Table of contents 目次

  1. About 544...441 544...441 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 544...441 544...441 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 544...441 544...441 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 544...441 544...441 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

54w1 = { 51, 541, 5441, 54441, 544441, 5444441, 54444441, 544444441, 5444444441, 54444444441, … }

1.3. General term 一般項

49×10n-319 (1≤n)

2. Prime numbers of the form 544...441 544...441 の形の素数

2.1. Last updated 最終更新日

July 17, 2015 2015 年 7 月 17 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 49×102-319 = 541 is prime. は素数です。
  2. 49×103-319 = 5441 is prime. は素数です。
  3. 49×1086-319 = 5(4)851<87> is prime. は素数です。
  4. 49×10134-319 = 5(4)1331<135> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / December 3, 2004 2004 年 12 月 3 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 6, 2005 2005 年 1 月 6 日)
  5. 49×10185-319 = 5(4)1841<186> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / December 3, 2004 2004 年 12 月 3 日) (certified by: (証明: Makoto Kamada / PFGW / January 4, 2005 2005 年 1 月 4 日)
  6. 49×10344-319 = 5(4)3431<345> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / December 3, 2004 2004 年 12 月 3 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 6, 2005 2005 年 1 月 6 日)
  7. 49×10396-319 = 5(4)3951<397> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / December 3, 2004 2004 年 12 月 3 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 6, 2005 2005 年 1 月 6 日)
  8. 49×10476-319 = 5(4)4751<477> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 30, 2006 2006 年 5 月 30 日)
  9. 49×10834-319 = 5(4)8331<835> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 30, 2006 2006 年 5 月 30 日)
  10. 49×101799-319 = 5(4)17981<1800> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / August 5, 2006 2006 年 8 月 5 日)
  11. 49×102147-319 = 5(4)21461<2148> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Ray Chandler / Primo 3.0.9 / September 6, 2010 2010 年 9 月 6 日)
  12. 49×102418-319 = 5(4)24171<2419> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Ray Chandler / Primo 3.0.9 / September 23, 2010 2010 年 9 月 23 日)
  13. 49×105216-319 = 5(4)52151<5217> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日)
  14. 49×105882-319 = 5(4)58811<5883> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日)
  15. 49×106216-319 = 5(4)62151<6217> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 24, 2004 2004 年 12 月 24 日)
  16. 49×1013394-319 = 5(4)133931<13395> is PRP. はおそらく素数です。 (Ray Chandler / srsieve, PFGW / September 9, 2010 2010 年 9 月 9 日)
  17. 49×1019746-319 = 5(4)197451<19747> is PRP. はおそらく素数です。 (Ray Chandler / srsieve, PFGW / September 12, 2010 2010 年 9 月 12 日)
  18. 49×1066485-319 = 5(4)664841<66486> is PRP. はおそらく素数です。 (Bob Price / July 17, 2015 2015 年 7 月 17 日)

2.3. Range of search 捜索範囲

  1. n≤30000 / Completed 終了 / Ray Chandler / September 19, 2010 2010 年 9 月 19 日
  2. n≤50000 / Completed 終了 / Erik Branger / May 1, 2013 2013 年 5 月 1 日
  3. n≤100000 / Completed 終了 / Bob Price / July 17, 2015 2015 年 7 月 17 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

  1. 49×103k+1-319 = 3×(49×101-319×3+49×10×103-19×3×k-1Σm=0103m)
  2. 49×1016k+1-319 = 17×(49×101-319×17+49×10×1016-19×17×k-1Σm=01016m)
  3. 49×1018k+15-319 = 19×(49×1015-319×19+49×1015×1018-19×19×k-1Σm=01018m)
  4. 49×1021k+9-319 = 43×(49×109-319×43+49×109×1021-19×43×k-1Σm=01021m)
  5. 49×1022k+4-319 = 23×(49×104-319×23+49×104×1022-19×23×k-1Σm=01022m)
  6. 49×1028k+27-319 = 29×(49×1027-319×29+49×1027×1028-19×29×k-1Σm=01028m)
  7. 49×1041k+33-319 = 83×(49×1033-319×83+49×1033×1041-19×83×k-1Σm=01041m)
  8. 49×1043k+15-319 = 173×(49×1015-319×173+49×1015×1043-19×173×k-1Σm=01043m)
  9. 49×1046k+21-319 = 47×(49×1021-319×47+49×1021×1046-19×47×k-1Σm=01046m)
  10. 49×1050k+6-319 = 251×(49×106-319×251+49×106×1050-19×251×k-1Σm=01050m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 21.99%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 21.99% です。

3. Factor table of 544...441 544...441 の素因数分解表

3.1. Last updated 最終更新日

September 19, 2016 2016 年 9 月 19 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=189, 193, 194, 204, 207, 210, 211, 216, 217, 218, 219, 220, 221, 222, 223, 226, 227, 228, 229, 232, 233, 234, 235, 237, 239, 240, 243, 244, 245, 247, 248, 249 (32/250)

3.4. Factor table 素因数分解表

49×101-319 = 51 = 3 × 17
49×102-319 = 541 = definitely prime number 素数
49×103-319 = 5441 = definitely prime number 素数
49×104-319 = 54441 = 32 × 23 × 263
49×105-319 = 544441 = 461 × 1181
49×106-319 = 5444441 = 109 × 199 × 251
49×107-319 = 54444441 = 3 × 419 × 43313
49×108-319 = 544444441 = 2797 × 194653
49×109-319 = 5444444441<10> = 43 × 126614987
49×1010-319 = 54444444441<11> = 3 × 18148148147<11>
49×1011-319 = 544444444441<12> = 61871 × 8799671
49×1012-319 = 5444444444441<13> = 1747 × 3116453603<10>
49×1013-319 = 54444444444441<14> = 32 × 2843 × 6353 × 334931
49×1014-319 = 544444444444441<15> = 92867 × 5862625523<10>
49×1015-319 = 5444444444444441<16> = 19 × 173 × 1656356691343<13>
49×1016-319 = 54444444444444441<17> = 3 × 97 × 187094310805651<15>
49×1017-319 = 544444444444444441<18> = 17 × 1303 × 3061897 × 8027303
49×1018-319 = 5444444444444444441<19> = 1901 × 9101633 × 314667677
49×1019-319 = 54444444444444444441<20> = 3 × 1301 × 1327 × 9413 × 1116750197<10>
49×1020-319 = 544444444444444444441<21> = 739787 × 735947569292843<15>
49×1021-319 = 5444444444444444444441<22> = 47 × 1334363 × 86812391754581<14>
49×1022-319 = 54444444444444444444441<23> = 35 × 17393 × 33042043 × 389857513
49×1023-319 = 544444444444444444444441<24> = 51130379 × 10648159765145579<17>
49×1024-319 = 5444444444444444444444441<25> = 820627 × 6634493435439541283<19>
49×1025-319 = 54444444444444444444444441<26> = 3 × 18148148148148148148148147<26>
49×1026-319 = 544444444444444444444444441<27> = 232 × 19074439 × 53956792498796911<17>
49×1027-319 = 5444444444444444444444444441<28> = 29 × 61 × 521 × 46237 × 107357 × 1190057647201<13>
49×1028-319 = 54444444444444444444444444441<29> = 3 × 5822149 × 3117087547595938913303<22>
49×1029-319 = 544444444444444444444444444441<30> = 14369 × 37890211179932106927722489<26>
49×1030-319 = 5444444444444444444444444444441<31> = 43 × 179 × 29299316821<11> × 24142074740456293<17>
49×1031-319 = 54444444444444444444444444444441<32> = 32 × 6049382716049382716049382716049<31>
49×1032-319 = 544444444444444444444444444444441<33> = 1091 × 2063 × 3833 × 16087 × 26437 × 3891467 × 38132053
49×1033-319 = 5444444444444444444444444444444441<34> = 17 × 19 × 83 × 5186899 × 9257111 × 4229506465198141<16>
49×1034-319 = 54444444444444444444444444444444441<35> = 3 × 499 × 3677 × 6151 × 1608023581539255408909539<25>
49×1035-319 = 544444444444444444444444444444444441<36> = 59 × 130981 × 70451988759715886395794298079<29>
49×1036-319 = 5444444444444444444444444444444444441<37> = 121621 × 52374581269<11> × 854721122658953159009<21>
49×1037-319 = 54444444444444444444444444444444444441<38> = 3 × 317 × 10159 × 34763 × 20767023713<11> × 7806036651813571<16>
49×1038-319 = 544444444444444444444444444444444444441<39> = 701 × 1741 × 53773 × 2314967531<10> × 3583666697761064527<19>
49×1039-319 = 5444444444444444444444444444444444444441<40> = 643 × 17579 × 153997 × 3127779803732142082759941949<28>
49×1040-319 = 54444444444444444444444444444444444444441<41> = 32 × 487 × 5867597 × 2117004699385344374011123048291<31>
49×1041-319 = 544444444444444444444444444444444444444441<42> = 177383 × 153115783679284513<18> × 20045717859015816479<20>
49×1042-319 = 5444444444444444444444444444444444444444441<43> = 27059 × 256878649094629<15> × 783274195663937361945031<24>
49×1043-319 = 54444444444444444444444444444444444444444441<44> = 3 × 18148148148148148148148148148148148148148147<44>
49×1044-319 = 544444444444444444444444444444444444444444441<45> = 11393 × 338392927 × 232674916517<12> × 606938419612804438843<21>
49×1045-319 = 5444444444444444444444444444444444444444444441<46> = 1283 × 23308403 × 44572588015746277<17> × 4084571893557087917<19>
49×1046-319 = 54444444444444444444444444444444444444444444441<47> = 3 × 291797173 × 62194393323159947639890768058085840839<38>
49×1047-319 = 544444444444444444444444444444444444444444444441<48> = 624601619 × 871666719846341679822710232911587192739<39>
49×1048-319 = 5444444444444444444444444444444444444444444444441<49> = 23 × 20663 × 123933200416309329347<21> × 92436755597013593040547<23>
49×1049-319 = 54444444444444444444444444444444444444444444444441<50> = 33 × 17 × 17182049 × 25792313 × 3378971404213<13> × 79212026650647543479<20>
49×1050-319 = 544444444444444444444444444444444444444444444444441<51> = 157 × 2153 × 21438837127<11> × 75129182543531856845599057113342323<35>
49×1051-319 = 5(4)501<52> = 19 × 43 × 6663946688426492588059295525635794913640690874473<49>
49×1052-319 = 5(4)511<53> = 3 × 62347 × 320411573711<12> × 908465752468389186940932600138036791<36>
49×1053-319 = 5(4)521<54> = 327853 × 3422407 × 2251462876031<13> × 215515228250867476737202619141<30>
49×1054-319 = 5(4)531<55> = 2897 × 603623 × 3850241 × 669656110172176447<18> × 1207534494629509566193<22>
49×1055-319 = 5(4)541<56> = 3 × 29 × 5176954811776671208587551<25> × 120881528766974464863517598993<30>
49×1056-319 = 5(4)551<57> = 251 × 1019 × 1607 × 93001 × 14243022815606808689348106644265387034024127<44>
49×1057-319 = 5(4)561<58> = 9967 × 206299 × 1373477226130421928029<22> × 1927837957087252716792021913<28>
49×1058-319 = 5(4)571<59> = 32 × 173 × 1439 × 24299881967042714778846030344006486184004558062757867<53>
49×1059-319 = 5(4)581<60> = 376049 × 1447801867428033167072494394199810249314436268795940009<55>
49×1060-319 = 5(4)591<61> = 244848425404205739967098389<27> × 22235978995807443321521220527700469<35>
49×1061-319 = 5(4)601<62> = 3 × 83561 × 4255189919<10> × 51039891062321657245095678944101232400567391333<47>
49×1062-319 = 5(4)611<63> = 7944827361034909<16> × 234199251338727383<18> × 292606253567205923856354815003<30>
49×1063-319 = 5(4)621<64> = 373 × 16937 × 4168223 × 733567999 × 3155109773<10> × 89331053179889238544763156677921<32>
49×1064-319 = 5(4)631<65> = 3 × 42283 × 139759 × 3071048945764834195245478799644017185394130530889890551<55>
49×1065-319 = 5(4)641<66> = 17 × 32026143790849673202614379084967320261437908496732026143790849673<65>
49×1066-319 = 5(4)651<67> = 57040609 × 3691782228821<13> × 5460085980529<13> × 4735151300239950259067773776839461<34>
49×1067-319 = 5(4)661<68> = 32 × 47 × 151 × 65323 × 113238799 × 3959768250637403<16> × 29100812207065683282720042941311007<35>
49×1068-319 = 5(4)671<69> = 1987 × 60631 × 132313 × 2749667 × 3757464540711887<16> × 3305852431459269312116793881469889<34>
49×1069-319 = 5(4)681<70> = 192 × 1237 × 129147593 × 2221709702761944581357810921<28> × 42491595736962693969880389821<29>
49×1070-319 = 5(4)691<71> = 3 × 23 × 11399 × 23981 × 13439943684214561<17> × 214769688955979351956379478656884790714237471<45>
49×1071-319 = 5(4)701<72> = 109849 × 6599732363192197309<19> × 1970656455900026146927<22> × 381083564133441213883215163<27>
49×1072-319 = 5(4)711<73> = 43 × 6013274107732436003<19> × 14444128872304710063240611<26> × 1457749024026460391545191539<28>
49×1073-319 = 5(4)721<74> = 3 × 78444002459<11> × 231351634022417011970637852638183525965718956178232049689913033<63>
49×1074-319 = 5(4)731<75> = 83 × 62004369029697749407<20> × 105792087274862788634668729959353421291026030673212861<54>
49×1075-319 = 5(4)741<76> = 110067281680541<15> × 62634611862476583066337<23> × 789734187897290168433303015831222096973<39>
49×1076-319 = 5(4)751<77> = 33 × 10029989 × 876857411 × 229276937862445184796888562605708170995894238536621819840277<60>
49×1077-319 = 5(4)761<78> = 229 × 2377486656962639495390587093643862202814167879670063076176613294517224648229<76>
49×1078-319 = 5(4)771<79> = 3371 × 21943 × 1343086467472801107727514747<28> × 54801802303351926595650011907890554467769751<44>
49×1079-319 = 5(4)781<80> = 3 × 521 × 2351 × 30593 × 14489963712559<14> × 33423551797180347955602714372716879858495001169275903611<56>
49×1080-319 = 5(4)791<81> = 5054135797<10> × 20243593087<11> × 195334968028103613923149<24> × 27242005054985347826868573537609300631<38>
49×1081-319 = 5(4)801<82> = 17 × 8978831 × 2934798485018117<16> × 12153645529822594732827470702985342524885600524358590936699<59>
49×1082-319 = 5(4)811<83> = 3 × 2521 × 2454103121<10> × 2933368759634744641136419304445399782006428496130887250487922142953467<70>
49×1083-319 = 5(4)821<84> = 29 × 811 × 13033 × 932054472781763<15> × 769697234950284489542063<24> × 2475877208071130035412837615197089707<37>
49×1084-319 = 5(4)831<85> = 83451747352714644919<20> × 65240628472800207985679650722543869608367116474254294111205675439<65>
49×1085-319 = 5(4)841<86> = 32 × 63231765117967482986473<23> × 95669996002221891012236205359088282417692215523850466269150313<62>
49×1086-319 = 5(4)851<87> = definitely prime number 素数
49×1087-319 = 5(4)861<88> = 19 × 61 × 117437 × 40000478471029417137999447433390401199631655675633155144997828288308496803594827<80>
49×1088-319 = 5(4)871<89> = 3 × 404641319 × 1049132903186401253379361296111889<34> × 42749553246942281219769263081377235712585602117<47> (Makoto Kamada / GGNFS-0.70.3 / 0.17 hours)
49×1089-319 = 5(4)881<90> = 769 × 4149449690851979<16> × 18850325874586898375711<23> × 9051443917515954076695241545183981698284820438581<49>
49×1090-319 = 5(4)891<91> = 83383 × 143560806773011906301489<24> × 454820638919419498178220100759108115349166767809109789861285343<63>
49×1091-319 = 5(4)901<92> = 3 × 11329 × 10963660396490147241023145204805843<35> × 146111757416313631799042490848967110961387528607362401<54> (Makoto Kamada / GGNFS-0.70.7 / 0.46 hours)
49×1092-319 = 5(4)911<93> = 23 × 223 × 26263 × 1214623 × 2761493701874771<16> × 1205010913283563309365040649906040304187257457869421049369395251<64>
49×1093-319 = 5(4)921<94> = 43 × 59 × 216542422685861<15> × 8289765403010935308182260923551<31> × 1195495296052437879116727112426930209242541763<46> (Makoto Kamada / msieve 0.83 / 13 minutes)
49×1094-319 = 5(4)931<95> = 32 × 5435909 × 94493854868561022574341219274731479<35> × 11777017407796603130541094130720434418426035110082859<53> (Makoto Kamada / GGNFS-0.70.7 / 0.56 hours)
49×1095-319 = 5(4)941<96> = 5017819 × 1703190343577<13> × 63705274707927143134957304578569406170049301229518249689763689107367203671507<77>
49×1096-319 = 5(4)951<97> = 3067 × 27547459 × 2014383913<10> × 135041073731<12> × 6373886002873<13> × 6625417527263<13> × 5609608832468388064152989505475095233501<40>
49×1097-319 = 5(4)961<98> = 3 × 17 × 617833956433007873733303397<27> × 1727872214283854446858166381260429562971870554153919261819179891100103<70>
49×1098-319 = 5(4)971<99> = 9151401223769323193<19> × 18148004461808004143999<23> × 3278212460653245759785369803189981570115812582925193752863<58>
49×1099-319 = 5(4)981<100> = 18472196477286635851<20> × 294737252883755269573332995286251779858339078066124056166101244816989189540882091<81>
49×10100-319 = 5(4)991<101> = 3 × 932341 × 3887003 × 3884630381<10> × 9269956321<10> × 13115507393<11> × 313586843644409<15> × 33812114935615861302451145047368963969932897<44>
49×10101-319 = 5(4)1001<102> = 173 × 13669 × 219456863 × 9258117345333617801538711074291<31> × 113317993490407150030314312348019670552127771325597421021<57> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=4136623280 for P31 / March 18, 2009 2009 年 3 月 18 日)
49×10102-319 = 5(4)1011<103> = 383 × 1877279 × 473755973482677914291347623099642100603<39> × 15983477561793208607093630496325319497714439131327943771<56> (Max Dettweiler / GGNFS via factLat.pl snfs / 0.66 hours on Core 2 Duo E4500 (2.2Ghz), Ubuntu 8.10 32-bit / March 21, 2009 2009 年 3 月 21 日)
49×10103-319 = 5(4)1021<104> = 34 × 5428898884034026971849299<25> × 123810306560203229186735652124289872569556355434110642622561412109388027873139<78>
49×10104-319 = 5(4)1031<105> = 14646229669<11> × 2413293864779198087<19> × 15403432923345387251442536801835505100031431366841425285226623587962086151347<77>
49×10105-319 = 5(4)1041<106> = 19 × 199 × 29058804919<11> × 212864010462129847<18> × 1458088472991442003<19> × 159655184859640165449061377081136542503634588134207228759<57>
49×10106-319 = 5(4)1051<107> = 3 × 251 × 743 × 13913 × 14966978316509411<17> × 46491242637566179031860199<26> × 10051797056003164301047266859183061300484673976903879147<56>
49×10107-319 = 5(4)1061<108> = 39628307 × 81692027943098883148495387867<29> × 168177686750870925832507237428949256649105166895406074742476163543081689<72>
49×10108-319 = 5(4)1071<109> = 3761 × 81689 × 2467357 × 27860579 × 886771190688375981834919<24> × 12556336669499681634074073628247<32> × 23152079275885832860195359512951<32> (Makoto Kamada / Msieve-1.39 for P32 x P32 / March 20, 2009 2009 年 3 月 20 日)
49×10109-319 = 5(4)1081<110> = 3 × 68671892020873021<17> × 264273309123796469989026264637376426978604763109173755938897664968756976586640709301539097007<93>
49×10110-319 = 5(4)1091<111> = 113 × 4818092428711897738446411012782694198623402163225172074729596853490658800393313667649950835791543756145526057<109>
49×10111-319 = 5(4)1101<112> = 29 × 4133 × 2337690751564849<16> × 220465365671626277716812307<27> × 88137907514623477873208262603212516284607945269043235630385109891<65>
49×10112-319 = 5(4)1111<113> = 32 × 97 × 619 × 5952717978526412711669<22> × 16925182893244767124029516391896538810926491481226240481458335524460654272386424859047<86>
49×10113-319 = 5(4)1121<114> = 17 × 472 × 131413 × 536314376813<12> × 205707991770588997912762550934606565307395827432848538202063238217988384649733748879770048313<93>
49×10114-319 = 5(4)1131<115> = 23 × 43 × 109 × 4813 × 22217334636516340591183544712573576415815305878084841<53> × 472305456504688210183240694188825900424928109872524477<54> (Ignacio Santos / GGNFS, Msieve snfs / 0.96 hours / March 21, 2009 2009 年 3 月 21 日)
49×10115-319 = 5(4)1141<116> = 3 × 83 × 174121 × 2372115082583203<16> × 529379739494746823159287212978809123585922155941979472184761177955860630142303680624460688243<93>
49×10116-319 = 5(4)1151<117> = 317 × 475033657013<12> × 3615512997169550836504233018532273600284575197266088992784120463988194515372673147345412940778035900921<103>
49×10117-319 = 5(4)1161<118> = 154246452441159111248982572678667916573<39> × 35297048057045941607042149181609332851433750679475844777668550528971140848239917<80> (Ignacio Santos / GGNFS, Msieve snfs / 1.25 hours / March 21, 2009 2009 年 3 月 21 日)
49×10118-319 = 5(4)1171<119> = 3 × 79912187 × 25120225357<11> × 7701678565842238309<19> × 3087652282044644152972861823931481206389<40> × 380173633058718073095031637640452276771333<42> (Makoto Kamada / Msieve-1.39 for P40 x P42 / 16 min on Athlon 4850e 2.5GHz, 2GB, Vista 32bit, Cygwin / March 20, 2009 2009 年 3 月 20 日)
49×10119-319 = 5(4)1181<120> = 3373 × 15217 × 734137583 × 14448765117333367899192029596584757509453901739883954975629713469407176173834354232030131241540100571747<104>
49×10120-319 = 5(4)1191<121> = 257 × 35597 × 536245068924591737124655246514569309654380430554957439<54> × 1109797486936534216431504198518455998801702013987553663743811<61> (Erik Branger / GGNFS, Msieve snfs / 2.27 hours / March 21, 2009 2009 年 3 月 21 日)
49×10121-319 = 5(4)1201<122> = 32 × 131 × 1275455269903484432893507007<28> × 36277844381237430670455147233624365514761<41> × 998005786686987798358882485633772896334040422474877<51> (Max Dettweiler / GGNFS via factLat.pl snfs / 2.30 hours on Core 2 Duo E4500 (2.2Ghz), Ubuntu 8.10 32-bit / March 21, 2009 2009 年 3 月 21 日)
49×10122-319 = 5(4)1211<123> = 293 × 187073 × 30660735383<11> × 29144530795124543<17> × 67477310366141999<17> × 164731798934237103516127052807344536971077201551967770463939404199264499<72>
49×10123-319 = 5(4)1221<124> = 19 × 55223921 × 4146528941808059531<19> × 1211355092192691407836253<25> × 1033038625635039423895769119671898052422787591070429662256312387456679213<73>
49×10124-319 = 5(4)1231<125> = 3 × 149 × 3678469373978815613162658522544463360181425083<46> × 33111503622293235320810964516155255520009807603765550297505951353818595518341<77> (Ignacio Santos / GGNFS, Msieve snfs / 1.91 hours / March 21, 2009 2009 年 3 月 21 日)
