Table of contents 目次

  1. About 544...447 544...447 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 544...447 544...447 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 544...447 544...447 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 544...447 544...447 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

54w7 = { 57, 547, 5447, 54447, 544447, 5444447, 54444447, 544444447, 5444444447, 54444444447, … }

1.3. General term 一般項

49×10n+239 (1≤n)

2. Prime numbers of the form 544...447 544...447 の形の素数

2.1. Last updated 最終更新日

August 11, 2015 2015 年 8 月 11 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 49×102+239 = 547 is prime. は素数です。 (Makoto Kamada / December 3, 2004 2004 年 12 月 3 日)
  2. 49×106+239 = 5444447 is prime. は素数です。 (Makoto Kamada / December 3, 2004 2004 年 12 月 3 日)
  3. 49×108+239 = 544444447 is prime. は素数です。 (Makoto Kamada / December 3, 2004 2004 年 12 月 3 日)
  4. 49×1018+239 = 5(4)177<19> is prime. は素数です。 (Makoto Kamada / PPSIQS / December 3, 2004 2004 年 12 月 3 日)
  5. 49×1053+239 = 5(4)527<54> is prime. は素数です。 (Makoto Kamada / PPSIQS / December 3, 2004 2004 年 12 月 3 日)
  6. 49×1068+239 = 5(4)677<69> is prime. は素数です。 (Makoto Kamada / PPSIQS / December 3, 2004 2004 年 12 月 3 日)
  7. 49×10242+239 = 5(4)2417<243> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / December 3, 2004 2004 年 12 月 3 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 4, 2005 2005 年 1 月 4 日)
  8. 49×10276+239 = 5(4)2757<277> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / December 3, 2004 2004 年 12 月 3 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 4, 2005 2005 年 1 月 4 日)
  9. 49×10320+239 = 5(4)3197<321> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / December 3, 2004 2004 年 12 月 3 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 4, 2005 2005 年 1 月 4 日)
  10. 49×10564+239 = 5(4)5637<565> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 30, 2006 2006 年 5 月 30 日)
  11. 49×10620+239 = 5(4)6197<621> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 30, 2006 2006 年 5 月 30 日)
  12. 49×101782+239 = 5(4)17817<1783> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / August 4, 2006 2006 年 8 月 4 日)
  13. 49×102340+239 = 5(4)23397<2341> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: suberi / PRIMO 3.0.4 / October 18, 2007 2007 年 10 月 18 日)
  14. 49×102454+239 = 5(4)24537<2455> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: suberi / PRIMO 3.0.4 / October 18, 2007 2007 年 10 月 18 日)
  15. 49×105765+239 = 5(4)57647<5766> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 21, 2004 2004 年 12 月 21 日)
  16. 49×1015530+239 = 5(4)155297<15531> is PRP. はおそらく素数です。 (Ray Chandler / srsieve, PFGW / September 10, 2010 2010 年 9 月 10 日)
  17. 49×1015605+239 = 5(4)156047<15606> is PRP. はおそらく素数です。 (Ray Chandler / srsieve, PFGW / September 10, 2010 2010 年 9 月 10 日)
  18. 49×1022938+239 = 5(4)229377<22939> is PRP. はおそらく素数です。 (Ray Chandler / srsieve, PFGW / September 13, 2010 2010 年 9 月 13 日)

2.3. Range of search 捜索範囲

  1. n≤30000 / Completed 終了 / Ray Chandler / September 19, 2010 2010 年 9 月 19 日
  2. n≤50000 / Completed 終了 / Erik Branger / May 1, 2013 2013 年 5 月 1 日
  3. n≤100000 / Completed 終了 / Bob Price / August 10, 2015 2015 年 8 月 10 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

  1. 49×103k+1+239 = 3×(49×101+239×3+49×10×103-19×3×k-1Σm=0103m)
  2. 49×106k+3+239 = 13×(49×103+239×13+49×103×106-19×13×k-1Σm=0106m)
  3. 49×1015k+14+239 = 31×(49×1014+239×31+49×1014×1015-19×31×k-1Σm=01015m)
  4. 49×1016k+11+239 = 17×(49×1011+239×17+49×1011×1016-19×17×k-1Σm=01016m)
  5. 49×1018k+1+239 = 19×(49×101+239×19+49×10×1018-19×19×k-1Σm=01018m)
  6. 49×1028k+26+239 = 29×(49×1026+239×29+49×1026×1028-19×29×k-1Σm=01028m)
  7. 49×1035k+22+239 = 71×(49×1022+239×71+49×1022×1035-19×71×k-1Σm=01035m)
  8. 49×1043k+28+239 = 173×(49×1028+239×173+49×1028×1043-19×173×k-1Σm=01043m)
  9. 49×1046k+32+239 = 47×(49×1032+239×47+49×1032×1046-19×47×k-1Σm=01046m)
  10. 49×1058k+26+239 = 59×(49×1026+239×59+49×1026×1058-19×59×k-1Σm=01058m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 18.42%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 18.42% です。

3. Factor table of 544...447 544...447 の素因数分解表

3.1. Last updated 最終更新日

July 1, 2017 2017 年 7 月 1 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=191, 193, 194, 196, 204, 205, 207, 210, 213, 215, 217, 218, 223, 226, 229, 232, 234, 236, 237, 238, 243, 245, 246, 248, 249, 250 (26/250)

