Table of contents 目次

  1. About 588...887 588...887 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 588...887 588...887 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 588...887 588...887 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 588...887 588...887 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

58w7 = { 57, 587, 5887, 58887, 588887, 5888887, 58888887, 588888887, 5888888887, 58888888887, … }

1.3. General term 一般項

53×10n-179 (1≤n)

2. Prime numbers of the form 588...887 588...887 の形の素数

2.1. Last updated 最終更新日

September 9, 2015 2015 年 9 月 9 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 53×102-179 = 587 is prime. は素数です。
  2. 53×106-179 = 5888887 is prime. は素数です。
  3. 53×108-179 = 588888887 is prime. は素数です。
  4. 53×1020-179 = 5(8)197<21> is prime. は素数です。
  5. 53×10108-179 = 5(8)1077<109> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / December 4, 2004 2004 年 12 月 4 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 4, 2005 2005 年 1 月 4 日)
  6. 53×10288-179 = 5(8)2877<289> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / December 4, 2004 2004 年 12 月 4 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 4, 2005 2005 年 1 月 4 日)
  7. 53×10306-179 = 5(8)3057<307> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / December 4, 2004 2004 年 12 月 4 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 4, 2005 2005 年 1 月 4 日)
  8. 53×10462-179 = 5(8)4617<463> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 31, 2006 2006 年 5 月 31 日)
  9. 53×1020102-179 = 5(8)201017<20103> is PRP. はおそらく素数です。 (Ray Chandler / srsieve, PFGW / September 12, 2010 2010 年 9 月 12 日)
  10. 53×1030042-179 = 5(8)300417<30043> is PRP. はおそらく素数です。 (Erik Branger / srsieve and PFGW / May 1, 2013 2013 年 5 月 1 日)
  11. 53×1069050-179 = 5(8)690497<69051> is PRP. はおそらく素数です。 (Bob Price / September 8, 2015 2015 年 9 月 8 日)

2.3. Range of search 捜索範囲

  1. n≤30000 / Completed 終了 / Ray Chandler / September 19, 2010 2010 年 9 月 19 日
  2. n≤50000 / Completed 終了 / Erik Branger / May 1, 2013 2013 年 5 月 1 日
  3. n≤100000 / Completed 終了 / Bob Price / September 8, 2015 2015 年 9 月 8 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

  1. 53×103k+1-179 = 3×(53×101-179×3+53×10×103-19×3×k-1Σm=0103m)
  2. 53×106k+3-179 = 7×(53×103-179×7+53×103×106-19×7×k-1Σm=0106m)
  3. 53×106k+5-179 = 13×(53×105-179×13+53×105×106-19×13×k-1Σm=0106m)
  4. 53×1015k+10-179 = 31×(53×1010-179×31+53×1010×1015-19×31×k-1Σm=01015m)
  5. 53×1018k+1-179 = 19×(53×101-179×19+53×10×1018-19×19×k-1Σm=01018m)
  6. 53×1021k+7-179 = 43×(53×107-179×43+53×107×1021-19×43×k-1Σm=01021m)
  7. 53×1022k+18-179 = 23×(53×1018-179×23+53×1018×1022-19×23×k-1Σm=01022m)
  8. 53×1028k+3-179 = 29×(53×103-179×29+53×103×1028-19×29×k-1Σm=01028m)
  9. 53×1034k+13-179 = 103×(53×1013-179×103+53×1013×1034-19×103×k-1Σm=01034m)
  10. 53×1035k+9-179 = 71×(53×109-179×71+53×109×1035-19×71×k-1Σm=01035m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 12.61%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 12.61% です。

3. Factor table of 588...887 588...887 の素因数分解表

3.1. Last updated 最終更新日

August 3, 2017 2017 年 8 月 3 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=188, 189, 196, 204, 205, 206, 208, 211, 212, 216, 218, 220, 221, 222, 223, 224, 227, 228, 232, 233, 236, 241, 242, 246, 247, 248 (26/250)