49×10125-319 = 5(4)1241<126> = 4804924649857833704429<22> × 1025115644707967819539554614441428582207<40> × 110533552316652305766096265640112667609906689555884231601589422947<66> (Ignacio Santos / GGNFS, Msieve snfs / 1.87 hours / March 21, 2009 2009 年 3 月 21 日)
49×10126-319 = 5(4)1251<127> = 167 × 669029 × 208232251 × 556896757 × 531376075229<12> × 752048965583513512973<21> × 402462317556550329973162584473<30> × 2612739642025645347049719502610346530101<40> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=956132971 for P30 / March 18, 2009 2009 年 3 月 18 日)
49×10127-319 = 5(4)1261<128> = 3 × 212686756056207820346328747855854527191863<42> × 85328059370805598805282609306653258989436996598344573461264897015482912785725445799269<86> (Erik Branger / Msieve / 3.09 hours / March 21, 2009 2009 年 3 月 21 日)
49×10128-319 = 5(4)1271<129> = 157 × 653 × 1801003 × 334785113105198068383674639652573199<36> × 2656934680962281058637638782134286920741<40> × 3314967576878842350279855338342491270012073<43> (Max Dettweiler / GGNFS (sieving) + msieve v1.40beta2 (postprocessing) via factMsieve.pl snfs / 4.04 hours on Core 2 Duo E4500 (2.2Ghz), Ubuntu 8.10 32-bit / March 21, 2009 2009 年 3 月 21 日)
49×10129-319 = 5(4)1281<130> = 17 × 1051 × 1223 × 188833 × 7162696482730668159103867263627691<34> × 184213322171955253139200172783060241904468670066761404841591156427180089235354386967<84> (Max Dettweiler / GGNFS (sieving) + msieve v1.40beta2 (postprocessing) via factMsieve.pl snfs / 3.93 hours on Core 2 Duo E4500 (2.2Ghz), Ubuntu 8.10 32-bit / March 22, 2009 2009 年 3 月 22 日)
49×10130-319 = 5(4)1291<131> = 33 × 3485194438046429071043711780795569694241101<43> × 578579170027623963886718225384340201589963557785325638183886905382835163611758103197383<87> (Ignacio Santos / GGNFS, Msieve snfs / 2.36 hours / March 21, 2009 2009 年 3 月 21 日)
49×10131-319 = 5(4)1301<132> = 521 × 540992863696848887788559<24> × 1931631642113737299926646943073047710336012174469854688798861082621630885171530340880931520244568635425119<106>
49×10132-319 = 5(4)1311<133> = 937 × 4933 × 135039659411715644318569<24> × 917343383904947349456475388877809429569624434029<48> × 9508447156545723192298461689453019352567992309220057321<55> (Ignacio Santos / GGNFS, Msieve snfs / 3.04 hours / March 21, 2009 2009 年 3 月 21 日)
49×10133-319 = 5(4)1321<134> = 3 × 808651 × 3103625347<10> × 823189018439<12> × 45849053766599<14> × 3866079957161603<16> × 49556556451058436120393750473105014082873065613825284044220846027472326160897<77>
49×10134-319 = 5(4)1331<135> = definitely prime number 素数
49×10135-319 = 5(4)1341<136> = 43 × 29113213506943<14> × 33670401829973<14> × 18852393406788372790708179301<29> × 6851413456780259325186633999338705139210293941142485281715010674719612666313933<79>
49×10136-319 = 5(4)1351<137> = 3 × 23 × 665857 × 13972061 × 39460147 × 11671026512077<14> × 18667939549767870850524668531<29> × 3022782052436438642593509297659<31> × 3263563458913913551196308954723352628160607<43> (Serge Batalov / GMP-ECM 6.2.2 B1=3000000, sigma=1100200419 for P29, Msieve-1.40 for P31 x P43 / March 21, 2009 2009 年 3 月 21 日)
49×10137-319 = 5(4)1361<138> = 337 × 14207 × 28627073 × 30297622093<11> × 9226976290192189<16> × 103389315487142509126802973371<30> × 6373516820445041682964601890070003<34> × 21563616455839551159565143459470863<35> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=3143955635 for P30 / March 18, 2009 2009 年 3 月 18 日) (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=48789965 for P34 / March 18, 2009 2009 年 3 月 18 日)
49×10138-319 = 5(4)1371<139> = 1945781 × 11507087 × 55920419 × 4348343046534890289107822734134210012694301368271404787614522907007595474818560474134992155645647340340689965104917737<118>
49×10139-319 = 5(4)1381<140> = 32 × 29 × 141301 × 452326029838012123503316567<27> × 750377221650197702999288202630635030091562231<45> × 4349472657235673314417701685009106480893148418132764187177953<61> (Ignacio Santos / GGNFS, Msieve snfs / 6.53 hours / March 21, 2009 2009 年 3 月 21 日)
49×10140-319 = 5(4)1391<141> = 347 × 65629 × 23907177660243261777833261946012938262050741013461463315311663701615549973863843949127731254166100151938896259374181224905910252933207<134>
49×10141-319 = 5(4)1401<142> = 19 × 2357 × 1192447847045353253101<22> × 101953230941052977733352048493331571406395327762251541880060445143795003571926300013575964729310711998240204017805427<117>
49×10142-319 = 5(4)1411<143> = 3 × 151 × 2023864397<10> × 93445315257300767<17> × 1716464456102413811533728553420001764417351<43> × 370238527354276951849469480548758543807489129866387577784804649042444353<72> (Sinkiti Sibata / GGNFS-0.77.1-20050930-pentium4 snfs / 17.43 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / March 22, 2009 2009 年 3 月 22 日)
49×10143-319 = 5(4)1421<144> = 147551 × 3689872955415039169130974676175996397479139039684207117840234525312904991795680438929213929044496102665820254992812278089910908394009152391<139>
49×10144-319 = 5(4)1431<145> = 173 × 2999 × 16657 × 951427 × 2585941 × 3257882588377989083926255526466788253796211702624682169<55> × 78596770878296901617141918915241683753362330196819502016865089290893<68> (Ignacio Santos / GGNFS, Msieve snfs / 9.85 hours / March 23, 2009 2009 年 3 月 23 日)
49×10145-319 = 5(4)1441<146> = 3 × 17 × 182773 × 1476511 × 1360874413<10> × 49121077427<11> × 215691204456149170031<21> × 434960582530030125624174611913048830633<39> × 630763272083566084158310359068270763055519969092874889<54> (Max Dettweiler / Yafu v1.07 / March 21, 2009 2009 年 3 月 21 日)
49×10146-319 = 5(4)1451<147> = 643 × 3042106189827290624120844036782865833<37> × 278335260575092870871504582135628218174720978379908946178727055375423453765822803874949132681646831312143739<108> (Sinkiti Sibata / GGNFS-0.77.1-20060513-nocona snfs / 17.67 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / March 21, 2009 2009 年 3 月 21 日)
49×10147-319 = 5(4)1461<148> = 61 × 10333 × 56081 × 207740560128126020544013<24> × 741413106045433559066972168153328010945331636854524783973353485670903803960408722800091122326410710709525926959269<114>
49×10148-319 = 5(4)1471<149> = 32 × 1522307981<10> × 32325361034799231983<20> × 41174538329149687535593202758980475987623219157<47> × 2985632945849170426739484835964697951250750532381210173726652975197022159<73> (Sinkiti Sibata / GGNFS-0.77.1-20060513-nocona snfs / 24.50 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / March 21, 2009 2009 年 3 月 21 日)
49×10149-319 = 5(4)1481<150> = 2543 × 8866057 × 82577827 × 255343975846549<15> × 1145216573919885542287956378209112048975524328990750543780550504337291780680998896532375214440680227216248846476581217<118>
49×10150-319 = 5(4)1491<151> = 193 × 183283 × 1062394007<10> × 999281837107895017<18> × 144977454713404517867579402032242780627130910479619990445341710416377174760008400894707027640603702291748514893639981<117>
49×10151-319 = 5(4)1501<152> = 3 × 59 × 911 × 3407 × 339851027 × 286120041668600745533526907489500541024577<42> × 1019184775083452183488830452860126346217069699358811608060108774820628340331919578837659937651<94> (Sinkiti Sibata / GGNFS-0.77.1-20060513-nocona snfs / 33.36 hours on Core 2 Quad Q6600 2.4GHz, Windows Vista and Cygwin / March 22, 2009 2009 年 3 月 22 日)
49×10152-319 = 5(4)1511<153> = 139066913 × 143811039393017<15> × 812352607758978810286632150707<30> × 33511429361318384365714365555561437168521607903032200299203243906271811241705138132135209592480782203<101> (Serge Batalov / GMP-ECM 6.2.2 B1=3000000, sigma=1803878505 for P30 / March 21, 2009 2009 年 3 月 21 日)
49×10153-319 = 5(4)1521<154> = 9043 × 602061754334230282477545553958248860383107867349822453217344293314657131974393944978927838598301940113285905611461289886591224642756214137392949733987<150>
49×10154-319 = 5(4)1531<155> = 3 × 11864057 × 192295389408162033305659<24> × 7954817488520048120258823050958672118970061231046010239893523679031486253604707913370739035137197357233775904401360859757169<124>
49×10155-319 = 5(4)1541<156> = 21647 × 30347 × 45631 × 18747913 × 22753747 × 42576920637161737775866235764600175213434847809835700209160021550471597449775617560827882153366000099048237855608492532774599889<128>
49×10156-319 = 5(4)1551<157> = 43 × 83 × 251 × 346633708548360183451667<24> × 17533253321388959111346769903958106073293661280583878259163624560300793807726377933884563855369992408268455759894283765607492617<128>
49×10157-319 = 5(4)1561<158> = 33 × 6122309 × 1923220060004563723065726411371<31> × 171255915216534977122827386763108934627093798220839334994149913976056197515328298881509804914207268712955084143436490397<120> (Ignacio Santos / GGNFS, Msieve snfs / 24.52 hours / March 21, 2009 2009 年 3 月 21 日)
49×10158-319 = 5(4)1571<159> = 23 × 2422087 × 99603367 × 338983214914643563511308571161310372441779<42> × 289456816972690351532668866002715672964035429516916062876460836624896725733021164280118302721885812837<102> (Robert Backstrom / GGNFS-0.77.1-20060513-pentium-m, Msieve 1.39 snfs / 30.21 hours, 1.31 hours / March 28, 2009 2009 年 3 月 28 日)
49×10159-319 = 5(4)1581<160> = 19 × 47 × 292246842172269949747673873<27> × 3567663311467094797752460691<28> × 1286968891444224528016148245727<31> × 827600391338879236747200546595124171<36> × 5490092802033096484410654870220759027<37> (Sinkiti Sibata / Msieve 1.39 for P31 x P36 x P37 / 22.03 hours / March 22, 2009 2009 年 3 月 22 日)
49×10160-319 = 5(4)1591<161> = 3 × 100483242763<12> × 17953395062563<14> × 214735143465929<15> × 1567737971651068384965094581648394152466087463266918812121997<61> × 29882400504340187380633681424970223502423170295790042907585351<62> (Ignacio Santos / GGNFS, Msieve snfs / 25.51 hours / April 3, 2009 2009 年 4 月 3 日)
49×10161-319 = 5(4)1601<162> = 17 × 99928195881605184721<20> × 954328629156044847391<21> × 42332905570352079910250248491152463870303006578684797037033<59> × 7933056952978764392358391566405953858218810888756092478579471<61> (Andreas Tete / Msieve v1.40, GGNFS, Msieve v1.41 gnfs for P59 x P61 / 1.26 hours on Intel Core 2 Duo T8100 Windows Vista Home Premium 32 bit / April 5, 2009 2009 年 4 月 5 日)
49×10162-319 = 5(4)1611<163> = 259033 × 62725207 × 7016680763<10> × 38088294433893301651<20> × 1253814039060330339277547383546102206046837851431040912624315770631210437332529255482468027695773622906270984959562896647<121>
49×10163-319 = 5(4)1621<164> = 3 × 14699 × 188437 × 7995397 × 294687227501516987816725001<27> × 2780846384089897877370536859858752034146702567558329287008466525020654087922694828130841947885036044499670701281905572777<121>
49×10164-319 = 5(4)1631<165> = 523 × 1637 × 454200427 × 18266240106599<14> × 97242893951521724288182917546832140952424722461682859509<56> × 788222135806169106863746019469358535526566092827867970024563598445394794227816063<81> (Robert Backstrom / GGNFS-0.77.1-20060513-pentium-m, Msieve 1.39 snfs / 45.90 hours, 1.33 hours / April 6, 2009 2009 年 4 月 6 日)
49×10165-319 = 5(4)1641<166> = 2657 × 3415503671<10> × 97183337723738729<17> × 17795071470385183553<20> × 3634817774191577551868236530631<31> × 95440579885143177494526759532437749091043702738081194606442117590125371568906001930449<86> (Serge Batalov / GMP-ECM 6.2.2 B1=3000000, sigma=1236416677 for P31 / March 21, 2009 2009 年 3 月 21 日)
49×10166-319 = 5(4)1651<167> = 32 × 40771 × 545099669 × 17214523373519<14> × 15812071755650230453542538753973238477402164397499347944220875362947324642104078022257813657429764181947798674106723182155454823149526079329<140>
49×10167-319 = 5(4)1661<168> = 29 × 719 × 26111191043328590688429545079106251232288352810150325857006591743534815809526854560665888659749865447433909378180636153874847462684976473283988511075940935420097091<164>
49×10168-319 = 5(4)1671<169> = 15301755193<11> × 13943954834566879<17> × 2810066056947827497<19> × 2738071186438710195874120880465381105300462749<46> × 3316386124839130067412276341415290040498997690391963192414696202873340504719251<79> (Wataru Sakai / GMP-ECM 6.2.1 B1=3000000, sigma=408812994 for P46 / May 29, 2009 2009 年 5 月 29 日)
49×10169-319 = 5(4)1681<170> = 3 × 1087 × 675074612021<12> × 2254401221812081<16> × 910389927427035326570473463<27> × 29391527720593538801969447888738177<35> × 409987089110436215559923537098846799981853399910166677561191189758960834735231<78> (Serge Batalov / GMP-ECM 6.2.2 B1=3000000, sigma=3128579257 for P35 / March 21, 2009 2009 年 3 月 21 日)
49×10170-319 = 5(4)1691<171> = 25169 × 29463512143501<14> × 3719824442439031<16> × 197369777344627169961791378358151109158453949892517416701921239505536771904689312845587741828319192310222749128369036775513978767324026619<138>
49×10171-319 = 5(4)1701<172> = 631 × 106429733745469<15> × 81070198365145959126768852474986458232878139208436000795261266226472980854557912821927314592555954108853451714696602975680075492223682410182190056482219419<155>
49×10172-319 = 5(4)1711<173> = 3 × 8622461 × 4071640931063<13> × 31423033022093392907<20> × 410690800525357529918383<24> × 40056087680566493280640092153116504784381087020731860417580529534043806183166519233824487937294755248724353909<110>
49×10173-319 = 5(4)1721<174> = 2741 × 807085684543<12> × 15477414385463353<17> × 294569208541863507869<21> × 5931851484368810751905079921740369165257<40> × 9100156549889364411984182615500796454801011418152264037858984439499480211034026343<82> (Ignacio Santos / GGNFS, Msieve gnfs for P40 x P82 / 49.31 hours / April 21, 2009 2009 年 4 月 21 日)
49×10174-319 = 5(4)1731<175> = 166737569 × 793130329 × 6896057261<10> × 14707041389041<14> × 224445628370281<15> × 3501382675106343389<19> × 516533680486256786637232585967049805774333226615535211004544321129353047385157370898464755706469577649<102>
49×10175-319 = 5(4)1741<176> = 32 × 3482568695999<13> × 2508835353660493782998160877186447<34> × 12676901005872907170295444824882910778476787<44> × 54616782153487976269790155112888658626321629351125756211266666790776724908906072285659<86> (Rich Dickerson / GMP-ECM 6.3 [config GMP 5.0.1] [ECM] B1=11000000, sigma=3921242399 for P34 / January 14, 2011 2011 年 1 月 14 日) (Wataru Sakai / GMP-ECM 6.3 B1=11000000, sigma=1739776154 for P44 / August 30, 2011 2011 年 8 月 30 日)
49×10176-319 = 5(4)1751<177> = 33353 × 750787 × 21742121732192292001959971038490875332857921617048570229431510212791425560219217904440498894780465250525842710741241464629229898510394703618216007607654546142154858331<167>
49×10177-319 = 5(4)1761<178> = 17 × 19 × 43 × 181 × 12823 × 412725251411208391599268606133117237233<39> × 174090366581607217498745534799010319835879902386875663774934651<63> × 2350599259547048265407054632596219058675966517702962332029602981561<67> (Robert Backstrom / Msieve 1.44 snfs / January 23, 2012 2012 年 1 月 23 日)
49×10178-319 = 5(4)1771<179> = 3 × 367 × 49449994954082147542638005853264708850539913210212937733373700676152992229286507215662529014027651629831466343727924109395499041275608033101221112120294681602583509940458169341<176>
49×10179-319 = 5(4)1781<180> = 1721 × 5651 × 146045442760499405659552389937097026656224437<45> × 383318149844620878639080484983896380640417103665110889509628206048704384775839787559781304382134945090153916490891423841807796783<129> (matsui / Msieve 1.46 snfs / July 17, 2010 2010 年 7 月 17 日)
49×10180-319 = 5(4)1791<181> = 23 × 432093491 × 14181506955601858977891527236088328710246983<44> × 7013944788103426824420522992826901374134156372241551<52> × 5507611336035514200919584268795338693278366854409890572091477435968850193389<76> (Ignacio Santos / GMP-ECM 6.3 B1=11000000, sigma=2943978461 for P44 / May 24, 2011 2011 年 5 月 24 日) (Warut Roonguthai / Msieve 1.48 gnfs for P52 x P76 / February 25, 2012 2012 年 2 月 25 日)
49×10181-319 = 5(4)1801<182> = 3 × 17732711 × 590780969556116099295071107<27> × 55178778208377023881534406643925294387<38> × 31394863745346460857618264383186205646451804389053300159373274074779195028150439211885027746807065939118196253<110> (Serge Batalov / GMP-ECM B1=2000000, sigma=496809927 for P38 / May 21, 2011 2011 年 5 月 21 日)
49×10182-319 = 5(4)1811<183> = 491 × 225689 × 96792743 × 12129279213549929939113<23> × 4208828052106807370793583567885588761343091<43> × 994312071055313533121237821317640925649335271651847431869187008272867969600435469769410012401963381711<102> (Dmitry Domanov / Msieve 1.50 snfs / January 5, 2014 2014 年 1 月 5 日)
49×10183-319 = 5(4)1821<184> = 521 × 9623059 × 16636483 × 44249761 × 599644467396076052107352571986403463<36> × 3052110852529990474539719616765825881924375410547843<52> × 806001991200879202103979907903410137219816685740050799863593666399873557<72> (Serge Batalov / GMP-ECM B1=3000000, sigma=2621039211 for P36 / May 28, 2011 2011 年 5 月 28 日) (Warut Roonguthai / Msieve 1.48 gnfs for P52 x P72 / June 5, 2011 2011 年 6 月 5 日)
49×10184-319 = 5(4)1831<185> = 34 × 80449 × 84385013012131127567<20> × 449606031255006533922557<24> × 1125389090697318127570545072639814819<37> × 195680590655852728453086451238578814564198167290640488118586232699905597400888193178873458845299249<99> (Serge Batalov / GMP-ECM B1=3000000, sigma=3819275283 for P37 / May 28, 2011 2011 年 5 月 28 日)
49×10185-319 = 5(4)1841<186> = definitely prime number 素数
49×10186-319 = 5(4)1851<187> = 4861 × 1241191640392313005099385818109<31> × 1086923283254853988260921307540929605596835076410115459503124904658183720681<76> × 830214311559416909812257553600936497432070991478666285900463565442082760067689<78> (Serge Batalov / GMP-ECM 6.2.2 B1=3000000, sigma=1750105925 for P31 / March 21, 2009 2009 年 3 月 21 日) (Dmitry Domanov / Msieve 1.50 snfs / August 25, 2014 2014 年 8 月 25 日)
49×10187-319 = 5(4)1861<188> = 3 × 173 × 2121703601345068272130158885480734551644871829999<49> × 49442622610066597773870255896387437835807325763621162874103458717719730334494584048229510097211957639731087242512079125873691747378918161<137> (Dmitry Domanov / GGNFS/msieve 1.42 snfs / 294.69 hours / October 10, 2009 2009 年 10 月 10 日)
49×10188-319 = 5(4)1871<189> = 4092509800035097079<19> × 133034365474158504595317775647144623439252933119713417069828432955294261584069090873620316418202544849888885468239282185700251314406047373116340872711517453823558192128879<171>
49×10189-319 = 5(4)1881<190> = 54822373 × 8723316367<10> × 2509258459612479195892839367<28> × [4536999382983186672398625358134971809432301293780627416123209368440758282957329858476171000214676478597111233831083289272271150331414787519453853<145>] Free to factor
49×10190-319 = 5(4)1891<191> = 3 × 63389 × 8043221326363661<16> × 10488120350258049738490426522001<32> × 7321157299759990005585654689690077892042813<43> × 66839828310140696973204053386787893086934805951<47> × 6935466366860246984613895722739458635801082511561<49> (Serge Batalov / GMP-ECM 6.2.2 B1=3000000, sigma=135339706 for P32 / March 21, 2009 2009 年 3 月 21 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2061257993 for P43, Msieve 1.50 gnfs for P47 x P49 / May 23, 2014 2014 年 5 月 23 日)
49×10191-319 = 5(4)1901<192> = 2589679281026250452135592324953147<34> × 210236243705316823744511898863404603310448859452612732232694387407622666276037226614974590194096431404043631867305723154639848564201361549973929426992459555003<159> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=554252541 for P34 / March 19, 2009 2009 年 3 月 19 日)
49×10192-319 = 5(4)1911<193> = 739 × 823 × 883 × 524291165273<12> × 580450994202719<15> × 12226248379802045914278498793687<32> × 2724691143447119256321966388256111245401229542620746414609457044339939246203047290477635173541037930665912752515101416318765639<127> (Serge Batalov / GMP-ECM B1=2000000, sigma=2450600798 for P32 / May 21, 2011 2011 年 5 月 21 日)
49×10193-319 = 5(4)1921<194> = 32 × 17 × 5893447410160027<16> × [60379946974175086886718614888744789266457172119752430407447989157559561629598721410157636590984765072949032200650279841974667774696897036082181653649967640427842742368401749011<176>] Free to factor
49×10194-319 = 5(4)1931<195> = 2777 × 3360061 × 15538705817997553461117300749<29> × [3755049655972121653524861063128539827185229243381528324516848381696026187794572112522316729149316522335207008496388098262184532558955623589341176380124731497<157>] Free to factor
49×10195-319 = 5(4)1941<196> = 19 × 29 × 317 × 8489785142301131<16> × 13851316669570044275666590897<29> × 265066566114447669220443796658487639650713702072048008781100939232612045779532821669143119201906167333237869238046082223190112822980004310501768689<147> (Serge Batalov / GMP-ECM B1=2000000, sigma=3096301600 for P29 / May 21, 2011 2011 年 5 月 21 日)
49×10196-319 = 5(4)1951<197> = 3 × 661 × 27455594777833809603854989634112175715806578136381464671933658317924581162100072841373900375413234717319437440466184792962402644702190844399618983582674959376926094021404157561494929119740012327<194>
49×10197-319 = 5(4)1961<198> = 83 × 829 × 7912631628241958586254951450353081001125531478547886762167285951203285195466223559295485116985836389385446894130603636903867985007985298653399282695720558147346119500115459828861081640595352863<193>
49×10198-319 = 5(4)1971<199> = 43 × 11529834558176649073052601539<29> × 10981509443282636710774939363866823778058080857847438894525526181965853372669127634956519913127760863212459286913234895286583808453019891635703164340365335006098354847833<170>
49×10199-319 = 5(4)1981<200> = 3 × 2897579 × 18473067592713824863<20> × 441052151571560698718633003723<30> × 768719797669048664946954439545994295747574602524515191079667589686030510173284792696049943419327924909267329277676302654619598686125450111794357<144> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=2187727419 for P30 / March 20, 2009 2009 年 3 月 20 日)
49×10200-319 = 5(4)1991<201> = 52571 × 64877 × 75918833554921727<17> × 13357374083378629307488444177<29> × 375785350843231471668489476530058467<36> × 418895901572308465852801951709212030712245041187096397069834582098223516190816958890764116074980833883956291811<111> (Serge Batalov / GMP-ECM B1=2000000, sigma=2697694955 for P36 / May 21, 2011 2011 年 5 月 21 日)
49×10201-319 = 5(4)2001<202> = 1319 × 178067 × 5439093729791<13> × 424468423345885433156577302198219<33> × 34043845173709257566349604504573363<35> × 294927177986271750422010332349384919955753309327707514687528364445322514481129761213189585046151956424265959516171<114> (Serge Batalov / GMP-ECM 6.2.2 B1=3000000, sigma=1761079087 for P33 / March 21, 2009 2009 年 3 月 21 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3986261582 for P35 / November 6, 2013 2013 年 11 月 6 日)
49×10202-319 = 5(4)2011<203> = 32 × 23 × 72555232079315990732521685350024064032570967598738850170782353<62> × 3625054076606209123383325667965643130420860066851944590450555110710082259860226719865091185627928789968916520685882384826434539903193794471<139> (Robert Backstrom / GGNFS-0.77.1-20050930-k8, Msieve 1.39 snfs / 39.66 hours, 14.02 hours / September 30, 2009 2009 年 9 月 30 日)
49×10203-319 = 5(4)2021<204> = 787 × 7433 × 250258947013949118526184405219<30> × 371899070167657494778515770799102838016236456489920897993331203914363646004089375009102210345490410627952983442877093935149349822956554542662818169335938886868137369209<168> (Serge Batalov / GMP-ECM 6.2.2 B1=3000000, sigma=1435368007 for P30 / March 21, 2009 2009 年 3 月 21 日)
49×10204-319 = 5(4)2031<205> = 199 × 105064163111<12> × 24924770875188119237647<23> × [10447556151966861352009308542259262501403824075425031633376864091400068758236615013263998500435050427278711460662361521856246163148918580312633109341043494417330684101927<170>] Free to factor