3.4. Factor table 素因数分解表

49×101+239 = 57 = 3 × 19
49×102+239 = 547 = definitely prime number 素数
49×103+239 = 5447 = 13 × 419
49×104+239 = 54447 = 3 × 18149
49×105+239 = 544447 = 443 × 1229
49×106+239 = 5444447 = definitely prime number 素数
49×107+239 = 54444447 = 33 × 2016461
49×108+239 = 544444447 = definitely prime number 素数
49×109+239 = 5444444447<10> = 13 × 929 × 450811
49×1010+239 = 54444444447<11> = 3 × 80341 × 225889
49×1011+239 = 544444444447<12> = 17 × 32026143791<11>
49×1012+239 = 5444444444447<13> = 673 × 16619 × 486781
49×1013+239 = 54444444444447<14> = 3 × 149 × 10781 × 11297621
49×1014+239 = 544444444444447<15> = 31 × 1039 × 1361 × 12419903
49×1015+239 = 5444444444444447<16> = 132 × 113 × 216851 × 1314701
49×1016+239 = 54444444444444447<17> = 32 × 6049382716049383<16>
49×1017+239 = 544444444444444447<18> = 109318021 × 4980372307<10>
49×1018+239 = 5444444444444444447<19> = definitely prime number 素数
49×1019+239 = 54444444444444444447<20> = 3 × 19 × 719 × 1858757 × 714705637
49×1020+239 = 544444444444444444447<21> = 347983 × 30889841 × 50650049
49×1021+239 = 5444444444444444444447<22> = 13 × 97 × 4317561018591946427<19>
49×1022+239 = 54444444444444444444447<23> = 3 × 71 × 255607720396452790819<21>
49×1023+239 = 544444444444444444444447<24> = 61 × 58031 × 6156811 × 24980887247<11>
49×1024+239 = 5444444444444444444444447<25> = 7499 × 6010526339<10> × 120791872127<12>
49×1025+239 = 54444444444444444444444447<26> = 32 × 621033067091<12> × 9740838349213<13>
49×1026+239 = 544444444444444444444444447<27> = 29 × 59 × 130267 × 2442694471205782531<19>
49×1027+239 = 5444444444444444444444444447<28> = 13 × 17 × 2131 × 941449 × 12279510327999553<17>
49×1028+239 = 54444444444444444444444444447<29> = 3 × 173 × 338269 × 310115885439467996477<21>
49×1029+239 = 544444444444444444444444444447<30> = 312 × 18047 × 41809 × 8176111 × 91835079359<11>
49×1030+239 = 5444444444444444444444444444447<31> = 11069 × 491864165186055149014765963<27>
49×1031+239 = 54444444444444444444444444444447<32> = 3 × 6396347 × 2837267607299627138450767<25>
49×1032+239 = 544444444444444444444444444444447<33> = 47 × 46877 × 898421 × 10583389 × 25989100495877<14>
49×1033+239 = 5444444444444444444444444444444447<34> = 13 × 418803418803418803418803418803419<33>
49×1034+239 = 54444444444444444444444444444444447<35> = 34 × 811 × 5483 × 151157413378510841504959399<27>
49×1035+239 = 544444444444444444444444444444444447<36> = 1879 × 35977 × 1209347127983<13> × 6659641741907423<16>
49×1036+239 = 5444444444444444444444444444444444447<37> = 409 × 266274119171<12> × 49992091421087288258173<23>
49×1037+239 = 54444444444444444444444444444444444447<38> = 3 × 19 × 163 × 87520201 × 4295916487823<13> × 15585723738779<14>
49×1038+239 = 544444444444444444444444444444444444447<39> = 297313379907377<15> × 1831214069861426973912911<25>
49×1039+239 = 5444444444444444444444444444444444444447<40> = 13 × 102317 × 490463 × 8345573189123652102361240889<28>
49×1040+239 = 54444444444444444444444444444444444444447<41> = 3 × 997 × 18202756417400349195735354210780489617<38>
49×1041+239 = 544444444444444444444444444444444444444447<42> = 84584821 × 6436668399930106188253852833056707<34>
49×1042+239 = 5444444444444444444444444444444444444444447<43> = 6059957 × 743505820981067791<18> × 1208369222261861581<19>
49×1043+239 = 54444444444444444444444444444444444444444447<44> = 32 × 17 × 355846042120551924473493100944081336238199<42>
49×1044+239 = 544444444444444444444444444444444444444444447<45> = 31 × 7717 × 8072111 × 281939711644781309513401708401251<33>
49×1045+239 = 5444444444444444444444444444444444444444444447<46> = 13 × 36899 × 1129441 × 142953774796037<15> × 70296943926151223093<20>
49×1046+239 = 54444444444444444444444444444444444444444444447<47> = 3 × 2649803939287<13> × 6848864506191121649952116036390227<34>
49×1047+239 = 544444444444444444444444444444444444444444444447<48> = 14107 × 38593921063616959271598812252388491135212621<44>
49×1048+239 = 5444444444444444444444444444444444444444444444447<49> = 3520902953<10> × 1546320508438178598228590381839031745799<40>
49×1049+239 = 54444444444444444444444444444444444444444444444447<50> = 3 × 701 × 3892705984712405227<19> × 6650628592330360843773853387<28>
49×1050+239 = 544444444444444444444444444444444444444444444444447<51> = 653 × 23653687 × 35248573316946165420949926717827260724477<41>
49×1051+239 = 5(4)507<52> = 13 × 457 × 916418859526080532645084067403542239428453870467<48>
49×1052+239 = 5(4)517<53> = 32 × 2063 × 47560453 × 61654651984080237914522669591104205286997<41>
49×1053+239 = 5(4)527<54> = definitely prime number 素数
49×1054+239 = 5(4)537<55> = 29 × 36527 × 2758851294611121904531<22> × 1863001806192589654593317639<28>
49×1055+239 = 5(4)547<56> = 3 × 19 × 1484081 × 336752702219117<15> × 1911217091470246574723640711617923<34>
49×1056+239 = 5(4)557<57> = 30713 × 1032610548527<13> × 49970333193731<14> × 343544126861763580320691187<27>
49×1057+239 = 5(4)567<58> = 13 × 71 × 450917 × 356688254947<12> × 3388804140579204653<19> × 10822310312276471887<20>
49×1058+239 = 5(4)577<59> = 3 × 151 × 34273 × 1105913 × 3170898090048344238354610096263963225139365451<46>
49×1059+239 = 5(4)587<60> = 17 × 31 × 439 × 2749247 × 855982084935120913143738564933081490560650466217<48>
49×1060+239 = 5(4)597<61> = 37061 × 146904952495735259287241154972732641980638526873113095827<57>
49×1061+239 = 5(4)607<62> = 33 × 1591901028262227058601<22> × 1266699920126963599459471087709359961861<40>
49×1062+239 = 5(4)617<63> = 257 × 14407 × 34963 × 106031 × 8722150124173501<16> × 4547595060994571921919119172001<31>
49×1063+239 = 5(4)627<64> = 13 × 3916067 × 21332205404963845942513<23> × 5013307549690114660834346692378489<34>
49×1064+239 = 5(4)637<65> = 3 × 18148148148148148148148148148148148148148148148148148148148148149<65>
49×1065+239 = 5(4)647<66> = 68743 × 141181 × 2019071 × 70159321 × 396015210817920698511771859685715174745499<42>
49×1066+239 = 5(4)657<67> = 4148399975868923<16> × 1312420324972172491252762917786783549393016068166189<52>
49×1067+239 = 5(4)667<68> = 3 × 1033 × 2837 × 381097 × 7070747 × 83749873 × 27440225338799690487290717634977961178067<41>
49×1068+239 = 5(4)677<69> = definitely prime number 素数
49×1069+239 = 5(4)687<70> = 13 × 19529137497392378360230523839<29> × 21445054542697515018795795085159736565221<41>
49×1070+239 = 5(4)697<71> = 32 × 6049382716049382716049382716049382716049382716049382716049382716049383<70>
49×1071+239 = 5(4)707<72> = 173 × 3147077713551701991008349389852280025690430314707771355170199100834939<70>
49×1072+239 = 5(4)717<73> = 156210107 × 172258354006379<15> × 8944034563413981243931<22> × 22621983371761126628890065029<29>
49×1073+239 = 5(4)727<74> = 3 × 19 × 79393 × 356831 × 46279850883552052499<20> × 452652777593690168933<21> × 1609447388169159665111<22>
49×1074+239 = 5(4)737<75> = 31 × 12377 × 469970044270507609413448199847821<33> × 3019300290405540247493093722873088461<37>
49×1075+239 = 5(4)747<76> = 13 × 17 × 19457635558421<14> × 1266109396990355830573109924406012503799982632757502837736767<61>
49×1076+239 = 5(4)757<77> = 3 × 2165077 × 42642452110771<14> × 535159241414104678650151<24> × 367310860484754989150835202089197<33>
49×1077+239 = 5(4)767<78> = 1171 × 13063 × 1063963 × 617333498366117201113457<24> × 54188531216114264124179267094352376473529<41>
49×1078+239 = 5(4)777<79> = 47 × 131 × 1707514103899379<16> × 517869241795867711166517328700497435848064256006725165398649<60>
49×1079+239 = 5(4)787<80> = 32 × 6737 × 14586417045162411118727145619<29> × 61559613906592010017142116271510787856379034061<47>
49×1080+239 = 5(4)797<81> = 142502539 × 20997464023<11> × 15421403849431207<17> × 1681201036479152791<19> × 7018116334122151547498026123<28>
