Table of contents 目次

  1. About 511...11 511...11 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 511...11 511...11 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 511...11 511...11 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 511...11 511...11 について

1.1. Classification 分類

Near-repdigit of the form ABB...BB ABB...BB の形のニアレプディジット (Near-repdigit)

1.2. Sequence 数列

51w = { 5, 51, 511, 5111, 51111, 511111, 5111111, 51111111, 511111111, 5111111111, … }

1.3. General term 一般項

46×10n-19 (0≤n)

2. Prime numbers of the form 511...11 511...11 の形の素数

2.1. Last updated 最終更新日

October 27, 2014 2014 年 10 月 27 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 46×100-19 = 5 is prime. は素数です。
  2. 46×105-19 = 511111 is prime. は素数です。
  3. 46×1012-19 = 5(1)12<13> is prime. は素数です。
  4. 46×1015-19 = 5(1)15<16> is prime. は素数です。
  5. 46×1084-19 = 5(1)84<85> is prime. は素数です。
  6. 46×10144-19 = 5(1)144<145> is prime. は素数です。 (Makoto Kamada / PPSIQS / May 25, 2003 2003 年 5 月 25 日)
  7. 46×10150-19 = 5(1)150<151> is prime. は素数です。 (Makoto Kamada / PPSIQS / May 25, 2003 2003 年 5 月 25 日)
  8. 46×101235-19 = 5(1)1235<1236> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / September 12, 2006 2006 年 9 月 12 日)
  9. 46×101727-19 = 5(1)1727<1728> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / July 24, 2006 2006 年 7 月 24 日)
  10. 46×101812-19 = 5(1)1812<1813> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / June 27, 2006 2006 年 6 月 27 日)
  11. 46×108687-19 = 5(1)8687<8688> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 31, 2004 2004 年 12 月 31 日)
  12. 46×1012390-19 = 5(1)12390<12391> is PRP. はおそらく素数です。 (Erik Branger / PFGW / February 25, 2010 2010 年 2 月 25 日)
  13. 46×1028608-19 = 5(1)28608<28609> is PRP. はおそらく素数です。 (Erik Branger / PFGW / February 25, 2010 2010 年 2 月 25 日)
  14. 46×1042959-19 = 5(1)42959<42960> is PRP. はおそらく素数です。 (Erik Branger / srsieve and PFGW / March 15, 2013 2013 年 3 月 15 日)
  15. 46×1051111-19 = 5(1)51111<51112> is PRP. はおそらく素数です。 (Serge Batalov / sr*sieve + LLR / October 27, 2014 2014 年 10 月 27 日)
  16. 46×1096798-19 = 5(1)96798<96799> is PRP. はおそらく素数です。 (Serge Batalov / sr*sieve + LLR / October 27, 2014 2014 年 10 月 27 日)
  17. 46×1099143-19 = 5(1)99143<99144> is PRP. はおそらく素数です。 (Serge Batalov / sr*sieve + LLR / October 27, 2014 2014 年 10 月 27 日)

2.3. Range of search 捜索範囲

  1. n≤30000 / Completed 終了
  2. n≤50000 / Completed 終了 / Erik Branger / March 15, 2013 2013 年 3 月 15 日
  3. n≤120000 / Completed 終了 / Serge Batalov / October 27, 2014 2014 年 10 月 27 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

  1. 46×103k+1-19 = 3×(46×101-19×3+46×10×103-19×3×k-1Σm=0103m)
  2. 46×106k+2-19 = 7×(46×102-19×7+46×102×106-19×7×k-1Σm=0106m)
  3. 46×108k+2-19 = 73×(46×102-19×73+46×102×108-19×73×k-1Σm=0108m)
  4. 46×1013k+9-19 = 79×(46×109-19×79+46×109×1013-19×79×k-1Σm=01013m)
  5. 46×1013k+10-19 = 53×(46×1010-19×53+46×1010×1013-19×53×k-1Σm=01013m)
  6. 46×1016k+1-19 = 17×(46×101-19×17+46×10×1016-19×17×k-1Σm=01016m)
  7. 46×1018k+3-19 = 19×(46×103-19×19+46×103×1018-19×19×k-1Σm=01018m)
  8. 46×1028k+21-19 = 29×(46×1021-19×29+46×1021×1028-19×29×k-1Σm=01028m)
  9. 46×1046k+23-19 = 47×(46×1023-19×47+46×1023×1046-19×47×k-1Σm=01046m)
  10. 46×1058k+6-19 = 59×(46×106-19×59+46×106×1058-19×59×k-1Σm=01058m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 14.82%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 14.82% です。

3. Factor table of 511...11 511...11 の素因数分解表

3.1. Last updated 最終更新日

July 30, 2018 2018 年 7 月 30 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=204, 208, 209, 211, 213, 215, 218, 219, 224, 226, 231, 232, 233, 234, 236, 238, 240, 248, 249, 250, 251, 253, 254, 255, 257, 259, 260, 262, 263, 264, 266, 267, 268, 271, 272, 273, 275, 277, 279, 281, 282, 283, 284, 285, 286, 287, 290, 291, 292, 294, 295, 296, 297, 299, 300 (55/300)

3.4. Factor table 素因数分解表

46×100-19 = 5 = definitely prime number 素数
46×101-19 = 51 = 3 × 17
46×102-19 = 511 = 7 × 73
46×103-19 = 5111 = 19 × 269
46×104-19 = 51111 = 34 × 631
46×105-19 = 511111 = definitely prime number 素数
46×106-19 = 5111111 = 59 × 86629
46×107-19 = 51111111 = 3 × 17037037
46×108-19 = 511111111 = 72 × 10430839
46×109-19 = 5111111111<10> = 79 × 64697609
46×1010-19 = 51111111111<11> = 3 × 53 × 73 × 4403473
46×1011-19 = 511111111111<12> = 313 × 4447 × 367201
46×1012-19 = 5111111111111<13> = definitely prime number 素数
46×1013-19 = 51111111111111<14> = 32 × 1987 × 4019 × 711143
46×1014-19 = 511111111111111<15> = 7 × 73015873015873<14>
46×1015-19 = 5111111111111111<16> = definitely prime number 素数
46×1016-19 = 51111111111111111<17> = 3 × 149 × 114342530449913<15>
46×1017-19 = 511111111111111111<18> = 17 × 30065359477124183<17>
46×1018-19 = 5111111111111111111<19> = 73 × 109 × 181 × 3548847924383<13>
46×1019-19 = 51111111111111111111<20> = 3 × 11131 × 49201 × 31108993127<11>
46×1020-19 = 511111111111111111111<21> = 7 × 743 × 64747 × 461479 × 3288947
46×1021-19 = 5111111111111111111111<22> = 19 × 29 × 134339 × 69049670777099<14>
46×1022-19 = 51111111111111111111111<23> = 32 × 79 × 373 × 192724483173686237<18>
46×1023-19 = 511111111111111111111111<24> = 47 × 53 × 205183103617467326821<21>
46×1024-19 = 5111111111111111111111111<25> = 255218497 × 20026413332851463<17>
46×1025-19 = 51111111111111111111111111<26> = 3 × 419 × 7649 × 30839 × 172375324465193<15>
46×1026-19 = 511111111111111111111111111<27> = 7 × 73 × 194533019 × 5141633249281979<16>
46×1027-19 = 5111111111111111111111111111<28> = 97 × 3833 × 13746899849949599681311<23>
46×1028-19 = 51111111111111111111111111111<29> = 3 × 1283 × 2901191 × 4577107257924649529<19>
46×1029-19 = 511111111111111111111111111111<30> = 167 × 3060545575515635395874916833<28>
46×1030-19 = 5111111111111111111111111111111<31> = 21491 × 77518709 × 916817879 × 3346332511<10>
46×1031-19 = 51111111111111111111111111111111<32> = 33 × 11566074137713<14> × 163668682448947861<18>
46×1032-19 = 511111111111111111111111111111111<33> = 7 × 8358197 × 207332718377<12> × 42134402269717<14>
46×1033-19 = 5111111111111111111111111111111111<34> = 17 × 46099 × 239237 × 27261299150159442338441<23>
46×1034-19 = 51111111111111111111111111111111111<35> = 3 × 61 × 73 × 147409 × 517229 × 50180444669592394589<20>
46×1035-19 = 511111111111111111111111111111111111<36> = 79 × 6469760900140646976090014064697609<34>
46×1036-19 = 5111111111111111111111111111111111111<37> = 53 × 96436058700209643605870020964360587<35>
46×1037-19 = 51111111111111111111111111111111111111<38> = 3 × 17037037037037037037037037037037037037<38>
46×1038-19 = 511111111111111111111111111111111111111<39> = 7 × 4625686337<10> × 15784873356377993398953603329<29>
46×1039-19 = 5111111111111111111111111111111111111111<40> = 192 × 14158202523853493382579255155432440751<38>
46×1040-19 = 51111111111111111111111111111111111111111<41> = 32 × 179 × 53887 × 937254337 × 3654020047<10> × 171912474351557<15>
46×1041-19 = 511111111111111111111111111111111111111111<42> = 9237197009<10> × 257968852111657<15> × 214490392919504447<18>
46×1042-19 = 5111111111111111111111111111111111111111111<43> = 73 × 157 × 713477 × 887801843 × 704039117560241107007141<24>
46×1043-19 = 51111111111111111111111111111111111111111111<44> = 3 × 17037037037037037037037037037037037037037037<44>
46×1044-19 = 511111111111111111111111111111111111111111111<45> = 7 × 257 × 284108455314680995614847754925575937249089<42>
46×1045-19 = 5111111111111111111111111111111111111111111111<46> = 27017 × 6726342820229<13> × 28125431966311161204321545027<29>
46×1046-19 = 51111111111111111111111111111111111111111111111<47> = 3 × 627251399 × 327606200501<12> × 82908740179869060566909663<26>
46×1047-19 = 511111111111111111111111111111111111111111111111<48> = 879906527 × 8606284990473530621<19> × 67493672478088249933<20>
46×1048-19 = 5111111111111111111111111111111111111111111111111<49> = 79 × 1768003 × 115323451 × 317312808792357272230515806403353<33>
46×1049-19 = 51111111111111111111111111111111111111111111111111<50> = 32 × 172 × 29 × 53 × 13560457038592706419<20> × 942815633817307242146837<24>
46×1050-19 = 5(1)50<51> = 72 × 73 × 163 × 13721 × 18269 × 22369 × 900256289 × 173658283546085721504929<24>
46×1051-19 = 5(1)51<52> = 40829984389<11> × 87391538203<11> × 1432407956900621483695225709633<31>
46×1052-19 = 5(1)52<53> = 3 × 4683667 × 14138219 × 257284339976585738604845245336826027069<39>
46×1053-19 = 5(1)53<54> = 563503 × 53781995086591823339<20> × 16864838281242092506703970683<29>
46×1054-19 = 5(1)54<55> = 267901 × 84226049 × 223490180221509392029<21> × 1013528844882791754991<22>
46×1055-19 = 5(1)55<56> = 3 × 31907 × 369283 × 1445935031965075635288423361754129922081992677<46>
46×1056-19 = 5(1)56<57> = 7 × 233 × 547 × 36011779 × 4786541957<10> × 3323591108745073366950923069729341<34>
46×1057-19 = 5(1)57<58> = 19 × 557 × 6709607 × 105374870591<12> × 683081288137859101184381187455051641<36>
46×1058-19 = 5(1)58<59> = 33 × 73 × 6349267 × 328252833907<12> × 9066018294116689<16> × 1372397860239792628901<22>
46×1059-19 = 5(1)59<60> = 839 × 7096183 × 299177413 × 286945720543219863927650258068535318683931<42>
46×1060-19 = 5(1)60<61> = 80209638073<11> × 362439589101081161<18> × 175813871007038894312907461297287<33>
46×1061-19 = 5(1)61<62> = 3 × 79 × 19013 × 1283652533408545919<19> × 8836267316663933714408072706901823449<37>
46×1062-19 = 5(1)62<63> = 7 × 53 × 983 × 7780391587<10> × 60971466656180207401<20> × 2954335391956939400014347121<28>
46×1063-19 = 5(1)63<64> = 147193842773309<15> × 34723674678312839808201264777576763348754778903379<50>
46×1064-19 = 5(1)64<65> = 3 × 59 × 199 × 129089 × 11240865281671674297549689576818153627302417357660439313<56>
46×1065-19 = 5(1)65<66> = 17 × 379 × 3002300401<10> × 6786353266453<13> × 3893467764502748581534505125923392755409<40>
46×1066-19 = 5(1)66<67> = 73 × 683 × 36721 × 19852420600807<14> × 5292212226171557<16> × 26570916790609674448213697951<29>
46×1067-19 = 5(1)67<68> = 32 × 18550891 × 8510108393<10> × 46467856956231297413<20> × 774141418062394048768960657441<30>
46×1068-19 = 5(1)68<69> = 7 × 3816090449<10> × 38752218643839055647846431491<29> × 493744249571136407150507690747<30>
46×1069-19 = 5(1)69<70> = 47 × 113 × 4547 × 558599 × 378890671403502297421221649106339183538888162052588752917<57>
46×1070-19 = 5(1)70<71> = 3 × 1016909 × 6222586894980688028471991160079<31> × 2692408831941034087885988141090767<34>
46×1071-19 = 5(1)71<72> = 6689689 × 76402820984818742861007606050312818893540658035240668304776367199<65>
46×1072-19 = 5(1)72<73> = 97807861330071348344356750603<29> × 52256649328653536419165872158827452831859637<44>
46×1073-19 = 5(1)73<74> = 3 × 223 × 14445001 × 5288976388743852077590745082026267485973357319468574877506558619<64>
46×1074-19 = 5(1)74<75> = 7 × 73 × 79 × 3386197 × 3738996944096547894867597687404687561031069250414050496724012827<64>
46×1075-19 = 5(1)75<76> = 19 × 53 × 821 × 823 × 446891413 × 1049333239<10> × 529625680900088249904017<24> × 30245333965011584801136049<26>
46×1076-19 = 5(1)76<77> = 32 × 293 × 751 × 815082941 × 31663830469963472579485223989313212390296023653364357905194833<62>
46×1077-19 = 5(1)77<78> = 29 × 3253 × 8087065403<10> × 1739921052683781265213537<25> × 385046129873671747335535338089958858373<39>
46×1078-19 = 5(1)78<79> = 21147966143<11> × 241683340920369994896823734295076751443383995165643816640524451926777<69>
46×1079-19 = 5(1)79<80> = 3 × 4297174405879854888833<22> × 3964706904547587307962868699072735322717863988926434657389<58> (Tetsuya Kobayashi / GMP-ECM 5.0.1 / May 1, 2003 2003 年 5 月 1 日)
46×1080-19 = 5(1)80<81> = 7 × 677 × 2694743 × 40023149496513191016027580282178404568583078909841497759881183209268443<71>
46×1081-19 = 5(1)81<82> = 17 × 60497497 × 493249433275477296683597<24> × 10075402373370181627182101742174415104282918804587<50>
46×1082-19 = 5(1)82<83> = 3 × 73 × 389 × 8498551 × 70595451656852777851310050100776910485860590475282405027884751218336071<71>
46×1083-19 = 5(1)83<84> = 191 × 617 × 201889 × 1219748762981460019835799029627<31> × 17612205643955419540434239825802950820723971<44>
46×1084-19 = 5(1)84<85> = definitely prime number 素数
46×1085-19 = 5(1)85<86> = 34 × 307 × 12583 × 17962748761<11> × 10767607367641<14> × 844531250800734925595990619645912244590478978414437851<54>
46×1086-19 = 5(1)86<87> = 7 × 321176621347<12> × 9548748215272503127925195138639<31> × 23808219352984715689510709864016208558848581<44>
46×1087-19 = 5(1)87<88> = 79 × 1145779463<10> × 1057957817892587785475229269399<31> × 53372659666143843795782964222882412003964346857<47>
46×1088-19 = 5(1)88<89> = 3 × 53 × 131 × 53299 × 241918799 × 950810123 × 200154070524948240032719983335256143131516827584278688045797933<63>
46×1089-19 = 5(1)89<90> = 3696893 × 13251803 × 1546092959413<13> × 6552926126667047225882578080401<31> × 1029751885351257811611952100766293<34>
46×1090-19 = 5(1)90<91> = 73 × 8523173 × 322551983051<12> × 437435430983<12> × 58220708407771804247399984711167386755915554942088211935023<59>
46×1091-19 = 5(1)91<92> = 3 × 1993 × 4606489 × 1855738296932754349744418771238220006050072428445274932773704844734531149064427981<82>
46×1092-19 = 5(1)92<93> = 73 × 809 × 11847397 × 2810004453135790469161764226763164657<37> × 55327714524032938208450778317950939443836357<44>
46×1093-19 = 5(1)93<94> = 19 × 269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269<93>
46×1094-19 = 5(1)94<95> = 32 × 61 × 15061 × 15238676923<11> × 48713476095453152699<20> × 8327080950124523388184503169845870581623600269029959418087<58>
46×1095-19 = 5(1)95<96> = 84049488826411<14> × 6081073403869457935852607560027276368672342418079119542571488963919260816313727701<82>
46×1096-19 = 5(1)96<97> = 73929803 × 4672469019513265509045032531<28> × 14796171033046763618319926542130800150890745311814494145509527<62>
46×1097-19 = 5(1)97<98> = 3 × 17 × 65789 × 15233225147630648997317660861450141438839710408442173899120483253536070339880739080319199649<92>
46×1098-19 = 5(1)98<99> = 7 × 73 × 16451 × 1160482755351217<16> × 52391813139860180015338104724527684034725106864958135283388943064760020056003<77>
46×1099-19 = 5(1)99<100> = 4893284653<10> × 1044515386607963824726039519677849223849579942087033764702409008027743509061521811106277187<91>
46×10100-19 = 5(1)100<101> = 3 × 79 × 4759 × 190486169 × 1058460757<10> × 36106015351219688771178967<26> × 45753447609626906498614151<26> × 136053486657146809512440297<27>
46×10101-19 = 5(1)101<102> = 53 × 1567 × 12889 × 2241389 × 213026678661443023590102033608567414279509232469600917144160520531109096356173619171441<87>
46×10102-19 = 5(1)102<103> = 661 × 722389 × 12595994476715724086929907<26> × 550518280108445233922064031838003<33> × 1543613373611179224661708410884968679<37>
46×10103-19 = 5(1)103<104> = 32 × 21687554783737<14> × 82393808108218898768341<23> × 3178100655683297758121897559137273524423887231917925436188229649387<67>
46×10104-19 = 5(1)104<105> = 7 × 73015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873<104>
46×10105-19 = 5(1)105<106> = 29 × 1753 × 4944154679<10> × 9425358802508525102649479397759493<34> × 2157473485612788066221168950504556742280177187881084840649<58> (Naoki Yamamoto)
46×10106-19 = 5(1)106<107> = 3 × 73 × 187118467 × 98705061475252471<17> × 82811814849308808668328969433<29> × 152588860854366188251000583614913082536713668893449<51>
46×10107-19 = 5(1)107<108> = 265449186619<12> × 1925457439222484397569006932332035179032650472282482225310928674852467851897777191851652652477669<97>
46×10108-19 = 5(1)108<109> = 4026653 × 230504344393<12> × 664691146952891803<18> × 178740766414782673398136579<27> × 46349866902767645950287805078184042162770894507<47>
46×10109-19 = 5(1)109<110> = 3 × 2968934383064059373<19> × 41047289944857646903093226857<29> × 139800581916770400551778625120537112131203048684938651744217817<63> (Naoki Yamamoto)
46×10110-19 = 5(1)110<111> = 7 × 73015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873<110>
46×10111-19 = 5(1)111<112> = 19 × 9199 × 1067639469316195955489<22> × 27390280617428409423217908416528087372924896572132138929246087535421945868646288785779<86>
46×10112-19 = 5(1)112<113> = 33 × 3730183145951<13> × 507482887879415696139055514086497305571326983989505646677566617238031511068420426007510762609806043<99>
46×10113-19 = 5(1)113<114> = 17 × 79 × 1951 × 15209127194101<14> × 334690893001631977<18> × 38320736996153321207226175952204309468201316854278360871054905163075725942451<77>
46×10114-19 = 5(1)114<115> = 53 × 73 × 645497 × 876019219 × 1713795354274469<16> × 114092374514464840562968940151425771<36> × 11947943218558040387151005904281934522704047967<47>
46×10115-19 = 5(1)115<116> = 3 × 47 × 658579 × 228877708591289820908254845608651729149231<42> × 2404832510246669269292539473464359171618519632785613828793162210079<67> (Sander Hoogendoorn / SNFS)
46×10116-19 = 5(1)116<117> = 7 × 31129657873<11> × 935526674796497625630799421573865249311<39> × 2507187185904102684878717389941789367778557924538338747679387631791<67> (Sander Hoogendoorn)
46×10117-19 = 5(1)117<118> = 883 × 39541 × 196442268001027032568462143553<30> × 2410184258554182866938767768348353<34> × 309187398341869993125600295696004511666616254793<48>
46×10118-19 = 5(1)118<119> = 3 × 308882813039849<15> × 53704483937526607<17> × 1027045717488910098620599353813580163369642270354665282892394209044960314322992974171659<88>
46×10119-19 = 5(1)119<120> = 158749 × 11837197134956259019<20> × 359603486688632859309734419042003<33> × 756365218688046022247041424371729854664983854348160527375669827<63> (Kenichiro Yamaguchi / ppmpqs / 40:28:35:18)
46×10120-19 = 5(1)120<121> = 157 × 1423 × 421409 × 2093628483910668289303364351<28> × 35014638654705434124874572432541786721<38> × 740555643790530730635260129126097699385298659<45> (Sander Hoogendoorn)
46×10121-19 = 5(1)121<122> = 32 × 25795690957<11> × 30889194247<11> × 771207916873<12> × 598269722577886727526187<24> × 15447228261330587300332766778612338331250724722006701125548873951<65>
46×10122-19 = 5(1)122<123> = 7 × 59 × 73 × 568927657 × 2606985201175502188841<22> × 15821697274600082673885686485119596499521<41> × 722426598423142115393841021972053673370660948907<48>
46×10123-19 = 5(1)123<124> = 97 × 209647 × 15533443 × 67753973411<11> × 81709605955533660210941<23> × 2922666907788519164119064316990556123927316133161978213383091496843278870453<76>
46×10124-19 = 5(1)124<125> = 3 × 673297 × 51908232411509<14> × 125412408270287<15> × 40368458178491797<17> × 11468612112961833748669<23> × 8395713561197868354757236179790234292416312599278759<52>
46×10125-19 = 5(1)125<126> = 409813 × 1838759047<10> × 98062989493633<14> × 899943089887960510690718870944943284081<39> × 7685720617133864808422488886600325578420341161519163866637<58> (Sander Hoogendoorn)
46×10126-19 = 5(1)126<127> = 79 × 109 × 9311 × 38700686317235083981280550246334580633322862704245433167369<59> × 1647201539488966597790916821849220994791584251588562540446139<61> (Sinkiti Sibata / GGNFS-0.73.4 / 3.94 hours / April 26, 2005 2005 年 4 月 26 日)
46×10127-19 = 5(1)127<128> = 3 × 53 × 4549 × 2392363859435809818983340513613<31> × 15163438997833256916576351306410299<35> × 1947947821805882890665273105730403500850339306912125658683<58> (Sinkiti Sibata / GGNFS-0.73.4 / 5.98 hours / April 26, 2005 2005 年 4 月 26 日)
46×10128-19 = 5(1)128<129> = 7 × 1156296140379609469<19> × 63146343281836144528257559388284309466252565262699230452983067674088650064389227750949168884329229681335332117<110>
46×10129-19 = 5(1)129<130> = 17 × 19 × 82240334137855241<17> × 2674032226448216912556195682541261<34> × 4058621363993797320237221962751579<34> × 17728939570931867503068789999212267866115483<44> (Tetsuya Kobayashi / GMP-ECM 5.0.3 (B1=1000000))
46×10130-19 = 5(1)130<131> = 32 × 73 × 6621430727<10> × 6728565940753<13> × 22844764349203<14> × 921568000268286504364247144025983172323<39> × 82939522578366486889482278740816972256715449218931657<53> (Naoki Yamamoto)
46×10131-19 = 5(1)131<132> = 1632 × 2153664354971<13> × 10427293453449875147<20> × 856624511750403105797975011321117747793991572603348696005320353022109788620697215036354377112887<96>
46×10132-19 = 5(1)132<133> = 12525703507652759<17> × 408049823947086417018543510110605691506315985364409104627916592148926466229548284959382872782644838829042279099022929<117>
46×10133-19 = 5(1)133<134> = 3 × 29 × 919 × 32059 × 45289 × 1831064236756717727<19> × 901419944778877323261361<24> × 171058051535971858079912374255284920921<39> × 1559421764109321246261486637921914105851<40> (Tetsuya Kobayashi / GMP-ECM 5.0.3 (B1=1000000)) (Makoto Kamada / PPSIQS 1.1 / 0:25:36:39)
46×10134-19 = 5(1)134<135> = 72 × 3517 × 308918147 × 16647288082336147<17> × 576713287489707946003023260588317741597195823687649761070924954837230519203783053277906088233725887836763<105>
46×10135-19 = 5(1)135<136> = 479 × 46154078138132146557551248199<29> × 800394453408549832239262068734721199293735929<45> × 288845534263833811587767580457198086177435867548252143643479<60> (Tetsuya Kobayashi / GMP-ECM 5.0.3 B1=1000000 for P29) (Anton Korobeynikov / GGNFS-0.73.3 gnfs / 16.28 hours for P45 x P60 / March 6, 2005 2005 年 3 月 6 日)
46×10136-19 = 5(1)136<137> = 3 × 36791299 × 731539363 × 5522693167<10> × 773611574429<12> × 3242856567229451394583<22> × 45688787398088134322390008770781194230592547243121250034964908507656039031729<77>
46×10137-19 = 5(1)137<138> = 183191 × 13214693 × 21500263345040140680177479810083291<35> × 9819973850221044705481189378115059795906122802237841682911183553041554013653510858508712967<91> (Sinkiti Sibata / GGNFS-0.73.4 / 21.70 hours / April 27, 2005 2005 年 4 月 27 日)
46×10138-19 = 5(1)138<139> = 73 × 70015220700152207001522070015220700152207001522070015220700152207001522070015220700152207001522070015220700152207001522070015220700152207<137>
46×10139-19 = 5(1)139<140> = 33 × 79 × 337 × 1549 × 62597 × 295995012780359<15> × 2477451918411972840511421841527993677917196510318269544070487156053277524791241424683948328872613373888131529133<112>
46×10140-19 = 5(1)140<141> = 7 × 53 × 564497 × 2941158715641413<16> × 829776847898273120766156247441565183489417478357328563233592589434494109525598954746048244860414561301588693186419881<117>
46×10141-19 = 5(1)141<142> = 6317 × 173054415449634714471316150850972053953492570241499<51> × 4675432168868227863991748073585033746958777046432179287350715754643327983229512268425017<88> (Sinkiti Sibata / GGNFS-0.73.4 / 14.07 hours / April 28, 2005 2005 年 4 月 28 日)
46×10142-19 = 5(1)142<143> = 3 × 135240526433<12> × 125975826081077977646510134958349308698132291874890775381998523849512950062009738561552328182196503244493082880877971072198251896589<132>
46×10143-19 = 5(1)143<144> = 19373 × 2493613047659664617<19> × 13548360899935912604568399686520512463150505140357917069291<59> × 780912950724134051340789057048770562094566671147930327961995681<63> (Sinkiti Sibata / GGNFS-0.73.4 / 36.01 hours / April 29, 2005 2005 年 4 月 29 日)
46×10144-19 = 5(1)144<145> = definitely prime number 素数
46×10145-19 = 5(1)145<146> = 3 × 17 × 1479948218790682322649519735552899<34> × 677171428373614413221442356947475909522212656512617893117661979283669967520494574265965024003099442977140355039<111> (Sinkiti Sibata / GGNFS-0.73.4 / 27.66 hours / April 30, 2005 2005 年 4 月 30 日)
46×10146-19 = 5(1)146<147> = 7 × 73 × 114614918434137035789291171<27> × 1252099921574660469069126749<28> × 5378554907418632396008777863809729095171<40> × 1295831931739910232332987466902941518921393335926789<52> (Naoki Yamamoto)
46×10147-19 = 5(1)147<148> = 19 × 547 × 18127 × 13493261423<11> × 2010627071071516835837346910634675994147710366885640553882692571884902780589450007444520229075749401159475337455185228220350361887<130>
46×10148-19 = 5(1)148<149> = 32 × 193 × 359 × 40430864797<11> × 22431655423337<14> × 1251360360918225535713445002829<31> × 42057935411015848231340866859995766233<38> × 1717182112351141063777768046172842443193154091976929<52> (Tetsuya Kobayashi / GMP-ECM 5.0.3 (B1=1000000) for P31) (Naoki Yamamoto / PPSIQS 1.1)
46×10149-19 = 5(1)149<150> = 587 × 486601 × 8342641865522708899014226485600863<34> × 51968163685933066387208775472313394887953466513<47> × 4127273530729170266545241935010523904158538675510421597108387<61> (Sinkiti Sibata / GGNFS-0.73.4 / 89.67 hours / May 5, 2005 2005 年 5 月 5 日)
46×10150-19 = 5(1)150<151> = definitely prime number 素数
46×10151-19 = 5(1)151<152> = 3 × 100613 × 11252677 × 17561028246989<14> × 254884347047509<15> × 163142891746432375615001387087556691<36> × 20607383487557504808781535006630386430436651273368978693125608058034215922407<77> (Maksym Voznyy / GGNFS-0.77.1-20050930-pentium4 / 40.64 hours on Pentium 4 2.4GHz, Windows XP, MinGW, msys / February 10, 2006 2006 年 2 月 10 日)
46×10152-19 = 5(1)152<153> = 7 × 79 × 700800251 × 174595618459<12> × 7553749899920171021564664297078381312927224104137662945828266504352678444337952945291586200095233929275354041169504394053010795943<130>
46×10153-19 = 5(1)153<154> = 53 × 509 × 189461804912003229088153282837643589395081406795088820517889724992071435337921604000115324576902958487271049824335956967457875638918749716836976354343<150>
46×10154-19 = 5(1)154<155> = 3 × 61 × 73 × 347 × 182653 × 104865773 × 155599669441<12> × 88023739244679243780207677<26> × 42028398543966752737308499765795827421438077020452629318462489231678638272598503969464073583350879<98>
46×10155-19 = 5(1)155<156> = 829 × 15901 × 38773620394337665686949998828783792653648120173542970160976524081650804757870499159198256272743625846498726484652671935276780136739555425545920563759<149>
46×10156-19 = 5(1)156<157> = 67019244981090782189600282925830264926764069416668648055858406658449659<71> × 76263334696670950528282975338822886018690472664746650628843107889406583521316114469029<86> (suberi / GGNFS-0.77.1-20060513-pentium4 / 51.94 hours on Pentium 4 2.24GHz, Windows XP and Cygwin / January 22, 2007 2007 年 1 月 22 日)
46×10157-19 = 5(1)157<158> = 32 × 5679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679<157>
46×10158-19 = 5(1)158<159> = 7 × 3593519 × 20318766372425751992132467649641762259505480008836189783055515503291624692402036281392422267147014671655559876827108195580158577988838521759037832557967<152>
46×10159-19 = 5(1)159<160> = 2282407 × 139463558033<12> × 926170764043531128329<21> × 129327173826903637028311757<27> × 2670805623922589416948360839847<31> × 50192445248125384112666868131438356426058026140049819330826497291<65> (Kenichiro Yamaguchi / msieve 0.88 for P31 x P65 / 09:57:08 on Pentium M 1.3GHz / May 12, 2005 2005 年 5 月 12 日)
46×10160-19 = 5(1)160<161> = 3 × 16361 × 63188612413904730140907248034497209619568206489435363729<56> × 16479552118993128813473617476831373281686860448323688740205309001943172664096989506162049716810356373<101> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon / 42.51 hours on Cygwin on AMD 64 3400+ / June 5, 2007 2007 年 6 月 5 日)
46×10161-19 = 5(1)161<162> = 17 × 29 × 47 × 724447 × 855857254801063<15> × 3172216729960337<16> × 8979918563026048055214325630447<31> × 1248899066404055568679090185969582597135314562972683825422549780576518206214842043840714379<91> (Jo Yeong Uk / GMP-ECM 6.1.3 B1=1000000, sigma=3756338368 for P31 / October 25, 2007 2007 年 10 月 25 日)
46×10162-19 = 5(1)162<163> = 73 × 431 × 443 × 5903 × 1307893 × 184122250734494489<18> × 257964647145149857823703319992792354407721039745401144137724880645226335987931530625166798788115227983271878685341071800057942609<129>
46×10163-19 = 5(1)163<164> = 3 × 199 × 1481 × 33637 × 65609 × 348944548907<12> × 3094508928368237<16> × 42383839285525795753607722140791837846064285912043<50> × 572343567840351351004052047916227199387688191587467882881579520189050963<72> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.33 / February 17, 2008 2008 年 2 月 17 日)
46×10164-19 = 5(1)164<165> = 7 × 149 × 92242528670324886100687746039495178044373011581100025580286480497<65> × 5312510652925782344961262133689200030431493691271417414388712363170017984463868615627801357604941<97> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon / 58.95 hours on Cygwin on AMD 64 3400+ / June 27, 2007 2007 年 6 月 27 日)
46×10165-19 = 5(1)165<166> = 19 × 79 × 50969 × 85549363 × 118865087255080244835049<24> × 4920809955069376619972342206105727<34> × 1335121626814050756795428472416657096720479975049155205651263389560691246443455883420477912831<94> (Makoto Kamada / GMP-ECM 5.0.3 B1=4000000, sigma=1843054454 for P34)
46×10166-19 = 5(1)166<167> = 35 × 53 × 5711 × 694897931435542005831429354544011066666496869867768069011328726102643303962550766127159846816760420256201585998481034696856464999748832163977977409566168257319<159>
46×10167-19 = 5(1)167<168> = 70626533 × 213771611 × 38387318408683<14> × 10652708041146778174216248100844005311463<41> × 82784609590842840754482542867744143167470530984746443938052838133532893663609041186948295276030693<98> (suberi / GMP-ECM 6.2.1 B1=3000000, sigma=3476088453 for P41 / August 3, 2008 2008 年 8 月 3 日)
46×10168-19 = 5(1)168<169> = 1759 × 28800507897160297<17> × 12680978066826942592241<23> × 7956033164187611355102640752990365248844259197175626253337497693550311216732601904701151262734663463979396634411414329707168577<127>
46×10169-19 = 5(1)169<170> = 3 × 487 × 756554444482407012509<21> × 46240755310904097254876177943240716469888474840129925641219507985933268039856573927223236053883349983506240086976932008401488627655899887712119239<146>
46×10170-19 = 5(1)170<171> = 7 × 73 × 76349759813<11> × 3387158310043<13> × 87543743019719681<17> × 12240347643661635866911<23> × 9992189901954093552456677<25> × 361219933610736588126096619555475779332066120910436695465380359870924931284347277<81> (Kenichiro Yamaguchi / GMP-ECM 6.0 B1=3000000, sigma=2457689383 for P25 / May 6, 2005 2005 年 5 月 6 日)
46×10171-19 = 5(1)171<172> = 617 × 56513722999166017795711<23> × 146580513780282331142135537723441743311826450003324199004862952872203115410244009369323786929525791566627901757789957757951617365121757184559731153<147>
46×10172-19 = 5(1)172<173> = 3 × 74377 × 190941040859<12> × 329219420716929877<18> × 210798792571985174316107399369<30> × 565136006549966812916113719736759<33> × 725753339313232876234657295548868177<36> × 42146405201794140986772964098305943887101<41> (Makoto Kamada / GMP-ECM 5.0.3 B1=4000000, sigma=2698808220 for P30 / March 6, 2005 2005 年 3 月 6 日) (Tyler Cadigan / GGNFS-0.77.1-20050930-pentium4 gnfs / 42.67 hours on P4, 3.2 gig, Windows XP, 1024 Mb RAM for P33 x P36 x P41 / October 24, 2005 2005 年 10 月 24 日)
46×10173-19 = 5(1)173<174> = 3307 × 830839 × 397505347 × 224151157501<12> × 162531290521854377445389603<27> × 12845272105038608207322716332081940040561628391277637534202091874292929387793916211428232673469947830057129253413300727<119>
46×10174-19 = 5(1)174<175> = 35159 × 58943237 × 1746625507597<13> × 248922781670497343680620477691<30> × 1067893823990919847935504982633835567161445887859246435573567<61> × 5311929554816100268964112016368816505627228318873420984890013<61> (suberi / GMP-ECM 6.2.1 B1=3000000, sigma=1217755513 for P30 / August 3, 2008 2008 年 8 月 3 日) (Serge Batalov / Msieve 1.36/gnfs for P61(1067...) x P61(5311...) / 42.5 hours on Opteron-2.6GHz; Linux x86_64 / August 8, 2008 2008 年 8 月 8 日)
46×10175-19 = 5(1)175<176> = 32 × 369539 × 1096630789<10> × 16192478616491<14> × 2603256754340574430481<22> × 1870803182418655087642252226488916792999668922958288433<55> × 177702551064486877865849062561110779705712417645542883355184206029482243<72> (Dmitry Domanov / Msieve 1.40 snfs / June 9, 2011 2011 年 6 月 9 日)
46×10176-19 = 5(1)176<177> = 72 × 7013 × 214858331 × 8863487999115307278678411821<28> × 781013506525206770904801349155611691168272539138687586156813660832441331114456804806101150175284880002644370243866117677400188536224853<135> (matsui / Msieve 1.46 snfs / July 14, 2010 2010 年 7 月 14 日)
46×10177-19 = 5(1)177<178> = 17 × 23920583 × 143176470892200291319<21> × 2722757562808167831264949<25> × 181438620433318013127689602298557<33> × 177698711659907069705725103293869509281941495123735028737953271728984627792031730189561210103<93> (Robert Backstrom / GMP-ECM 6.0.1 B1=742000, sigma=3075719748 for P33 / January 27, 2008 2008 年 1 月 27 日)
46×10178-19 = 5(1)178<179> = 3 × 73 × 79 × 191 × 49864861 × 718142779 × 1705839180225384790679<22> × 290135014488190892246617<24> × 16149909237760902770246419<26> × 54037720775012214912393608804730523163345526165330755348956338011508340169255020019527<86>
46×10179-19 = 5(1)179<180> = 53 × 917159 × 26738429 × 219158642496701<15> × 2310452558488991180067051570851787978389222497594886479170234446330578703<73> × 776610532990454945731456572413441097387475255911517018180247090443009278710939<78> (Ben Meekins / Msieve 1.52 snfs / December 10, 2013 2013 年 12 月 10 日)
46×10180-19 = 5(1)180<181> = 59 × 1303 × 7449038111<10> × 6115254601958390069021547704015892221807151061643949948088838116261<67> × 1459500188889455452927732808886607839233887538634295009384990241427017917426585176732408093674178233<100> (Dmitry Domanov / Msieve 1.50 snfs / December 30, 2013 2013 年 12 月 30 日)
46×10181-19 = 5(1)181<182> = 3 × 113 × 140411 × 1073777975128832406673445146907661473780672645849925975030259588556618331975039209294549322556860226141236384048840501745541646419240723143620598330516615289075001689858088359<175>
46×10182-19 = 5(1)182<183> = 7 × 263 × 295271 × 74271293 × 25945192053693083054129<23> × 487936003082325120036195290015153445646694580125561646654338481659564440817737063713801672773056608548814893655008030207530935917969325645531733<144>
46×10183-19 = 5(1)183<184> = 19 × 6650051 × 228161963 × 2606727152984505525344021135050866334622197997772438931243<58> × 68013938577343831891524127164035917676264118177481188349954490570645343740910057423889484679224493168096977591<110> (Dmitry Domanov / Msieve 1.50 snfs / January 5, 2014 2014 年 1 月 5 日)
46×10184-19 = 5(1)184<185> = 32 × 52783556674624931<17> × 44568301500828939254405141386741169227<38> × 2414060104201307054044724165530119601777141356946067174464145281909232608506188025905772512801899176539025586589438861096266788367<130> (KTakahashi / GMP-ECM 6.4.4 B1=3000000, sigma=1138431583 for P38 / August 25, 2013 2013 年 8 月 25 日)
46×10185-19 = 5(1)185<186> = 42225614244343951163609141599<29> × 408259642487330101945035612397<30> × 3203645235931038405785927946751<31> × 9254617593308380520522644377019828568736648765423288773779267862870153521377141934322650187063587<97> (Makoto Kamada / GMP-ECM 5.0.3 B1=4000000, sigma=3004567099 for C61 x C126) (Makoto Kamada / msieve 0.88 / 26 seconds for P30 x P31) (anonymous / GMP-ECM B1=250000, sigma=1644080293 for P29 / January 26, 2007 2007 年 1 月 26 日)
46×10186-19 = 5(1)186<187> = 73 × 2825392120613905556303145902353338583991<40> × 1414261240340299364785702351487807687732347<43> × 1940352243663463704570905682634709845035983<43> × 9030327814966384090537560378864803219811293177354264381962277<61> (Sinkiti Sibata / GGNFS-0.77.1-20060513-k8 snfs / 826.01 hours on Core 2 Duo E6300 1.86GHz, Windows Vista / January 12, 2008 2008 年 1 月 12 日)
46×10187-19 = 5(1)187<188> = 3 × 97259 × 703012943 × 1103413446475804617379431065587<31> × 225820141265527480854991315861926422273609934553346454219949084492376507716518773346815402680848425039128776384014735696957331134870660712064723<144> (Ignacio Santos / GMP-ECM 6.2.3 B1=1000000, sigma=3652231146 for P31 / March 29, 2010 2010 年 3 月 29 日)
46×10188-19 = 5(1)188<189> = 7 × 9437 × 80749 × 470356433 × 6546356032796107357<19> × 15278051521285277352572282782225716407349057749<47> × 2036814578157917162473943509469040843051582095954680177313513040930492777252900391737406784342356874644409<106> (Dmitry Domanov / Msieve 1.50 snfs / February 17, 2014 2014 年 2 月 17 日)
46×10189-19 = 5(1)189<190> = 29 × 24859 × 321077 × 767835319919694836307359<24> × 28757848272453725246765805581687804409052445869585352205756290792221149685314707396043797163439542376729440424747172397439852069167722447828640849838170907<155>
46×10190-19 = 5(1)190<191> = 3 × 409 × 234541 × 58153244367026252794177<23> × 1139538900052694140365968389353571<34> × 2680086942656028129149740628287693200954983011941599764721366578248667479727650107112654678112906398802637631351968406736361219<127> (Ignacio Santos / GMP-ECM 6.3 B1=1000000, sigma=2409332199 for P34 / September 11, 2010 2010 年 9 月 11 日)
46×10191-19 = 5(1)191<192> = 79 × 318419 × 3944954901721<13> × 5150474176908630162189484031961520688156048121597203427100335341648195179309152956528912547500755673644751014186794346892405958305142054741874029307548098478639048960960491<172>
46×10192-19 = 5(1)192<193> = 53 × 60761 × 3676181 × 29520869111066850210877024711<29> × 34900664306897122980410572422981310873<38> × 419039363091604536143942320257460804783702122007954348231175794471479920770915775543008521582713110405040894797369<114> (KTakahashi / GMP-ECM 6.4.4 B1=3000000, sigma=1044796292 for P38 / August 27, 2013 2013 年 8 月 27 日)
46×10193-19 = 5(1)193<194> = 33 × 17 × 2721767 × 3878672933<10> × 18833673139<11> × 253531733109664214357<21> × 219941831910466951808401970081<30> × 10043690953294073007230012497539826164684415783776924661750095830636397234524639892390514224691823099504978786649353<116> (Serge Batalov / GMP-ECM 6.2.1 B1=6000000, sigma=2311010749 for P30 / August 9, 2008 2008 年 8 月 9 日)
46×10194-19 = 5(1)194<195> = 7 × 73 × 59809 × 41535100907534041<17> × 2131759063791372047774111469573847<34> × 735190796811265416174712160511408781<36> × 256906108706152053755199843207572059233131041311072028161736752737669098210183763610380354496349308547<102> (Makoto Kamada / GMP-ECM 5.0.3 B1=4000000, sigma=1383552888 for P36) (Robert Backstrom / GMP-ECM 6.1.3 B1=2938000, sigma=2158242106 for P34 / April 7, 2008 2008 年 4 月 7 日)
46×10195-19 = 5(1)195<196> = 167 × 10987231009<11> × 1881189814104414245657172610073382943<37> × 1480737164734383950999288482296007940597453428242049271330808866074079988018733116991647552760800801679672051150062960199638519628327997635621763359<148> (Makoto Kamada / GMP-ECM 5.0.3 B1=4000000, sigma=1510379106 for P37)
46×10196-19 = 5(1)196<197> = 3 × 1347270015773235139<19> × 475249627969334057678403678020270938427264539205217913<54> × 26608331191012769000187389627435383564338199915711364738395999071186303153403942068909083402515016726022442209864959240971591<125> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P54 x P125 / October 26, 2017 2017 年 10 月 26 日)
46×10197-19 = 5(1)197<198> = 6540643412317769<16> × 942082738339170991577406445058031635855149<42> × 70414360667590677359732409234954190690337846850783209447865413<62> × 1177998026506691471724678243331372598110798297236722504137680826899502036749487<79> (Ignacio Santos / GMP-ECM 6.2.3 B1=11000000, sigma=656801180 for P42 / April 18, 2010 2010 年 4 月 18 日) (Jo Yeong Uk / GMP-ECM 6.4.4 B1=11000000, sigma=8522999498 for P62 x P79 / December 16, 2017 2017 年 12 月 16 日)
46×10198-19 = 5(1)198<199> = 157 × 181 × 179861037798188095545311296446180494461453042584055710001446708347507165116342721297501886585885600559915230710881201784534296762892321888697297783408210265373231203544044449136471517440655632583<195>
46×10199-19 = 5(1)199<200> = 3 × 55921 × 341701 × 476351 × 614051 × 58174269328757521<17> × 582857153092184281963<21> × 152159122038178839896993789376937<33> × 590813353794208480835899546789264311537044346698701181714273385252084401898654909485599983690398143316984447<108> (Robert Backstrom / GMP-ECM 6.0.1 B1=1952000, sigma=1234516198 for P33 / February 9, 2008 2008 年 2 月 9 日)
46×10200-19 = 5(1)200<201> = 7 × 174145019 × 419282006658330066121591872896881511569480336476767192939442459826387660694537998906951314369869361671912165762351623826076908194634455871936342164434074430076095791266203346723433261194068467<192>
46×10201-19 = 5(1)201<202> = 19 × 751 × 12431126187541<14> × 1890107986421839111<19> × 15244903939103108849415082582101878494509019989815265274641694985856439434106103231376046214837192305364359979511195341105093761423911792092685139696478466910687077569<167>
46×10202-19 = 5(1)202<203> = 32 × 73 × 229 × 1697 × 3147467 × 26646407 × 440375369747<12> × 23618007072979379780779<23> × 229491453400673566343664067060066916562800442081785159838412985323598968219752258877952212062782340161017496303048668116394363869717697157544707143<147>
46×10203-19 = 5(1)203<204> = 634852288325493938662478885586751686299591<42> × 153862743688816457997765886237334413291494373<45> × 5232499076557701572469006320276249230113480312963192829997368800013628207955271007133860823822549545193160774877700077<118> (Jo Yeong Uk / GMP-ECM 6.3 B1=3000000, sigma=4335763604 / September 28, 2013 2013 年 9 月 28 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2278657651 for P45 / October 3, 2013 2013 年 10 月 3 日)
46×10204-19 = 5(1)204<205> = 79 × 1169579515957<13> × 7106479585270286073087101<25> × [7784020387352142446213097425424941039112882887492176475173232637351766296032487248186601810093080839637122834905569426163204876338030550365614297107373515364475856937<166>] Free to factor
46×10205-19 = 5(1)205<206> = 3 × 53 × 2029855647864318672459284448238985859798549763<46> × 158362753203121210620770667936363658169848557409819805989575199279545942736033630707829657045225211765029350766359272752990816528474052225912736138103682186483<159> (Serge Batalov / GMP-ECM B1=11000000, sigma=4257811715 for P46 / November 8, 2013 2013 年 11 月 8 日)
46×10206-19 = 5(1)206<207> = 7 × 6551 × 15189737 × 1819332058723<13> × 404534182785691660319<21> × 132177282928943945723027161<27> × 546728765639487725434855029681950721093463179474551<51> × 13796327219877934453424249218548966481497184024021141776682402115804276539808449647397<86> (Dmitry Domanov / Msieve 1.50 gnfs for P51 x P86 / August 4, 2014 2014 年 8 月 4 日)
46×10207-19 = 5(1)207<208> = 47 × 733287706111<12> × 148300651996470687923304386179324751516253993207640810011994989603959838538499446458269760524553955948836114432048710134040093344295532532618163018536467305995693527521297291433677684570013071383<195>
46×10208-19 = 5(1)208<209> = 3 × 373 × 9080394855075361<16> × 577737505135355883871831<24> × [8706627016562609685510431099914541571667028762780507427952772926710866443985323682530948628330838953190104599368236443553816002773338084430971502954450957785951651759<166>] Free to factor
46×10209-19 = 5(1)209<210> = 17 × 6611437764811623454952797<25> × 11355658837487707115343599057290278269<38> × [400459084643353876438651629183082320068297802830673458345806463357395554869689716060661229896417849870848888345141107078175023353209451282783428031<147>] (KTakahashi / GMP-ECM 6.4.4 B1=3000000, sigma=2821208754 for P38 / September 27, 2013 2013 年 9 月 27 日) Free to factor
46×10210-19 = 5(1)210<211> = 73 × 10994003468680638146065979<26> × 20286137393844137617855553<26> × 378412818725570542294294439748877<33> × 1500385033598549922794748736472559767544624444236957119<55> × 552928106792608178386159382679147569685851117647617956861652415251525647<72> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=188711067 for P33 / September 27, 2013 2013 年 9 月 27 日) (Erik Branger / GGNFS, Msieve gnfs for P55 x P72 / November 16, 2013 2013 年 11 月 16 日)
46×10211-19 = 5(1)211<212> = 32 × 1741 × 5351 × 1533218237<10> × 14482255339<11> × 591048887185666144810422423929<30> × [46448908182929888434302287638238493788052516214158123996919628780931266834999791342888056979995172366171470752916374567928357792669958051068556841310976027<155>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2197727692 for P30 / September 23, 2013 2013 年 9 月 23 日) Free to factor
46×10212-19 = 5(1)212<213> = 7 × 163 × 593 × 947 × 16175629 × 11303137836579275026804549<26> × 469904684607971730552337090459<30> × 9284425370629011443389035735356445016652382438494149276205323306634031452780165608925693590639917670307786800726710213161274435574727618902459<142> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=3843024397 for P30 / September 27, 2013 2013 年 9 月 27 日)
46×10213-19 = 5(1)213<214> = 8960851 × 2436813349723<13> × 1754395172294654486968894215892060551449<40> × [133418599474146938205746263480873868145748555755763030973825281075319180850662879160346590222489755922612579286196633744817028572626757401360218391393262943<156>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3259013767 for P40 / October 2, 2013 2013 年 10 月 2 日) Free to factor
46×10214-19 = 5(1)214<215> = 3 × 61 × 17310143 × 72459373254390909909031567825846340349369463729<47> × 222673740060932310332436198765572555868338049393606792396276148944858031377087630374671249258559025775719054775696543514468138670119975643092904173202935094911<159> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=140120035 for P47 / October 17, 2013 2013 年 10 月 17 日)
46×10215-19 = 5(1)215<216> = 11443 × 5614206444136397315772485477982691<34> × [7955858419931248482059308351942533249156987884686272516097931674219395939856725868421106787845599410479726575067438284580346711828816548054144427029242232172692271526062423499647<178>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2961015608 for P34 / October 3, 2013 2013 年 10 月 3 日) Free to factor
46×10216-19 = 5(1)216<217> = 43019 × 411925792699811177<18> × 288427074768496059358902167771778703485168475227970575317928294365581891759463292540972505075343419190920258955300425874386395110506101043323530100255298768537058855302114102190585160295948972397<195>
46×10217-19 = 5(1)217<218> = 3 × 29 × 79 × 118633 × 350255537 × 145978344055041277988970037538627842909849<42> × 1225998737557744685804483348710231806504942256694918480484425339484214032410443054193277696057317958341758918073520364469477524149892223967031769570550247559183<160> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3482883513 for P42 / October 4, 2013 2013 年 10 月 4 日)
46×10218-19 = 5(1)218<219> = 72 × 53 × 73 × 131 × 1792 × 3181 × 899964119 × 244870244703779<15> × [916259046936184519050489874913017893874158657752298689630761203054578674108409713788295661421918204704192365658567706053481350472458106960873965815458164239360943643489807395900281<180>] Free to factor
46×10219-19 = 5(1)219<220> = 19 × 97 × 3229 × 659612673605749403869079908035961<33> × [1302065855922008948867345670747024382006911843248140233906799969006237981128913819411866020927937615349974151672339695649591370301237878309175258739929652335296052971786736602517833<181>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=716309578 for P33 / October 2, 2013 2013 年 10 月 2 日) Free to factor
46×10220-19 = 5(1)220<221> = 33 × 23557 × 686988948106223106325996288288420927105904146124775858768801021511077717199846891<81> × 116971975794674729908230211027479897561222555574259478545720361581381245323041690537877745852011003443053744496911401157475494831099139<135> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P81 x P135 / August 5, 2017 2017 年 8 月 5 日)
46×10221-19 = 5(1)221<222> = 454889 × 1123595231168727120486780535715550631277325042177566639578251202185832392322327229524369925654634671559679638573610509621272686547951502698704763384278606673520597576795902101636027934531525517458349423949823168093999<217>
46×10222-19 = 5(1)222<223> = 293 × 503 × 1367 × 9186797 × 2994741599<10> × 66672709085971222049272117<26> × 13830555541710173042154868451415700530466632396271836924997736915409827049991379986594809101555531185886334493971608184455676513144692109558388142809594353629185555600952677<173>
46×10223-19 = 5(1)223<224> = 3 × 219142514844053<15> × 464064115218162317003<21> × 167528785215299194102073637892214433017997301590379049463441939564666289607603975778118489892298871058157676643237105986848013344355965846770553366014533834751024910822963757365793212976843<189>
46×10224-19 = 5(1)224<225> = 7 × 9927745772548533493<19> × [7354728322895928106567527613367319183894341964409193286939259522053368770385393397424359536323907376153286389832630972918588463635050795022088523238423211515113716893757890081985244824507739535513205589661<205>] Free to factor
46×10225-19 = 5(1)225<226> = 17 × 1471 × 6041046225680036497794936866803251945327970485003012329027173177<64> × 33833082613260421669486254697533349061790147439967390886509763786628956816847895649842354515903790235787105486235597148958026962053796923895770032197603337649<158> (Bob Backstrom / Msieve 1.53 snfs for P64 x P158 / July 30, 2018 2018 年 7 月 30 日)
46×10226-19 = 5(1)226<227> = 3 × 73 × 3535913 × 169657082807<12> × 781751775800766586323271380579234982895535517<45> × [497655450488549537779581324787150234307744679907844806979408443821528142389689666493330487828214004342392025687302780910379813946735798054747047789836156371583527<162>] (Dmitry Domanov / GMP-ECM B1=43000000, sigma=636069461 for P45 / March 4, 2014 2014 年 3 月 4 日) Free to factor
46×10227-19 = 5(1)227<228> = 2420087543<10> × 51156599819300694285919141092673<32> × 46822316610495189509701409064174356683539491<44> × 88171794101319160969724509540271782853584123849532946110114943635743361443754668756091636318729740965179115363137369073327537240411738202357339<143> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=561515968 for P32, B1=1000000, sigma=927469875 for P44 / September 27, 2013 2013 年 9 月 27 日)
46×10228-19 = 5(1)228<229> = 174101 × 1359947 × 21586989152511154370371069335804994444291513461171801202253670410564316803732683666634937081812626790409199062804445817381515968818262583098367392814787287167276955641491992727576157995660230524262200801218751823926113<218>
46×10229-19 = 5(1)229<230> = 32 × 8152700893147<13> × 44444878034253504553<20> × 77923759061842343543364937192740485563991<41> × 45128661889727709712538273141710812901993283731<47> × 4456841953164205169279611531103156704392211803959731672476873904819086119789962933098448554162418697036728289<109> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3035744192 for P41 / October 17, 2013 2013 年 10 月 17 日) (Serge Batalov / GMP-ECM B1=11000000, sigma=228256011 for P47 / January 5, 2014 2014 年 1 月 5 日)
46×10230-19 = 5(1)230<231> = 7 × 79 × 657656638332397779473<21> × 90300871830581624350451040463<29> × 15563205048169936353032422940465581665664513832950360664277483439257524188121181916978644175485831199452825330369327509122536167795296421741347439200470456043358127259849789336913<179>
46×10231-19 = 5(1)231<232> = 53 × 461 × 616871 × 514910029 × [658586497711310418224281252793092767378472963008483479344263443725317044489068207522617791193341350050430497477159443819347709914054252174250777650555804147241739614410484939267573181641816353042007604330853938613<213>] Free to factor
46×10232-19 = 5(1)232<233> = 3 × 786959 × [21649205405919542234140580433081058907817353937164499087038888985369043415269457541037127775445781847640140130600243515910024584555278022154949669597827888158134079459078601346495861966172363537410509362034155574860999158834243<227>] Free to factor
46×10233-19 = 5(1)233<234> = 14617927 × 282057497 × 1115794293403<13> × [111098386060603763114318330108709649236293519820030026711357958403401034166174649779183213769750748480061965132614927086515940295515042670689052804286759878218085567341944887552991612760942188635652938074123<207>] Free to factor
46×10234-19 = 5(1)234<235> = 73 × 109 × 367 × 2917899556402069339<19> × 3827496268598317997829489568401501943<37> × [156716522411659579045805505838020417313310065067336765450288291825077001548831214338262524927084939530700103502064846130538394357219211816879349107526454793658719369124494297<174>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3068981125 for P37 / October 3, 2013 2013 年 10 月 3 日) Free to factor
46×10235-19 = 5(1)235<236> = 3 × 611969 × 1584479761<10> × 286249131172808840913397752056859006251708200333<48> × 61380973372032905962088558081151892969464629849951967321191588180267967682027108654612000413716016280908414113222680838899115099536984854245631410860120618666553954588016721<173> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3707914335 for P48 / October 16, 2013 2013 年 10 月 16 日)
46×10236-19 = 5(1)236<237> = 7 × 11813293 × [6180822994559858616307567501785743896559229760564900563544464106314218725719904942328359744655099388110750818845843662378730119790973864431620875992483468908543610407011238599856608400034860379152186694757593490063767403032585061<229>] Free to factor
46×10237-19 = 5(1)237<238> = 19 × 884287 × 10829052495533166827135230974195450137<38> × 28091700000351895326314298715136929459731658052082817269536647680829770905511924669252362778016457088124200300912034394072513700639716631547997946135338065911490477034040898413859434563414869051<194> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3722115980 for P38 / October 3, 2013 2013 年 10 月 3 日)
46×10238-19 = 5(1)238<239> = 32 × 59 × 307 × 547 × 47900551 × 3329111143<10> × 912382421204244577<18> × [3939575125489097492853294007234083109488193511838855347814440232086432424644314649828258862975046228803058773523338259540719915103150218968101018176852251296352325031464141072513904249732915124149<196>] Free to factor
46×10239-19 = 5(1)239<240> = 22588589 × 56843165796881966636559648001267<32> × 398059470920270829182054395508628876987350157979508365220336373990351743675392859051086664507871998597898715490109209794052665321097783841153940704205964285972739961817959203594230063547377102656493297<201> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=3375250477 for P32 / September 27, 2013 2013 年 9 月 27 日)
46×10240-19 = 5(1)240<241> = 1451 × 2767 × 11833907 × [107574812732750189666915327700015898826405536940227254764380043826834387831252734449207963921211079080511472998103788196279147665018908942385311094320513139633588022690262211088020767423230798676772193551177587507157753738168569<228>] Free to factor
46×10241-19 = 5(1)241<242> = 3 × 17 × 4199451881<10> × 238645108370387532221025011052851579303481417379051087321945069041948270293899801290548428529085222819499009154801382169138947670050733419918917509363086624559603302317631774274723525478516623822740891941053001170114274352354069781<231>
46×10242-19 = 5(1)242<243> = 7 × 73 × 29803 × 271363 × 1186555331997193<16> × 2935203926275057573<19> × 35510560928946969460583332822027119114322035867754503905197484638546890493049424313037490071270949290242180609572151726776969153409226944940313350303097812394188218641285255047320417936305973429981<197>
46×10243-19 = 5(1)243<244> = 79 × 541 × 11688002824777<14> × 5651064246626975426294137<25> × 261664034718390415096843747<27> × 191767979225345054945784734775703<33> × 36082804693511752141335354535331438021634727185118835090979598163698576720398748402249102950524764034366810124115120770693364407751522126644761<143> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3775708074 for P33 / September 23, 2013 2013 年 9 月 23 日)
46×10244-19 = 5(1)244<245> = 3 × 53 × 2707 × 2110337 × 3727695437<10> × 279176492058480142064022418361937070511711<42> × 98470064895876759748929971193388043354903183333<47> × 549104037015846348044883278597590325921735770824040304806984708020006035974974911965054433682232598241727489419784892186142294137651101<135> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1271259380 for P42 / October 3, 2013 2013 年 10 月 3 日) (Dmitry Domanov / GMP-ECM B1=43000000, sigma=2880727639 for P47 / August 4, 2014 2014 年 8 月 4 日)
46×10245-19 = 5(1)245<246> = 29 × 4613359 × 11069389 × 345125002698145712876281682863203810928627858187445815100272628616851921390915614205087134789483334168070224770438172725041375551001477676716529056216944234046801774096022661041827439665408622224806087495631417619755584523869069809<231>
46×10246-19 = 5(1)246<247> = 8669 × 138209839 × 936457365841<12> × 119003245511321579599656506148735467467<39> × 38278996354093391541974127752412449977397412967100296633103372973277511409198522902080596751752942053524398080943511800964765905809657919730638256752712209720825127635831501330458552743<185> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2065850986 for P39 / October 3, 2013 2013 年 10 月 3 日)