49×10205-319 = 5(4)2041<206> = 3 × 47 × 63857407154518619099432007817527624871<38> × 6046766207221483202200867690264664743792040332470375333789197689476780699012131797397027054060393163481932245065472333058710972868763794831723965812621141889670190331<166> (Robert Backstrom / GMP-ECM 6.2.1 B1=2254000, sigma=1092356064 for P38 / March 23, 2009 2009 年 3 月 23 日)
49×10206-319 = 5(4)2051<207> = 157 × 251 × 12163 × 783402970434750836580033011<27> × 92466314258597352429376094006263313<35> × 51999542223457719477419632848659889995054183616418797351638927669<65> × 301558246169028108945536495548840628588153677972223121294733865344408003<72> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1522019597 for P35 / October 1, 2013 2013 年 10 月 1 日) (Erik Branger / GGNFS, Msieve gnfs for P65 x P72 / December 4, 2014 2014 年 12 月 4 日)
49×10207-319 = 5(4)2061<208> = 61 × 3203931187<10> × 3957912578644188096791<22> × [7038406704291088283011934655262635042284130747553082040969086997052293537511422957406487093278573302929806818588894895345274448762151771850101697562753224196153409885507747993<175>] Free to factor
49×10208-319 = 5(4)2071<209> = 3 × 97 × 179 × 26017 × 76771 × 154459 × 37926914386607<14> × 1407121209296644137406400219711315939<37> × 161779887066793414215714005939135030627274262976917<51> × 392406659231734458992726984296380952440257140582026109231817954935977640936516361646645793<90> (Serge Batalov / GMP-ECM B1=3000000, sigma=3291450018 for P37 / November 2, 2013 2013 年 11 月 2 日) (Erik Branger / GGNFS, Msieve gnfs for P51 x P90 / September 19, 2016 2016 年 9 月 19 日)
49×10209-319 = 5(4)2081<210> = 17 × 59 × 60901 × 5277947 × 211199654257490216704878669506806649<36> × 7995948458300104659472289791609164825996901082229566740695078320142249140354466114145004227885141367178622184220346366563044666638495223079388581686122081382149<160> (Serge Batalov / GMP-ECM B1=3000000, sigma=518917894 for P36 / November 1, 2013 2013 年 11 月 1 日)
49×10210-319 = 5(4)2091<211> = 103291 × 39313927 × [1340740293991450680834367818554894990356730507432299054124430952035564443657376794177893342763380740242231801696421459909164433913148950992868480610691128320965749125906625307371020413030761607800813<199>] Free to factor
49×10211-319 = 5(4)2101<212> = 33 × 6373 × 168336053 × 710668471321<12> × [2644853976693896066243279622264338162928626032745118010836430789398845485389404076342467937109217592078982807781315040927279235661134446433397632073974020842915781316252063802535227258267<187>] Free to factor
49×10212-319 = 5(4)2111<213> = 4267336501145604959<19> × 127584136919664859918954457025652858728320145194257460683098949230541992814076486168572845587506980662681552989823828306364166547519532145567653094411990052693143240759313975481718732210263486599<195>
49×10213-319 = 5(4)2121<214> = 19 × 4164815804852333151462662439768238927<37> × 68802492361963899266645996384100920640671093167191969716223374314198926856711821483213499056498589166722794216360758165565419180552756220657665201538724037173208994907682760557<176> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2190986241 for P37 / November 6, 2013 2013 年 11 月 6 日)
49×10214-319 = 5(4)2131<215> = 3 × 15467 × 5759520881<10> × 41285860386258227<17> × 89220325668277127358712827521<29> × 159959281809064472943124457163598780523018117<45> × 345752464080493056447829590150689637841419742295189030630874053043968590410658712883071069838033883252480229399<111> (Serge Batalov / GMP-ECM B1=3000000, sigma=2716813891 for P45 / May 18, 2014 2014 年 5 月 18 日)
49×10215-319 = 5(4)2141<216> = 27416243 × 33885119799641611093049<23> × 84140699525735030425319<23> × 1779641767489365337614839<25> × 629175340438136136260127663066053192749534286060987000863<57> × 6220513019826033875033815492302511858174961020773780328276934487881453337041370661<82> (Erik Branger / GGNFS, Msieve gnfs for P57 x P82 / November 10, 2013 2013 年 11 月 10 日)
49×10216-319 = 5(4)2151<217> = 1214219431<10> × 78499291115186532380366639220312102913<38> × [57120323336765366735679026154555479146961503739815361885741237878164249419915830941688829290269818239929306364808454192941301948045401806415018144855964690123268323075647<170>] (Serge Batalov / GMP-ECM B1=3000000, sigma=3839633 for P38 / November 2, 2013 2013 年 11 月 2 日) Free to factor
49×10217-319 = 5(4)2161<218> = 3 × 151 × 26550574637<11> × 373937557328536518535065769<27> × [12105489540541938244383148754475492488796253448393025917154278087533038769339500811475633994902045536491703805132534807535513362668613585561471266447397292792335011000572198285649<179>] Free to factor
49×10218-319 = 5(4)2171<219> = 8969 × 8037157398268597765825593871665458220269<40> × [7552784146274264468496337175561218356764664681280213087639323831579147421923656207576520277288208537656196388831542544179564367152263654385729395997163641369645415585731404981<175>] (Serge Batalov / GMP-ECM B1=11000000, sigma=3160978587 for P40 / November 8, 2013 2013 年 11 月 8 日) Free to factor
49×10219-319 = 5(4)2181<220> = 43 × 13605051451<11> × 105643264013255743<18> × 5872536556810573426639400656775017<34> × [15000902440084907453448130110232123553764317088706407120404040793271142058001590127282854565965121761217391039988127419549439537218781677848451539444120646327<158>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1608675003 for P34 / November 5, 2013 2013 年 11 月 5 日) Free to factor
49×10220-319 = 5(4)2191<221> = 32 × 41201 × 48481 × 1191899 × [2540927534381668611883560175394672893969532609474832580723886539380137024473427200527333606855694641430529608603416021619196742305892265778176979106835488674636838355709422264753870114765274692201662327571<205>] Free to factor
49×10221-319 = 5(4)2201<222> = 9161 × 305047 × 16528079 × 64916983 × [181577997099313659784887947999052431897616302259010411223914947112541175761439327167552110628372192129874782052380538659748357543801731045929525533941210326289679420842805555149954785980735378029839<198>] Free to factor
49×10222-319 = 5(4)2211<223> = 109 × 113 × 8837 × [50020009994590070506787153396765831305856445566391226990038722235333079331722580804955299868168384556441962194302747198682677916701822311956486846068005770320602774276555721049310663983058422694872321479633218293129<215>] Free to factor
49×10223-319 = 5(4)2221<224> = 3 × 29 × 16183 × 15259098991<11> × 52337191001<11> × [48421248545263271686857490085154636772365803560414974276748581884116321088133291899715273926113801558829297696915858367485191695883989418283652114595557727741497087068659482060580464667923523490431<197>] Free to factor
49×10224-319 = 5(4)2231<225> = 23 × 23671497584541062801932367149758454106280193236714975845410628019323671497584541062801932367149758454106280193236714975845410628019323671497584541062801932367149758454106280193236714975845410628019323671497584541062801932367<224>
49×10225-319 = 5(4)2241<226> = 17 × 53887 × 42390487 × 1475680167948348677023199001676499027<37> × 95007960712993983339748172839742149283760171334960020213259401316050862576795002423858704269661519782747858669300337423927946336530985599898948612499871687222748675100147931771<176> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3916720953 for P37 / November 8, 2013 2013 年 11 月 8 日)
49×10226-319 = 5(4)2251<227> = 3 × 233 × 104287 × 106006799671<12> × 1384570791071247395783<22> × [5088588493392575184208256496136451485690405641438727889201699483242201105944545464072753336168618310162886955327878424781977953962187788015916359077696079173635771506707251763574650962149<187>] Free to factor
49×10227-319 = 5(4)2261<228> = 61119935671<11> × 10011717258818434697281<23> × [889737931565352423832063013752089663794602719819688098742364583830642978437290929932331443343173910934699849626703003071152585575597753463806468866234373979680644878093782054531537679761494769391<195>] Free to factor
49×10228-319 = 5(4)2271<229> = 7568400795089<13> × [719365238687841047165529582824730982230314533312971363454277792789251156576229006580928575527261278083848913117051947983818003004409419913266103142752994394602410580097301771241065013762129871218007408116663010989769<216>] Free to factor
49×10229-319 = 5(4)2281<230> = 32 × 128431 × 6542699 × [7199200288488655224358670363264266486050997890212791438363593819694381778989779534721917564267004993704142920187047490287531115440438132099948613903337945051566331058078183253825743134115110769726000827190907406746621<217>] Free to factor
49×10230-319 = 5(4)2291<231> = 173 × 149501496209948212501<21> × 10131455141508224021747<23> × 60028933720250243075396007457836049<35> × 87830414446408418314194973804070580497<38> × 394080133186227404294982394963221568120300910946995613623081026548688983763945800339407876984448232619758872875987<114> (Serge Batalov / GMP-ECM B1=3000000, sigma=3064974866 for P35 / November 2, 2013 2013 年 11 月 2 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1835323532 for P38 / November 6, 2013 2013 年 11 月 6 日)
49×10231-319 = 5(4)2301<232> = 19 × 4536797 × 2866558283749<13> × 22033822480086406169470250274583665685747249889912254883623656333979715983489891811940013411546137696888395785112541447838397023778353693751446748373576466310952204527596861069445557001100564397765124089068918163<212>
49×10232-319 = 5(4)2311<233> = 3 × 4513 × 24417469 × 28513633 × 242571697 × 5424421362859<13> × [4389552399418852316772511072466466120695459388487034950034531743241625011916543340785878308698697019852761073734492260684692555681196561542552170216062393393921661266463100784617815584981426589<193>] Free to factor
49×10233-319 = 5(4)2321<234> = 2875844575924926433<19> × 276952302342545260032361550473<30> × 844231148056036102462150648264633295033<39> × [809695653972588828032527951566871347052872425905577951047796621631129015592765620784861319524439280813256417231635152185369635257607493552617994553<147>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2927276663 for P30 / October 3, 2013 2013 年 10 月 3 日) (Serge Batalov / GMP-ECM B1=3000000, sigma=4094505356 for P39 / November 2, 2013 2013 年 11 月 2 日) Free to factor
49×10234-319 = 5(4)2331<235> = 9769 × 239987611582861<15> × [2322280296724607465829716341424670936702356474240594826402786457196188281121296838274054770101838005913698492077241154989485931836978456935335166909194961137306080062265862376562350594702699721045489366048605683640949<217>] Free to factor
49×10235-319 = 5(4)2341<236> = 3 × 521 × 5174401 × [6731851240201893094752108187086916111098568779249940263616299854197278062621548311338693673938530403545005821217030696401698885990259943245885886847044233725765223412169237720729105331297424728424516265731950451848715548303707<226>] Free to factor
49×10236-319 = 5(4)2351<237> = 8087166209688206557844832526190790442267116779378740937063182996489859621803553294447130453665959019603988871782211<115> × 67322029784946760954968143794683270307537541752845510819102502129744389345856366486956459188341669417720466567649648546931<122> (matsui / Msieve 1.53 snfs for P115 x P122 / July 16, 2015 2015 年 7 月 16 日)
49×10237-319 = 5(4)2361<238> = 269 × 119869 × 2269031 × 5293728250648350454890879119988905917<37> × [14056989990710740069672836114430142767504336686604606962278001684602474124672521420784362974512910766304450090187905604737738659609480645793220010059739382452064831228045339367213148400803<188>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=640124481 for P37 / November 8, 2013 2013 年 11 月 8 日) Free to factor
49×10238-319 = 5(4)2371<239> = 33 × 83 × 5003 × 4856028323607749178644927674760109971004853084975827929787816238810434796190063244020963097683063026480804461940813597022013872840458549006646386504950616818168308693003247087396330113082926187566749949534468916547835193970136833067<232>
49×10239-319 = 5(4)2381<240> = 827 × 1287388447591<13> × [511373776443238418061406481088353005600373600879183681339158100626983126908792628447976788635057779382841543542436435346593033007021750973545769659942938294718556761362267923698712196006562114950883322493205040819637873884813<225>] Free to factor
49×10240-319 = 5(4)2391<241> = 43 × 16823 × 72431 × 1081870098767<13> × 165877502804441<15> × 1917779729305092672283212645281738005043<40> × [301922763953609512162634621302927653093926873136332012257014515850459099449173437658419280455381087301279378589814605726596906894904773128981500557667981626511444119<165>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=153610471 for P40 / November 6, 2013 2013 年 11 月 6 日) Free to factor
49×10241-319 = 5(4)2401<242> = 3 × 17 × 8663904451342528321541467<25> × 123216747409562417361945925977634248029747440789269261275333411842358618820171551441122401667873201190174567282668365339550840372211438481710780942635159307968187974940030381317024890879488088666456294165956008308473<216>
49×10242-319 = 5(4)2411<243> = 10093 × 2126391747761131<16> × 287984503244868119286874703760513389245459<42> × 88088841953210462260048283631016612437608414807069473628921271617389097118700750208025199953180670183005558828970365126648720455306304975427921372088521982250985183575020406161175853<182> (Serge Batalov / GMP-ECM B1=11000000, sigma=1193787124 for P42 / May 19, 2014 2014 年 5 月 19 日)
49×10243-319 = 5(4)2421<244> = 587 × 266221 × 40615775231662339<17> × 115101313070562113<18> × 12579983448246047214203<23> × 563075637189205732789469<24> × [1052086207463728425138153477494700575452309150116607291984350263061154978407910776597435977914648527841010463173088391828162348327723088623990681140338688467<157>] Free to factor
49×10244-319 = 5(4)2431<245> = 3 × 3790349 × 4699502003377<13> × [1018828949934977036023346724238667348304368418417810287216087450410139386358774728848011604389358264315634686418305262702996943486763562545491212870478148138139050861612111844631302309788863954902636071120954971136673776790639<226>] Free to factor
49×10245-319 = 5(4)2441<246> = 1999 × 2297 × [118571354559396468901504397049296185847482828145558291650057602689992023535591140028970611654204212346583488619460893800065998267841897536588155733165765391281719319486570547887013695015649845916524750064288662495036034439606491196064824847<240>] Free to factor
49×10246-319 = 5(4)2451<247> = 23 × 3472056299<10> × 77085908061119387976776383<26> × 1590461701056506191815858701<28> × 242776209459899806511875346837791813037<39> × 411978822892448933408324693824210463814181<42> × 5559807421640864429777690072414023133670127056149373176327706550342997752901769564237609136633441447583<103> (Serge Batalov / GMP-ECM B1=3000000, sigma=3607421825 for P39 / November 1, 2013 2013 年 11 月 1 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1203123305 for P42 / May 27, 2014 2014 年 5 月 27 日)
49×10247-319 = 5(4)2461<248> = 32 × 22031 × [274585026374171972041640539060840756935653520768434601972192942492369057966019822797393795835385716311079057512113962872742168582877886434995357271543857112676806139048736600670996144041701059842164043819287188479084746465558351839803733347679<243>] Free to factor
49×10248-319 = 5(4)2471<249> = [544444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444441<249>] Free to factor
49×10249-319 = 5(4)2481<250> = 19 × 373 × 5372621 × 18518881 × 201195436024857484800645421252936901<36> × [38377092307989724111146788925808351314069361583647543045753578403462654954423378929282139124402250188981942750909518377520088765294175870133026844845297717133442230608211491528490495102249185501143<197>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=740728617 for P36 / November 6, 2013 2013 年 11 月 6 日) Free to factor
49×10250-319 = 5(4)2491<251> = 3 × 115201 × 157534640742251787294799074210711262472965930401195720073160373157769013707764239443651948751730871677747138897649743909759013794569041485300892771314035018343140668467705559397471794065573633459328896000452670967683858196961381829568737668493747<246>
plain text versionプレーンテキスト版

4. Related links 関連リンク