3.4. Factor table 素因数分解表

53×101-179 = 57 = 3 × 19
53×102-179 = 587 = definitely prime number 素数
53×103-179 = 5887 = 7 × 292
53×104-179 = 58887 = 34 × 727
53×105-179 = 588887 = 13 × 97 × 467
53×106-179 = 5888887 = definitely prime number 素数
53×107-179 = 58888887 = 3 × 43 × 456503
53×108-179 = 588888887 = definitely prime number 素数
53×109-179 = 5888888887<10> = 7 × 71 × 383 × 30937
53×1010-179 = 58888888887<11> = 3 × 31 × 633213859
53×1011-179 = 588888888887<12> = 13 × 45299145299<11>
53×1012-179 = 5888888888887<13> = 93427 × 63031981
53×1013-179 = 58888888888887<14> = 32 × 103 × 509 × 10639 × 11731
53×1014-179 = 588888888888887<15> = 337 × 1747444774151<13>
53×1015-179 = 5888888888888887<16> = 7 × 841269841269841<15>
53×1016-179 = 58888888888888887<17> = 3 × 19629629629629629<17>
53×1017-179 = 588888888888888887<18> = 13 × 127 × 307 × 1161844245791<13>
53×1018-179 = 5888888888888888887<19> = 23 × 149197 × 1716111231077<13>
53×1019-179 = 58888888888888888887<20> = 3 × 19 × 4002307 × 258135720613<12>
53×1020-179 = 588888888888888888887<21> = definitely prime number 素数
53×1021-179 = 5888888888888888888887<22> = 7 × 16963 × 49594402008479707<17>
53×1022-179 = 58888888888888888888887<23> = 32 × 293 × 52267 × 427263365463353<15>
53×1023-179 = 588888888888888888888887<24> = 13 × 3167 × 14303487622085664397<20>
53×1024-179 = 5888888888888888888888887<25> = 379 × 733 × 21197769994596568441<20>
53×1025-179 = 58888888888888888888888887<26> = 3 × 31 × 173671 × 3646054085139779429<19>
53×1026-179 = 588888888888888888888888887<27> = 1427 × 7210760369<10> × 57230603277149<14>
53×1027-179 = 5888888888888888888888888887<28> = 72 × 389 × 6961472753<10> × 44379923690539<14>
53×1028-179 = 58888888888888888888888888887<29> = 3 × 43 × 233 × 1959240406191199683564191<25>
53×1029-179 = 588888888888888888888888888887<30> = 13 × 2058457 × 3875515243<10> × 5678305562849<13>
53×1030-179 = 5888888888888888888888888888887<31> = 249563 × 23596802766791907810408149<26>
53×1031-179 = 58888888888888888888888888888887<32> = 33 × 29 × 38767 × 1017683 × 1906324739452318349<19>
53×1032-179 = 588888888888888888888888888888887<33> = 109 × 124979 × 10027579 × 4310957334406449523<19>
53×1033-179 = 5888888888888888888888888888888887<34> = 7 × 349 × 823 × 142057 × 20618041958583278463019<23>
53×1034-179 = 58888888888888888888888888888888887<35> = 3 × 139 × 141220357047695177191580069277911<33>
53×1035-179 = 588888888888888888888888888888888887<36> = 13 × 37061 × 1222286103967656003488819656759<31>
53×1036-179 = 5888888888888888888888888888888888887<37> = 89 × 577 × 11751868483<11> × 9757995596885474308613<22>
53×1037-179 = 58888888888888888888888888888888888887<38> = 3 × 19 × 13063 × 79088907721002387738891403319257<32>
53×1038-179 = 588888888888888888888888888888888888887<39> = 14753 × 122609 × 325559720839721350233391273031<30>
53×1039-179 = 5888888888888888888888888888888888888887<40> = 7 × 841269841269841269841269841269841269841<39>
53×1040-179 = 58888888888888888888888888888888888888887<41> = 32 × 23 × 31 × 47 × 59291383 × 3293152801536072846294234911<28>
53×1041-179 = 588888888888888888888888888888888888888887<42> = 13 × 7703 × 5085131 × 1156452940044651049470125160143<31>
53×1042-179 = 5888888888888888888888888888888888888888887<43> = 35256649 × 287737661 × 46028613523<11> × 12611528509042121<17>
53×1043-179 = 58888888888888888888888888888888888888888887<44> = 3 × 3449 × 5691397399138773450168057300559475102821<40>
53×1044-179 = 588888888888888888888888888888888888888888887<45> = 59 × 71 × 42338533 × 1219715899145713<16> × 2722253149376579927<19>
53×1045-179 = 5888888888888888888888888888888888888888888887<46> = 7 × 277 × 107719 × 136379 × 327490711 × 631272325063973591808503<24>
53×1046-179 = 58888888888888888888888888888888888888888888887<47> = 3 × 3917 × 1802216054793045716183<22> × 2780684267038250506039<22>
53×1047-179 = 588888888888888888888888888888888888888888888887<48> = 13 × 103 × 4003 × 520297 × 4188974719<10> × 50409005780532234609476177<26>
53×1048-179 = 5888888888888888888888888888888888888888888888887<49> = 2719 × 6803 × 122931318624788881<18> × 2589769676932223517648611<25>
53×1049-179 = 58888888888888888888888888888888888888888888888887<50> = 32 × 43 × 2503 × 605947845827751221<18> × 100328957514723000571435727<27>
53×1050-179 = 588888888888888888888888888888888888888888888888887<51> = 23143 × 25445659114587084167518856193617460523220364209<47>
53×1051-179 = 5(8)507<52> = 7 × 199435649145895223<18> × 4218252077162084710208927017501367<34>
53×1052-179 = 5(8)517<53> = 3 × 19629629629629629629629629629629629629629629629629629<53>
53×1053-179 = 5(8)527<54> = 13 × 463 × 194105143 × 504048090987529605221367553761826734228011<42>
53×1054-179 = 5(8)537<55> = 254170673195597<15> × 4717813045743408649<19> × 4910969014644550638779<22>
53×1055-179 = 5(8)547<56> = 3 × 19 × 31 × 12727243 × 45126380399<11> × 3591820937357<13> × 16155384428045489221489<23>
53×1056-179 = 5(8)557<57> = 4278142709<10> × 661681855883<12> × 208031387983980354897108558298864721<36>
53×1057-179 = 5(8)567<58> = 7 × 1009 × 8059 × 31063 × 20793514619243077<17> × 160173881284443748385550896161<30>
53×1058-179 = 5(8)577<59> = 33 × 61 × 563411 × 108727533947233<15> × 113409549620167<15> × 5146657591463402642501<22>
53×1059-179 = 5(8)587<60> = 13 × 29 × 127 × 3756984218627<13> × 3273775680645929020865926066743383374022939<43>
53×1060-179 = 5(8)597<61> = 333516871865275600403888401<27> × 17656944477662617717114663367398087<35>
53×1061-179 = 5(8)607<62> = 3 × 601 × 256364188513251737<18> × 1332708387989621483<19> × 95597193745385255884199<23>
53×1062-179 = 5(8)617<63> = 23 × 312931 × 17836591 × 4587172608570630320450906279450661396572821443589<49>
53×1063-179 = 5(8)627<64> = 7 × 1721 × 105951931 × 629137027 × 401949082575414581897<21> × 18244387426831168963489<23>
53×1064-179 = 5(8)637<65> = 3 × 23310616894915388183426836801<29> × 842089667472992904940107999571042429<36>
53×1065-179 = 5(8)647<66> = 132 × 3929 × 55073 × 87121 × 350677 × 550939 × 17645057 × 526724432167<12> × 102940367006050149127<21>
53×1066-179 = 5(8)657<67> = 298723 × 351429867403<12> × 301038295112796673<18> × 186339224455743605408595109164151<33>
53×1067-179 = 5(8)667<68> = 32 × 61643 × 6203003 × 17112170273552645596492651948345185817996249768676517767<56>
53×1068-179 = 5(8)677<69> = 709 × 9338157284748566127695844341<28> × 88945901333552890934394474940236645823<38>
53×1069-179 = 5(8)687<70> = 72 × 397 × 5839 × 36857 × 4218107 × 25954603032649<14> × 6327989563189961<16> × 2030441952789630776351<22>
53×1070-179 = 5(8)697<71> = 3 × 31 × 43 × 193 × 9007 × 155671 × 787529508386013924439<21> × 69098709015031432563722733632750327<35>
53×1071-179 = 5(8)707<72> = 13 × 263 × 4549 × 1459771 × 153902319139<12> × 5277017639345233<16> × 31937423762444404945897718607601<32>
53×1072-179 = 5(8)717<73> = 75239 × 38900461 × 1241305969<10> × 778920256859<12> × 45202416341980031<17> × 46036479419783008961153<23>
53×1073-179 = 5(8)727<74> = 3 × 19 × 3208628053<10> × 19096540219<11> × 16861043017884455795863834933867868235645688776183913<53>
53×1074-179 = 5(8)737<75> = 33704617 × 4841082397<10> × 3609121387624193396425967882897537320963801122525739313963<58>
53×1075-179 = 5(8)747<76> = 7 × 1597 × 2979579293<10> × 2721061096003<13> × 64973634864714450924385214807605706550334304729507<50>
53×1076-179 = 5(8)757<77> = 32 × 156817 × 1278894523<10> × 333220883393<12> × 97910838664040335615074406723802776256655868556861<50>
53×1077-179 = 5(8)767<78> = 13 × 1749287 × 80234808016298911394233<23> × 322749903747723951972218068507966240914701162269<48>
53×1078-179 = 5(8)777<79> = 8620289 × 586262477 × 4369968017<10> × 848781288031<12> × 314156015742660037926313560274280207166077<42>
53×1079-179 = 5(8)787<80> = 3 × 71 × 276473656755346896191966614501825769431403234220135628586332811684924360980699<78>
53×1080-179 = 5(8)797<81> = 89 × 139 × 1103 × 3548854697<10> × 294295682309<12> × 41321961830649091755219119083092262417210066340596463<53>
53×1081-179 = 5(8)807<82> = 7 × 103 × 179 × 6569 × 9066336580201597729<19> × 43205827478518692335289611<26> × 17732568149105517031624308863<29>
53×1082-179 = 5(8)817<83> = 3 × 5101 × 12085659074046421<17> × 1501771458735488921<19> × 15641603184944201323<20> × 13555056515431478528051903<26>
53×1083-179 = 5(8)827<84> = 13 × 3497786921<10> × 11289322600037<14> × 1147172625032594050663579281795180019642649202700509794805887<61>
53×1084-179 = 5(8)837<85> = 23 × 1382363894231962611642251<25> × 185217979441838288383200523130196899574594160812237427892419<60>
53×1085-179 = 5(8)847<86> = 35 × 312 × 733 × 1630463 × 211891884593489<15> × 6393750450300022617730253<25> × 155746670459924494322215327769083<33>
53×1086-179 = 5(8)857<87> = 47 × 5003 × 144951872369<12> × 1579346410298804991097<22> × 10939658680165665964634570990488160230427654834899<50>
53×1087-179 = 5(8)867<88> = 7 × 29 × 29009304871373836891078270388615216201423097974822112753147235905856595511767925561029<86>
53×1088-179 = 5(8)877<89> = 3 × 2386938215880269387725110259<28> × 8223769471297562309269103033639328369471574389001634976012431<61>
53×1089-179 = 5(8)887<90> = 13 × 291509 × 183109640216894009<18> × 1247095636410819915165479715481<31> × 680498341801401360906204370546775159<36>
53×1090-179 = 5(8)897<91> = 1512281 × 1099329663199<13> × 179793563029426469<18> × 19701476664470790484289965634108005525726201410505318717<56>
53×1091-179 = 5(8)907<92> = 3 × 19 × 43 × 7393 × 108685678027<12> × 557122818768629<15> × 53671789666534575474740629994173257677178393001748465678123<59>
53×1092-179 = 5(8)917<93> = 175403 × 3357347872550007063099769609920519540081349172413749416423258945906791154591933369947429<88>
53×1093-179 = 5(8)927<94> = 7 × 21599 × 14861055396942569849802878734994101714519051<44> × 2620909485425604622044469640277052876501228109<46> (Makoto Kamada / GGNFS-0.70.8 / 0.30 hours)
53×1094-179 = 5(8)937<95> = 32 × 1946345514224210618098710648749149<34> × 3361792563922676828419713600595620422650536899824203000242507<61> (Makoto Kamada / GGNFS-0.70.8 / 0.39 hours)
53×1095-179 = 5(8)947<96> = 13 × 113 × 1823 × 43731456341113<14> × 5028413171236168014404686900971686607336717201491644650090040469624903115077<76>
53×1096-179 = 5(8)957<97> = 91577 × 93766645568681326607<20> × 3714520039885883622239390018633<31> × 184627276148590541826223257066668315387801<42> (Makoto Kamada / msieve 0.81 / 6.3 minutes)
53×1097-179 = 5(8)967<98> = 3 × 19629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629<98>
53×1098-179 = 5(8)977<99> = 124897 × 275976937 × 312273047397271<15> × 2039851064823757040957<22> × 26821039276422872303418785431313256762756822787789<50>
53×1099-179 = 5(8)987<100> = 7 × 246423523 × 3413918570062165980157948806169130492632677121777214709495366809076263672446846079989860667<91>
53×10100-179 = 5(8)997<101> = 3 × 31 × 787 × 299838697 × 755965171879<12> × 1019423856435437292993291774131<31> × 3482021249306189640649870455708261686625412469<46> (Makoto Kamada / msieve 0.83 / 16 minutes)
53×10101-179 = 5(8)1007<102> = 13 × 97 × 127 × 24763933 × 171499687 × 40176095040014160505295257<26> × 21550823883637563151932486359360553518087992431421575743<56>
53×10102-179 = 5(8)1017<103> = 59 × 1399 × 3536462375192796870546965456753026665578804701991<49> × 20174119642955981100844036468742758967519435241877<50> (Serge Batalov / Msieve 1.40 snfs / 0.42 hours / April 23, 2009 2009 年 4 月 23 日)
53×10103-179 = 5(8)1027<104> = 32 × 1171 × 30893 × 4466077572007<13> × 6462581981304974023<19> × 8743934694908831400816001705847<31> × 716695435163738820469104575356543<33> (Makoto Kamada / Msieve 1.41 for P31 x P33 / April 22, 2009 2009 年 4 月 22 日)
53×10104-179 = 5(8)1037<105> = 409 × 34159 × 66094496635789648498726769864747288141<38> × 637734048402595454621522275124133541105908678950119792488997<60> (Serge Batalov / Msieve-1.41 snfs / 0.42 hours / April 23, 2009 2009 年 4 月 23 日)
53×10105-179 = 5(8)1047<106> = 7 × 401 × 743 × 28409 × 99390800165254992852429396874865831989657605633552718428440929750393186236573359466418137388943<95>
53×10106-179 = 5(8)1057<107> = 3 × 23 × 18143 × 3532267177<10> × 6933682933<10> × 28415700292687399953919757657<29> × 67592620116303941843938002951289944297791127310793953<53>
53×10107-179 = 5(8)1067<108> = 13 × 809 × 216523 × 16836991 × 149006699 × 54965850809761462131429144756747005686793<41> × 1875314977717615885449243117829391379630661<43> (Makoto Kamada / Msieve 1.41 for P41 x P43 / April 22, 2009 2009 年 4 月 22 日)
53×10108-179 = 5(8)1077<109> = definitely prime number 素数
53×10109-179 = 5(8)1087<110> = 3 × 19 × 479 × 34483 × 62171 × 1184825813345484206359746383415693747268967<43> × 849132744499225818718955971430604327755370155419332359<54> (Robert Backstrom / GGNFS-0.77.1-20060513-pentium-m snfs / 0.60 hours / April 23, 2009 2009 年 4 月 23 日)
53×10110-179 = 5(8)1097<111> = 223 × 92737 × 52950861499<11> × 6128057397204256771<19> × 15166134528194679344465586729248231<35> × 5786349952803440757210128094028304711263<40> (Makoto Kamada / Msieve 1.41 for P35 x P40 / April 22, 2009 2009 年 4 月 22 日)
53×10111-179 = 5(8)1107<112> = 72 × 131 × 2713 × 19531 × 2583127051493<13> × 8755734792007348811910579911803179991376407<43> × 765514364941998640034028307700209638579220741<45> (Makoto Kamada / Msieve 1.41 for P43 x P45 / April 22, 2009 2009 年 4 月 22 日)
53×10112-179 = 5(8)1117<113> = 33 × 43 × 167 × 24499 × 75594621766333<14> × 164000591028934495951201677238417379233388829124195797814266450617185861097059203686675503<90>
53×10113-179 = 5(8)1127<114> = 13 × 2963 × 255383398285427<15> × 5067488575798423942258912441786211<34> × 11813345789802296777872794313744435491728937700087705183033609<62> (Sinkiti Sibata / Msieve 1.41 for P34 x P62 / 4.45 hours / April 24, 2009 2009 年 4 月 24 日)
53×10114-179 = 5(8)1137<115> = 71 × 181 × 277 × 10789 × 18899 × 68813 × 167266927763015205609857861924093563<36> × 704881442955466017239089882681824408103143399235767556204409<60> (Sinkiti Sibata / Msieve 1.41 for P36 x P60 / 4.78 hours / April 24, 2009 2009 年 4 月 24 日)
53×10115-179 = 5(8)1147<116> = 3 × 29 × 31 × 103 × 2917 × 3311445027397393<16> × 4036825786543198631<19> × 2491992796315146718640946650893<31> × 2181596459551055810670889966030088735062559<43> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=1953376555 for P31 / April 17, 2009 2009 年 4 月 17 日)
53×10116-179 = 5(8)1157<117> = 4168097 × 7570877 × 45870217634039<14> × 406835228090929953750974186751500012726202777474564894241256228312978709437830190478965557<90>
53×10117-179 = 5(8)1167<118> = 7 × 965113 × 84444727 × 7715998587481074437947<22> × 477343441150451046075186288656009<33> × 2802602593051054672064091263527315061233413440117<49> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=2946943680 for P33 / April 17, 2009 2009 年 4 月 17 日)
53×10118-179 = 5(8)1177<119> = 3 × 61 × 149 × 83101 × 336986939 × 12352955807<11> × 409296899512265966507<21> × 15253423940415706277825257496619363154302713905986157800888521428981351<71>
53×10119-179 = 5(8)1187<120> = 13 × 23341161161<11> × 1312337778471015259<19> × 1629713381621447440169<22> × 907424890953748207748566114034313452778286423121750132310946637689529<69>
53×10120-179 = 5(8)1197<121> = 1259 × 16249 × 10101284251292332724978899670311<32> × 8356658216818754447156086913396327<34> × 3410136466536908327829499809355794661728096047581<49> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=2494998264 for P34 / April 17, 2009 2009 年 4 月 17 日) (Makoto Kamada / Msieve 1.41 for P32 x P49 / April 22, 2009 2009 年 4 月 22 日)
53×10121-179 = 5(8)1207<122> = 32 × 21211 × 620505581 × 136569534114199<15> × 3631090387354731446722862437746442697<37> × 1002520188473252584276320790788755291702994964270538468591<58> (Sinkiti Sibata / Msieve 1.41 for P37 x P58 / 3.14 hours / April 24, 2009 2009 年 4 月 24 日)
53×10122-179 = 5(8)1217<123> = 225297977839295385254567<24> × 4190445723301115569010437<25> × 16984709386508543822337293851307<32> × 36724655136668618071565185623300987513106679<44> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=1340889881 for P32 / April 17, 2009 2009 年 4 月 17 日)
53×10123-179 = 5(8)1227<124> = 7 × 18593 × 2783818463<10> × 106479459891290610697<21> × 6581223412854716967647<22> × 19985855702708226738499951666901<32> × 1160512222765146604364290946262957061<37> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=3685192417 for P32 / April 17, 2009 2009 年 4 月 17 日)
53×10124-179 = 5(8)1237<125> = 3 × 89 × 1191809 × 4836787 × 162409129263521507054727247357759<33> × 235585218437968568279588300257584868514845787402833345248144612223210092321113<78> (Serge Batalov / GMP-ECM 6.2.2 B1=3000000, sigma=1932810670 for P33 / April 23, 2009 2009 年 4 月 23 日)
53×10125-179 = 5(8)1247<126> = 13 × 339749 × 35535200978096463458378999<26> × 333310210633105268385300246208958849<36> × 11257045633707776513130579531935967239498275141186226824801<59> (Sinkiti Sibata / Msieve 1.41 for P36 x P59 / 2.87 hours / April 25, 2009 2009 年 4 月 25 日)
53×10126-179 = 5(8)1257<127> = 139 × 2152525333033<13> × 4186857306152507699817842593643290853547861453707<49> × 4700912079944416830169055586945991616973525269591821004558075543<64> (Erik Branger / GGNFS, Msieve snfs / 3.85 hours / April 24, 2009 2009 年 4 月 24 日)
53×10127-179 = 5(8)1267<128> = 3 × 19 × 283 × 3650665729892064279269040288195951205064093291729520109657732867701251558420983751093477706830877744026339897643598592082877<124>
53×10128-179 = 5(8)1277<129> = 23 × 63691 × 4788800872882184084781263<25> × 112604159725354687671910018636786167653258924591<48> × 745497589659523189147719856571126344213064487387523<51> (Robert Backstrom / GGNFS-0.77.1-20060513-pentium-m snfs / 2.60 hours / April 24, 2009 2009 年 4 月 24 日)
53×10129-179 = 5(8)1287<130> = 7 × 4623547 × 5222837 × 57168349928028616133688579199585387<35> × 609393635442267750361101031452473824611828346367866478338485749744303280641982437<81> (Ignacio Santos / GGNFS, Msieve snfs / 2.82 hours / April 23, 2009 2009 年 4 月 23 日)
53×10130-179 = 5(8)1297<131> = 32 × 31 × 1787 × 689561 × 1251681026599<13> × 2684522574849883505513247949489097<34> × 50976637352551995002585907351700594122427409787504925659946717615102657493<74> (Serge Batalov / GMP-ECM 6.2.2 B1=3000000, sigma=2846608915 for P34 / April 23, 2009 2009 年 4 月 23 日)
53×10131-179 = 5(8)1307<132> = 13 × 45299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299145299<131>
53×10132-179 = 5(8)1317<133> = 47 × 25621148611<11> × 53530073923<11> × 91356418131375695702199237835810026354904070931714890645227763437594213869378593593864986249398654898372303857<110>
53×10133-179 = 5(8)1327<134> = 3 × 43 × 834366751 × 547125127044461442436428657515671486202678822352803272897347596316794045694840405104369389013012755497816399089726722043753<123>
53×10134-179 = 5(8)1337<135> = 2083 × 4003 × 1815323 × 11279393 × 3125020680203252737013<22> × 1103737925334492408259465420692886525923590559989403063491897779087869059323462572871997254009<94>
53×10135-179 = 5(8)1347<136> = 7 × 6798038297<10> × 35525014823<11> × 133388802981350017<18> × 271877746762052309<18> × 2579403871896835717<19> × 5587149414441246292337<22> × 6665224395106402376292000433131281106103<40>
53×10136-179 = 5(8)1357<137> = 3 × 155203 × 11589514897<11> × 10913064842667680427986630588123419534061445972300196214009217576496358506497440099082418725928143968608150518763704075919<122>
53×10137-179 = 5(8)1367<138> = 13 × 257 × 1187573234723866457<19> × 5584838927938453061724271226184215519985376889149<49> × 26575768460269751918333188566808886042747046132589556424376472164199<68> (Erik Branger / GGNFS, Msive snfs / 7.27 hours / April 24, 2009 2009 年 4 月 24 日)
53×10138-179 = 5(8)1377<139> = 14212328108433255333011168440885868143857201519173<50> × 414350755482105931010853345568490156490520800534066379136735288507168858874680066897030219<90> (Serge Batalov / Msieve-1.41 snfs / 6.39 hours on Phenom II X4 940/openSUSE/x86_64 / April 23, 2009 2009 年 4 月 23 日)
53×10139-179 = 5(8)1387<140> = 33 × 1489 × 164695220489<12> × 8893933999035223786355388188562713881291371748987666619506709032100171093798729807492351133148454052915319830850176575000861<124>
53×10140-179 = 5(8)1397<141> = 109 × 12128621 × 445446383127875555330620260443707271358867703587498452822882949430028412299152141363371849818863695371853791573060973442800887732383<132>
53×10141-179 = 5(8)1407<142> = 7 × 659 × 843487275251<12> × 5066560825448363<16> × 298715741579861507432648719249087149713728855384723115024616965504209699256828350557344671758327645838424007323<111>
53×10142-179 = 5(8)1417<143> = 3 × 1729519523757816004441<22> × 91707828018412666673471<23> × 123759979470018039760669869610685327617206553488800637430799280189947434701368464745145860824426939<99>
53×10143-179 = 5(8)1427<144> = 132 × 29 × 127 × 268114348509373801<18> × 3197499649810280310555966924736478732434405762799143<52> × 1103606817437336719982382319701730917790387846170402709338588861412267<70> (Ignacio Santos / GGNFS, Msieve snfs / 9.26 hours / April 24, 2009 2009 年 4 月 24 日)
53×10144-179 = 5(8)1437<145> = 17519 × 106957 × 6636577684770897967<19> × 493043766422451686167629421455051011<36> × 960473041699645228846742337228722619911387336255548265515490052356974875912822097<81> (Robert Backstrom / GMP-ECM 6.2.1 B1=2400000, sigma=4105013632 for P36 / April 24, 2009 2009 年 4 月 24 日)
53×10145-179 = 5(8)1447<146> = 3 × 19 × 31 × 5059 × 1763109877<10> × 5071686279865633<16> × 736716457044720848560813663401441576107430100795908899116934044720429424206390182047911681808718788066258905520719<114>
53×10146-179 = 5(8)1457<147> = 733 × 229847 × 5074470427057<13> × 21866852751576919851059<23> × 31500216560482437631527684243702755954421671696611997703890322248458945221683653932760489176800126358599<104>
53×10147-179 = 5(8)1467<148> = 7 × 157090823 × 108192642452257497081257210337049<33> × 2579775523673369950784734958514551180203035362426083<52> × 19186902085390185374523921439602412837798066940823099701<56> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=3838654655 for P33 / April 17, 2009 2009 年 4 月 17 日) (Ignacio Santos / GGNFS, Msieve snfs / 12.45 hours / April 24, 2009 2009 年 4 月 24 日)
53×10148-179 = 5(8)1477<149> = 32 × 1669 × 27337 × 218487524683<12> × 66654703895377530032933214908629<32> × 1293513234549944335404040049217391458765838967629<49> × 7612991358325177921065847363673485843300748322977<49> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=2016695560 for P32 / April 17, 2009 2009 年 4 月 17 日) (Serge Batalov / Msieve 1.40 gnfs for P49(1293...) x P49(7612...) / 2.08 hours / April 23, 2009 2009 年 4 月 23 日)
53×10149-179 = 5(8)1487<150> = 13 × 71 × 103 × 349 × 45001306334623<14> × 131330752110030357457784241422186029366093966226597288556911<60> × 3003152975980207409359615676165557286711523353567898461432663515019759<70> (Robert Backstrom / GGNFS-0.77.1-20060513-pentium-m, Msieve 1.39 snfs / 14.25 hours, 0.51 hours / April 25, 2009 2009 年 4 月 25 日)
53×10150-179 = 5(8)1497<151> = 23 × 853 × 1003753 × 816312569 × 3680454677<10> × 646588374346983737232638435333887307048501<42> × 153937272537308898972231509958686605521190984086624596387981731443058693734868357<81> (Ignacio Santos / GGNFS, Msieve snfs / 13.05 hours / April 26, 2009 2009 年 4 月 26 日)
53×10151-179 = 5(8)1507<152> = 3 × 599 × 1915212950060694005807<22> × 17110717197416469271058188151637386259493535010058247913757656686521537907190293092868175071450782284474146311050769768860423653<128>
53×10152-179 = 5(8)1517<153> = 8933 × 192767 × 730973 × 467845010248533101139605991649341933560165370510258412358204349496610499317391285684563967980734537208233721351353973979678433856275183129<138>
53×10153-179 = 5(8)1527<154> = 73 × 523 × 23831 × 229108109084325281<18> × 1259429971180200006189700716076596071<37> × 4773982244934065198215618554300837516932709210804279640544817629668719303310081359797913443<91> (Ignacio Santos / GGNFS, Msieve snfs / 22.23 hours / April 27, 2009 2009 年 4 月 27 日)
53×10154-179 = 5(8)1537<155> = 3 × 43 × 1279 × 1777761606141414820261<22> × 64507704473656311690916427<26> × 3112346885119127539867863890776877572071646126621219433099593529685026093247052146168148131371304980831<103>
53×10155-179 = 5(8)1547<156> = 13 × 12659042761<11> × 4922032361863921654624733150235114276655806509234915061421645406483<67> × 727017184113077927619676603072589808158867829035481257917742796614728442684473<78> (Robert Backstrom / GGNFS-0.77.1-20060513-pentium-m snfs / 19.09 hours / April 27, 2009 2009 年 4 月 27 日)
53×10156-179 = 5(8)1557<157> = 9811 × 181787 × 3301849407412785102541007593921396240165502203716500104147525849545585090357407557131741589645205835492550185983324525528555921154450966517180985591<148>
53×10157-179 = 5(8)1567<158> = 32 × 1357023167<10> × 10832151056429599303554007957<29> × 445132066359079344849243395686655796071255972351114506176681171590400337274730612509773321428590207640201938801078983997<120>
53×10158-179 = 5(8)1577<159> = 47228255567<11> × 1468405603588693321612517<25> × 8491519716557003553702460810485243945808873760331437179519044475135095958874985950074792966457933134636512784158084206029733<124>
53×10159-179 = 5(8)1587<160> = 7 × 205949 × 61840298216763925720027163<26> × 84784784537443137996637339<26> × 779087320806028230867940848975906457775759202521715983790721745299690827439020132070154741255126406637<102>
53×10160-179 = 5(8)1597<161> = 3 × 31 × 59 × 5281 × 276411390209<12> × 2725533362361238520589464459<28> × 2697582867869867317434753679114381079941483593796804601807221419107311236612389361642783515647169811624733928259691<115>
53×10161-179 = 5(8)1607<162> = 13 × 301013 × 40079032860800981034271182219977895493<38> × 3845042550038572909061181163224247339297802581922082119<55> × 976531759921969567716202456727446938275394815869598707738421069<63> (Robert Backstrom / GMP-ECM 6.2.1 B1=1398000, sigma=2643783734 for P38, GGNFS-0.77.1-20060513-pentium-m, Msieve 1.39 gnfs for P55 x P63 / 27.34 hours, 0.93 hours / April 27, 2009 2009 年 4 月 27 日)
53×10162-179 = 5(8)1617<163> = 1132321 × 10850869 × 479291004390187057703547986977273146046869555834549502909781789303129922586290154726752577183106154921552814526754639829561561954819083742083618943963<150>
53×10163-179 = 5(8)1627<164> = 3 × 19 × 34765350967304163312833<23> × 62622882318570911412650973707031773485945464667516361<53> × 474546564403968967469298671548430514892021736391287023805749850667560421046179684788407<87> (Ignacio Santos / GGNFS, Msieve snfs / 50.02 hours / April 30, 2009 2009 年 4 月 30 日)
53×10164-179 = 5(8)1637<165> = 800977 × 26420433379971578160086373777968563<35> × 1931614398915714664197849198169905631094719<43> × 14406316220093108541547534674609427084176701563508733048745187396069463990428743523<83> (Ignacio Santos / GGNFS, Msieve snfs / 44.59 hours / April 24, 2009 2009 年 4 月 24 日)
53×10165-179 = 5(8)1647<166> = 7 × 639157301 × 683426917 × 6327944358701217101<19> × 105286041996195116463905211753052493939462823619<48> × 2890693427093959193600294796557751916681459460044103037225919482688402201684641967<82> (Markus Tervooren / msieve 1.41, ggnfs snfs / 23.99 hours on Q6700, 3 cores / May 13, 2009 2009 年 5 月 13 日)
53×10166-179 = 5(8)1657<167> = 34 × 3954148772442077441638337<25> × 183863420790539324156427175402083398473082652753881858044140580206224958264668116377070401444635700963839166010871154645256876852608185302471<141>
53×10167-179 = 5(8)1667<168> = 13 × 15329 × 1722895695524797<16> × 235635565408170581<18> × 254282302852547381807727061<27> × 28625970603377619453413950832762662925656978261218661448844732393217633733838422172784777997997059070503<104>
53×10168-179 = 5(8)1677<169> = 89 × 229 × 293 × 397 × 1573771 × 16943449 × 550775909 × 169134206449922455982805001217599338259669270423140726511543267271018623715054086066493662431241858188632510298614404125521784844611230717<138>
53×10169-179 = 5(8)1687<170> = 3 × 10289 × 10349469969241347631837446124602660629190655792332907<53> × 184340529031864544303987400282044404412493423618646133662587944074027945204887635621848468895056963952913120131623<114> (Ignacio Santos / GGNFS, Msieve snfs / 72.50 hours / April 27, 2009 2009 年 4 月 27 日)
53×10170-179 = 5(8)1697<171> = 307 × 122533 × 5167733 × 294126417229<12> × 193846180805187407600600338763753217911145985598911<51> × 53131315566490633270278975197275951466009849466986055887204243258100677263931552140266771322951<95> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / 40.30 hours on Core 2 Quad Q6700 / October 7, 2009 2009 年 10 月 7 日)
53×10171-179 = 5(8)1707<172> = 7 × 29 × 38833 × 126522367 × 1192699099275395735131<22> × 4950375926068721969341755509113271436931472853087501813844515812742634550188811414632998506366458231636918195347526840663759222061264369<136>
53×10172-179 = 5(8)1717<173> = 3 × 23 × 139 × 1447 × 3673 × 29181318710990417<17> × 208315392186507557875574457526219127<36> × 190043812887773452615147548555234527720338584588002284271867096892313001181562043797469305967347210061472949433<111> (Wataru Sakai / GMP-ECM 6.2.1 B1=3000000, sigma=2640349756 for P36 / September 17, 2009 2009 年 9 月 17 日)
53×10173-179 = 5(8)1727<174> = 13 × 367 × 4049 × 4729 × 108131 × 58057151407<11> × 2304234693696564452184889753635478729<37> × 445629773118221555360661795059797928608659721343404960229733255857158430909747499740789126681201443189374617249<111> (Wataru Sakai / GMP-ECM 6.2.1 B1=3000000, sigma=2779584171 for P37 / February 25, 2010 2010 年 2 月 25 日)
53×10174-179 = 5(8)1737<175> = 3862847 × 5248683299<10> × 6223518483857<13> × 94477344411455237397371776504048434903560228374174051674823<59> × 493982795324252717538637342714292805585357901311720346644447040842949360065368174612789<87> (Markus Tervooren / July 4, 2012 2012 年 7 月 4 日)
53×10175-179 = 5(8)1747<176> = 32 × 31 × 43 × 51380616823<11> × 2656107188997663597700949<25> × 64213906236378218837062493226542858935536321076843<50> × 560127249141911329347602061817361495759114461819200533472692599040846059444250550167011<87> (Erik Branger / GMP-ECM B1=3000000, sigma=881074462 for P50 / August 10, 2011 2011 年 8 月 10 日)
53×10176-179 = 5(8)1757<177> = 11332631 × 17300832061169<14> × 32005507000541<14> × 5972341085588203<16> × 232471871494407295759<21> × 67592093188086367831104756427666307779759381350711031886939894485737802563056125533110384213803194925356769<107>
53×10177-179 = 5(8)1767<178> = 7 × 1697 × 12289 × 40340096576581164773996485124761784213518048717500076355049779644924475762120688741326185652770796562526599013325840183228250312116845433766589091214795495511255081414577<170>
53×10178-179 = 5(8)1777<179> = 3 × 47 × 61 × 24239 × 156799 × 164278643 × 3412456797433<13> × 124806913675133<15> × 25747763590240167800753370740453234442263680528279279208892143631544676284093315833029469432432837022223822007443533978498397498321<131>
53×10179-179 = 5(8)1787<180> = 13 × 8609 × 2466439 × 1905016558247958781387<22> × 8442905563306619451552613<25> × 1267882575806183686123062369811279771630970712791<49> × 104615780893553633888163173944050869226186736163185458497293997297646226469<75> (Erik Branger / GGNFS, Msieve gnfs for P49 x P75 / 103.57 hours / May 18, 2009 2009 年 5 月 18 日)
53×10180-179 = 5(8)1797<181> = 1223 × 82163 × 516599 × 113442830441882448883693651685046973059949325616425313567005405940105208000383263677809194201100847851300353738681012925367265115698748885987304581315261145020023941037<168>
53×10181-179 = 5(8)1807<182> = 3 × 19 × 3613963 × 4203768731782750283<19> × 163791378840537560105623945657<30> × 1205814952114265935016503440219167569<37> × 344321612337238538343436584256305526645134320108378502567554345828498578097949097119076463<90> (Serge Batalov / GMP-ECM B1=2000000, sigma=4063546210 for P30 / March 20, 2011 2011 年 3 月 20 日) (Wataru Sakai / GMP-ECM B1=3000000, sigma=3445121938 for P37 / April 16, 2011 2011 年 4 月 16 日)
53×10182-179 = 5(8)1817<183> = 703013 × 1674901 × 10092643901184679984970792233<29> × 53416645375936275933005916012702314479050543979769396182514403793<65> × 927682366643550621869516368963481903088581924054530156309451812155962030260471<78> (Dmitry Domanov / Msieve 1.50 snfs / February 5, 2014 2014 年 2 月 5 日)
53×10183-179 = 5(8)1827<184> = 7 × 103 × 277 × 5581 × 923784051700444816320238706709503633<36> × 5719207368432994449391079239606073584720170424302049961619530145402972759608485204216561128563887230571008596405373365670647180148939167207<139> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2293147859 for P36 / May 30, 2011 2011 年 5 月 30 日)
53×10184-179 = 5(8)1837<185> = 32 × 71 × 313 × 32869 × 416018494850953<15> × 386452122941214625545565181<27> × 7013902290249520574271123580879<31> × 7943897389329627030242167466898885042517948786109263956506055607589147818588567456515884385558838367287<103> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=3551313151 for P31 / April 21, 2009 2009 年 4 月 21 日)
53×10185-179 = 5(8)1847<186> = 13 × 127 × 2753 × 39343 × 42163427419<11> × 633431156032647178697464717983305413<36> × 14938950383794395395219047797423652483<38> × 8253861744386335046554978717199841636423702160309990882360307859702417489762127342937794903<91> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3419563904 for P36 / February 13, 2014 2014 年 2 月 13 日) (KTakahashi / GMP-ECM 6.4.4 B1=11000000, sigma=630201414 for P38 / February 23, 2014 2014 年 2 月 23 日)
53×10186-179 = 5(8)1857<187> = 96741663167<11> × 10084513156525457970727463196872899527953549967140989<53> × 6036217412723331039917515149835578292552836609990455555790073034039585668074025591780219023725303827139468556384153161668349<124> (Robert Backstrom / Msieve 1.44 snfs / February 11, 2012 2012 年 2 月 11 日)
53×10187-179 = 5(8)1867<188> = 3 × 2205001459<10> × 250967545528893431088509051<27> × 35471998793362982656954234307153375801889097824048962199302606590854342883651803929472804561740238767429489591413581432468072616655251416907766639843581<152>
53×10188-179 = 5(8)1877<189> = 127650641930351244541<21> × [4613285761697920021176813737237395878310805179086625203220552142977732178880098084411546358317594839165736765342580293719164609655526671057039072542956237486384198103107<169>] Free to factor
53×10189-179 = 5(8)1887<190> = 7 × 1526099777090137<16> × [551254809088510085742879187689728211329448880120790906932831634436204117739081296457848639750144422194409705400233692357180919444738654682242877835225917204499736547833758393<174>] Free to factor
53×10190-179 = 5(8)1897<191> = 3 × 31 × 354503618435766275782577792533777<33> × 72528231975487975261250031369100365497069<41> × 24627631599369879808392652989301127102147509536806649007040126753409110079872190212589952309244341154816406857048543<116> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=2523943465 for P33 / April 21, 2009 2009 年 4 月 21 日) (Serge Batalov / GMP-ECM B1=3000000, sigma=3786591989 for P41 / January 9, 2014 2014 年 1 月 9 日)
53×10191-179 = 5(8)1907<192> = 13 × 30955878554994429517866299495278628197<38> × 3077325253235247465155976615079042868201<40> × 260830264234883533140803293326399923032711<42> × 1823120991418613541878724349970952485904020949548098505262099347038089097<73> (matsui / June 25, 2009 2009 年 6 月 25 日) (Wataru Sakai / Msieve / 627.02 hours / June 28, 2009 2009 年 6 月 28 日)
53×10192-179 = 5(8)1917<193> = 141234937 × 291346539973197679913534623343330679949<39> × 10987995036064059230908241003012838588367<41> × 13024555187691048206604569768725048600303510007644509912131198337418439564924561039594897707487306127015397<107> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3559105180 for P41 / June 20, 2010 2010 年 6 月 20 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1433948269 for P39 / February 13, 2014 2014 年 2 月 13 日)
53×10193-179 = 5(8)1927<194> = 33 × 7018213 × 17851313 × 679746483103291781<18> × 20572446508725500234225553940201<32> × 267578229142949443075886986811085994355272651383439597<54> × 4652530192127396493656334227280476769788587829585535767790375802292956721657<76> (Serge Batalov / GMP-ECM 6.2.2 B1=3000000, sigma=376038659 for P32 / April 23, 2009 2009 年 4 月 23 日) (shyguy7129 / GGNFS + Msieve gnfs for P54 x P76 / May 8, 2010 2010 年 5 月 8 日)
53×10194-179 = 5(8)1937<195> = 23 × 555077 × 134514314031572721831450957479<30> × 342912874251610907043602298799969466645430501498275881031274035797926711828789670062195669769785861831185012255968936890705020490574532188110164468914363418443<159> (Makoto Kamada / GMP-ECM 6.2.1 B1=1e6, sigma=2657731863 for P30 / April 21, 2009 2009 年 4 月 21 日)
53×10195-179 = 5(8)1947<196> = 72 × 120181405895691609977324263038548752834467120181405895691609977324263038548752834467120181405895691609977324263038548752834467120181405895691609977324263038548752834467120181405895691609977324263<195>
53×10196-179 = 5(8)1957<197> = 3 × 43 × 2377 × 222170119739<12> × 16745362861016875387559<23> × [51621932212958790417437446075367928305605402381072790095273839006372238047114401962048445841688006887008716316659592778077884680706883109380079707744740362539<158>] Free to factor
53×10197-179 = 5(8)1967<198> = 13 × 97 × 1381 × 8093 × 199895588321879<15> × 124131209152910945615138358610613<33> × 1683956464285538192987701175282364657277752256350514234040551728309986650671586386857006585378655255901615254486990382871923560979892400767137<142> (Serge Batalov / GMP-ECM 6.2.2 B1=3000000, sigma=3750431010 for P33 / April 23, 2009 2009 年 4 月 23 日)
53×10198-179 = 5(8)1977<199> = 3105261215890219980188797697842256974579853865273347<52> × 1896423031580824744009636372699045793880183375458593621015135886801884722666025272281158636589101925037831403331081551847068185738937524060810693821<148> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / 495.00 hours on Core 2 Quad Q6700 / May 16, 2009 2009 年 5 月 16 日)
53×10199-179 = 5(8)1987<200> = 3 × 19 × 29 × 2087 × 17033129343042131723119795399783<32> × 179440627551006617308087186383630077<36> × 6418601372244116209995402203201277923<37> × 870126567592585573632839389930035462775978166234114786224389433355392972174658899238979469<90> (Wataru Sakai / GMP-ECM 6.2.1 B1=1000000, sigma=3769953513 for P32, B1=1000000, sigma=4056795063 for P37, B1=1000000, sigma=4016537737 for P36 / December 16, 2009 2009 年 12 月 16 日)
53×10200-179 = 5(8)1997<201> = 499 × 5347 × 220710314921553932210367579703596041489708007332746243895641999873653755571321767862970710033828228324570925613669414343513617430817831244643350245989974671200972691179587110967357902222582021679<195>
53×10201-179 = 5(8)2007<202> = 7 × 941 × 5749 × 33767 × 276508825669<12> × 296805472688401<15> × 7137096825470911352763152350693<31> × 7862459463037571684520567683265681573742169480804138362430647497393328622184882892466314752452755748772299349279963553756975752154591<133> (Serge Batalov / GMP-ECM 6.2.2 B1=3000000, sigma=1668989920 for P31 / April 23, 2009 2009 年 4 月 23 日)
53×10202-179 = 5(8)2017<203> = 32 × 24151317207575244581<20> × 270925590530146416404381178784706278765448514445769883203446615757806285613320444609255760058521135970043960931959859446573176619991341976687903671249326555544076496723135894002438803<183>
53×10203-179 = 5(8)2027<204> = 13 × 987350730914620921690289987203621855954963<42> × 92566848900864095239779213632802017565483126475597474270379<59> × 495636265293798401196317143432651643488247579932991797044874163185512392872923768166698869239772113987<102> (Robert Backstrom / GGNFS-0.77.1-20050930-k8, Msieve 1.39 snfs / 99.56 hours, 19.5 hours / June 2, 2009 2009 年 6 月 2 日)
53×10204-179 = 5(8)2037<205> = 172243 × 894167 × 14517015994628911651<20> × 76587667998577280152189<23> × [34390377252409109365704361884036807598987027944556374397096005970806894144113954110842875832654206325371532671023822801282127999447922111098088791386493<152>] Free to factor
53×10205-179 = 5(8)2047<206> = 3 × 31 × 886452130863661<15> × 250210815975682023993532357505460126367<39> × [2854887795956130987269565021840151417107809411636568987782857786149789602364094824756765710649463191094107684764255398014131283107288749688187695610257<151>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1917185097 for P39 / February 13, 2014 2014 年 2 月 13 日) Free to factor
53×10206-179 = 5(8)2057<207> = 18749 × 2516416029417769<16> × [12481673217502278403779171641757664851013051267911173907674470653474638031360630698762175457480860691379020634045900028362911633176305769359080554913032388213017124387675284594583009620427<188>] Free to factor
53×10207-179 = 5(8)2067<208> = 7 × 113 × 463 × 733 × 92670403350598920406825921333881487969328814205573761133029574078616266788439<77> × 236717768255807770934587486023589107765822938089999285404498056290232371132428815116163662398935543430634472940963439339997<123> (Bob Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs for P77 x P123 / August 3, 2017 2017 年 8 月 3 日)
53×10208-179 = 5(8)2077<209> = 3 × 1597 × 8731 × 6195774700681338370187<22> × 111012637850796705116077<24> × [2046798838106099374926945241595164012367925227283951069317943068593952576731303283014030477012407010578937823506917534898027879833827867947951057528447050653<157>] Free to factor
53×10209-179 = 5(8)2087<210> = 13 × 7489 × 67057 × 90203223391454767836983334188312672615959233608729698827079185842414028817540781630109253806675518721870560590335013185630884168186213701575975717254547861313203233987048757443380673865451084365652163<200>
53×10210-179 = 5(8)2097<211> = 279064063439207515539278389513063864418750975552542883957<57> × 1079729413925170166876254485533529271685554044680221880257<58> × 19544047699820017085384480971003655599437513000157224559676789868600494095368018395546430204443963<98> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / December 4, 2013 2013 年 12 月 4 日)
53×10211-179 = 5(8)2107<212> = 32 × 34108839517<11> × 183662332778689<15> × [1044488856343169746462951452476169497569268706800195184683470847486415168540751862470524416182997409255605194979021822851637262725183143128419559870832071315907141961722963909938523462411<187>] Free to factor
53×10212-179 = 5(8)2117<213> = 89 × 2567417 × 18819953 × 165551671 × 205259447 × [4029876002416888184183496242488348426522904034912172569520910282146268592069023121436254713603701435009572394098661293925599901719648153849683313482370622265504763017466562473828359<181>] Free to factor
53×10213-179 = 5(8)2127<214> = 7 × 857 × 2039 × 135119 × 7444231 × 2596055249<10> × 3963414811<10> × 4640291839<10> × 8485022411<10> × 74883214132890191737<20> × 9084396356126102906923793250475069444171284131<46> × 1736755607657672411033162470648276741874477954745430252589796309011470789611775668880359379<91> (Ignacio Santos / GMP-ECM 7.0 B1=11000000, sigma=1:1594796001 for P46 / October 23, 2013 2013 年 10 月 23 日)
53×10214-179 = 5(8)2137<215> = 3 × 248537 × 10858708646689258787<20> × 312728563199349707406121<24> × 23258158374981390194532521432925919176780626294438158496136044262172004872668578518268243159384284590488386078401961053838137829235370627684224022285568227474358066271<167>
53×10215-179 = 5(8)2147<216> = 13 × 12791 × 2494981 × 7788480418257681154798997<25> × 187709219601647496585552581239457<33> × 1118531313554761453165989045897812407<37> × 868024099579337253475170141199147132774128888712460978337993871329941572288861304449142955318437993018706034123<111> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2512416399 for P33 / October 16, 2013 2013 年 10 月 16 日) (Ignacio Santos / GMP-ECM 7.0 B1=11000000, sigma=1:128704547 for P37 / October 26, 2013 2013 年 10 月 26 日)
53×10216-179 = 5(8)2157<217> = 23 × 2988841 × [85664860507131416185111755314094760984912952064156799719339935052167726100967898650039304735134700808613408412344579880104010782380613769232737035917628982473093996736366005489271723210913511856542805735951609<209>] Free to factor
53×10217-179 = 5(8)2167<218> = 3 × 19 × 43 × 103 × 2659390051<10> × 87714377284590826571731400133583351107220311689320840613294874460230648593574009039535446120777905338815813775464873302989186707150474291953243540062460451404757302692297819966308568879246295392696850329<203>
53×10218-179 = 5(8)2177<219> = 59 × 139 × 25320226472129<14> × 6740976584895166853<19> × 10688039562978239275363853<26> × [39362084662041284226429613337280247626552684666072437521391583522984685278686500859983120896232602758561447182227209126654829518855636908657630607341687819967<158>] Free to factor
53×10219-179 = 5(8)2187<220> = 7 × 71 × 701 × 302983 × 64963782048724515967<20> × 858755222761451041348520969053038121666195623073011306256083352071272383984500572448131227856086064242690193674367092347016065723529640825552342157821258401157102010990571834892943526064011<189>
53×10220-179 = 5(8)2197<221> = 33 × 31 × 3527 × 4937 × 834341 × 31838573766707503031<20> × [152104521690320279722034882969076226126537596348432229905736510803932271591104098365849099778830244395858270122810188709192165014480665750699595243081518330836810841569696042716937081719<186>] Free to factor
53×10221-179 = 5(8)2207<222> = 132 × 4003 × 3788869009<10> × 5164568957<10> × 21911335321<11> × 119444706807490637834706827<27> × [16997366553894331465499717828062090310404528824672788451880111813144414852077471713636828640649284558720459950661386811488226551664718411150415136617652782369171<161>] Free to factor
53×10222-179 = 5(8)2217<223> = 2263771038533<13> × [2601362411944755485171258832622545430365680018256325726152464044753639768508779240011511073127685047674787311453459478300912420699722092944249873979350603414644011038400620710397726207789261777867666297657361739<211>] Free to factor
53×10223-179 = 5(8)2227<224> = 3 × 91029283 × 1319772626006000950968322839050776351<37> × 1338099794835460761315606945576261619<37> × [122107787750519510480521617045509655290213194871317424232653284469238042971640272920513146359466876914784506000351148100311029421787939913597627<144>] (Serge Batalov / GMP-ECM B1=1000000, sigma=847014576 for P37 / January 6, 2014 2014 年 1 月 6 日) (Serge Batalov / GMP-ECM B1=3000000, sigma=3976437988 for P37 / May 26, 2014 2014 年 5 月 26 日) Free to factor
53×10224-179 = 5(8)2237<225> = 47 × 419 × 1887075453238111<16> × 28120197832751707<17> × 123584372291411198903<21> × [4559847161052698634123586428252496250092904319146507548031737996757685793916476675157956486379450053550526613895344157466659992889077376231338717339133549982173062925089<169>] Free to factor
53×10225-179 = 5(8)2247<226> = 7 × 719 × 251875537 × 59687751769<11> × 77827883391702407839845548976407299260825083306546602479539904475321256857694430764306542814166651399571448748042714956699539728654337969527112043729588519246966571051384598363115587539803698521250363463<203>
53×10226-179 = 5(8)2257<227> = 3 × 2939 × 1300215932963844049651<22> × 4454775700890241495878163877<28> × 43916784874179165291961734885768758154662767<44> × 56908926440119835280323220006008095043247276422273753461772581<62> × 461381591335322965910207979241529431030001037289776068774647363566859<69> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1503537419 for P44 / February 13, 2014 2014 年 2 月 13 日) (Cyp / yafu v1.34.3 / March 5, 2014 2014 年 3 月 5 日)
53×10227-179 = 5(8)2267<228> = 13 × 29 × 127 × 151691603076029851<18> × [81082428546469614194796550996529286386378626425329484825192176880983232439777090391204323075883872271517850413356492322572353284450881093377587506297807032576841826811223488623443346781617923252317746275203<206>] Free to factor
53×10228-179 = 5(8)2277<229> = 9401911461871<13> × 632255503835255978529169574713<30> × [990659901160164118188456928875910285336637436422163236121733382262533888299535592912138197527478296891020823766883489492790625859417871874557830685661601873999135894547122682230399591169<186>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=4274636218 for P30 / October 16, 2013 2013 年 10 月 16 日) Free to factor
53×10229-179 = 5(8)2287<230> = 32 × 14303 × 47835002729<11> × 30455209022335411788012401<26> × 358387906283550656201510233<27> × 19714111517246855028911955971<29> × 1489246060931553752954835674724494006265611104725804158628843406549<67> × 29844156549185472144484553825643130092208614811819395817274384990927<68> (Erik Branger / GGNFS, Msieve gnfs for P67 x P68 / May 18, 2014 2014 年 5 月 18 日)
53×10230-179 = 5(8)2297<231> = 904297 × 138311400497<12> × 4708301779111558898251703823726242875284275454829405370634853474541817167400959585269388847880078656395824033002326576021652213171103326524400662525293283583178340586259536226743308492718009608683511197745163675343<214>
53×10231-179 = 5(8)2307<232> = 7 × 4243 × 101864751714403974616379800933654179077788576133<48> × 1946428062624673959388719874530371777207216910664105729619202452322391715877139034404571337740197732247777086068602190789661689174229774434445594398023632856637406884185440369922639<181> (Serge Batalov / GMP-ECM B1=11000000, sigma=92010109 for P48 / January 5, 2014 2014 年 1 月 5 日)
53×10232-179 = 5(8)2317<233> = 3 × 323077 × [60758362958767196766187718808920565777290335213059517172778098192163569767051290031879798406044471223979514572778717239635225130942870057694077974073145502866591028236704035352654722031062655743459390887093880497929687441785177<227>] Free to factor
53×10233-179 = 5(8)2327<234> = 13 × 4702283 × 20946433520025001<17> × 504720846001013970126435611900602089455149<42> × [911213016315413999820559356807555502630851561002925297342123353428043411414342329259987410875970532522574669305540116046699628602996337474007521693963088579326102957397<168>] (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=685786713 for P42 / February 15, 2014 2014 年 2 月 15 日) Free to factor
53×10234-179 = 5(8)2337<235> = 1123349 × 6614183 × 30113546032695093533<20> × 26319676765203633712375479048983839171553968654869599508907348239251388496341867068466466757869749821661308187685751582371096572418082254793979829780857219186397278930577016276898895805771255523750288017<203>
53×10235-179 = 5(8)2347<236> = 3 × 19 × 31 × 9128029 × 3651066973121502625039857831017161327800686680974979483639784743833117119465268165599549479227886459562660951771729519856011423478515925382507110907401882209868551784337265840138110136048561151076150715554084830553024956775909<226>
53×10236-179 = 5(8)2357<237> = 2640349 × [223034488580444815775826941396341502160846497523202004314160320809441815793627618503799645004841742091249637411148635611765296515304942221232454076672776549194401531346382197538616633213597478548816421196170994398425696333662288163<231>] Free to factor
53×10237-179 = 5(8)2367<238> = 72 × 33403 × 13554727 × 92856833 × 2858559024505202689571736870252342732590034102937405996361467324249732730876332060799652930077566733354178176369116643983059952528800630845120181486678409962807225603118707385101563498203298981505765676604356566793331<217>
53×10238-179 = 5(8)2377<239> = 32 × 23 × 43 × 61 × 467 × 189493 × 396079 × 1464858488360009<16> × 8127810653754277348491824338367932046283299<43> × 259898399800130657243073867117202507770943682773068186638382527033737360152846545945584027150500966885274806649458619620267086045742146352906997452336614944354213<162> (Serge Batalov / GMP-ECM B1=3000000, sigma=4021341762 for P43 / May 19, 2014 2014 年 5 月 19 日)
53×10239-179 = 5(8)2387<240> = 13 × 1361 × 307219693679813<15> × 253432277294676364984146729922069<33> × 427485023989300147454492013910176377404545246230419147154931232754664361055183249680445752932864203158539769978932460613746725482740723855404782000347365621415107080338768677805943968453547<189> (Cyp / GMP-ECM 6.4.4 B1=3000000, sigma=3721712740 for P33 / January 3, 2014 2014 年 1 月 3 日)
53×10240-179 = 5(8)2397<241> = 132949 × 111840427 × 190197769450336553<18> × 30796977512733778100875943554513367307551<41> × 224088033728784355759650840855478065898542659<45> × 301729162534375692016786465840554077562245729338613523431920763855450067146182688961870092495924371269628315163416553099571197<126> (Serge Batalov / GMP-ECM B1=3000000, sigma=2907616619 for P41 / May 19, 2014 2014 年 5 月 19 日) (Serge Batalov / GMP-ECM B1=3000000, sigma=170138058 for P45 / May 19, 2014 2014 年 5 月 19 日)
53×10241-179 = 5(8)2407<242> = 3 × 131 × 25439389064278897<17> × 1149577462383388849148554797025267549033<40> × [5123843915241585454998623423011744361170653149124453068710522942296727126936211394385785470725860567347509718210162852700820528249974088488173075516435397446109971393513349828043545559<184>] (Serge Batalov / GMP-ECM B1=11000000, sigma=3793781039 for P40 / May 27, 2014 2014 年 5 月 27 日) Free to factor
53×10242-179 = 5(8)2417<243> = 841933 × 122539154871093146332951271<27> × [5707960343394389547695416442001748524523448518632076282887385976955733738088433046128436060130712822726683543080473722926724801827810281126655978305575878405965166624479342035385989577679543909704369745545381109<211>] Free to factor
53×10243-179 = 5(8)2427<244> = 7 × 341641773296500549<18> × 1143090440530032423949270243<28> × 934315340872610758269360718605452599<36> × 163753800728862494993032552776744689339<39> × 14079877988946912151831508049482198118182003552540906847086556164177010677635197198509911530058504177400222541519746992446683<125> (Cyp / GMP-ECM 6.4.4 B1=3000000, sigma=3162847189 for P36 / December 29, 2013 2013 年 12 月 29 日) (Serge Batalov / GMP-ECM B1=11000000, sigma=3177134592 for P39 / January 4, 2014 2014 年 1 月 4 日)
53×10244-179 = 5(8)2437<245> = 3 × 1583 × 604016112607<12> × 39948075053649571<17> × 513909693461109130709737659828010126214348016685593131234974939099242666223644038569234583697972161814356011690112416531189625258829728851094270616722058363709243850359183334421375403769799313993178579509144753679<213>
53×10245-179 = 5(8)2447<246> = 13 × 273787 × 1541223181<10> × 107352373862273134939769747116474734410644043109885929513825302735385599221117134524788085206761248926291293913347952454823277520006388731340708784176462778294484523295091882364530683299340425388753507872484922842250781482484603117<231>
53×10246-179 = 5(8)2457<247> = 20803517777755471010577780895901<32> × [283071783906935556451619873035544266810206672910465816192031139107221547083903971641718244674763562594052050812904215709352189264657965876438961064753016066294491423656138133697693537739589611590938989390239232495587<216>] (Serge Batalov / GMP-ECM B1=3000000, sigma=4162437297 for P32 / October 28, 2013 2013 年 10 月 28 日) Free to factor
53×10247-179 = 5(8)2467<248> = 34 × 482693765161<12> × 17669418153320771681<20> × 28954930138248357613<20> × [2943959845452066971974240290459583694685298005385101949425650441336977504721444419554942035625077969237872040934613333068390829308201147508438374480173634704009652519750389082249440992241010919019<196>] Free to factor
53×10248-179 = 5(8)2477<249> = 109 × 170123 × 102505155807001572857<21> × 1827642977665852964053126117<28> × [169514462708518903864910504696387560149057894531814995164303769874121151293591926458780108227748842208665499070599029015044299801195277922983058847480352004739148679721113457213975289618429953389<195>] (Cyp / GMP-ECM 6.4.4 B1=3000000, sigma=2482466406 for P28 / December 29, 2013 2013 年 12 月 29 日) Free to factor
53×10249-179 = 5(8)2487<250> = 7 × 1878277 × 45031614404745971724885538577436672629<38> × 9946222327138615557245152669498104847436716979053524289687743587534674694638781611992544076350064801986564381636230222464290429653346369397867168834863084340645334815220948691245178339913610558697461234377<205> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=3460175718 for P38 / January 7, 2014 2014 年 1 月 7 日)
53×10250-179 = 5(8)2497<251> = 3 × 31 × 5252209 × 249456372352019205661<21> × 99340109372093209816178002169353<32> × 4865070923046169474389789655228794150579550439255940104348362012651874778750190544252169567016106883350666725997095833064587264155849639606665032554861094265637085527446168871811227444003447<190> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=4104678270 for P32 / October 16, 2013 2013 年 10 月 16 日)
plain text versionプレーンテキスト版

4. Related links 関連リンク