46×10247-19 = 5(1)247<248> = 34 × 9385301 × 787276027778113<15> × 85399449307292025205415638749978668431724343588777520742430651851615707008470646158057562463326927224656550840573410548456836643089762174958616960168498739461085688077647897320516836052366268497402087543276310684872312798587<224>
46×10248-19 = 5(1)248<249> = 7 × 9461225311<10> × [7717380214059782882282515913743787585508000700002885268252108430934397380087492667034426982268055302617559222928844275979320441427744898979186341143871001918793208730495797392919297851807919583431625668836480779695055400406478690296552543<238>] Free to factor
46×10249-19 = 5(1)249<250> = 5482927 × [932186606006447124156697893499423047418123770590254276796154884263662658851943699252445110268860247658068602976313766554088922050414151257368757802376561116190514867535371364804074741668293433618779004555616208479724627213003403311973898450793<243>] Free to factor
46×10250-19 = 5(1)250<251> = 3 × 73 × 2383 × 17417 × 1139519 × 3692207 × 766578984103436407<18> × [1743449178345970575237056799582872919239683689166380215501874954787764580559344148108761910917670581214845721922841355844976050088749426690062337610813971388141592879716888308771977306259746836651720491391913909<211>] Free to factor
46×10251-19 = 5(1)251<252> = 22665544580005648200301<23> × [22550135925786952498036448693718076503401193884510471332354321032055875516229012772494854737383264445175862246188284888232509254110439842826139553506532959597405248228244716013315809753617799075818749567522286911139480245850567811<230>] Free to factor
46×10252-19 = 5(1)252<253> = 59168830499<11> × 7488767954681039556591916441291<31> × 38443003746867601499381758015291<32> × 300050703346571971211199615646752065034145138889440692857099356143698947095635174871192484058757727462729510256124265348842861051697173748712896157368988675240200096740745277394469<180> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3727711893 for P32, B1=1e6, sigma=3340520999 for P31 x P180 / September 28, 2015 2015 年 9 月 28 日)
46×10253-19 = 5(1)253<254> = 3 × 47 × 173154406253971<15> × 728558636005189702621<21> × 1054597584982446743821763969<28> × [2724654122103427910265984009784085031512963709579326337740285770888756027753348794083122981415385037621176879357702301354966329959948489016331909348771973859192863214591258559017991470920549<190>] Free to factor
46×10254-19 = 5(1)254<255> = 7 × 1399 × 26770607 × 8631837881<10> × 5179103052413439069661800515849<31> × [43609742423921479099060647472260196603151320027923688568394758839982306853268337550399251589536197843263941894497764352017877205092083692538658470552776417222519368521883606014525250925403841241539648169<203>] (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=1782033463 for P31 / October 5, 2015 2015 年 10 月 5 日) Free to factor
46×10255-19 = 5(1)255<256> = 19 × 91127 × 21781829 × 725097419 × 85800314344493555885314871<26> × [2178387146283375238977586596438595407107595536341214317337539309467364625106969315467011628936854900831198190948568703539033653142839933704680773700726336464393829614635271173767838733500633166338194708622907<208>] Free to factor
46×10256-19 = 5(1)256<257> = 32 × 79 × 1807297 × 1102560227<10> × 23644705347175168799681441470247281<35> × 1525738009114337861095417267737567913637367105934324790837666695835294029706320326355377212603030546518079712295451095221662736669455070247715962276417356163474136122263568493357699703230831809167213379259<205> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=3621067647 for P35 x P205 / October 5, 2015 2015 年 10 月 5 日)
46×10257-19 = 5(1)257<258> = 17 × 53 × 61523023 × 2339216986534849<16> × 7934872802798783341<19> × 41450637643100165398052468473<29> × [11984258559504005965210046862682668267067618625728957455186129820712135904489761616869354116821870053641344465098681442943940839847538491922020372830565674173044103454551005913625738801<185>] Free to factor
46×10258-19 = 5(1)258<259> = 73 × 70015220700152207001522070015220700152207001522070015220700152207001522070015220700152207001522070015220700152207001522070015220700152207001522070015220700152207001522070015220700152207001522070015220700152207001522070015220700152207001522070015220700152207<257>
46×10259-19 = 5(1)259<260> = 3 × 617 × 470050299650465059904754269979469<33> × 2739476303671016405398495879869988292257<40> × [21443566620634467164348162274881137896485221615134019395071872628081293295431396730044752124059613661134633670476407082019405629818568698807216179041276267549688781598924177175698403417<185>] (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=4294081783 for P33 / October 4, 2015 2015 年 10 月 4 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2134661140 for P40 / October 9, 2015 2015 年 10 月 9 日) Free to factor
46×10260-19 = 5(1)260<261> = 72 × 480533 × 3502594392747416438195651<25> × [6197352176520396491533725788537878848477282342781949756296461795118797456924396251830190027380251216603311901804945824993245563098084893017035092176102966536302518186544466189552256775346157457505410611784852483111220832148253833<229>] Free to factor
46×10261-19 = 5(1)261<262> = 929 × 3539 × 14347 × 373361 × 290221108272437170432295020230775700570386246942225409906700626419231636992196862367785154842556070399293192186206236491266954414229025181462550277289226507477887116826850093702407672882797922296880952032610077970681688997840597462406659878189543<246>
46×10262-19 = 5(1)262<263> = 3 × 199 × 1580395001<10> × 11711715371<11> × 59280534671<11> × [78026607112086892753597417728002877892147989319608197462096740156310562506231789203966130374243063690985909940075298107458138795511077122127163184617455621907529161666526143011165609176801466534751589926078412455708642899646095143<230>] Free to factor
46×10263-19 = 5(1)263<264> = 601 × 1427 × 761861 × 26288200308217966449227572229<29> × [29756392554831725921917196785791393658433057788820225117900650312277149978732759032987797394032623433573199749321353002388072234185067072061399347361254660692014313187049152038778123122989008232623656304160920477669947001997<224>] Free to factor
46×10264-19 = 5(1)264<265> = [5111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111<265>] Free to factor
46×10265-19 = 5(1)265<266> = 32 × 49441542367436515843633<23> × 114863171206797897175263809198491497302026303595862515183749017495032971476058182409331752611972682538134594333023276566092699321580986708140051388675886604724386102704829404051955636849909392221475834082714223576628886137542872948412990049663<243>
46×10266-19 = 5(1)266<267> = 7 × 732 × 383 × 21529 × [1661685882868732666126306981281791365702337702908440385682719482914771367563819198320453541038145258584090738194600336717944305986078825387462483946420476894840824863238800174392194705662314226462743959271328717807863987233940454517851456815001682877964391<256>] Free to factor
46×10267-19 = 5(1)267<268> = 20878904494171<14> × [244797858649051142945571221102182145567825689208261240598426315066450833262513989572503919270727851479955941049865633107847104070845856914574785811495403774959448649010762862878885615805759127143997476650821042957917019569336572145381190385086443106523141<255>] Free to factor
46×10268-19 = 5(1)268<269> = 3 × 499 × 674749 × 4841472927139<13> × 153329534987800609<18> × 809107928340906217020932963867<30> × [84244486853484768583631510977486355839165625646133060589215359362667470080035418679575047696093857608629121401811344735227467115615120724553483988865729091373840647213803303345020134537613836300899611<200>] (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=4084259563 for P30 / October 5, 2015 2015 年 10 月 5 日) Free to factor
46×10269-19 = 5(1)269<270> = 79 × 2852677 × 2267961251883983702357474773589021470501732148750153153327940742700522214397706599717002710312796047366759257220148445291829709476623878584927092936777981315960328105895145849351333524509647955729467360272523193819731436143908899956569380186014799659048707587317<262>
46×10270-19 = 5(1)270<271> = 53 × 96436058700209643605870020964360587002096436058700209643605870020964360587002096436058700209643605870020964360587002096436058700209643605870020964360587002096436058700209643605870020964360587002096436058700209643605870020964360587002096436058700209643605870020964360587<269>
46×10271-19 = 5(1)271<272> = 3 × 269 × [63334710174858873743632107944375602368167423929505713892330992702739914635825416494561475974115379319840286383037312405342145119096791959245490844003855156271513148836568910918353297535453669282665565193446234338427646977832851438799394189728762219468539171141401624673<269>] Free to factor
46×10272-19 = 5(1)272<273> = 7 × 3816511017887154492715969530948067<34> × [19131576634696860278657145145069300508233978443729110917714131632684857356699102983792635747598078855892987588154487557992239477276543172740954431063978909528747793504113441250419909664082703782610518890276558252941471105278007317162247819<239>] (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=1370238812 for P34 / October 5, 2015 2015 年 10 月 5 日) Free to factor
46×10273-19 = 5(1)273<274> = 17 × 19 × 29 × 191 × 5188128702456309527<19> × [550643723928124143318641863767474162646771758057947433556217545069630856695579601265434655891501331529548588883569052204070608406665005597599636069885032153746190741464308727192789587736076453432442985950333283831366578871071716919858395571231112169<249>] Free to factor
46×10274-19 = 5(1)274<275> = 33 × 61 × 73 × 1129 × 10522715699032441987<20> × 2145641558185387152763<22> × 16677076152385708542761875652767409200552768538613057273247755850504048111806604367152569926524157236316394675054128339294764696247065404177867770613669573500038904474303502876989652433932836360041127421400612993524109484714569<227>
46×10275-19 = 5(1)275<276> = 1631629 × 166489133 × 9161397349562209<16> × [205374394010014157421044726942444523074412944715130248086494846460656579497442106235099973036302129190253552491959104918876788197281140876725951951895499493575086041851267511809075571122088752179550110647722990590452535157939216038716147641716847<246>] Free to factor
46×10276-19 = 5(1)276<277> = 157 × 12197 × 470338643557<12> × 2269692770227<13> × 6860223407633<13> × 364457297404645487048478764926525468079537414393894007676033002987969008369887743387288833298021346919638701531051216936267597288483570267828669975220502226336986750082944074087199601688065520588843283602556519526602089951686117173657<234>
46×10277-19 = 5(1)277<278> = 3 × 560431130442593341<18> × 965018096395180453232809777<27> × 8455421165815184057875018349<28> × [3725641942267005218029459154213094099103256765543067223952801412299922579775042320247230159671796715002289098979681924801413755212828717904488440319695041363823088808830943670908383027532671782223069036709<205>] Free to factor
46×10278-19 = 5(1)278<279> = 7 × 911 × 1423 × 163733 × 41623992611<11> × 89420979479471<14> × 3653217119935750253<19> × 30165489842361928267<20> × 90283751851541902033<20> × 90987723694472207957699<23> × 55027042046365508952624588098579129<35> × 41843024349704373367156872197830772539<38> × 44340146887190632576058656356096645246726106817068897465579137200541730026377969562368471<89> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2305285370 for P35 / October 7, 2015 2015 年 10 月 7 日) (Dmitry Domanov / Msieve 1.50 gnfs for P38 x P89 / October 20, 2015 2015 年 10 月 20 日)
46×10279-19 = 5(1)279<280> = 141653394169649<15> × 83761560563350945527493123<26> × 3300209711430795211368617996460662990387<40> × [130527505717624603598621943490143479131362141900229887321425257573982942977707125862432670292335282758696850087656408394784712572577858508150706908868995674218644823979079144789221026968332540468669839<201>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2135358649 for P40 / October 9, 2015 2015 年 10 月 9 日) Free to factor
46×10280-19 = 5(1)280<281> = 3 × 33413 × 247185088924837524643767888313<30> × 80364804415473543007992466988881<32> × 25667905735627172792157759459487067826474956753745258469916789510179874593242349046699662953433578203136571699526339983410196972244853939147332821436762970576542961780998310377563245497248827649550297980858556509633<215> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=183448545 for P30 / September 29, 2015 2015 年 9 月 29 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1440640176 for P32 x P215 / October 9, 2015 2015 年 10 月 9 日)
46×10281-19 = 5(1)281<282> = 99328721 × 180541213 × 584837269 × 2094032363<10> × 48908215843<11> × 1192053505067<13> × 5339058517873735311893<22> × 846095065854620992204811<24> × 963387133094334071689457<24> × [91724095733854136497284924091355941167345524468073735189197259003713040669510328952570021676117971286977127662581663637121309121441504875914482631662518691<155>] Free to factor
46×10282-19 = 5(1)282<283> = 73 × 79 × 9254473 × 18716443717<11> × 6222895791589286016864838387<28> × 678374882282575813003387808310119993749<39> × 209021964584477494527033542144541773400064717<45> × [5798773327189959153201639495595493428515128291224884427111540152295909041628980205159052221115798377437862523384464460316833632130003688254041155953303<151>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=662623933 for P39 / May 4, 2017 2017 年 5 月 4 日) (Erik Branger / GMP-ECM B1=43000000, sigma=1:3225351453 for P45 / August 29, 2017 2017 年 8 月 29 日) Free to factor
46×10283-19 = 5(1)283<284> = 32 × 53 × 340237 × 199249832474842133<18> × 1364906818422100115111<22> × [1158015665721242830262009231944280633003035391283647406344394174643707636119209568984900933693813936093863855183266037722579000253757248538855927284037449590056758900937404214088319769872123270186493728079903125227635417242282376120638853<238>] Free to factor
46×10284-19 = 5(1)284<285> = 7 × [73015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873015873<284>] Free to factor
46×10285-19 = 5(1)285<286> = 4114969692509760648368759089572732178573<40> × [1242077461813283483802861776558375281319483625721214336185277669597869433012785489006632895903631724320859682296587678725565243541450983661756170582421458130975167799356555714475546070370032477018779698024701208889020075122936703165562533747820707<247>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1640167971 for P40 / January 22, 2016 2016 年 1 月 22 日) Free to factor
46×10286-19 = 5(1)286<287> = 3 × 4350014507<10> × 286731431355088963<18> × [13659287921209134203945762268191690452550836403296825261302397139872570250813567705635258169284865386094926891976005569532097082545149202212040080170725758659129915828134076382227188354565706621606809074861025319069812151697177320626948967246713988155555389357<260>] Free to factor
46×10287-19 = 5(1)287<288> = 1167068509<10> × 243624442859244906222831535617917<33> × [1797620916090879826479101692576502944526762457786121613543792831071775611127904057671374552057212648207286827165078304283667289388438168963182465207240561926421293873109852319604678013933772711495460637297559363133898746690483482420619755820090287<247>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1970915265 for P33 / October 9, 2015 2015 年 10 月 9 日) Free to factor
46×10288-19 = 5(1)288<289> = 233 × 1949 × 191161 × 108189827 × 61620781464422387927309791<26> × 9184742432326466859654188081<28> × 5306642655012916144377278509231<31> × 181195669866234089930420268342652113978342193346422838383389858685637075595003130490393326949043153017231475923920837957165591923097932965360199396390609037078811917143247946675539779089<186> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1127950514 for P28 / September 29, 2015 2015 年 9 月 29 日) (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=1825496509 for P26 x P31 x P186 / October 4, 2015 2015 年 10 月 4 日)
46×10289-19 = 5(1)289<290> = 3 × 17 × 3299 × 37993 × 12923797 × 33055064002395343<17> × 496782821648663686948778524862492501<36> × 37675978722883763110823062391303156445214390613545569368565646235199893737939398107481631913930975647811035918654390111524899226905050784982473274123513917442669141740168061567112285752051778291210551811188174981559563313<221> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2966587313 for P36 x P221 / May 10, 2017 2017 年 5 月 10 日)
46×10290-19 = 5(1)290<291> = 7 × 73 × 5453172811<10> × 292675235360077<15> × 3222626253761113<16> × [194468491020768859199900954165178693334849821151161720726493368531415483466242536050410377916815964348024081419290471210344465278284790593173467631604436303442671591756084717937351106717077882120223468570566822537592676741750377636735626186720322191<249>] Free to factor
46×10291-19 = 5(1)291<292> = 19 × 29231 × 255709 × 367366740875694784657131736732649<33> × 1794256816948513682356399988607008992283<40> × [54599365298314758885438774261824479357737928203212927279186132517120260138441140300576988657574227028865266506773211531313809857760669604878542596702193698413518682402377381397573535461510041378292883269122933<209>] (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=670345282 for P33 / October 5, 2015 2015 年 10 月 5 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=297971039 for P40 / May 10, 2017 2017 年 5 月 10 日) Free to factor
46×10292-19 = 5(1)292<293> = 32 × 5536213 × 123851813 × 250742162909840321968002766187091531001439<42> × [33031651346491965177527872038814746202643130455308391944221002817789205411130580862922130899267691820021118758053811545185433208285988558944713465099887644436822299292110398570771021810901842346901245445573722652096134433873875116066569<236>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=960184347 for P42 / May 11, 2017 2017 年 5 月 11 日) Free to factor
46×10293-19 = 5(1)293<294> = 113 × 163 × 68563087 × 404723955781836370220356836365645456221609996380710804557547130948110695843000974956701689780745848954522076605456319716498036403804161751441852258102165670551881286380507612074661097510499536528971149765955172536927855218565306476643226883851624674066476549385958010208728134667987<282>
46×10294-19 = 5(1)294<295> = 809 × 3814813 × 13521901213290146797<20> × [122477351912918788335955722011967178733059453128323026461853042479681384163991866886091092032800324295763873982922046190093959557175662281622441918276657857506860556519842546025539207861701551923656107989352953313547876663390643566812815201862851216059305121090642439<267>] Free to factor
46×10295-19 = 5(1)295<296> = 3 × 79 × 223 × 2863979 × 72096838317617<14> × 310281326807923<15> × [15094558823591767597023609157443392068412557261991423232334296297385124905755553874658686691560151328971702138665747285178450556204144422426610690396740052924791249349674430791193253147377691889805680796948208517764969962919029191283626655174014072606187549<257>] Free to factor
46×10296-19 = 5(1)296<297> = 7 × 53 × 59 × 671784587 × 126552481114559406623208131<27> × [274655753732582708487567132913103936922648131061132059404092000506159933643295723527001220511231453250590713713549553955912623789043502467295696047145190238997176454501421710498471104176965555079938230361732737358583301216668223657156308837065059076122761767<258>] Free to factor
46×10297-19 = 5(1)297<298> = 6899 × 1074071 × 20148773 × 456521442640097159113<21> × [74987072922304042976861347170916513175434362555468461233177390304942937766899767962568375196374198721434610612091749602043619156763457919530869225224560240551510839636056620521636335617457930051404108330422186334932339138486974469027468715456931808389140067991<260>] Free to factor
46×10298-19 = 5(1)298<299> = 3 × 73 × 8925706914281389<16> × 26147404484801769805363155147434148389916012893064988120338570576380656430488178190273559625302900318228468630816470160951171956314654544913540940589906605662461419454073621368096625037079320685705562035898746100820123917134629618921640904597894626376997167179238547145137668024121<281>
46×10299-19 = 5(1)299<300> = 47 × 14814010564891806029977109829941367248624340242624499383<56> × [734082404227392395622360756779047341402030374674112316703053979281649709763132700555961529185575632896903418654675793229137723254713925889664086351628485383092546772802929412957031647140747681734014012926710275272249494265060663956961167830111<243>] (Ben Meekins / GPU-enabled GMP-ECM 7.0dev B1=43000000, sigma=3:1459253570 for P56 / January 13, 2016 2016 年 1 月 13 日) Free to factor
46×10300-19 = 5(1)300<301> = 257 × 709139 × 794203 × 3666724396789249<16> × 7825655112208129793<19> × 40134967431262828372971687635452673751961<41> × [30661783867662173610567432927774303535726317451720372452479829762417321825304639127712567428551295806942750110105702447142576752034334410522549948770216630993463282006944913976777100520205502239590659497014415647<212>] (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=3546532490 for P16, B1=1000000, sigma=329890438 for P19 / October 4, 2015 2015 年 10 月 4 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=684033353 for P41 / October 6, 2015 2015 年 10 月 6 日) Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク