 2 Quad Q6600 / September 20, 2007 2007 年 9 月 20 日)
5×10144-7 = 4(9)1433<145> = definitely prime number 素数
5×10145-7 = 4(9)1443<146> = 348607637797598731797334666578807254587298021398884344017102244986489<69> × 143427723832688809873861290555759641653195758704762012607777555925493706059137<78> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 8.30 hours on Core 2 Quad Q6600 / September 19, 2007 2007 年 9 月 19 日)
5×10146-7 = 4(9)1453<147> = 17 × 14921539 × 248698679 × 471359479252760034787043<24> × 39419505496131463374918351524556451155850236259<47> × 426550611477417551441580681597762746623708391057419314031757<60> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 10.51 hours on Core 2 Quad Q6600 / September 20, 2007 2007 年 9 月 20 日)
5×10147-7 = 4(9)1463<148> = 181 × 1935949243<10> × 39143694405820216125374984826505126817968351<44> × 364531993422512812212311418475269937871127766102122723800434357272554629366883846804656575121<93> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 10.32 hours on Core 2 Quad Q6600 / September 20, 2007 2007 年 9 月 20 日)
5×10148-7 = 4(9)1473<149> = 43 × 4871 × 85730161306764919729693936025764142920932871039<47> × 2784516388469492464533403078786154427691160272586017433488469433231396033078317295048722652094979<97> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 12.50 hours on Core 2 Quad Q6600 / September 20, 2007 2007 年 9 月 20 日)
5×10149-7 = 4(9)1483<150> = 13 × 67 × 223 × 61166327 × 1863894902146250689138702961366278706980495490732424870829<58> × 22579439841623531991161014465575701572092571425255411323896978985792253366291587<80> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 9.20 hours on Core 2 Quad Q6600 / September 20, 2007 2007 年 9 月 20 日)
5×10150-7 = 4(9)1493<151> = 384637449547853<15> × 100387217672603863429<21> × 6154380393511946888616304633963<31> × 21040482008161263229987519894156551396567478881186385296972651591714274238026715657003<86> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 11.34 hours on Core 2 Quad Q6600 / September 21, 2007 2007 年 9 月 21 日)
5×10151-7 = 4(9)1503<152> = 1413677 × 7305622079024944242228091<25> × 293508139448334928739242445881249<33> × 16494625527091676916421984392283134811156918776772753098253796574689797190832398167922951<89> (Jo Yeong Uk / GMP-ECM 6.1.2 B1=1000000, sigma=4030380561 for P33 / September 19, 2007 2007 年 9 月 19 日)
5×10152-7 = 4(9)1513<153> = 4984608868886021<16> × 5760022922783149935357790511<28> × 188518073602970413450229413063<30> × 940840568278596734516455337701<30> × 98185120607867205620512879136643224913634476404281<50> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs for P30 x P30 x P50 / 14.68 hours on Core 2 Quad Q6600 / September 21, 2007 2007 年 9 月 21 日)
5×10153-7 = 4(9)1523<154> = 1487 × 12703 × 27064010767<11> × 23985742229316002405160508997718416270586975005491<50> × 407762626593054648807646182158981927854290181355167860837282173381501147582605582632029<87> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs / 41.29 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / September 24, 2007 2007 年 9 月 24 日)
5×10154-7 = 4(9)1533<155> = 19 × 149 × 147343123 × 2329496337443922537883208273725168308815052824721528210923<58> × 51456261798342511671036399891501546912876135404430952940563337964752143215157251247207<86> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp snfs / 19.32 hours on Cygwin on AMD 64 3200+ / September 21, 2007 2007 年 9 月 21 日)
5×10155-7 = 4(9)1543<156> = 13 × 4887973723987924302596249<25> × 7868605813649721747411048159587323652259485986648814883959772145878600792023785070403854677543118135677018149906873458671229402789<130>
5×10156-7 = 4(9)1553<157> = 2269 × 702447342551455682763805673011418695171148173600333160411<57> × 3137052122420974879105045171402526152498877264559652000048811419905235475853470855786187595915127<97> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs / 32.73 hours on Cygwin on AMD 64 3400+ / September 21, 2007 2007 年 9 月 21 日)
5×10157-7 = 4(9)1563<158> = 31 × 12289 × 92849 × 71760200050224607<17> × 2339215031630217515812790449<28> × 8420943409703708470527474407287102862364991385557970300873744560754772535287577083102346570459805201561<103>
5×10158-7 = 4(9)1573<159> = 5390202345891080489389<22> × 1354865559915182282616896057<28> × 68465018883033310237382905543935147904388689758999616830093497281659873505786443157547884425735504372603354341<110>
5×10159-7 = 4(9)1583<160> = 47 × 964644799 × 270706849725621910507211<24> × 1364391784808783411765902177253121572084574108528241<52> × 298583894675727940289845675134760397414301294012470876284306516517828237131<75> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 40.15 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / September 23, 2007 2007 年 9 月 23 日)
5×10160-7 = 4(9)1593<161> = 23 × 740021 × 28014221 × 198992339071613<15> × 526966754081553807419246158630891619691357255009555423877795426142084090168730673521717224263207299774594664474105912441184529300427<132>
5×10161-7 = 4(9)1603<162> = 13 × 103 × 58693 × 85201 × 56518060850527<14> × 4798551110626920975723815067816871876805464439071<49> × 275334764005974011025338002993961748286200016743548777673724333243675964471822107503727<87> (Sinkiti Sibata / GGNFS-0.77.1-20060513-pentium4 snfs / 94.90 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / September 29, 2007 2007 年 9 月 29 日)
5×10162-7 = 4(9)1613<163> = 17 × 1163 × 148309339 × 387720132193027<15> × 32186888333809678325979899492525673198029<41> × 136639266967774480350045857113895807555932147258323470751247259644932218298158286602940005007959<96> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 66.77 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / September 25, 2007 2007 年 9 月 25 日)
5×10163-7 = 4(9)1623<164> = 1244029 × 3045777474311016078416962103126374071511<40> × 13195970300684442140409379802151398451013119494061176587343764266942527286513791024515689055116238602995731201645467547<119> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs / 63.80 hours on Cygwin on AMD 64 3400+ / September 24, 2007 2007 年 9 月 24 日)
5×10164-7 = 4(9)1633<165> = 971 × 285023 × 108463750201<12> × 29942580322103<14> × 76161147093811567<17> × 7304046869986958296235241999521204712451275992225266362515411443035210607717660009742289090627834390768388949164421<115>
5×10165-7 = 4(9)1643<166> = 914885729 × 4261399463897<13> × 6040387634947<13> × 1491052684691540816159207<25> × 319197319597996510039273971999701<33> × 446101691024302128170720348856355665147674572755074743500867309182182952809<75> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 gnfs for P33 x P75 / 16.02 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / September 22, 2007 2007 年 9 月 22 日)
5×10166-7 = 4(9)1653<167> = 5483 × 3889621 × 8649439289<10> × 271054434940743548582300859649876243368626158527833836313326005209740194326501391589715211010757656716311857912711778853615968849354103575397184759<147>
5×10167-7 = 4(9)1663<168> = 13 × 27166347444900583109731812696436491851217550133<47> × 1415778788059272495359858060016860902525618476647398886043545011620987173109239480930954828521246215935467936088821001417<121> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.26 / September 29, 2007 2007 年 9 月 29 日)
5×10168-7 = 4(9)1673<169> = 1459 × 111653 × 67252373 × 3189132767981020671155953471<28> × 143108062812294962824865027808543783899442913205895699831301238648482926079526694440822068839062607272539510118578697787187573<126>
5×10169-7 = 4(9)1683<170> = 43 × 211 × 1472137 × 2321750736611301907097<22> × 574482675743693221950617<24> × 5744494079787571396717760190250240838888041<43> × 488569723676345326019989715470508850328546498038944485790862224772950377<72> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 gnfs for P43 x P72 / 48.07 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / September 24, 2007 2007 年 9 月 24 日)
5×10170-7 = 4(9)1693<171> = 29 × 371840101717736949659<21> × 36186346361901794734149614174823118926381921601<47> × 1281359654549060281898606138184287341774636409267856035278076719876171866019239509683237360176741662263<103> (Jeff Gilchrist / GGNFS & Msieve 1.41 snfs / 33.32 hours on Intel Core2 Q9550 @ 3.4GHz in Vista 64bit / April 13, 2009 2009 年 4 月 13 日)
5×10171-7 = 4(9)1703<172> = 5147 × 411611 × 2360091624364435526877052179025465745944764188110542162197384679854257941627010829866193137379667973124807809183695865693967616711747807356994388802391976651016929<163>
5×10172-7 = 4(9)1713<173> = 19 × 31 × 561884371 × 280026875411<12> × 67993514724936523<17> × 1049220657583822922144931610704447725575447<43> × 1321882515473936693636905567562026061859047911<46> × 5721117411828469879972374219096749181453994847<46> (Wataru Sakai / GMP-ECM 6.2.1, Msieve / February 23, 2010 2010 年 2 月 23 日)
5×10173-7 = 4(9)1723<174> = 13 × 193 × 306841171291<12> × 2519767069331<13> × 257748006652610572280504698004953405365346938407931245822467342813536009414033654613727105176649029695450411600192640661549839408187045128924833437<147>
5×10174-7 = 4(9)1733<175> = 876443 × 26652181993<11> × 46574391450747667692326738358784174396260537130314435096266571242987<68> × 4595855531487340412820083355763538183249547281424390205839848914976852602041592456013124361<91> (Ignacio Santos / GGNFS, Msieve snfs / 56.13 hours / November 6, 2009 2009 年 11 月 6 日)
5×10175-7 = 4(9)1743<176> = 397 × 23059 × 342905429 × 1249471115353327<16> × 12747894082083550144665508075190532379845350195267003908558739090797759309848111758341688147396955561558954187581255788747834101541192878999299677<146>
5×10176-7 = 4(9)1753<177> = 1657 × 6763 × 22258393 × 354040122757<12> × 9893318846936249<16> × 2074348454610922095857<22> × 275891360976885754540302396080461441500432236868209087253016903988877635283766951452647471221411917376212984273511<114>
5×10177-7 = 4(9)1763<178> = 159222322628756092199652384637699<33> × 11215230047411972558617835334012139<35> × 2799998916119693798296275330180442743551706577226519605642055223799286514993381634263980869789258245452491449913<112> (Jo Yeong Uk / GMP-ECM 6.1.3 B1=1000000, sigma=2140185048 for P33 / September 18, 2007 2007 年 9 月 18 日) (Ignacio Santos / GMP-ECM 6.3 B1=1000000, sigma=2953173804 for P35 / October 21, 2010 2010 年 10 月 21 日)
5×10178-7 = 4(9)1773<179> = 17 × 2941176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529<178>
5×10179-7 = 4(9)1783<180> = 13 × 157 × 319001 × 740321 × 1275172341197<13> × 3168934862695211<16> × 185503352859609293<18> × 20824276942434306550878491316554921169577070969181605095403<59> × 66452449689374424275673726430638274402626958940230091126916841<62> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 gnfs for P59 x P62 / 84.55 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / September 28, 2007 2007 年 9 月 28 日)
5×10180-7 = 4(9)1793<181> = 109 × 1488967 × 8420351363<10> × 25030322608453531<17> × 10767890436875898837091171<26> × 139863195581166062045796944539175077355000899883699<51> × 97057186527914640161646341782139678769623110723336236535802668798096963<71> (Sinkiti Sibata / GGNFS-0.77.1-20050930-nocona gnfs for P51 x P71 / 85.86 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / July 11, 2008 2008 年 7 月 11 日)
5×10181-7 = 4(9)1803<182> = 107 × 167 × 5349247229374462217450139738261038814734050044867358474115901989701104007451021<79> × 523090803940434651997243625173949810907397035980386998037130621336689305210083737010025418468122257<99> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon, Msieve 1.38 snfs / 42.26 hours, 5.13 hours / September 28, 2008 2008 年 9 月 28 日)
5×10182-7 = 4(9)1813<183> = 23 × 67 × 139 × 173 × 619 × 785357 × 1597108512500653<16> × 17378579291181293321166829636389673173837138459709450399729628054721742795449826555582403609927780677732006044769952401980750582943517175598828616432441<152>
5×10183-7 = 4(9)1823<184> = 347 × 66733993288307<14> × 67106019160670455809392201<26> × 60788077003494749468171032128442862197591<41> × 52931418746937886626330612835548449369785172611823746536642254837520869574955281864558723927082587287<101> (Dmitry Domanov / Msieve 1.40 snfs / May 8, 2012 2012 年 5 月 8 日)
5×10184-7 = 4(9)1833<185> = 59 × 2381 × 3823 × 6566081 × 31425551790847<14> × 80039443926543333426030393619033027817759<41> × 5637169435779042518564618258869429332554961926507393446662237475156718430440794073039044584353258208612957374372233<115> (Serge Batalov / GMP-ECM 6.2.1 B1=11000000, sigma=2736760227 for P41 / February 14, 2009 2009 年 2 月 14 日)
5×10185-7 = 4(9)1843<186> = 13 × 67867 × 3447997960776944762766553717092214661<37> × 233621692171020562416865311787136260942753862325505405122647343767543<69> × 703538444820750520147096109036700556894646527792538458130310761988491667421<75> (matsui / GMP-ECM 6.2.1 for P37 / November 19, 2008 2008 年 11 月 19 日) (Dmitry Domanov / Msieve 1.40 snfs / May 7, 2012 2012 年 5 月 7 日)
5×10186-7 = 4(9)1853<187> = 3671 × 967139 × 19303309 × 222663899 × 327653756062797986966317895989409474871494218668404192641212346698722074203075311175876536326791922156797093987472931501762012692828638090940189292463194406074267<162>
5×10187-7 = 4(9)1863<188> = 31 × 8891777965226653171523<22> × 440298891180372239221064503353215364383589189605948657905250879160827653<72> × 411976182766169308926572320832632861857167076229665251187818305510953397414771750597604527337<93> (Dmitry Domanov / Msieve 1.40 snfs / May 7, 2012 2012 年 5 月 7 日)
5×10188-7 = 4(9)1873<189> = 1013 × 5167 × 304746299542785906368113<24> × 305640055064400234524887<24> × 1125757121291323820335846959911<31> × 7781904029500380045551718378173661286980891261937589<52> × 117069244032165610046166201324768623892290569937890367<54> (Serge Batalov / GMP-ECM 6.2.1 B1=1000000, sigma=1218311065 for P31, pol51+Msieve 1.36 gnfs for P52 x P54 / 5.1 hours on Opteron-2.2GHz; Linux x86_64 / August 7, 2008 2008 年 8 月 7 日)
5×10189-7 = 4(9)1883<190> = 61 × 2039731 × 40185305373480178690550733260865296839085764692324303676462769829557483194645941379396452237100277872545890433270005846399337566137276973463979190248575931231562027493644673862531423<182>
5×10190-7 = 4(9)1893<191> = 19 × 43 × 1765787545312409783860474993038088441<37> × 1221634377469420523013631539626062841035324877347830895794628620683<67> × 28370582518084984958701082392541132842482155696727816580550567234311865111305350903443<86> (Kenji Ibusuki / GGNFS-0.77.1 snfs / 476.75 hours on Core 2 Quad Q6700 (2.66GHz), Windows XP and Cygwin / July 25, 2008 2008 年 7 月 25 日)
5×10191-7 = 4(9)1903<192> = 13 × 439 × 33589 × 16912196387<11> × 11031149805859<14> × [13981193998111779895965369977288112002061085578160558577168953517644453903588640945053128157782753534151657175875281748418532352726000960730723590556311029176327<161>] Free to factor
5×10192-7 = 4(9)1913<193> = 405074911 × 39130784437<11> × 1055724654930419<16> × 2150492628020236856777894383<28> × 45018863838161056023730035329555292736592579642705360119597<59> × 3086263144152870796119915710988019746086030182605947924651521285070550371<73> (Sinkiti Sibata / Msieve 1.42 gnfs for P59 x P73 / April 27, 2011 2011 年 4 月 27 日)
5×10193-7 = 4(9)1923<194> = 569 × 28499 × 269121613 × 11457227573103250109817229870297335385107798398923010444037851437174756681648116063459204896630625656100360517010518779647321752129136364465920186441834102789210115920021908967431<179>
5×10194-7 = 4(9)1933<195> = 17 × 1981997 × 128401228061807<15> × 132786590634016095535035300329071<33> × 870351520581469776388414556682719376942987278061824153278788586760800351254966171514056538147644847695340761111994287303596157877520893178381<141> (Serge Batalov / GMP-ECM 6.2.1 B1=11000000, sigma=2621838758 for P33 / October 1, 2008 2008 年 10 月 1 日)
5×10195-7 = 4(9)1943<196> = 103 × 1538107507489534601481055687712361944471<40> × 31560660801675883119225896760035021175119702951582155400620760556441646547154939591760010210551656217315637522354907153165554249169443274017081188872379961<155> (Wataru Sakai / Msieve / 490.56 hours / February 28, 2009 2009 年 2 月 28 日)
5×10196-7 = 4(9)1953<197> = 163 × 433 × 2601091 × 50492326061<11> × 141190131546931<15> × 7027025048683674338627<22> × 5436729613278935910309716165609361680383852884911027089741280514032652389015334902303835695416537439256468752744602291441266980009240684941<139>
5×10197-7 = 4(9)1963<198> = 132 × 233 × 16519 × 184440331414183072368758572400203<33> × 4167616335209957364214112876352374503118967976401038732237050176596006521469345042398133259675250990934356166420514911540662385269178837924485634203795709837<157> (Makoto Kamada / GMP-ECM 6.1.3 B1=250000, sigma=1319538754 for P33 / September 18, 2007 2007 年 9 月 18 日)
5×10198-7 = 4(9)1973<199> = 29 × 6555389 × 316882103754701<15> × 2619690778204946864854133<25> × [31682963312236411792874062813533735164714226555752487704824049205370107915864534936091146346207070584552388083685174823367458546113341563417366968478241<152>] Free to factor
5×10199-7 = 4(9)1983<200> = 211 × 883 × 1501471 × 74002538108029<14> × 319096574418161<15> × 7569045915723240391548215924243925251674123634302100110435849421456902429192268045664469927104869038184287028240832993655976212377420078746494561115383609038539<160>
5×10200-7 = 4(9)1993<201> = 473789 × 78915451 × 565632973 × 10848045023<11> × 736165333455326758950277<24> × 2960475207313004726408829193505231199954869736796255077520524039185120575854306216098298246666961177864124250528534271614052583291707516356165289<145>
5×10201-7 = 4(9)2003<202> = 7213 × 9041 × 30568429 × 24033880698113449<17> × 1518503793338872744985869852705898501743<40> × 12125035635684081964236968067949912665227817245621183077109029<62> × 5668154471755596932749342581073718973900179617214711483800825674312683<70> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=4015262803 for P40 / June 3, 2012 2012 年 6 月 3 日) (Markus Tervooren / Msieve 1.50 for P62 x P70 / June 11, 2012 2012 年 6 月 11 日)
5×10202-7 = 4(9)2013<203> = 31 × 2719 × 225431 × 6493543905983186419669<22> × [405231954272733953497210627679009154656980385574222762291283702257451743364343469340653464984950396891878016006251109515240799742501385528611567059855023664536574668938483<171>] Free to factor
5×10203-7 = 4(9)2023<204> = 13 × 124352101 × 309295445370387924032433826442051522221257351024076879396364509044671963672423503817908645857632421196795553445948922580234181475241326735110503186926760984428092119340536606924410054491467430361<195>
5×10204-7 = 4(9)2033<205> = 23 × 827 × 5039 × 219697706881<12> × 1634568157442963<16> × 151241506182780429429693409963<30> × 123069990651978147065149342934123720311597766370806686714457<60> × 7804419058339879798089296429188545497512052209945088263856450884206084007184002139<82> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=592803039 for P30 / January 24, 2012 2012 年 1 月 24 日) (Erik Branger / GGNFS, Msieve gnfs for P60 x P82 / September 28, 2016 2016 年 9 月 28 日)
5×10205-7 = 4(9)2043<206> = 47 × 2063 × 56526922769<11> × 141442900037<12> × 336484777129<12> × 46458023968443162535003718368694761<35> × 4125819912207007393702420930518762941418886261688851337883303798716653120858616615595790698085779260261604266977614188328550834229509<133> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=2087597720 for P35 / January 24, 2012 2012 年 1 月 24 日)
5×10206-7 = 4(9)2053<207> = 84717151710239<14> × 5769111871120301707080555733<28> × 3232186827471654270907643251747<31> × 15745873927861425995081127569046836292096769801283757418801<59> × 20101407695708525166795503296730610054519299772642017995391944818005857996937<77> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=1759291480 for P31 / January 27, 2012 2012 年 1 月 27 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3875395215 for P28 / February 3, 2012 2012 年 2 月 3 日) (Erik Branger / GGNFS, Msieve gnfs for P59 x P77 / April 22, 2012 2012 年 4 月 22 日)
5×10207-7 = 4(9)2063<208> = 229 × 1279 × 211073 × 13923112786244439332305534265507<32> × 5808914087981140002846269153728033379593177291240854234028585412835197833408440325102193164328079921481420970642793446653424178186190525685689972276463907544980155593<166> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=2381210024 for P32 / January 24, 2012 2012 年 1 月 24 日)
5×10208-7 = 4(9)2073<209> = 19 × 85237 × 15700008762601<14> × 1966474651989658486482252623714980565342592596029090214521295134665811247627070424963909038122285358418259384822742031366103617599206525108474415006519680230559645990210947978701707074471231<190>
5×10209-7 = 4(9)2083<210> = 13 × 89171610615152753498621933440249911179527514632516257019<56> × 431320441519565524245434958225862404133578229430725953398402330143211592335882871664578299736205864016729862877619114206408212557799637184931676926702919<153> (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs / June 13, 2012 2012 年 6 月 13 日)
5×10210-7 = 4(9)2093<211> = 17 × 293 × 25605157273983785342321<23> × [39203605911893320056286321630414365714015796207660591209365628912841809831357891823823103687702854856665420253555027973206466994777468720059013289551946033901373944945234967461668036293<185>] Free to factor
5×10211-7 = 4(9)2103<212> = 43 × 199 × 401 × 4000541 × [3642381018246166041213676081195350283549807361676482889201574774354939140963028522404408835515152149691012560675786935944573777737150210932281552691107159123269570173530942152938871029061416671401489<199>] Free to factor
5×10212-7 = 4(9)2113<213> = 577 × 8826184800989930516510146430815129719675756106635869401778752256259819251509<76> × 98179581104994935973898413607995892900460394668454549874848904629471748133281047489513555464856662357661408967711579021885575834170101<134> (Bob Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs for P76 x P134 / August 20, 2017 2017 年 8 月 20 日)
5×10213-7 = 4(9)2123<214> = 941 × 35603 × 144270473 × 147232453343424867331<21> × [7026075012619827801815531365233107975637704997163290324542052578306165997779261007514595521112236235429300361447639263265827749426968023072775335441924387282854195338536916018557<178>] Free to factor
5×10214-7 = 4(9)2133<215> = 8893 × 660581010334137787952543366668217<33> × [8511294681817265458106733362168395187422917000232462473686339068793156587593216797577022361873823015903508515460820300307428924785703495920868779660465029742584813484762847901653<178>] (Ignacio Santos / GMP-ECM 6.3 B1=11000000, sigma=866159170 for P33 / January 29, 2012 2012 年 1 月 29 日) Free to factor
5×10215-7 = 4(9)2143<216> = 13 × 67 × 1511 × 1027027918990140981079<22> × [369917719688856659929255474962870402032254416023599843019093748425366774838939357089542732505821983805099828402641437899633392724349513389642461022849736640716155317648519525797331985739807<189>] Free to factor
5×10216-7 = 4(9)2153<217> = 2957 × 10663 × 79283 × 8630988535733257998433<22> × 72540983035502258804916548560292474424077<41> × 797173313484276555639552738514281551236688258398597403<54> × 4007397911298754679832620962747894584629171467664048505617525473582477241444037905792647<88> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4085794182 for P41 / February 17, 2012 2012 年 2 月 17 日) (Maksym Voznyy / Msieve 1.53 gnfs for P54 x P88 / January 20, 2017 2017 年 1 月 20 日)
5×10217-7 = 4(9)2163<218> = 31 × 1847 × 50951 × 17139127235885229187770381108241792309257951144572974869168189449270710888873197598947992417706327181708310882119284563866115463056779720670117237563859304031110694212886313532703821850931565399269010121860199<209>
5×10218-7 = 4(9)2173<219> = 2477 × 4049351 × 773491444611675633982507609825858442459903<42> × [64447052563585696759926790070543575277707605049501776973954873310872560492951967277632274081387912774279850775683114425139133679714524961160729859761729760775777761253<167>] (Dmitry Domanov / GMP-ECM B1=43000000, sigma=3723629427 for P42 / May 20, 2012 2012 年 5 月 20 日) Free to factor
5×10219-7 = 4(9)2183<220> = 340481 × 195067180604459<15> × 13372483295017008725689816244587<32> × 5629642951865951049567680837612037914481947628473918311584295699459594372196652507116504285184927955533555620991381573569212876461236694459215445291175548077979336848641<169> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=423925380 for P32 / January 27, 2012 2012 年 1 月 27 日)
5×10220-7 = 4(9)2193<221> = 252013 × 125468389 × 284510963669<12> × [5557938433136272619041407861109816408660008413486300281929088328303403385834992668029100372968642403738902369866454876282613370554306637476402566170018335844211510838242114910322380580624193894421<196>] Free to factor
5×10221-7 = 4(9)2203<222> = 13 × 475026714194263351131730939480337287138979111<45> × [80967106295856700257049849778435537051729183844970958921689827207107138692496448299978786739621165413005164098477165526072247771840695196217428743577064411720279164539267165851<176>] (Dmitry Domanov / GMP-ECM B1=43000000, sigma=72737684 for P45 / May 20, 2012 2012 年 5 月 20 日) Free to factor
5×10222-7 = 4(9)2213<223> = 1055057 × 1272241554266766474119011912001<31> × 3724984797024270353282713918947503887258866968791823254950974868032040255100831697241142105857961010217516476949271246480819525792825472854592728413829559979629937742892845032265459836649<187> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=152958499 for P31 / January 25, 2012 2012 年 1 月 25 日)
5×10223-7 = 4(9)2223<224> = 311 × 36563 × 4397114683698392054308235804596796455714503434278481408955146176361410464235935806698617274522334836237818123552414882192943105821049920179177146823089038142595439154353939414619157542726983237231460511315842725057301<217>
5×10224-7 = 4(9)2233<225> = 263 × 394834108333603<15> × 312268354143508687<18> × 8103076068649195751158887620149<31> × 7673757653233688801339757914449479127<37> × 247978268574999441369659084089330631881330979699982308591144795430332668394003364967970857018697497176974398104609786612137<123> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=824924866 for P31 / January 27, 2012 2012 年 1 月 27 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2107729732 for P37 / February 4, 2012 2012 年 2 月 4 日)
5×10225-7 = 4(9)2243<226> = 173 × 383 × 24763 × 173282339221<12> × 181433047207468267<18> × 18509715395963104182966289109976539<35> × 5236624480793060450619550155154721430308825299265389974176471805910174216859781496679515270759774864912956138995392647468117249117109903861853540080327373<154> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=2599179483 for P35 / January 25, 2012 2012 年 1 月 25 日)
5×10226-7 = 4(9)2253<227> = 17 × 19 × 23 × 29 × 169591382949907<15> × 12647660292833992422938486087<29> × 5086170397057241884760163191192265908646833<43> × 24463297107652525419532937870663387792059253462579879219581<59> × 869604499996775526227813257955226555963850788372420485467644875124958314039689<78> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=1575422330 for P43 / May 20, 2012 2012 年 5 月 20 日) (Erik Branger / GGNFS, Msieve gnfs for P59 x P78 / September 1, 2012 2012 年 9 月 1 日)
5×10227-7 = 4(9)2263<228> = 13 × 44669007303253894816378366157328613546084394643603763411607<59> × 861034099110967866676529965061650251614287593947585382062542417466746230134763830470105019757697555780706946245874619598006942473510191158949362325145162320962394124523<168> (Lionel Debroux / ggnfs-lasieve4I14e on the NFS@Home grid + msieve for P59 x P168 / September 28, 2014 2014 年 9 月 28 日)
5×10228-7 = 4(9)2273<229> = 139 × 140434979 × 94913225593184111932633<23> × 16127318706951091267353020681<29> × 2278966235855094909022819200961843<34> × 99283953565556035179491371306221349761746189564966549722066553<62> × 739561092280749062768710190980657655723850376566808611802860854011682459<72> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=954066243 for P34 / February 3, 2012 2012 年 2 月 3 日) (Erik Branger / GGNFS, Msieve gnfs for P62 x P72 / April 17, 2012 2012 年 4 月 17 日)
5×10229-7 = 4(9)2283<230> = 103 × 211 × 2123619695427841903<19> × 19252282533063170037598320538516665101<38> × [56271870736223940534721390666830121339368033548198110095018995408784516546836741719063342108772868828458289423849220229889567721335736967770012928582629920223455237799607<170>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3246724172 for P38 / February 18, 2012 2012 年 2 月 18 日) Free to factor
5×10230-7 = 4(9)2293<231> = 2833 × 230703025303<12> × 765015333855965216800170094739622299115329933299510432893639550311929073770349133130396959828784439517663558125900688188390588727407333890313287743662990838265791211861857373700242438975725891220951624401420071703807<216>
5×10231-7 = 4(9)2303<232> = 1206252763034793541365888744629120004376699491826475949945698497601039595824905286920649365169<94> × 4145068225518981378889471000265123099429939467965857467512928732071037994442131919563078200884339160051513325076587784359603716143661719497<139> (matsui / Msieve 1.53 snfs / October 5, 2014 2014 年 10 月 5 日)
5×10232-7 = 4(9)2313<233> = 31 × 43 × 2088661 × 1507077036309228452724280430784123117221<40> × [11916163265271323154805217833076056438618759072205538277035933154302974327177803421352860784077986899537961970706387402197246178099484445302196095289323597096869999037080982446357113741<185>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2122859800 for P40 / February 3, 2012 2012 年 2 月 3 日) Free to factor
5×10233-7 = 4(9)2323<234> = 13 × 431659 × 525206459 × 100608005118999824893697203<27> × 2018519693382058093985828755837251049146847853<46> × 389916037597315827503362826680860672626288844399431<51> × 2142491788913866058630613262239063205740784734187786002789977771094956590144504807734698297893589<97> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=365450486 for P46 / February 17, 2012 2012 年 2 月 17 日) (Maksym Voznyy / Msieve 1.53 gnfs for P51 x P97 / February 10, 2017 2017 年 2 月 10 日)
5×10234-7 = 4(9)2333<235> = 97 × 107 × 49529 × 1721395841731<13> × 362905387604447<15> × 314273854291868852183150547516192193<36> × 108116327504512142172289204906938940979303<42> × 458227585774333120661439094952624746438168702244870461237631101926130609493447214639362686887467243960862787914024690632041<123> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1871429739 for P36 / February 5, 2012 2012 年 2 月 5 日) (Dmitry Domanov / GMP-ECM B1=43000000, sigma=3847389048 for P42 / June 3, 2012 2012 年 6 月 3 日)
5×10235-7 = 4(9)2343<236> = 113 × 37831 × 27784507 × 134414925866022275936895010181397173648813<42> × [3131796594316259853379601477643640937954733409870471363668126390579733473513252601752291339955256951739439298457820666022607068453791857382679393263482162351291987658046691154440241<181>] (Dmitry Domanov / GMP-ECM B1=43000000, sigma=4066835335 for P42 / May 21, 2012 2012 年 5 月 21 日) Free to factor
5×10236-7 = 4(9)2353<237> = 1831064959718493123186042927007<31> × 273065134771007639868860050659406584028143744657685178102795014883498857309605331783336273626063502350209003429971367849432726508182231413571223386857334458289321164302506867733789481804555751608798856560999<207> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=832346491 for P31 / January 27, 2012 2012 年 1 月 27 日)
5×10237-7 = 4(9)2363<238> = 1182870929<10> × 1188771669457927732288614222574817<34> × [3555774404094059557149711411628370321529566162677198581977309533887835439434256295303805433499469483689157265382766597428737300287251922433780080405704947552658477548383638114290648677155161685001<196>] (Serge Batalov / GMP-ECM B1=1000000, sigma=806862898 for P34 / January 27, 2012 2012 年 1 月 27 日) Free to factor
5×10238-7 = 4(9)2373<239> = 3532874489<10> × 42324251195060308519<20> × 46928931174339553867574773<26> × 23752637182150469344238834864837<32> × [299985327967287001490303026013881881797070004682057530969394391429004996953686602864304766109430078026143564284031445281092032021279863733019747032065823<153>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3330540536 for P32 / February 3, 2012 2012 年 2 月 3 日) Free to factor
5×10239-7 = 4(9)2383<240> = 13 × 461 × 18223757 × 4578126733909275349187215216775557866861517253747266848004735060816346131725446640082661789759637681357286263798003241566458515985674860924904505921847634436438851540792506429676452270366833471992734843670411265369439520322399893<229>
5×10240-7 = 4(9)2393<241> = 78853 × 46025724037<11> × 33723651131228783<17> × 775034991542667125437<21> × [52710271806468963728571133991837236752949013713844958433746094716822656157869969263151517632517373411287900137713419534091793594136108690513797798080364426004072352394100805927372776570203<188>] Free to factor
5×10241-7 = 4(9)2403<242> = 953 × 4561 × 726707 × 3565567 × 877667951 × 8216599106627<13> × [615611534418602618220269535688923299506941047315991432494766916919301947572864181521481410996725336551058459922166048855060144974017943102008816429904989857222764044144581729917984337117359524663404617<201>] Free to factor
5×10242-7 = 4(9)2413<243> = 17 × 59 × 12298801 × [40532771165285043916863984378330166145694324632421432946526047336441785447061521115037682154467160773301598471448821741173185293640588502039474030376391845415308619985609742667907107708095910076045823706072956108811580581861975493531<233>] Free to factor
5×10243-7 = 4(9)2423<244> = 853 × 510989 × 2575043 × 81509579 × 54653286947953357077621378478780691535377959531597352196131126050898207259022968162244822910348468838801413172731129069431102159917538702133096584798696132818712842156913480837618268370384283283568604387756451746119467657<221>
5×10244-7 = 4(9)2433<245> = 19 × 10139 × 13841 × 23819 × 1134228827<10> × 2673553291<10> × 94870440638651<14> × 4084242569152840504931<22> × [670036275555983247405747113216101705242443980877422992115089639575661832077884991351621763738956008585839099709994269352587642923042702951212840454966502607612146322597994082611<177>] Free to factor
5×10245-7 = 4(9)2443<246> = 13 × 8784508487<10> × 33262537963939<14> × 52018369624792542841<20> × 1131997969166446404636569651627<31> × 2235380293693635572585364291326719162863480366574348033467124303342529144586644314204305366665126252063442796610667916111025404090008408894629089210234095359731895713553011<172> (Serge Batalov / GMP-ECM B1=1000000, sigma=4035499177 for P31 / January 27, 2012 2012 年 1 月 27 日)
5×10246-7 = 4(9)2453<247> = 24509 × 3361247 × 495257419 × 966159210123761750071<21> × 3980787171783837623667643771<28> × [31863636388968626314935495892648149754531313272211063667886464295149588935554156303278628890115978589751379171304732634325381143529092494350130268312181311364665274976914406914429<179>] Free to factor
5×10247-7 = 4(9)2463<248> = 31 × 9697 × 119580619 × 350216023086221<15> × 2989245957094058664221747678576203<34> × [1328655700336989963800770019207337954056645155834868365006119993382117822275641996408886869710132535599980487141260732710623035047248170891072882094937175406248992510435474671419032879867<187>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=513345150 for P34 / February 4, 2012 2012 年 2 月 4 日) Free to factor
5×10248-7 = 4(9)2473<249> = 23 × 67 × 331579 × 35686618232117<14> × 27420473709533631301425270872419641208684095627221712070122890494155210276914250948765882448661623686597986189503379598880365807878007163209972928907350610151296785741741337432871589056723201160176277511493304653054183681951811<227>
5×10249-7 = 4(9)2483<250> = 61 × 367 × 54713 × [4082099408638423326789355149539951764492816934183799339256857443890047538831605391131045170911056604724544622237299719456656795478110876336602115527934597772388065815502621744265385721071481437823277117226557393197965588442455139795082414203<241>] Free to factor
5×10250-7 = 4(9)2493<251> = 131 × 570425883468109999588242159670199<33> × 669113026555561470991718438448150256636544158035512469049916225445080442163428317297905538300070661910072882033646448778215066592307713983191118707109862415584768635379137312883414999046483546538022196299985790457797<216> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=4202322478 for P33 / January 26, 2012 2012 年 1 月 26 日)
plain text versionプレーンテキスト版

4. Related links 関連リンク