49×1081+239 = 5(4)807<82> = 13 × 32663986631417<14> × 30164708419017745632991<23> × 425051836997084321656964673996455160950007277<45>
49×1082+239 = 5(4)817<83> = 3 × 29 × 973108757 × 1605531737<10> × 11394298073<11> × 62242434891983<14> × 564780758514542950739985067063804107851<39>
49×1083+239 = 5(4)827<84> = 61 × 29665621589<11> × 300864040033930709720918031010573146996201011252666275539267242465288543<72>
49×1084+239 = 5(4)837<85> = 59 × 14939 × 1131133 × 46718369207123459687<20> × 116890356823977584371322567483992984872533734289387557<54>
49×1085+239 = 5(4)847<86> = 3 × 6869 × 425977 × 74471964139<11> × 83283667319481771468149040782682809036512680958498280271939640507<65>
49×1086+239 = 5(4)857<87> = 3659 × 11953 × 71341 × 2352191 × 11816397547<11> × 21823431813000487<17> × 287669835653160412728076099583394941868379<42>
49×1087+239 = 5(4)867<88> = 13 × 20514472949<11> × 20415022108761211217350072355661902382652502958213767143211797013124365958031<77>
49×1088+239 = 5(4)877<89> = 33 × 21839 × 1540968428915779067<19> × 165254440932244154717<21> × 362585287442370769035879302035991750786036941<45>
49×1089+239 = 5(4)887<90> = 31 × 181 × 21509160576667<14> × 4511176716671176876157431014055380570436118712236297303399771232228635431<73>
49×1090+239 = 5(4)897<91> = 85321181265091<14> × 1323992637991807596305030427718972103<37> × 48196016097679431628964425011141472858339<41> (Makoto Kamada / GGNFS-0.70.3 / 0.28 hours)
49×1091+239 = 5(4)907<92> = 3 × 172 × 19 × 109 × 2744459 × 1583915255071<13> × 5451676399339477502741449<25> × 1279486230160054359718564006101339567041711<43>
49×1092+239 = 5(4)917<93> = 71 × 57163 × 134146766472955998190606512299875952568660079403387457720840414708431866186574553283739<87>
49×1093+239 = 5(4)927<94> = 132 × 547 × 39873151824631<14> × 21933741613405982785807<23> × 67342037183972147733723729606668028762482702444779637<53>
49×1094+239 = 5(4)937<95> = 3 × 2819 × 6437796434249077030205089800691077739676533575079158619421123855320378910304415802819492071<91>
49×1095+239 = 5(4)947<96> = 197 × 991 × 133321 × 17978934257610099241080177700169<32> × 1163459266834798759849575802801785115184178407078003389<55> (Makoto Kamada / GGNFS-0.70.7 / 0.52 hours)
49×1096+239 = 5(4)957<97> = 233 × 311 × 8576453 × 6179533115496375800381<22> × 1417665872301693476021276553850660967646566647431173156711756033<64>
49×1097+239 = 5(4)967<98> = 32 × 337 × 540041 × 33239495801384190519227269770650410151293121766050891256648475678980801397496832082209599<89>
49×1098+239 = 5(4)977<99> = 14256849830216921412325403750926799<35> × 38188270966459397066689511506075436727194098828444275916194795953<65> (Makoto Kamada / GGNFS-0.70.7 / 0.92 hours)
49×1099+239 = 5(4)987<100> = 13 × 765629807 × 2560679780719<13> × 213617148359960743887962061434529560136512244143551105276660618840665006718843<78>
49×10100+239 = 5(4)997<101> = 3 × 927763 × 20867495932900087617437760966779099891<38> × 937399958282250182008497354923138905594006529997793695053<57> (Makoto Kamada / GGNFS-0.70.7 / 0.67 hours)
49×10101+239 = 5(4)1007<102> = 379 × 1436528877162122544708296687188507768982703019642333626502491937848138375842861330987980064497214893<100>
49×10102+239 = 5(4)1017<103> = 7507 × 3099199 × 35629289 × 6567960550636991722394316759657409790872493008890581830381651170465964538956609479811<85>
49×10103+239 = 5(4)1027<104> = 3 × 64416300493<11> × 6869355891685989271<19> × 4867902861120307651695934566143<31> × 8425168906064609330570320738771341035976481<43> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=1630259864 for P31 / March 21, 2009 2009 年 3 月 21 日)
49×10104+239 = 5(4)1037<105> = 31 × 2535641 × 6710009 × 727951692218984265997<21> × 1418007241308125290953947100516768397530541012424256521415128185518709<70>
49×10105+239 = 5(4)1047<106> = 13 × 383 × 22836878661787<14> × 8826952525237943890264136249270127045523<40> × 5424552404957910644841771060466930025704564553893<49> (Makoto Kamada / Msieve-1.39 for P40 x P49 / 48 min on Athlon 4850e 2.5GHz, 2GB, Vista 32bit, Cygwin / March 25, 2009 2009 年 3 月 25 日)
49×10106+239 = 5(4)1057<107> = 32 × 3453404397893<13> × 1751715703999290585364369136557568666668803658419081189662695392022052762497160160747724527931<94>
49×10107+239 = 5(4)1067<108> = 17 × 412784461 × 63256444323242069473713196879638132828513180833<47> × 1226525361201857409856065873971323956702057027360907<52> (Erik Branger / GGNFS, Msieve snfs / 1.22 hours / March 26, 2009 2009 年 3 月 26 日)
49×10108+239 = 5(4)1077<109> = 167 × 179 × 1669 × 12291662133649<14> × 1393545177403381927819<22> × 1630577839098919107831295533229429<34> × 3907100022443078677452164438060609<34> (Makoto Kamada / Msieve-1.39 for P34 x P34 / March 25, 2009 2009 年 3 月 25 日)
49×10109+239 = 5(4)1087<110> = 3 × 19 × 1423 × 17231 × 16573900022535009152508743939<29> × 2350382893823050615039239673601389515763250230420510144123408695197016253<73>
49×10110+239 = 5(4)1097<111> = 29 × 18773946360153256704980842911877394636015325670498084291187739463601532567049808429118773946360153256704980843<110>
49×10111+239 = 5(4)1107<112> = 13 × 224197 × 328753 × 1413825379<10> × 4018971472193464911299729180501682003324088388609631453468518897622810050182922925600323621<91>
49×10112+239 = 5(4)1117<113> = 3 × 2927588504484992059<19> × 99420303465963405247548041<26> × 62351541984091088735646423141156570037855235676337787315925882539671<68>
49×10113+239 = 5(4)1127<114> = 616207 × 8165809 × 108200115809417703020153677058072011064487445590935936914478619024791899350407213377325654881656629569<102>
49×10114+239 = 5(4)1137<115> = 173 × 12368381 × 74742135287420527<17> × 247327533287733686905147967879684105156101<42> × 137643797336925959578449734003591226228256680197<48> (Makoto Kamada / Msieve-1.39 for P42 x P48 / 67 min on Athlon 4850e 2.5GHz, 2GB, Vista 32bit, Cygwin / March 25, 2009 2009 年 3 月 25 日)
49×10115+239 = 5(4)1147<116> = 35 × 307 × 9929 × 721213 × 90809269491488314689961<23> × 1122301859325435925178926323775364040103313129133266399328307020686213494886851<79>
49×10116+239 = 5(4)1157<117> = 463 × 5244346067<10> × 17756245956900931<17> × 12627869495017766874807505817815715199957569646054391276531127240167705251050203940695097<89>
49×10117+239 = 5(4)1167<118> = 13 × 97 × 24919306337<11> × 799174994407075697869<21> × 216800684154032486032735475656950198065020846482258650917931231700778205332128298759<84>
49×10118+239 = 5(4)1177<119> = 3 × 163 × 1593269 × 15910289293665460540700312777954637144135377863<47> × 4392153693257523977981110166469894720194709254490343305931044509<64> (Ignacio Santos / GGNFS, Msieve snfs / 1.50 hours / March 26, 2009 2009 年 3 月 26 日)
49×10119+239 = 5(4)1187<120> = 31 × 10477 × 2658959565215507<16> × 128844625542186266584897<24> × 4893018886705222619045267326391364716686569474927608342975482851428152635239<76>
49×10120+239 = 5(4)1197<121> = 65447 × 83188602142870482137369848036494330442104977224998005171275145452724256947521573860443480135750216884569872483757001<116>
49×10121+239 = 5(4)1207<122> = 3 × 15083 × 52627 × 1866461 × 2198407 × 7124603840479919365732898437556681717<37> × 782074692248656594203654067738974568526834648445247639018273171<63> (Serge Batalov / Msieve-1.40 snfs / 1.06 hours on Phenom II X4 940/openSUSE/x86_64 / March 26, 2009 2009 年 3 月 26 日)
49×10122+239 = 5(4)1217<123> = 82810296647387<14> × 6574598407281805940525776432743141227030035913664051924234335080388445414529250479536947485955836003218170381<109>
49×10123+239 = 5(4)1227<124> = 13 × 17 × 211238769812171<15> × 29227505376576559543<20> × 1598121480912022761313440357587<31> × 2496813645472256470021930929734404388756439048013177572637<58> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=451615525 for P31 / March 21, 2009 2009 年 3 月 21 日)
49×10124+239 = 5(4)1237<125> = 32 × 47 × 5135357962389043<16> × 3368287030458133460028581<25> × 489915916339324353753590507251<30> × 15188393471880318961821673497961540589484006532523533<53> (Makoto Kamada / Msieve-1.39 for P30 x P53 / 16 min on Athlon 4850e 2.5GHz, 2GB, Vista 32bit, Cygwin / March 25, 2009 2009 年 3 月 25 日)
49×10125+239 = 5(4)1247<126> = 114226159633<12> × 4766372660988544226884981301229355709721993542568673188060839167339359205089178106943040103007403577675740456051759<115>
49×10126+239 = 5(4)1257<127> = 593 × 281279 × 32640858127680555949327540468314099138131930235803960719397132303302826581139837857389909897928752564731279808884818001<119>
49×10127+239 = 5(4)1267<128> = 3 × 19 × 71 × 113 × 433 × 710836539955053679<18> × 18799021167500381699<20> × 20575435924256955224634307936830454711920256704237202653854320366341128089151240789<83>
49×10128+239 = 5(4)1277<129> = 5791 × 16451 × 13430260892711496624143275808375396407<38> × 425523210547380281621608549880770539602816541215414945259160078414911239467806700781<84> (Serge Batalov / Msieve-1.40 snfs / 1.50 hours on Phenom II X4 940/openSUSE/x86_64 / March 26, 2009 2009 年 3 月 26 日)
49×10129+239 = 5(4)1287<130> = 13 × 699001 × 1426991 × 113092445337239<15> × 707574473372247023<18> × 5246931998768353756336451955837334200588275896197052346502599951830972918252095768997<85>
49×10130+239 = 5(4)1297<131> = 3 × 17501971 × 73252363323557941<17> × 428993942758885595851<21> × 32996855509687809536958863979157351239646304069243792659545238443607091090217746282609<86>
49×10131+239 = 5(4)1307<132> = 1663 × 23449818043019<14> × 1155209557118607634866301603249630313369<40> × 12085401163911818634847149173022128361640247401446141329665954189440760421179<77> (Sinkiti Sibata / GGNFS-0.77.1-20060513-nocona snfs / 3.30 hours on Core(TM)i7-940 2.93GHz, Windows Vista and Cygwin / March 26, 2009 2009 年 3 月 26 日)
49×10132+239 = 5(4)1317<133> = 16980584111<11> × 65594212145907328803824064243879179779552967931235427<53> × 4888047585303310525809787280229165861700492433207353199793648310838651<70> (Sinkiti Sibata / GGNFS-0.77.1-20050930-pentium4 snfs / 8.87 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / March 27, 2009 2009 年 3 月 27 日)
49×10133+239 = 5(4)1327<134> = 32 × 151 × 22469 × 1782996003043304908410788408120027244615578584076952739314824255596712561456824757244457401367235539546725810026819207287327357<127>
49×10134+239 = 5(4)1337<135> = 31 × 12776435967706338766256136853<29> × 1374618403655634373783803837570134325894467544513123656599513594333961822445240252114655724246644329975229<106>
49×10135+239 = 5(4)1347<136> = 13 × 15551 × 1005344693062810933520912027258803<34> × 26787791325737202548916567410163297961651803940100230936923958001195768311232370875084900124086023<98> (10metreh / GMP-ECM 6.2.1 for P34 / March 26, 2009 2009 年 3 月 26 日)
49×10136+239 = 5(4)1357<137> = 3 × 11469748045393866785079980234484149679778904849<47> × 1582262145281932184224557733322428115520702729873734992229974599729019302327043912919001701<91> (Sinkiti Sibata / Msieve / 4.53 hours / March 27, 2009 2009 年 3 月 27 日)
49×10137+239 = 5(4)1367<138> = 367 × 41519 × 111686516686440099713105228891396349952349160121<48> × 319918883357687655326884373101551813841497448613417153161897436456980513663260915959<84> (Erik Branger / GGNFS, Msieve snfs / 9.81 hours / March 27, 2009 2009 年 3 月 27 日)
49×10138+239 = 5(4)1377<139> = 29 × 38961625822328227<17> × 25313147886092078297<20> × 1006724622431246948807439471011<31> × 189086992557053050151095484977625038500524612399344516998521322051415627<72> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=2058858235 for P31 / March 22, 2009 2009 年 3 月 22 日)
49×10139+239 = 5(4)1387<140> = 3 × 17 × 2207 × 1904082082311853<16> × 6244544042098850789167<22> × 2072759047416221070534804488754052236069702934877<49> × 19626634850383055370477280716473069938045234782973<50> (Sinkiti Sibata / Msieve 1.39 for P49 x P50 / 8.3 hours / March 27, 2009 2009 年 3 月 27 日)
49×10140+239 = 5(4)1397<141> = 7855249 × 3463451441<10> × 3699276918378253001329<22> × 27796959205870392339930988248773<32> × 194612341990503743770859781459641738992074018963037180034701625109719299<72> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=2896936602 for P32 / March 22, 2009 2009 年 3 月 22 日)
49×10141+239 = 5(4)1407<142> = 13 × 417717737 × 237649169221<12> × 75672693320024537909317<23> × 25422400608002178538937352091939883519719<41> × 2192982932771281359086104058811103715388491439096170268589<58> (Sinkiti Sibata / Msieve 1.39 for P41 x P58 / 7.45 hours / March 27, 2009 2009 年 3 月 27 日)
49×10142+239 = 5(4)1417<143> = 33 × 59 × 347 × 883 × 2606809451<10> × 10974894967<11> × 422487548822494189048430737716463004689438550629<48> × 9228349684211586458646457759478541784731866561768689933021851095303<67> (Erik Branger / GGNFS, Msieve snfs / 10.83 hours / March 26, 2009 2009 年 3 月 26 日)
49×10143+239 = 5(4)1427<144> = 61 × 20390411779235816611<20> × 437721359333864053364418966158413146787807719779908729466162939467272393664403814180093614667300602644569951040942993528057<123>
49×10144+239 = 5(4)1437<145> = 4463 × 5084335385724661558411<22> × 18587922413311078500682008656078799844857539<44> × 12908079806624081195761137810924158501690725662669177809379445232500203387761<77> (Ignacio Santos / GGNFS, Msieve snfs / 9.88 hours / March 27, 2009 2009 年 3 月 27 日)
49×10145+239 = 5(4)1447<146> = 3 × 19 × 1433 × 1637 × 13441 × 19121 × 843689909 × 12546029357<11> × 28099096755963360760156147612476659621363<41> × 5326723434107357287126667494376808424483238382966320913407508042003889<70> (Robert Backstrom / GGNFS-0.77.1-20060513-pentium-m, Msieve 1.39 gnfs for P41 x P70 / 11.59 hours, 0.47 hours / March 27, 2009 2009 年 3 月 27 日)
49×10146+239 = 5(4)1457<147> = 367937719 × 4152854718155167<16> × 42507220291575390569061312126266571436511<41> × 8382427676288048262413847664914236679385164784376828071942780399395127187230556249<82> (Erik Branger / GGNFS, Msieve snfs / 18.38 hours / March 29, 2009 2009 年 3 月 29 日)
49×10147+239 = 5(4)1467<148> = 13 × 418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803418803419<147>
49×10148+239 = 5(4)1477<149> = 3 × 461 × 683 × 1273580364222764178583<22> × 50942162569083495932825063490147390786014622365694977329219<59> × 888396736999855975410516186125965281921713380681765300530218399<63> (Robert Backstrom / GGNFS-0.77.1-20060513-pentium-m, Msieve 1.39 snfs / 12.12 hours, 0.52 hours / March 30, 2009 2009 年 3 月 30 日)
49×10149+239 = 5(4)1487<150> = 31 × 17562724014336917562724014336917562724014336917562724014336917562724014336917562724014336917562724014336917562724014336917562724014336917562724014337<149>
49×10150+239 = 5(4)1497<151> = 7901 × 55967 × 643180960573<12> × 7194601995431<13> × 82518567450982617869363296609<29> × 32243920902173361753657060708339071700371134100267166671566316537963799108713716881547423<89>
49×10151+239 = 5(4)1507<152> = 32 × 35141 × 216023 × 1077539993<10> × 721551372956281980471202568692439332262527<42> × 1024934935996861843669773828940876270110257891172988594032904817298182725911063379309446971<91> (Robert Backstrom / GGNFS-0.77.1-20060513-pentium-m snfs / 16.69 hours / April 2, 2009 2009 年 4 月 2 日)
49×10152+239 = 5(4)1517<153> = 2861 × 190298652374849508718785195541574430074954367159889704454541923958211969396869781350732067264748145559050836925705852654472018330808963454891452095227<150>
49×10153+239 = 5(4)1527<154> = 13 × 20716979 × 52381302313<11> × 385929076950464962309552524502185072131368506468465466569270107291655354170741847112259603101178151814590011406600528872585644680414097<135>
49×10154+239 = 5(4)1537<155> = 3 × 1687247 × 21366017 × 41543185619911<14> × 4848429398226797<16> × 2704653602682999538731001<25> × 15595264321017014216400364321<29> × 59254974940972649271274163936281513384136999595078811066793<59>
49×10155+239 = 5(4)1547<156> = 17 × 106319 × 42741631 × 409065749093004214423575760361672489<36> × 6534980153883198524785693798616329050629060233<46> × 2636363466388369334313208869093679303721597028944419656356687<61> (Robert Backstrom / GMP-ECM 6.2.1 B1=1354000, sigma=3350466869 for P36, GGNFS-0.77.1-20060513-pentium-m, Msieve 1.39 gnfs for P46 x P61 / 7.17 hours, 0.44 hours / March 29, 2009 2009 年 3 月 29 日)
49×10156+239 = 5(4)1557<157> = 17707721075698273<17> × 2033817327775288969990595237689<31> × 454500693687026425426203190166113666052452088501549<51> × 332616971158229236983081432079825089338499648979568233502899<60> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=763309218 for P31 / March 22, 2009 2009 年 3 月 22 日) (Robert Backstrom / GGNFS-0.77.1-20051202-athlon, Msieve 1.39 gnfs for P51 x P60 / 17.89 hours, 0.98 hours / March 28, 2009 2009 年 3 月 28 日)
49×10157+239 = 5(4)1567<158> = 3 × 173 × 1483967 × 4287431 × 16487880291409011359474728703378273825214305251731212524653158986359830110088103669507996315558386590584104825541637114950360792386700684165169<143>
49×10158+239 = 5(4)1577<159> = 2039647062871998809149<22> × 7561107105557510584961327966551236839939<40> × 487659925013640987505028384915301079926139<42> × 72392919040279406746095501779506808157490294988149843643<56> (Robert Backstrom / GGNFS-0.77.1-20060513-pentium-m, Msieve 1.39 snfs / 28.25 hours, 1.64 hours / March 30, 2009 2009 年 3 月 30 日)
49×10159+239 = 5(4)1587<160> = 13 × 12309503347<11> × 3352290844358539423008099551<28> × 4541937364441984968505266910447705904637713171<46> × 2234533427167717200687940183412832692594637552725928783392672647725505963037<76> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / 17.99 hours on Core 2 Quad Q6700 / April 2, 2009 2009 年 4 月 2 日)
49×10160+239 = 5(4)1597<161> = 32 × 3307 × 31838452761895407829<20> × 9285683870890698716616456731171714281776817892289149419042703<61> × 6187440244467790533181492495760904465444360877468414333345719414889567252687<76> (Ignacio Santos / GGNFS, Msieve snfs / 24.37 hours / April 2, 2009 2009 年 4 月 2 日)
49×10161+239 = 5(4)1607<162> = 149 × 110187639594366832830872971<27> × 33161519508732927510494425195062224365295574181748359291122317987041626708204854931097630440929401757720948648619919067455115998390793<134>
49×10162+239 = 5(4)1617<163> = 71 × 76682316118935837245696400625978090766823161189358372456964006259780907668231611893583724569640062597809076682316118935837245696400625978090766823161189358372457<161>
49×10163+239 = 5(4)1627<164> = 3 × 193 × 697475003 × 281771363630732629031583706433092583<36> × 13463129146711053496034967138964031226984131523252406266924392904522707992604894585783077441626599518226160500296939<116> (Robert Backstrom / GMP-ECM 6.2.1 B1=320000, sigma=1451542920 for P36 / March 28, 2009 2009 年 3 月 28 日)
49×10164+239 = 5(4)1637<165> = 31 × 17574544940866361270498281<26> × 116881026652426546549683929429743<33> × 8549953848429424668598583893325141587389629788921750650527504769263938653022826202215204408813818779715639<106> (Robert Backstrom / GMP-ECM 6.2.1 B1=412000, sigma=473458618 for P33 / April 3, 2009 2009 年 4 月 3 日)
49×10165+239 = 5(4)1647<166> = 13 × 88868359837<11> × 257131482232426058498415392707<30> × 18327692939177814246961314407857379207416864911271696230289789382294179809989172004799107236113699273744126498732088380507741<125> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=1841637460 for P30 / March 22, 2009 2009 年 3 月 22 日)
49×10166+239 = 5(4)1657<167> = 3 × 29 × 193 × 955469 × 4188451 × 622422253 × 1830545011<10> × 15678994369<11> × 29197910954985748593465543486977<32> × 1553357653460083080407321738143405658573231909383968797372397037983792553040705001133212217<91> (Andreas Tete / GMP-ECM 6.2.2 B1=1000000, sigma=15830070 for P32 / April 11, 2009 2009 年 4 月 11 日)
49×10167+239 = 5(4)1667<168> = 10559587231972013<17> × 767767536287199542101945167997849215441525824338148173132657698090917<69> × 67154772717526357740761695015258839151705607000361615191854608560565425792519343007<83> (Ignacio Santos / GGNFS, Msieve snfs / 76.49 hours / March 29, 2009 2009 年 3 月 29 日)
49×10168+239 = 5(4)1677<169> = 269 × 491 × 8053 × 10253 × 69456425612216082029462188812207301586685011392460105683467565827546433<71> × 7187845147472167912233172898770037011894826265333750517439708363073552108865016407969<85> (Ignacio Santos / GGNFS, Msieve snfs / 70.78 hours / March 30, 2009 2009 年 3 月 30 日)
49×10169+239 = 5(4)1687<170> = 33 × 7757 × 124536554543997314979024046350781<33> × 2087368708499167158827513265956753940583325925005520026107942223059166689438339761676704306516497762484131504693365842596878578550933<133> (Serge Batalov / GMP-ECM 6.2.2 B1=3000000, sigma=934136197 for P33 / March 26, 2009 2009 年 3 月 26 日)
49×10170+239 = 5(4)1697<171> = 47 × 1384635630495587<16> × 27987342719835283<17> × 962128401894883341725044165527926493779232928255590121579<57> × 310688736195671470313673402667663190506849516928902094903767311503739238397988139<81> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / 40.57 hours on Core 2 Quad Q6700 / September 28, 2009 2009 年 9 月 28 日)
49×10171+239 = 5(4)1707<172> = 132 × 17 × 1447 × 5591 × 174877 × 1339452221425920319876849476710806352234106549655933956609994679968567085107002789744488782144552613116885367064022606274880891560426086473972203467477465091<157>
49×10172+239 = 5(4)1717<173> = 3 × 12660117004654243<17> × 683103784504234311434531800185476456339053372318951<51> × 2098494836921471498941567966802510785683063657189790964500682682248930534261487961555084782509165087042593<106> (Dmitry Domanov / Msieve 1.40 snfs / May 5, 2010 2010 年 5 月 5 日)
49×10173+239 = 5(4)1727<174> = 53213885460303743162383640973716467334882950425261428933189<59> × 10231247722938530429684370381649939532547858816450603052160092865623046227263385154146691843887422122878799160699923<116> (Sinkiti Sibata / Msieve / 101.87 hours on Core(TM)i7-940 2.93GHz, Windows Vista and Cygwin / April 2, 2009 2009 年 4 月 2 日)
49×10174+239 = 5(4)1737<175> = 2099 × 21237820895084990395409486093<29> × 122132480609800556127928325790668005160489827904748401090076389024684204550354229469106125320527268263307469553907888436171894800850974800827321<144>
49×10175+239 = 5(4)1747<176> = 3 × 1495137986198626713891034616766476860505226920685712498786743139<64> × 12138109201739721837657904196381001857689869557081702922551111410234045319431624045172325499708883925960213827591<113> (Serge Batalov / Msieve-1.40/1.39sqrt snfs / 46.80 hours on Phenom II X4 940/openSUSE/x86_64 / March 27, 2009 2009 年 3 月 27 日)
49×10176+239 = 5(4)1757<177> = 6638554072327<13> × 3334920390086014452583410272320241599<37> × 24592042601713484693514474399330587543906265269545709749392040166790519607075146615758428180440065773214241112433228993367554839<128> (Rich Dickerson / GMP-ECM 6.3 [config GMP 5.0.1] [ECM] B1=11000000, sigma=1577827591 for P37 / May 24, 2011 2011 年 5 月 24 日)
49×10177+239 = 5(4)1767<178> = 13 × 12941 × 32362523669223306036535307843552955986307350189584947331643877505866532989630122772847446365721614929558674246101801932108709019303254679191623786322804945786168257383773959<173>
49×10178+239 = 5(4)1777<179> = 32 × 300683 × 55281169373<11> × 363935956283526321726870201160912358939616163242800193751444978028628050146866667708692054378039770400507218298487579434113278258230794080857358142799995142227737<162>
49×10179+239 = 5(4)1787<180> = 31 × 263 × 49019269914862359235884231368959<32> × 9418231728242371591718325120584575638541986021888450263333<58> × 144643831666304593916218479790719328092042073219884236814094331336215133545870974968917<87> (Serge Batalov / GMP-ECM 6.2.2 B1=2000000, sigma=2685186263 for P32 / March 26, 2009 2009 年 3 月 26 日) (Dmitry Domanov / Msieve 1.50 snfs / November 17, 2013 2013 年 11 月 17 日)
49×10180+239 = 5(4)1797<181> = 14699 × 1856297 × 10162351 × 176396963 × 395885210069<12> × 93495456952771<14> × 19570989095089334341692051382711<32> × 153659870377095098863641301496034790203531138412155043393272991554591626364446428220183087152397057<99> (Serge Batalov / GMP-ECM 6.2.2 B1=3000000, sigma=148828922 for P32 / March 26, 2009 2009 年 3 月 26 日)
49×10181+239 = 5(4)1807<182> = 3 × 19 × 25343 × 4898143973671943075533<22> × 165703440094533134905772423687<30> × 573071120607499390267914716161347198804297974326389017377<57> × 81030607905776436620401921258086197513441643061834954467157233238891<68> (Serge Batalov / GMP-ECM 6.2.2 B1=3000000, sigma=946105213 for P30 / March 26, 2009 2009 年 3 月 26 日) (Ignacio Santos / GGNFS, Msieve gnfs for P57 x P68 / 57.71 hours / May 4, 2009 2009 年 5 月 4 日)
49×10182+239 = 5(4)1817<183> = 2317787 × 14344193 × 11759270955017<14> × 47616566797100140370474378777923601523005225165813<50> × 29245931024427556386969870924178437440719659006488417353669939481354955032634746847636115635013600340656177<107> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / May 6, 2014 2014 年 5 月 6 日)
49×10183+239 = 5(4)1827<184> = 13 × 5627149623687309329646916501<28> × 74425499020050752892286314611799424929489060439311398009048927313122307714692031070220200080585158837397406597315444828906656852493904464378079654659039919<155>
49×10184+239 = 5(4)1837<185> = 3 × 547 × 432071547296774369<18> × 10608937843531878503<20> × 880482388601006832412528717901579521074375885179<48> × 8220471780046288953233814809652560053029802546941585089168880676672940374179318798421025784282739<97> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / September 26, 2014 2014 年 9 月 26 日)
49×10185+239 = 5(4)1847<186> = 806733444214685110818405149979937<33> × 674875261895748026104835169072656059803931384591054243173189832904384059405927583278464754459983266422994151032177491844598621496960454629394526600967231<153> (Jo Yeong Uk / GMP-ECM 6.2.1 B1=1000000, sigma=1723084161 for P33 / March 27, 2009 2009 年 3 月 27 日)
49×10186+239 = 5(4)1857<187> = 2441 × 25799737 × 14710959401904532828491406379237<32> × 42010982357018022386874335471662890878873<41> × 139883560649908010627500657769462730424159005791843812394494047253909232427398460754073679934405398238891<105> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=4149931030 for P32 / March 23, 2009 2009 年 3 月 23 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4037152304 for P41 / December 19, 2013 2013 年 12 月 19 日)
49×10187+239 = 5(4)1867<188> = 32 × 17 × 1129 × 498749 × 164330311 × 465016373 × 35566926511<11> × 1793471300608638534511037243<28> × 6342033458739936627635385980092157<34> × 9021061017000457899825768495466176689<37> × 2266069993506868627292226568293550161530789769694937<52> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=3911626714 for P34 / March 23, 2009 2009 年 3 月 23 日) (Makoto Kamada / Msieve-1.39 for P37 x P52 / 67 min on Athlon 4850e 2.5GHz, 2GB, Vista 32bit, Cygwin / March 25, 2009 2009 年 3 月 25 日)
49×10188+239 = 5(4)1877<189> = 5407 × 79627 × 214563617518022636982010437951458986179334810300684098353<57> × 1031222158805040862490737589584668965283039495384943541347<58> × 5715161773598700763571049980041129316637268166326519471607942199953<67> (matsui / Msieve 1.48 snfs / January 30, 2011 2011 年 1 月 30 日)
49×10189+239 = 5(4)1887<190> = 13 × 53523756078031042692936382182191372168741504118891852257677<59> × 7824626847802964571499691889298350464401845544687833939953026301943157931919076380865693694386248286843653044176844425312737763847<130> (Robert Backstrom / GGNFS-0.77.1-20060513-pentium-m, Msieve 1.39 snfs / 339.86 hours, 6.47 hours / July 5, 2009 2009 年 7 月 5 日)
49×10190+239 = 5(4)1897<191> = 3 × 64109 × 4225530117516618479761<22> × 220761939500028598302869393980575061631<39> × 303464512073770648945878490978300439558503103582063123665138950766375927106303506145444934484669950085539836507940085379564071<126> (Serge Batalov / GMP-ECM 6.2.2 B1=3000000, sigma=2573314229 for P39 / March 26, 2009 2009 年 3 月 26 日)
49×10191+239 = 5(4)1907<192> = 389 × 43867 × 3968807 × [8039074522208876138809414264548532248116441332686899654555963397567866218179299250945427643193285050325848307879561611238643699502455700382545753658298890150880509279679698288367<178>] Free to factor
49×10192+239 = 5(4)1917<193> = 4751 × 10979 × 75037882475081<14> × 6748454114975273<16> × 1117015818049525155312718631<28> × 184527697426883836569783078674786242024960425266554391348486709362798765620107866359985903711289537257417251335972834227117056381<129>
49×10193+239 = 5(4)1927<194> = 3 × 197 × 63801917 × 62544401042993<14> × [23085746586573506959968160169336294389891943631388322145352979363050792891374052981548018744524064743195237469952683117533982571459004602399342742758849567531061152942357<170>] Free to factor
49×10194+239 = 5(4)1937<195> = 29 × 31 × 52567 × 666999842857<12> × [17272490191305454577457052572231241946432013996901362129048332250148040109244912415622401366110632105844811575854791549215604018832504414905129781798869986661139314436644341787<176>] Free to factor
49×10195+239 = 5(4)1947<196> = 13 × 425505967 × 984248051222790028274276630304972441006458127538829093362169980576133268229358153286294110697637804932166329453150580150192825424710010713947998333953842775179703693328979340538374679957<186>
49×10196+239 = 5(4)1957<197> = 34 × 73607533 × 1106338724839451<16> × [8253880469229967713553101170107127764336215908431325835192098150650555349927922572717514395623849859383474587323744970549865340357526708292487860885807694482130408599183889<172>] Free to factor
49×10197+239 = 5(4)1967<198> = 71 × 471125349006422505303273967001963468167<39> × 16276414818403346757892574329473798763642640177996620325409012137632722283621382376422821727629443629996696237888324842707436215660648855822906485305396297871<158> (Robert Backstrom / GMP-ECM 6.2.1 B1=3454000, sigma=884789642 for P39 / May 7, 2009 2009 年 5 月 7 日)
49×10198+239 = 5(4)1977<199> = 704131 × 2762980619071<13> × 2798480384120304659807040668687521138471130225577056659283369943551168780960106823836732919152567591367769422626118806356793651831048694728189943506916675806176303803026141049086347<181>
49×10199+239 = 5(4)1987<200> = 3 × 19 × 109 × 163 × 488861 × 3819884637073<13> × 89262327341951323417673786732603128542461<41> × 322523057013094766404518735531316026792102225575632984600972711154872516000704875034486263690038493540439891846939226218502599536271961<135> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2069277154 for P41 / October 30, 2013 2013 年 10 月 30 日)
49×10200+239 = 5(4)1997<201> = 59 × 173 × 223 × 601 × 724099 × 91618507 × 5999222408019178002563364839629988542682935817016596818623260709834314411408754494712955276602690696526152441424561148614423848139216953996144198561392253836006383160105696138839<178>
49×10201+239 = 5(4)2007<202> = 13 × 3919 × 123289 × 279702558739<12> × 5813805866230289<16> × 10842584824110468241<20> × 5224049075069952442565548964987<31> × 122171897585795963879930610653387849236133413489381<51> × 77026872329335550773207298651394999247371917300405618045297462777<65> (Serge Batalov / GMP-ECM B1=100000000, x0=286070521 for P31 / March 20, 2011 2011 年 3 月 20 日) (Dmitry Domanov / Msieve 1.40 gnfs for P51 x P65 / March 21, 2011 2011 年 3 月 21 日)
49×10202+239 = 5(4)2017<203> = 3 × 187721 × 26160324708107388165286723<26> × 122705869178434798167739649484610133801<39> × 491549396121325426712290817368098548530907<42> × 61269427678504878052050289136201293571040808475083668196979058238551964088539688579021058229<92> (Serge Batalov / GMP-ECM B1=2000000, sigma=3842703716 for P39 / October 10, 2013 2013 年 10 月 10 日) (Ignacio Santos / GMP-ECM 7.0 B1=43000000, sigma=1:161197527 for P42 / April 23, 2014 2014 年 4 月 23 日)
49×10203+239 = 5(4)2027<204> = 17 × 61 × 457 × 3103847 × 17219705383<11> × 1993582525673239<16> × 820795669298098665361823<24> × 470657264485872157329298620696261279727878512856703335911<57> × 27909917410257848215229921796120212806457631099427055047983182102324624151043590445549<86> (Erik Branger / GGNFS, Msieve gnfs for P57 x P86 / June 30, 2017 2017 年 6 月 30 日)
49×10204+239 = 5(4)2037<205> = 4284435043601315292917<22> × 9308370135292177163565893309<28> × [136516882950603152062680439876611310421458375747687276861880142346680784651150800919320560034248598370848924030759661634396544224618153196831840950595225599<156>] Free to factor
49×10205+239 = 5(4)2047<206> = 32 × 659 × 90107 × 110436894287004143<18> × 1518840722821496508881<22> × [607352324799697601823394905003601998204063707809065057070693288551980474926450364092645169515471005629797877262758554421515383459465087466139180776834096561177<159>] Free to factor
49×10206+239 = 5(4)2057<207> = 997 × 1327 × 6959 × 180407593 × 830034299576736409<18> × 394902425866470517072232760098746030706581537515931732915252557639906323113383040778378817826078459942810981274173835761084699295100343048108659295126369971750667153149011<171>
49×10207+239 = 5(4)2067<208> = 13 × 229 × 149470265023565507628411931519638187<36> × [12235449570407375474392629954533262286019667848090968870382892252745657833677819801424811858361399947242558991485105131644880640670452714044141028942848913260234664558653<170>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=821072929 for P36 / October 31, 2013 2013 年 10 月 31 日) Free to factor
49×10208+239 = 5(4)2077<209> = 3 × 131 × 151 × 917453523489618732528595528443867759372536684098283612969422584709981707100154094744863664534055313085695776156319101569594466819076292813717615294886413636729596488961536229116230127301357269508525764529<204>
49×10209+239 = 5(4)2087<210> = 31 × 90269010946273273549662829451<29> × 183723906579171072455565203643562481399867<42> × 1058979422779622672430719208700442837518083969291571340854985727464472216202009199863477168561442529975943328718474648265492246425824955961<139> (Serge Batalov / GMP-ECM B1=2000000, sigma=1199441119 for P42 / October 10, 2013 2013 年 10 月 10 日)
49×10210+239 = 5(4)2097<211> = 25037 × 43659412157<11> × 1296082888191354903373<22> × [3842913601420869686345000052470567674475134535927447342502478861108150053303219428826803783668784799888894942822546237455784821654022430523772935378083112455572752921123105171<175>] Free to factor
49×10211+239 = 5(4)2107<212> = 3 × 374009 × 5617031141586101<16> × 8638601316824372521073392737205583358470073728326732927901445289007240856271329617800799970853302104165733370048420503192452989097586077773774689180921266360346830925236531442740540104588361<190>
49×10212+239 = 5(4)2117<213> = 216920411335098271<18> × 40306072710922693096241<23> × 12642223370935198077140119<26> × 75425320543000605259697861<26> × 21246818779820476656690636937039823<35> × 3073605535128895941694037979779239656997461693057561507388421118743625993689794940516261<88> (Ignacio Santos / GMP-ECM 7.0 B1=11000000, sigma=1:326618771 for P35 / October 9, 2013 2013 年 10 月 9 日)
49×10213+239 = 5(4)2127<214> = 13 × 97 × 2243 × 22697 × 373444863443<12> × 8318850876297082025475069287904857921<37> × [27299263047187380825896573549962971319525320470958922929810363951020090928367894823534898255800039263666877689145765892605435659834522854001603714730087579<155>] (Serge Batalov / GMP-ECM B1=2000000, sigma=2028486225 for P37 / October 10, 2013 2013 年 10 月 10 日) Free to factor
49×10214+239 = 5(4)2137<215> = 32 × 11896746041054207<17> × 508490531375025337469514595111224055622604896594366847207686130043262615022995394163582213490233939759924778987455942580359036494114331557508134293260641741032516375502460507992267242231028744121369<198>
49×10215+239 = 5(4)2147<216> = 2549 × 3331 × 61419837673163<14> × [1043999854451823370240830173168900240924631821972460053392647520871487123364725282180172220418378300693507826289890906405519069209583791482012423566677695955945385106479012861482006185440645193251<196>] Free to factor
49×10216+239 = 5(4)2157<217> = 47 × 1117 × 299863513 × 1166998173178844512817<22> × 296352597915836046761424988215028802788830540477828299092440557588615022055460512524896916335774240338778817061536580498477944847496252590540481277350742486629664349494487848644412893<183>
49×10217+239 = 5(4)2167<218> = 3 × 19 × 2271827 × 72677993 × 491699773931<12> × [11765232767300484225575444603634320304743393664278612461927361846778206198116762208040786779234283341501156846972388168984427971289562019897715670894200906256355416181075801852697088986387631<191>] Free to factor
49×10218+239 = 5(4)2177<219> = 599 × 182887183703101<15> × 50056571336308834021<20> × [99284711235716870894902708469687680836531044227976385318370372499323728700023518269871695088236141768016558306227054585680292018445430945601676771500783096317893082580348372997497193<182>] Free to factor
49×10219+239 = 5(4)2187<220> = 13 × 17 × 1093537411<10> × 3831076141<10> × 78013422521<11> × 7343014561549319234347<22> × 10265099124888782343244738052181251658845750179631013971494160353930690862413935762937436353565447676622928642358304365196741407280368108186246304189432976118516579311<167>
49×10220+239 = 5(4)2197<221> = 3 × 210911 × 2243819 × 38348224737264964288985347031450701946965234606776106797339885803980483641999210671101860416982414878549091095403590985994048037011534968825049201928499712478231235680420445800183683192053728391487507726082561<209>
49×10221+239 = 5(4)2207<222> = 5701 × 51637013 × 114171118062689<15> × 1289897226228450832594478249831<31> × 100820843581768812000214746984589964371091<42> × 124560323552985396286879798299011040914900871176929174180023123827702673525283885432149909094171241946286130999118480851828251<126> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3309754074 for P31 / October 5, 2013 2013 年 10 月 5 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=416673289 for P42 / November 28, 2013 2013 年 11 月 28 日)
49×10222+239 = 5(4)2217<223> = 29 × 3637 × 21811723 × 372603131 × 1372445203<10> × 2333604878908851234685082442132650632727<40> × 1983140392389172518920403092832235036094971139291270606261814875519111235535607399120182103766644892094984654057732417881156474452498179642004350721286763<154> (Serge Batalov / GMP-ECM B1=2000000, sigma=1173410374 for P40 / October 10, 2013 2013 年 10 月 10 日)
49×10223+239 = 5(4)2227<224> = 33 × 9729208100273<13> × 45156621075850332614447660486304325435561<41> × [4589769504762288739487988001679182607977158214228364648987103935251664311233204223324954548391206908910719682110756421507850721309753768284676079086956710278022891391637<169>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1558732844 for P41 / April 28, 2014 2014 年 4 月 28 日) Free to factor
49×10224+239 = 5(4)2237<225> = 31 × 17562724014336917562724014336917562724014336917562724014336917562724014336917562724014336917562724014336917562724014336917562724014336917562724014336917562724014336917562724014336917562724014336917562724014336917562724014337<224>
49×10225+239 = 5(4)2247<226> = 13 × 110119086827<12> × 88043333500739612641589999149547<32> × 43196756617910858387212601971184248197139923891401732288330522279083938570174973866518747859555149558182359554875544930401898382856427840721169360730945333304342536038260523241830451<182> (Serge Batalov / GMP-ECM B1=2000000, sigma=4291272072 for P32 / October 10, 2013 2013 年 10 月 10 日)
49×10226+239 = 5(4)2257<227> = 3 × 443 × 66103 × 814339277 × 125224814291<12> × [6077313518242002390862055634814271457135222898122466549014977476227467227765007590143458906670999168940743577064825799658949187957086349741742200798087256372705725626575872971251304954106612447295583<199>] Free to factor
49×10227+239 = 5(4)2267<228> = 1427 × 20479 × 80191 × 570041 × 35371957 × 4116637561<10> × 5335030257586367551<19> × 524626859281006335331561974743408913219330281312660163716948712852654924778831763714361600250686802353993783611635035880932031711799689121689153647012945534768976060407979807<174>
49×10228+239 = 5(4)2277<229> = 16333 × 45304725757<11> × 66205291753<11> × 16771428584993479<17> × 6626456352666709364001683069608136065617330897037311661774777835738411198725521645629999647421174992948629406568572820673024828194145754869278039920527041166181142073821473245144010527401<187>
49×10229+239 = 5(4)2287<230> = 3 × 652867207 × [27797610223893736093484242268195510925927312118999029688051322430945973593904446403214962132641084158708783405241777058880747472047785282847187250665736299032933581159557533341000152498313716265654231501549668351083451107<221>] Free to factor
49×10230+239 = 5(4)2297<231> = 23899 × 251967142039<12> × 1509546995628983<16> × 59893996545857216021071978735089545606674102563117878119268458948860537329607096849791906663497576103449668239438090323322347934004867244169478342323181294079318445548508256484018773341362567433375069<200>
49×10231+239 = 5(4)2307<232> = 13 × 977 × 262863617 × 3801130409<10> × 346189210570122082907459<24> × 39579058070525805541769263220717<32> × 27881242428399669526696639564016122464671<41> × 1123003991944856496328098007061005707588343311435308062058928381165987920756427730597342641902833872637333796202923<115> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1412208121 for P32 / October 5, 2013 2013 年 10 月 5 日) (Ignacio Santos / GMP-ECM 7.0 B1=11000000, sigma=1:1129416074 for P41 / October 30, 2013 2013 年 10 月 30 日)
49×10232+239 = 5(4)2317<233> = 32 × 71 × 18969877 × 12163201229<11> × 5239133528247473<16> × [70482425076175023342209819076483924429494933284514461633720182466416958529490143844547006725773880662627663502658242852137709646710707170095660759927012029271550083296317871146481335581360663049697<197>] Free to factor
49×10233+239 = 5(4)2327<234> = 165601 × 62052606823446433<17> × 730864698437774040949<21> × 72492587130507634232035399863165113989069491405523153090190672039757799109252415820418715287259999064374826377704903584780891983104196183088377967677177546627501665436278129537060949786791491<191>
49×10234+239 = 5(4)2337<235> = 141882151 × 239397890988929<15> × 2489315311712227<16> × [64391060237461270235917843174487490902225014909642302845586448070434048921545778533734985901930996696255606500164533804807421150206180672435605155929007872522267764507330995848078545748608910946659<197>] Free to factor
49×10235+239 = 5(4)2347<236> = 3 × 17 × 19 × 22604085937349006264972083931474638584424393<44> × 2485666411491211014077808264251406099699089973209185846845960256879099630098598591421440442191425695767304888190117643499805220378314351155000258792128851518917592534801611177551998170897391<190> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=4289158784 for P44 / October 31, 2013 2013 年 10 月 31 日)
49×10236+239 = 5(4)2357<237> = 673 × 5133514469544021322242289<25> × [157588207591334039152084379997345472463641387905099627990565526880405892237864996837792276603480140671388167327419195251793071045398779419339423723760375759935270238487185987684940919000684692218747296286930351<210>] Free to factor
49×10237+239 = 5(4)2367<238> = 13 × 4133 × 15592303 × 28476686380870908750197<23> × [228215477612995728269498037115030790473576459850611416329138358909374044612519352564407648355750999767472023836596591262603312296357262111992858190951333573174085441299896863665770082944180016989647058573<204>] Free to factor
49×10238+239 = 5(4)2377<239> = 3 × 10200163 × 11382739 × 34238951880319685024899<23> × [4565180615500412182267113252381110587720244374310490137153282432903031553581218012696407424542164800869867972067822577820119373100053147175194920713587601510589223555598777663564542508633100243441721343<202>] Free to factor
49×10239+239 = 5(4)2387<240> = 31 × 113 × 133536279661<12> × 1163895959993957805378364298838783765082824066668906368427858024872684541000551651224755027432219855117571797465717068053157866945676984618179854114773136174382216038014264623825987241873973775714030551329571607331566258598709<226>
49×10240+239 = 5(4)2397<241> = 409 × 426859 × 15164015077<11> × 5690525736901809799324187666694887944201<40> × 361392570836507104255658254473506613710151517240038545253915965990446814667884841019013022194934771371228698103074041109386601533206279997931313154527036314993419216680524307324469881<183> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1655814547 for P40 / October 29, 2013 2013 年 10 月 29 日)
49×10241+239 = 5(4)2407<242> = 32 × 3257 × 646147 × 2874497731915252817328314572246296477160573536689283742027725196698243995304020135052362798887508853732471208578907689750673509277604651363915088410324943885127787852143492149965469815291865021154604214752213237067524055016145018677<232>
49×10242+239 = 5(4)2417<243> = definitely prime number 素数
49×10243+239 = 5(4)2427<244> = 13 × 173 × 2179 × [1110981647739507180784533974601009646517608753029890689155293218778881980170156588782091810208329691467472758673314690154360470329772682498517916472273219680817693375821806161862453261965686130135538173907580248188312024138502318289938957<238>] Free to factor
49×10244+239 = 5(4)2437<245> = 3 × 2339 × 4323240034193<13> × 1322283160568544871<19> × 1357276337820725724067599083775567149367105575120802756098567178196128849884471877443752021960282167020428781109299956106394661679891134847066712201368682419054546310572544251704780774773505989918251829904311697<211>
49×10245+239 = 5(4)2447<246> = [544444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444447<246>] Free to factor
49×10246+239 = 5(4)2457<247> = 43752910060918037039<20> × [124436167488380484507112200928244949407223620901798641786180169556585556413712032238804478537335942405383618154936767421370912379689549425199211692180879091849382937948197082690535004364982518278496509634844849251781094165075473<228>] Free to factor
49×10247+239 = 5(4)2467<248> = 3 × 4241 × 9841335643<10> × 261110278228762829<18> × 922069211556885137897<21> × 12600440759398810449978357031<29> × 1432384232590915560865940420644279920485356520372033<52> × 100063857825592272455709525414945012281950337087795420121928276099708869317172307029910680165697379733239098515468677<117> (Serge Batalov / GMP-ECM B1=110000000, sigma=3375158410 for P52 / June 5, 2014 2014 年 6 月 5 日)
49×10248+239 = 5(4)2477<249> = 52709 × 1853129446077687923<19> × 81545477265570324359237<23> × 23020278331716345520790931317292767543899<41> × [2969289808166047226429220923797661238240534277035523474559081317162788794427348534238344287603868259303074919140530383530441576135049619727209399061522135298088567<163>] (Serge Batalov / GMP-ECM B1=2000000, sigma=3986205651 for P41 / October 10, 2013 2013 年 10 月 10 日) Free to factor
49×10249+239 = 5(4)2487<250> = 132 × 313 × 94007454391684028287<20> × [1094864150509704700701196646544230283030060959808934373619751798005631757323235106467788538998426061406795529101217212203766257546795254158141357913777953792041553264598486495560844046884269874557267179846906598996739417012673<226>] Free to factor
49×10250+239 = 5(4)2497<251> = 33 × 29 × 243889585301<12> × 7453160613141163<16> × [38252345793408495175601148406121909971319116237940561667035353690481749666149937460025262410906165715891870805244989230430380878687714964749751669322576177624785885794778455710418081519200936873533160391068936889797772743<221>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク