Table of contents 目次

  1. About 688...889 688...889 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 688...889 688...889 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 688...889 688...889 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 688...889 688...889 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

68w9 = { 69, 689, 6889, 68889, 688889, 6888889, 68888889, 688888889, 6888888889, 68888888889, … }

1.3. General term 一般項

62×10n+19 (1≤n)

2. Prime numbers of the form 688...889 688...889 の形の素数

2.1. Last updated 最終更新日

April 3, 2011 2011 年 4 月 3 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 62×105+19 = 688889 is prime. は素数です。 (Makoto Kamada / December 6, 2004 2004 年 12 月 6 日)
  2. 62×1057+19 = 6(8)569<58> is prime. は素数です。 (Makoto Kamada / PPSIQS / December 6, 2004 2004 年 12 月 6 日)
  3. 62×10501+19 = 6(8)5009<502> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 31, 2006 2006 年 5 月 31 日)
  4. 62×10515+19 = 6(8)5149<516> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 31, 2006 2006 年 5 月 31 日)
  5. 62×10627+19 = 6(8)6269<628> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 31, 2006 2006 年 5 月 31 日)
  6. 62×10641+19 = 6(8)6409<642> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 31, 2006 2006 年 5 月 31 日)
  7. 62×10725+19 = 6(8)7249<726> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / May 31, 2006 2006 年 5 月 31 日)
  8. 62×1053111+19 = 6(8)531109<53112> is PRP. はおそらく素数です。 (Serge Batalov / srsieve, sr1sieve, Prime95 and PFGW 3.3.3 / May 15, 2010 2010 年 5 月 15 日)
  9. 62×1065331+19 = 6(8)653309<65332> is PRP. はおそらく素数です。 (Serge Batalov / srsieve, sr1sieve, Prime95 and PFGW 3.3.3 / May 21, 2010 2010 年 5 月 21 日)
  10. 62×10109673+19 = 6(8)1096729<109674> is PRP. はおそらく素数です。 (Serge Batalov / srsieve, sr1sieve, Prime95 and PFGW 3.3.3 / June 5, 2010 2010 年 6 月 5 日)

2.3. Range of search 捜索範囲

  1. n≤175000 / Completed 終了 / Serge Batalov / June 14, 2010 2010 年 6 月 14 日
  2. n≤200000 / Completed 終了 / Serge Batalov / April 2, 2011 2011 年 4 月 2 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

  1. 62×103k+1+19 = 3×(62×101+19×3+62×10×103-19×3×k-1Σm=0103m)
  2. 62×106k+19 = 7×(62×100+19×7+62×106-19×7×k-1Σm=0106m)
  3. 62×106k+2+19 = 13×(62×102+19×13+62×102×106-19×13×k-1Σm=0106m)
  4. 62×1013k+2+19 = 53×(62×102+19×53+62×102×1013-19×53×k-1Σm=01013m)
  5. 62×1016k+11+19 = 17×(62×1011+19×17+62×1011×1016-19×17×k-1Σm=01016m)
  6. 62×1018k+7+19 = 19×(62×107+19×19+62×107×1018-19×19×k-1Σm=01018m)
  7. 62×1021k+17+19 = 43×(62×1017+19×43+62×1017×1021-19×43×k-1Σm=01021m)
  8. 62×1022k+1+19 = 23×(62×101+19×23+62×10×1022-19×23×k-1Σm=01022m)
  9. 62×1028k+20+19 = 29×(62×1020+19×29+62×1020×1028-19×29×k-1Σm=01028m)
  10. 62×1035k+17+19 = 71×(62×1017+19×71+62×1017×1035-19×71×k-1Σm=01035m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 11.43%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 11.43% です。

3. Factor table of 688...889 688...889 の素因数分解表

3.1. Last updated 最終更新日

July 5, 2018 2018 年 7 月 5 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=204, 205, 211, 212, 213, 214, 221, 228, 231, 232, 233, 236, 237, 238, 239, 242, 244, 247, 248, 249, 250 (21/250)

3.4. Factor table 素因数分解表

62×101+19 = 69 = 3 × 23
62×102+19 = 689 = 13 × 53
62×103+19 = 6889 = 832
62×104+19 = 68889 = 3 × 22963
62×105+19 = 688889 = definitely prime number 素数
62×106+19 = 6888889 = 7 × 984127
62×107+19 = 68888889 = 32 × 19 × 402859
62×108+19 = 688888889 = 13 × 52991453
62×109+19 = 6888888889<10> = 2179 × 3161491
62×1010+19 = 68888888889<11> = 3 × 14411 × 1593433
62×1011+19 = 688888888889<12> = 17 × 167 × 11689 × 20759
62×1012+19 = 6888888888889<13> = 72 × 5441 × 25838921
62×1013+19 = 68888888888889<14> = 3 × 967 × 23746600789<11>
62×1014+19 = 688888888888889<15> = 13 × 699151 × 75794003
62×1015+19 = 6888888888888889<16> = 53 × 129979035639413<15>
62×1016+19 = 68888888888888889<17> = 36 × 139 × 2593 × 8713 × 30091
62×1017+19 = 688888888888888889<18> = 43 × 71 × 673 × 335279740381<12>
62×1018+19 = 6888888888888888889<19> = 7 × 984126984126984127<18>
62×1019+19 = 68888888888888888889<20> = 3 × 5689 × 4036379497796267<16>
62×1020+19 = 688888888888888888889<21> = 13 × 29 × 557 × 8527 × 89603 × 4293721
62×1021+19 = 6888888888888888888889<22> = 419 × 2843 × 4409 × 517609 × 2534057
62×1022+19 = 68888888888888888888889<23> = 3 × 277 × 57881 × 1432227903107999<16>
62×1023+19 = 688888888888888888888889<24> = 23 × 98929 × 5899991 × 51315241337<11>
62×1024+19 = 6888888888888888888888889<25> = 7 × 523 × 1471 × 6983 × 25343 × 7228309051<10>
62×1025+19 = 68888888888888888888888889<26> = 32 × 19 × 4057 × 99299728703531530787<20>
62×1026+19 = 688888888888888888888888889<27> = 13 × 52991452991452991452991453<26>
62×1027+19 = 6888888888888888888888888889<28> = 17 × 52503306941<11> × 7718156851059037<16>
62×1028+19 = 68888888888888888888888888889<29> = 3 × 53 × 1223 × 354262839028108470710177<24>
62×1029+19 = 688888888888888888888888888889<30> = 191 × 521 × 8389 × 1505683 × 548067876850577<15>
62×1030+19 = 6888888888888888888888888888889<31> = 7 × 61 × 197 × 1039 × 78820562762825180127329<23>
62×1031+19 = 68888888888888888888888888888889<32> = 3 × 7680522307<10> × 2989765805645092954609<22>
62×1032+19 = 688888888888888888888888888888889<33> = 13 × 97 × 546303639087144241783417041149<30>
62×1033+19 = 6888888888888888888888888888888889<34> = 38259209 × 180058319786195498419449521<27>
62×1034+19 = 68888888888888888888888888888888889<35> = 32 × 47 × 120319 × 1353550921752568214965840097<28>
62×1035+19 = 688888888888888888888888888888888889<36> = 863 × 1699 × 469834609881546359073525554797<30>
62×1036+19 = 6888888888888888888888888888888888889<37> = 7 × 263899 × 308303 × 225861137 × 53554273809522643<17>
62×1037+19 = 68888888888888888888888888888888888889<38> = 3 × 89189 × 257464070266097421912600914495767<33>
62×1038+19 = 688888888888888888888888888888888888889<39> = 13 × 43 × 2130981749747677<16> × 578305924975742049923<21>
62×1039+19 = 6888888888888888888888888888888888888889<40> = 639811247 × 1928413213<10> × 5583380319939417490499<22>
62×1040+19 = 68888888888888888888888888888888888888889<41> = 3 × 787 × 13259 × 33461 × 2503252457<10> × 26272346017815392543<20>
62×1041+19 = 688888888888888888888888888888888888888889<42> = 53 × 17881 × 10936703390411<14> × 66465315912868313843543<23>
62×1042+19 = 6888888888888888888888888888888888888888889<43> = 7 × 1033 × 68674451 × 13872528390188464832295969889469<32>
62×1043+19 = 68888888888888888888888888888888888888888889<44> = 33 × 17 × 19 × 7899196065690733733389392144122106282409<40>
62×1044+19 = 688888888888888888888888888888888888888888889<45> = 13 × 83 × 20611 × 3055777 × 917445382993<12> × 11049097219357931221<20>
62×1045+19 = 6888888888888888888888888888888888888888888889<46> = 23 × 131 × 98893 × 2500163 × 2053871880397<13> × 4502387021375414111<19>
62×1046+19 = 68888888888888888888888888888888888888888888889<47> = 3 × 2411 × 9524248429267093721676882191191606372029433<43>
62×1047+19 = 688888888888888888888888888888888888888888888889<48> = 421 × 15161 × 3891749 × 789918873979<12> × 35108471578998729810539<23>
62×1048+19 = 6888888888888888888888888888888888888888888888889<49> = 7 × 29 × 769 × 518113 × 5812397 × 14653691461177189794786706614007<32>
62×1049+19 = 68888888888888888888888888888888888888888888888889<50> = 3 × 3669073 × 6258518967314894787583393124901838410672931<43>
62×1050+19 = 688888888888888888888888888888888888888888888888889<51> = 13 × 1245175641943361<16> × 6776860807884967<16> × 6279812047929467419<19>
62×1051+19 = 6(8)509<52> = 114974082255943769<18> × 59916885212038792020790531598944481<35>
62×1052+19 = 6(8)519<53> = 32 × 71 × 12377 × 187423 × 409301441 × 113544675155368804234547016584641<33>
62×1053+19 = 6(8)529<54> = 149 × 593796253 × 7786198276448866758750340763735200026021337<43>
62×1054+19 = 6(8)539<55> = 72 × 53 × 499 × 28564787 × 186099709334719829299872294169982045263549<42>
62×1055+19 = 6(8)549<56> = 3 × 59 × 424593779745854598497831<24> × 916647347771038295842616954447<30>
62×1056+19 = 6(8)559<57> = 13 × 72869512669<11> × 727210201503056129255358571903406006748238337<45>
62×1057+19 = 6(8)569<58> = definitely prime number 素数
62×1058+19 = 6(8)579<59> = 3 × 1199909 × 45402691 × 421500428485076883758839988255302167043405277<45>
62×1059+19 = 6(8)589<60> = 17 × 43 × 204289199 × 7163532713<10> × 8920673878808299<16> × 72187414345750187168263<23>
62×1060+19 = 6(8)599<61> = 7 × 5715547 × 172184216860955587800105044036377292844259173116236141<54>
62×1061+19 = 6(8)609<62> = 32 × 19 × 11877587 × 9085025783561930356771<22> × 3733349815450127768821931173667<31>
62×1062+19 = 6(8)619<63> = 13 × 139 × 1777 × 66749 × 7942933756343<13> × 308273431392977<15> × 1312628407334020434561109<25>
62×1063+19 = 6(8)629<64> = 99523 × 1163273 × 59503713937593457981533953288199778961006593800820091<53>
62×1064+19 = 6(8)639<65> = 3 × 8221 × 284518374088747<15> × 14412429204535701016429<23> × 681170406775645062371681<24>
62×1065+19 = 6(8)649<66> = 1747 × 2389 × 50549 × 58321 × 1640189 × 1354888837308576001<19> × 25194458884378167570005543<26>
62×1066+19 = 6(8)659<67> = 7 × 7817 × 108136394929<12> × 1164230952084291601691793206724532673859338709750839<52>
62×1067+19 = 6(8)669<68> = 3 × 23 × 53 × 883 × 1297 × 4261 × 40577 × 95133192445517844848649005358017818351707623841791<50>
62×1068+19 = 6(8)679<69> = 132 × 102499 × 170167 × 43839551794960317914159<23> × 5330910598457774699015103174182323<34>
62×1069+19 = 6(8)689<70> = 5347 × 1288365230762836897117802298277331005963884213369906281819504187187<67>
62×1070+19 = 6(8)699<71> = 33 × 6290419648531<13> × 405607331748358659381828767685371641134930948003125232697<57>
62×1071+19 = 6(8)709<72> = 248051 × 2777206658666519743475692050783463436506560702794541803455293019939<67>
62×1072+19 = 6(8)719<73> = 7 × 311 × 593 × 11654899 × 273215447 × 18647534693<11> × 84867100453<11> × 1058915987475025442276480681677<31>
62×1073+19 = 6(8)729<74> = 3 × 44203960925123143680964174885210781<35> × 519477496640172242479843730463109415023<39> (Makoto Kamada / GGNFS-0.70.1 / 0.08 hours)
62×1074+19 = 6(8)739<75> = 13 × 10439321 × 5076139817087049191512690623408648077110709881557717350869031902693<67>
62×1075+19 = 6(8)749<76> = 17 × 2609 × 13562129370750386547901588512581<32> × 11452447161452842771331343032666304564773<41> (Makoto Kamada / GGNFS-0.70.1 / 0.07 hours)
62×1076+19 = 6(8)759<77> = 3 × 29 × 2613547 × 2065382029<10> × 256017624151<12> × 64857448126846759<17> × 8834246214224669967433851840641<31>
62×1077+19 = 6(8)769<78> = 188299 × 24403603984061<14> × 53388315035353<14> × 7097279235659767007911<22> × 395648105694003788094697<24>
62×1078+19 = 6(8)779<79> = 7 × 72452489 × 13583066609719703721760711134809794139496394445841386166652286909383943<71>
62×1079+19 = 6(8)789<80> = 32 × 19 × 5964669947<10> × 10006621146257<14> × 6749618010498230052967496899926213732189587558665621121<55>
62×1080+19 = 6(8)799<81> = 13 × 43 × 47 × 53 × 12293259168297089<17> × 4814813453546980346278517123<28> × 8358284347652808525963876865223<31>
62×1081+19 = 6(8)809<82> = 521 × 2027 × 51581 × 130729 × 53567383 × 1383653872258533080197129763<28> × 13051731138575078139808249070827<32>
62×1082+19 = 6(8)819<83> = 3 × 9721 × 44236789 × 25372505497<11> × 2104602255406609555050677076965532954115219520723216710759991<61>
62×1083+19 = 6(8)829<84> = 3089 × 309595277 × 720339027210952876802374942790406321417021802118196514380915048384476813<72>
62×1084+19 = 6(8)839<85> = 7 × 4657 × 75244472813<11> × 13656442344656419733<20> × 394175886506997379181<21> × 521726227853295198741045094139<30>
62×1085+19 = 6(8)849<86> = 3 × 83 × 1289 × 29077 × 3548227843<10> × 1823623259848156324629427<25> × 1140776843198028041018364914357491503010717<43>
62×1086+19 = 6(8)859<87> = 13 × 113 × 8443 × 141959 × 8058811517<10> × 48550830715445873748101084434337766889389882269136192949535626789<65>
62×1087+19 = 6(8)869<88> = 71 × 479 × 17195530291<11> × 11779849567434633678012744260502682593562068530167588389146860386304002331<74>
62×1088+19 = 6(8)879<89> = 32 × 480463 × 29278692607<11> × 51687237389080453<17> × 10044163843913878933<20> × 1048088445087647982690988704575079769<37>
62×1089+19 = 6(8)889<90> = 23 × 90163 × 3073240061<10> × 108092734759176483441255394935185723498740604205062139907032966502617911801<75>
62×1090+19 = 6(8)899<91> = 7 × 61 × 5691137 × 2138822053<10> × 1325401968750612014842518608094745019000497431134634761004836959986371087<73>
62×1091+19 = 6(8)909<92> = 3 × 17 × 277 × 4876399015282005301117639193663827344014220208741338492878097889777651935222544693770007<88>
62×1092+19 = 6(8)919<93> = 13 × 68557517387<11> × 24371124339250756783<20> × 945684718731376246915793<24> × 33537355039205999650679910148392490601<38>
62×1093+19 = 6(8)929<94> = 53 × 9832412509<10> × 147140627507974843<18> × 1540393625323266367219971859<28> × 58324215140546834961579538198286695961<38>
62×1094+19 = 6(8)939<95> = 3 × 108379 × 11594567 × 783309510283733<15> × 2443133391616379677321<22> × 9548775271241801118135295892944526047919870587<46>
62×1095+19 = 6(8)949<96> = 263 × 6133 × 57503 × 104303475607<12> × 1289783852141116807757327<25> × 55209555213943750837224859048991481738482338487173<50>
62×1096+19 = 6(8)959<97> = 72 × 225164847423539<15> × 647842073864492492492810856555647<33> × 963792096584974466388656581993015177003501583917<48> (Makoto Kamada / GGNFS-0.71.1 / 0.28 hours)
62×1097+19 = 6(8)969<98> = 34 × 19 × 11677 × 60337 × 153509456999469660188672869<27> × 725744150799699600132433097<27> × 570265222860987767825369717545243<33>
62×1098+19 = 6(8)979<99> = 13 × 486907 × 7240799 × 2340345902680952203330623833<28> × 6422339606060821951922186396730061399032889587059823233537<58>
62×1099+19 = 6(8)989<100> = 337 × 20441806791955159907682162875041213320145070886910649521925486317177711836465545664358720738542697<98>
62×10100+19 = 6(8)999<101> = 3 × 10399107123321098233<20> × 2208166786883663157118660556242926557938734114380760506430498174910660054529512811<82>
62×10101+19 = 6(8)1009<102> = 43 × 794923 × 22298899069<11> × 521414373128318801070969157<27> × 1733361879406850829640718045984603028969013088436358102097<58>
62×10102+19 = 6(8)1019<103> = 7 × 126307 × 208654741 × 400156717 × 3093275436869<13> × 152720239844761591<18> × 2105829240635400821<19> × 93805220659517407554990943863307<32>
62×10103+19 = 6(8)1029<104> = 3 × 109 × 210669384981311586816173972137274889568467550118926265715256540944614339109751953788651036357458375807<102>
62×10104+19 = 6(8)1039<105> = 13 × 29 × 229 × 38244373169<11> × 139607668881823642420652311961<30> × 1494498642480030417679315385059712646147073901718284772400837<61> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=2548317768 for P30 / October 19, 2009 2009 年 10 月 19 日)
62×10105+19 = 6(8)1049<106> = 2377 × 10037387 × 3145444153<10> × 9237199316962640481719<22> × 9937497576468544999293386043573912503214162458588803212293674573<64>
62×10106+19 = 6(8)1059<107> = 32 × 53 × 9187 × 15720164440019471705618318312082333296340236691416544271241193950546036108558486022403110604718975311<101>
62×10107+19 = 6(8)1069<108> = 17 × 2011398162679<13> × 113745703825053221<18> × 177119838385459031677538125003545212751586915051072292099117905677489024518963<78>
62×10108+19 = 6(8)1079<109> = 7 × 139 × 359 × 571261 × 786719 × 2979701 × 88487325486117617422437582413031689<35> × 166430884397911127150765051393953307715521219894077<51> (Erik Branger / YAFU, Msieve 1.38 for P35 x P51 / October 22, 2009 2009 年 10 月 22 日)
62×10109+19 = 6(8)1089<110> = 3 × 88359769 × 321656962118179<15> × 3255012946193881919<19> × 6053539948885294234840535779447<31> × 41003248435304780435015393009752973041<38> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=3071172844 for P31 / October 19, 2009 2009 年 10 月 19 日)
62×10110+19 = 6(8)1099<111> = 13 × 181 × 21559 × 2174310109<10> × 63432888137017016044348166423759881<35> × 98460643496494633707032806939239407637455939456098771653683<59> (Erik Branger / GGNFS, Msieve snfs / 1.02 hours / October 22, 2009 2009 年 10 月 22 日)
62×10111+19 = 6(8)1109<112> = 23 × 4639 × 315057233 × 3077974809623148102960387293801097224185933679<46> × 66579795337873101825458429741248933989066545646212591<53> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon, Msieve 1.42 snfs / 0.57 hours, 0.02 hours / October 22, 2009 2009 年 10 月 22 日)
62×10112+19 = 6(8)1119<113> = 3 × 886283 × 424474417621500274841350325647806085712007847<45> × 61038518645710499741252246219722199134494898635738764960652863<62> (Erik Branger / GGNFS, Msieve snfs / 0.89 hours / October 22, 2009 2009 年 10 月 22 日)
62×10113+19 = 6(8)1129<114> = 59 × 5568859 × 64608067 × 307759447 × 988598368841<12> × 2164455170504407347901<22> × 869855747552322801388305721<27> × 56652239651942988193519461521<29>
62×10114+19 = 6(8)1139<115> = 7 × 221346679 × 2747140819<10> × 1618442251239215176321169765044624862842585487452750491900336374410865424387068148000972693111427<97>
62×10115+19 = 6(8)1149<116> = 32 × 19 × 4263603869989940029<19> × 94487905451492604539631341703095550490501649534901773783367983171085887628647970858109029195271<95>
62×10116+19 = 6(8)1159<117> = 13 × 52991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991453<116>
62×10117+19 = 6(8)1169<118> = 40464497 × 45130259711000452950944547303930885114601<41> × 3772308490515012510449614847679149216069295945683508079802035124362337<70> (Erik Branger / GGNFS, Msieve snfs / 1.96 hours / October 22, 2009 2009 年 10 月 22 日)
62×10118+19 = 6(8)1179<119> = 3 × 179 × 128284709290295882474653424374094765156217670184150631078005379681357334988619904821022139457893647837781915994206497<117>
62×10119+19 = 6(8)1189<120> = 53 × 81639827347528296394011236911324937968186783394226152874541<59> × 159210326457590438894678389977581407772306683697429931033193<60> (Serge Batalov / Msieve 1.44 snfs / 0.77 hours / October 23, 2009 2009 年 10 月 23 日)
62×10120+19 = 6(8)1199<121> = 7 × 1520128541<10> × 230482446188707<15> × 24674280757669201<17> × 5408366139107340547253<22> × 43704165670885458627270709<26> × 481614497298797956613036738145073<33>
62×10121+19 = 6(8)1209<122> = 3 × 91572199 × 164024522923<12> × 196938095405058523<18> × 35168395587744027943<20> × 220736020804699605701533904538393822824303411988043793634311608171<66>
62×10122+19 = 6(8)1219<123> = 13 × 43 × 71 × 12852950743<11> × 298297116435961716457125618861217437142706371<45> × 4527173357582149631512924797923598004872719944155101719816241917<64> (Dmitry Domanov / GGNFS/msieve snfs / 1.11 hours / October 23, 2009 2009 年 10 月 23 日)
62×10123+19 = 6(8)1229<124> = 17 × 797 × 9853043 × 138595979 × 158482889 × 76444739699<11> × 140344436011805338070535887144534289733<39> × 218975609300055754225391098819657487228955178651<48> (Sinkiti Sibata / Msieve 1.42 for P39 x P48 / 0.64 hours / October 22, 2009 2009 年 10 月 22 日)
62×10124+19 = 6(8)1239<125> = 33 × 191 × 13358326330984853381595673625923771357162863852799862107599164027319931915627087238489216383340874324004050589274556697477<122>
62×10125+19 = 6(8)1249<126> = 321313 × 1505022925791217057<19> × 62028237283581396428045821<26> × 5493493946692694352198298538123<31> × 4180610217385291406336119989356729610182804263<46> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=3681457563 for P31 / October 19, 2009 2009 年 10 月 19 日)
62×10126+19 = 6(8)1259<127> = 7 × 47 × 83 × 1541963399<10> × 660931435820087<15> × 24438968728948515381731252918147334447671<41> × 10128889662287420283252120128975774558249253186011221512749<59> (Sinkiti Sibata / GGNFS-0.77.1-20050930-pentium4 snfs / 4.21 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / October 29, 2009 2009 年 10 月 29 日)
62×10127+19 = 6(8)1269<128> = 3 × 17891 × 4844804631723757<16> × 27800134277149853<17> × 674359408887951554012507<24> × 14131189685330691405394812326678489380392983787551231073736394591419<68>
62×10128+19 = 6(8)1279<129> = 13 × 97 × 197 × 1571 × 221839062921055719484107373612660853699302142746356139<54> × 7957078823320286782689262399302302972074139970168996053248181231993<67> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon, Msieve 1.43 snfs / 1.84 hours, 0.13 hours / October 29, 2009 2009 年 10 月 29 日)
62×10129+19 = 6(8)1289<130> = 233081622689<12> × 19764208627430219<17> × 5370357403518944491<19> × 278457248897235614613011852681120886534870266139194795069899210088061280309737048769<84>
62×10130+19 = 6(8)1299<131> = 3 × 1021 × 4517 × 97829 × 172646517491005006256239973571080363<36> × 294799441210256853477729159395431700808480725079520017412819392555476174232512350517<84> (Sinkiti Sibata / Msieve 1.42 snfs / 1 hour 17 min, 0.11 hours / October 29, 2009 2009 年 10 月 29 日)
62×10131+19 = 6(8)1309<132> = 599 × 2588270609<10> × 3211874737<10> × 6371971009<10> × 50689315607939<14> × 372424554632699<15> × 1150073381041910242784515200836687330384007738097251570257564292314268383<73>
62×10132+19 = 6(8)1319<133> = 7 × 29 × 53 × 467527552724707428829431341<27> × 1369525308671422068186030112317004583080693882949677712554639225014790222503753653177677959052215413531<103>
62×10133+19 = 6(8)1329<134> = 32 × 192 × 23 × 521 × 13903 × 1920271 × 203516197045434218419<21> × 325659599688318185005347374634219565874756198740615971131502478117151397677641846574905657420061<96>
62×10134+19 = 6(8)1339<135> = 13 × 52991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991452991453<134>
62×10135+19 = 6(8)1349<136> = 277213 × 115204781 × 2088359971517143<16> × 103290344105197014113671483575138229359748242061096187664452948852666987834697786088327637591580311220726791<108>
62×10136+19 = 6(8)1359<137> = 3 × 3371 × 1014970768241<13> × 77426502504949242515724093217<29> × 86681415857318770436422722340003219274859669482496823776897806280141335067727737427389633449<92>
62×10137+19 = 6(8)1369<138> = 691 × 16724552400041<14> × 863429022865229<15> × 10646286546452465309<20> × 6484729058154525456285413801199338765366657004870082297198717713573004352799850640872579<88>
62×10138+19 = 6(8)1379<139> = 72 × 2777 × 14838630112248264447941<23> × 3411798792251944441458942947320335495936808460622007046143663562888090249873159413763774770655315745825598658173<112>
62×10139+19 = 6(8)1389<140> = 3 × 17 × 45022889 × 484214506163729990618092275284042969<36> × 61959492079224298660493435009803532533981674214668390763156707898945653153181452537824772870179<95> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs / 4.64 hours / October 30, 2009 2009 年 10 月 30 日)
62×10140+19 = 6(8)1399<141> = 13 × 12015911326813<14> × 10098947505940741188253378705758426820362239035432097<53> × 436689750002543719167336765795082713550194093289913311609891257071910504673<75> (Erik Branger / GGNFS, Msieve snfs / 5.09 hours / October 29, 2009 2009 年 10 月 29 日)
62×10141+19 = 6(8)1409<142> = 568661993488414430953673552639897<33> × 107136670558984692997845953645695662813997409001629<51> × 113072457467357463380646477639339817944564509365675623543253<60> (Dmitry Domanov / GGNFS/msieve snfs / 6.00 hours / November 1, 2009 2009 年 11 月 1 日)
62×10142+19 = 6(8)1419<143> = 32 × 114727531 × 3575800165071310752931<22> × 53527759688163829497674421563<29> × 348567359058999619931597659950935233388714981082615696133237086287734048862496093347<84>
62×10143+19 = 6(8)1429<144> = 43 × 99581 × 138917 × 11273287 × 281762389 × 2919397037<10> × 5280147761759531<16> × 121282972867437013<18> × 1183524895479531318516657280516253<34> × 164777834200755466127443978877428258379671<42> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=3962379111 for P34 / October 27, 2009 2009 年 10 月 27 日)
62×10144+19 = 6(8)1439<145> = 7 × 6947 × 4257496835970046328258574077329808655160261495634343872354609<61> × 33273578231402606240782600493794607850183398235273622964448002794566112533642949<80> (Dmitry Domanov / GGNFS/msieve snfs / 6.07 hours / November 1, 2009 2009 年 11 月 1 日)
62×10145+19 = 6(8)1449<146> = 3 × 53 × 3037 × 6329 × 20233 × 24151 × 289021 × 912403 × 5929006956554283372161105073815933362297298798067922111<55> × 29503850915816027505202414387618333019676491925964734615718733<62> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / 4.05 hours on Core 2 Quad Q6700 / November 3, 2009 2009 年 11 月 3 日)
62×10146+19 = 6(8)1459<147> = 132 × 6211201993<10> × 37581034560382870644756808555485568620305131<44> × 17462969313698974114395124223099743671734245518631937018327064999870014820154330993298790107<92> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / 5.79 hours on Core 2 Quad Q6700 / November 4, 2009 2009 年 11 月 4 日)
62×10147+19 = 6(8)1469<148> = 14609058570850068072790171345251209857<38> × 54119127478220719186968454440445122879267586001<47> × 8713169520734770932259156884452356918743245463266750664655868777<64> (Dmitry Domanov / GGNFS/msieve snfs / 14.47 hours / October 30, 2009 2009 年 10 月 30 日)
62×10148+19 = 6(8)1479<149> = 3 × 968893963 × 1010325931287078378105743<25> × 26271799596027579924616943<26> × 1154296887283017820556565817700236598461<40> × 773540093204736296456243349622971513303636130557709<51> (Sinkiti Sibata / Msieve 1.42 for P40 x P51 / 1.1 hours / October 30, 2009 2009 年 10 月 30 日)
62×10149+19 = 6(8)1489<150> = 20483 × 1451521 × 2159958576333471630827291022074668095705599543<46> × 10727212141443721091591595069382603712040863221467467516173427204992746524141860104161935808261<95> (Dmitry Domanov / GGNFS/msieve snfs / 11.72 hours / November 4, 2009 2009 年 11 月 4 日)
62×10150+19 = 6(8)1499<151> = 7 × 61 × 335899951 × 631812782018320361<18> × 12191688122843586596710384365301<32> × 6235325251854743704987134113434328800026549545253723826064948248579721224281529557691548137<91> (Jo Yeong Uk / GMP-ECM 6.2.3 B1=1000000, sigma=5303952899 for P32 / November 3, 2009 2009 年 11 月 3 日)
62×10151+19 = 6(8)1509<152> = 33 × 19 × 8209 × 6997873 × 602312530483<12> × 385804537726962521<18> × 5493701927661664353508380996233<31> × 1831138445587014365066380042150258971520737748665221421217743758160394976207491<79> (Serge Batalov / GMP-ECM B1=2000000, sigma=932480872 for P31 / December 31, 2009 2009 年 12 月 31 日)
62×10152+19 = 6(8)1519<153> = 13 × 170389 × 17112287 × 61904591240871231337602021900587<32> × 2047286436358399332746767528784913403<37> × 143401848245111395152462431599114639891263907588462914138515107713364511<72> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=108486840 for P32 / December 27, 2009 2009 年 12 月 27 日) (Sinkiti Sibata / Msieve 1.42 gnfs for P37 x P72 / 9 hours / January 1, 2010 2010 年 1 月 1 日)
62×10153+19 = 6(8)1529<154> = 1753 × 32684360309<11> × 57313000691<11> × 141538472279167<15> × 1590493408689164431945838016669293<34> × 18005674193602941951875933406071629901<38> × 517557209533412051293341030536534190408042217<45> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=2225071728 for P34 / December 27, 2009 2009 年 12 月 27 日) (Lionel Debroux / msieve 1.44 SVN for P38 x P45 / 0.41 hours on Core 2 Duo T7200, 2 GB RAM / December 31, 2009 2009 年 12 月 31 日)
62×10154+19 = 6(8)1539<155> = 3 × 139 × 37936115637691489223436383<26> × 4354720287474058280946883255618085620204303167233828045457246437603310089190259962104798376091326426030033350341984625758094599<127>
62×10155+19 = 6(8)1549<156> = 172 × 23 × 433 × 307751512093900182523103591179516105887904485683<48> × 777741743749371700205770435793158260169789376483035661599247350889095620550394856646401246531737334533<102> (Dmitry Domanov / GGNFS/msieve snfs / 18.09 hours / January 1, 2010 2010 年 1 月 1 日)
62×10156+19 = 6(8)1559<157> = 7 × 347 × 9699161 × 40974536749<11> × 7136305681408538334160672270641270769017006451761389856205581367445514507027666374784734677010890308448142939820780137025132161975932969<136>
62×10157+19 = 6(8)1569<158> = 3 × 71 × 2711 × 1161739689442675091020903<25> × 102690727902958995563124478016140964888563257175380873839387631011049167743447454146217171210116669438999994776655523371206712341<129>
62×10158+19 = 6(8)1579<159> = 13 × 53 × 233 × 3126199 × 7801756927813<13> × 3591192411773887177750066177591277<34> × 48992130663808788824021380783744673823751813871645838891644996896011597575479103140844753977049090503<101> (Serge Batalov / GMP-ECM B1=2000000, sigma=2890323597 for P34 / December 31, 2009 2009 年 12 月 31 日)
62×10159+19 = 6(8)1589<160> = 587 × 154684043 × 18710416164771881999377883947<29> × 3319788860369352872404102738800668772432910172315087<52> × 1221438636218331585834875340346720758794325326050050023941628269694861<70> (Sinkiti Sibata / Msieve 1.40 snfs / 36.50 hours / January 2, 2010 2010 年 1 月 2 日)
62×10160+19 = 6(8)1599<161> = 32 × 29 × 277 × 62301097 × 16556159061948455796618403686337<32> × 49863314046997116438075933006463<32> × 18526461581725696646250632430189163201851631153233661011208358341151186188524227730391<86> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=2825776746 for P32(4986...) / December 27, 2009 2009 年 12 月 27 日) (Sinkiti Sibata / Msieve 1.42 snfs / 1.03 hours / January 2, 2010 2010 年 1 月 2 日)
62×10161+19 = 6(8)1609<162> = 5869 × 7096942015658167<16> × 229277065428152667545393143151558398679295264580138699<54> × 72136189770841945401903354365295300858708682566494112260440581982604466005105846653154657<89> (Sinkiti Sibata / Msieve 1.42 snfs / 24 hours / January 3, 2010 2010 年 1 月 3 日)
62×10162+19 = 6(8)1619<163> = 7 × 1069 × 2512409 × 4574932102448503776738276586531<31> × 80093715606321353511254833907906321101627948022995314816785837005521295579182426767932811900706911611508850538489919996177<122> (Serge Batalov / GMP-ECM B1=3000000, sigma=258849838 for P31 / December 31, 2009 2009 年 12 月 31 日)
62×10163+19 = 6(8)1629<164> = 3 × 1468007911603<13> × 162472477444654241<18> × 96276374230400885885182531034195486354127956785612315383939639974866586760747039227242561373698359338295514296378842095649774561815681<134>
62×10164+19 = 6(8)1639<165> = 13 × 43 × 193 × 844900827765026587<18> × 2696285677671288548611387213<28> × 2802905287043159341788711013948568251724706661354238768576567129696000031071383341425552388540974373558194899838537<115>
62×10165+19 = 6(8)1649<166> = 757412903047<12> × 521483570100224510383352162072882440892494875084805613<54> × 17441179455317004161955466957426397054551514294451788913467649233897745421755225210506617140729284699<101> (Dmitry Domanov / GGNFS/msieve snfs / 30.42 hours / January 1, 2010 2010 年 1 月 1 日)
62×10166+19 = 6(8)1659<167> = 3 × 24781 × 85213357 × 67193814930516706987933988837<29> × 161834877717331928617574569181743331586512186067094126233241172797345120186897744758474935900131070727674383980562569115350047<126>
62×10167+19 = 6(8)1669<168> = 83 × 541 × 66307387 × 29717167063<11> × 30308264898066505497321836782433<32> × 256887769913150024201321311600349830234761549203321768639263596611961882059969351105361960829823504911592936350331<114> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=2227692396 for P32 / December 28, 2009 2009 年 12 月 28 日)
62×10168+19 = 6(8)1679<169> = 7 × 34359289 × 6852669169<10> × 1047030289873<13> × 1515116683634143<16> × 376086460207166299103907106949428103083327376659<48> × 7005742679143560472394984002006753697421168708337655022037043987570498747347<76> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / 56.26 hours on Core 2 Quad Q6700 / January 3, 2010 2010 年 1 月 3 日)
62×10169+19 = 6(8)1689<170> = 32 × 19 × 62248757 × 1132246658442052086249310300011175812648265977323<49> × 5715856779672020785607712412512635373068953262320874474059217265128852249119318167249014571590732236340019928669<112> (Wataru Sakai / Msieve / 81.71 hours / January 13, 2010 2010 年 1 月 13 日)
62×10170+19 = 6(8)1699<171> = 13 × 39863909 × 383296237894535365487<21> × 2277059144940033129476351<25> × 1523060226866909075654992949807018073573771976629917241151403087745079662274751409483084205279443061249287230392440841<118>
62×10171+19 = 6(8)1709<172> = 17 × 53 × 59 × 1801568534798807<16> × 3492695044055543<16> × 53216027439132375430995215492636147<35> × 387006687681412470632539132793733289263031398892586524902106088059519115017667158339741992322196507893<102> (Wataru Sakai / GMP-ECM 6.2.1 B1=3000000, sigma=406518593 for P35 / January 5, 2010 2010 年 1 月 5 日)
62×10172+19 = 6(8)1719<173> = 3 × 47 × 11621 × 4343587 × 9679168304291887873286160687744980087700712492606809369302810577537418625236734738991738454521350985445223633498178475968593028423062434386416046271488582167827<160>
62×10173+19 = 6(8)1729<174> = 4073 × 4547 × 455201 × 1950953623<10> × 51731867207590248363764618349610394268656931225806836823599340188387<68> × 809657808216972881450973750171735866842379212534385190588465448602888403011520279519<84> (Robert Backstrom / Msieve 1.42 snfs / June 16, 2010 2010 年 6 月 16 日)
62×10174+19 = 6(8)1739<175> = 7 × 1032373 × 936901439791<12> × 794801393114227<15> × 4851564966728101<16> × 263863989763758947200189069218892503677449721546951549560744692777316768139336346907735306446963120060996159412737683674361107<126>
62×10175+19 = 6(8)1749<176> = 3 × 131 × 743 × 22943 × 56656753 × 390057029 × 357032212319<12> × 153200967741473<15> × 162215110648549389956882405770800727596818702289519241<54> × 52441801712007636051659829247711284124133796479273577819813583068954163<71> (Warut Roonguthai / Msieve 1.48 gnfs for P54 x P71 / September 17, 2011 2011 年 9 月 17 日)
62×10176+19 = 6(8)1759<177> = 13 × 140539126890670831<18> × 377058362065081483265994212944068911947742144530567715429143916751025315909257289450606664973938156161415864804050471680361137833618176742316941953994714866163<159>
62×10177+19 = 6(8)1769<178> = 23 × 167 × 1289 × 2908698503555321<16> × 164021530706799001<18> × 992406222413648305174340403977<30> × 2938751804720088266217488864767251391489762075217540818048669967383822092013634121211026480988278875386033433<109> (Serge Batalov / GMP-ECM B1=2000000, sigma=2119590681 for P30 / December 31, 2009 2009 年 12 月 31 日)
62×10178+19 = 6(8)1779<179> = 34 × 8528110711<10> × 5782535061466773471299<22> × 17246185647358790329071631699191379287026073550490142779625945067695168087272434729439319427853455250860486157927119740178720743824709551574956021<146>
62×10179+19 = 6(8)1789<180> = 1011331 × 33219128218033<14> × 4312717682524591753110449217010003193750937828460470478222807<61> × 4754628617059391869221750537857342485532262540840535818285605373163075979429605631989516981154301749<100> (matsui / Msieve 1.47 snfs / September 4, 2010 2010 年 9 月 4 日)
62×10180+19 = 6(8)1799<181> = 72 × 8287 × 4955719 × 1169326727087214881821997197<28> × 60754401421461808494445467532665228382708964137106428991<56> × 48187618731379542020911245913600820966239718754574221236877154939111393923563904837131<86> (Cyp / yafu v1.34.3 / January 22, 2014 2014 年 1 月 22 日)
62×10181+19 = 6(8)1809<182> = 3 × 223 × 1483 × 4447663862006358848389<22> × 470967867546910596384554824165093652605140579664804067374000757789407<69> × 33148102724994009449986512742811610470662236505291700325080649365128933551800410696709<86> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / April 16, 2014 2014 年 4 月 16 日)
62×10182+19 = 6(8)1819<183> = 13 × 169471 × 440009294827667063<18> × 70652607976977098005433<23> × 1186611957688043932219971756502759458639949<43> × 8476404375938483607663016557341017824611516175428184763926174835134353231114352664100646042833<94> (Jo Yeong Uk / GMP-ECM 6.4.4 B1=11000000, sigma=510329973 for P43 / May 11, 2014 2014 年 5 月 11 日)
62×10183+19 = 6(8)1829<184> = 10113258741133<14> × 247251143777525117<18> × 2754988258221747327551570788844918542558912214535497272169598959287250108752510703417080056401953873958661698826598618120678205714026425323622220616484449<154>
62×10184+19 = 6(8)1839<185> = 3 × 53 × 400951333 × 933004087 × 762564853827856022999096033<27> × 2364802067766686006835964048686807187<37> × 642251705823719648362007474811269274631423424957850035191810206850583469985495109810743277682304105231<102> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=4006625762 for P37 / May 9, 2011 2011 年 5 月 9 日)
62×10185+19 = 6(8)1849<186> = 43 × 521 × 468696803 × 3255346740117809<16> × 2894621452889130987063021588515679808722027536356435763672721962779129097<73> × 6962448241931717290419794550181591287532529411503324964933549342579828108632127047577<85> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P73 x P85 / December 4, 2014 2014 年 12 月 4 日)
62×10186+19 = 6(8)1859<187> = 7 × 907332384157<12> × 565065758305350737<18> × 4021038098906874488762350060272645799315037720136379349379906136094248769809<76> × 477361675704245874207674779490424755834914524879017665041774706104578445933452267<81> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P76 x P81 / November 9, 2016 2016 年 11 月 9 日)
62×10187+19 = 6(8)1869<188> = 32 × 17 × 19 × 421 × 10789 × 23856470228954949409243403461<29> × 218692894593556699079474568613923532199339868634431903081767136554015085798527902461165734848033895545939399436036739330076401771227634065292515228503<150>
62×10188+19 = 6(8)1879<189> = 13 × 29 × 63601 × 497017 × 922453578973249487663<21> × 1849190057369076140141407201103<31> × 3006746979172029135860649135821173<34> × 1177667319927559790709272878782439111818259<43> × 9570333351896616991124445351088249914236626668727<49> (Serge Batalov / GMP-ECM B1=3000000, sigma=2304118069 for P31 / December 31, 2009 2009 年 12 月 31 日) (Wataru Sakai / GMP-ECM 6.2.1 B1=3000000, sigma=2629018177 for P34 / January 17, 2010 2010 年 1 月 17 日) (Erik Branger / GGNFS, Msieve gnfs for P43 x P49 / 1.27 hours / January 18, 2010 2010 年 1 月 18 日)
62×10189+19 = 6(8)1889<190> = 3997811 × 4062948800033<13> × 159797119339533337<18> × 2654095990387660713717958288976466444545367802169269394550056102711834329511388432741579609525076595044119580567874105265326881952301706881795430171199419<154>
62×10190+19 = 6(8)1899<191> = 3 × 46854808139<11> × 130448795210477<15> × 412281812991719655401137950828121626359825039298021101<54> × 9112541346650902312499298924291643631479257954186125814887462290630065257772835080057952904165642224809571275121<112> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P54 x P112 / February 22, 2017 2017 年 2 月 22 日)
62×10191+19 = 6(8)1909<192> = 439 × 3944925421262293064917534217<28> × 25541738778519125427750470301832782468745942823<47> × 90533227218074420079231193453942096928346030229273<50> × 172023350324523499041837064227951274582173610644915071935839080057<66> (Jo Yeong Uk / GMP-ECM v6.4.4 B1=11000000, sigma=4196971622 for P47, GGNFS/Msieve v1.39 gnfs for P50 x P66 / March 16, 2017 2017 年 3 月 16 日)
62×10192+19 = 6(8)1919<193> = 7 × 71 × 1096591313<10> × 1455383600819124071<19> × 8685013806144526198404896817926059214704735091446412224064996616213840649851429205423547491686000570434177301284586978051050211186882214937515216862908008007065119<163>
62×10193+19 = 6(8)1929<194> = 3 × 367 × 41471503 × 1508731944691546113663146416715432403696421602373711078463100382360312509303696676733082404073710321454657038618626766719503328837383705582353944248129323031208642684114235290844982163<184>
62×10194+19 = 6(8)1939<195> = 13 × 8849 × 408347 × 54315538547<11> × 111847463603<12> × 2413970916554344090699312372671384896989163268442106720280022316727360512803125743227491057175255835005768382510984525897418106331268440467470442165318927519871711<163>
62×10195+19 = 6(8)1949<196> = 11900107 × 19982593 × 376506017 × 41371145179894991<17> × 27709219442314269517733553661<29> × 25282667868355140733212912540868075985105142265695600452749<59> × 2654787814352433936618556409145199621494963919444041855456438115069933<70> (Serge Batalov / GMP-ECM B1=2000000, sigma=809520046 for P29 / December 31, 2009 2009 年 12 月 31 日) (ruffenach timothee / Msieve 1.44 gnfs for P59 x P70 / May 11, 2010 2010 年 5 月 11 日)
62×10196+19 = 6(8)1959<197> = 32 × 25367 × 89531588268845862199637813684159136194493359744125099143364201653532024332803<77> × 3370243446485131770113347484910600373057261501134355778377433073145208681591570225369931387074948824171964384746621<115> (Robert Backstrom / Msieve 1.42 for P77 x P115 / March 17, 2010 2010 年 3 月 17 日)
62×10197+19 = 6(8)1969<198> = 53 × 502537759 × 918684274727294587178667856012189<33> × 4356402963159021076175099427201274926109<40> × 6462644763011400186060413123950473603980574135024907879815715334654919073097207116886878604199270593081081502770707<115> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=1831825089 for P33 / December 28, 2009 2009 年 12 月 28 日) (Youcef Lemsafer / GMP-ECM 6.4.2 B1=1000000, sigma=837352938 for P40 / April 20, 2013 2013 年 4 月 20 日)
62×10198+19 = 6(8)1979<199> = 7 × 113 × 4287908645681<13> × 5002697224194967163381<22> × 140914941419544596631669553<27> × 967551883484650368439527991<27> × 389335045641826884043776271524628176938144933<45> × 7648356946798376318897104196293214401401437074839678930464373121<64> (Serge Batalov / GMP-ECM B1=2000000, sigma=108283914 for P27 / December 31, 2009 2009 年 12 月 31 日) (Jo Yeong Uk / GGNFS/Msieve v1.39 gnfs for P45 x P64 / 7.85 hours on Core 2 Quad Q6700 / January 1, 2010 2010 年 1 月 1 日)
62×10199+19 = 6(8)1989<200> = 3 × 23 × 5075003952872869487<19> × 11166159982842974251<20> × 72720307681375854069523<23> × 391009372282598562511570190167212961362072351157<48> × 619607952985904633144967216064295218654410415308394696166882666826776905948061927555883983<90> (Wataru Sakai / GMP-ECM 6.2.3 B1=11000000, sigma=2783007953 for P48 / July 25, 2010 2010 年 7 月 25 日)
62×10200+19 = 6(8)1999<201> = 13 × 139 × 2971 × 8623 × 14880927115842592459636109099147421165025834545867378981565196331108353727207778421392348439664825984867174660721139769923364754656689745836847829484493152574688519751847125715562736297396219<191>
62×10201+19 = 6(8)2009<202> = 149 × 143343452677<12> × 3716573846711313771612516645973<31> × 166459968114110917792409954373763567<36> × 521353720451585563201948390811982204708097218278300204653924086870185218566078964887594284662469470101878473061146762637123<123> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1698131366 for P31 / October 29, 2013 2013 年 10 月 29 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2064762550 for P36 / May 23, 2014 2014 年 5 月 23 日)
62×10202+19 = 6(8)2019<203> = 3 × 269 × 14327 × 41399 × 107119 × 1371119 × 4920589 × 199146089791597493022584434254539138853657858777986939925518147662927029715673066159858227874487325833041881323380354167797631651879817784080342586115409580717079833827981131<174>
62×10203+19 = 6(8)2029<204> = 17 × 25448989 × 670312698375456726583517<24> × 95537292363055163630787490679<29> × 22957154472094300859455048425499<32> × 254283222669037122658716773311703971120187<42> × 4259352525026471250927689283392136508727243983953474139896901254099167<70> (Serge Batalov / GMP-ECM B1=3000000, sigma=3708123993 for P32, Msieve 1.51 gnfs for P42 x P70 / November 19, 2013 2013 年 11 月 19 日)
62×10204+19 = 6(8)2039<205> = 7 × 127951 × 580303 × 37812764881895057771<20> × [350521131989894346867784095728850494136971003546419176865651530938171529908856984016717221104851631670963841770912133174170749740058325299668358481399822587656989487620806429<174>] Free to factor
62×10205+19 = 6(8)2049<206> = 33 × 19 × 172399 × 2061897688397473698173<22> × 56089204566548620694559333941<29> × [6735202841946371049751646396980091096262868464299226202779430995945642066278026865932784453368042982955922723896372334049861983483433190801759927479<148>] Free to factor
62×10206+19 = 6(8)2059<207> = 13 × 43 × 61342333907<11> × 352557953641<12> × 56983163990502448643571217282710790259442420240904737658060421152947443327118663833667658029283112575816507507291572085331305684958331502866166915854632541089955316320361466556055333<182>
62×10207+19 = 6(8)2069<208> = 15017 × 1649788342184842259739021312086347837599562477289<49> × 328224158526881218686381950338910592305520420773612572330497703<63> × 847163479146196033385272435701135378167351396604893595156356493466470161124604215056639155951<93> (Bob Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs for P49 x P63 x P93 / August 13, 2017 2017 年 8 月 13 日)
62×10208+19 = 6(8)2079<209> = 3 × 83 × 431 × 298187 × 613570145959881220720901324653<30> × 3508485102713257077078390352451193106455141136724686263048684880344149923362074960638219772356676538833052484016755643065147511398571975146399626540471935661128515194721<169> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1959224469 for P30 / October 29, 2013 2013 年 10 月 29 日)
62×10209+19 = 6(8)2089<210> = 2342305876961176605597191<25> × 294107142736895044083111698387580342015883190873891628054536568159271637419438523188710311608336940425754368510443298145192978821511252005571053138355161967168755986296746590056062738879<186>
62×10210+19 = 6(8)2099<211> = 7 × 53 × 61 × 57482746325211338629<20> × 420171672392011250117821<24> × 308633043263660957487948722095741753<36> × 43452860254164675026816880470337967123<38> × 939767381646355719348687189899390160845285522219075582788177943094764055960192656961497789<90> (Serge Batalov / GMP-ECM B1=2000000, sigma=105739086 for P36 / November 15, 2013 2013 年 11 月 15 日) (Serge Batalov / GMP-ECM B1=3000000, sigma=3659543130 for P38 / November 20, 2013 2013 年 11 月 20 日)
62×10211+19 = 6(8)2109<212> = 3 × 109 × 43814095872270862707053692120340983<35> × [4808255900006837178787538885451655159602568519496960968057349710863141671047786680202063190214542942691043805086518910819742723359489864875109355470956616707597413298821683129<175>] (Serge Batalov / GMP-ECM B1=3000000, sigma=3034668220 for P35 / November 15, 2013 2013 年 11 月 15 日) Free to factor
62×10212+19 = 6(8)2119<213> = 13 × 93407 × 10976272403312571489945141321555883<35> × [51685833868856863499449327036818903214660034015514839150109725319739823648818918808452624960242699803013517473637149265677349517629343897200129229757678146777335496161117513<173>] (Serge Batalov / GMP-ECM B1=3000000, sigma=1636988313 for P35 / November 15, 2013 2013 年 11 月 15 日) Free to factor
62×10213+19 = 6(8)2129<214> = 677011 × 2612083 × 7161802811<10> × 2694249715982567<16> × [201886034351598218864637187074782239250504323114078792138066469155541386145314088404098321727675241161939663586376737665905355617484333171279900997345631373054244325059026734469<177>] Free to factor
62×10214+19 = 6(8)2139<215> = 32 × 800691692827907<15> × [9559635820150150346135064512492379067060799366182527802219587589404023546773111847295193712957495063331842491824487752740894938305248310190831572796137108807904931168556248495900578959454754814335803<199>] Free to factor
62×10215+19 = 6(8)2149<216> = 87650357 × 3019691932793<13> × 578747697082119113393990991467021<33> × 1901824767184004523484767874094510405563<40> × 1159349328219212867980766992773433024224281<43> × 2039664619236859021783490894219382727388657398872546816395646343191608142084517403<82> (Serge Batalov / GMP-ECM B1=2000000, sigma=1412064986 for P33 / November 15, 2013 2013 年 11 月 15 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3950255539 for P40, Msieve 1.50 gnfs for P43 x P82 / May 23, 2014 2014 年 5 月 23 日)
62×10216+19 = 6(8)2159<217> = 7 × 29 × 2017 × 28597 × 949658989 × 604926927875797576545747735383281<33> × 1024132546160534548861887400518252497630781909822669642475616442453969730182651040362940553754709861546004281521775838972423023761750139393936928609364125359360388843<166> (Serge Batalov / GMP-ECM B1=3000000, sigma=3029264285 for P33 / November 15, 2013 2013 年 11 月 15 日)
62×10217+19 = 6(8)2169<218> = 3 × 52163359550869847496832443381302886896739040957654400140353385604061531114315484353487<86> × 440212500894798008096954966418710529213313127069772776540652779490925751474129895311594674723484276687547777005211734568094981108349<132> (Bob Backstrom / Msieve 1.53 snfs for P86 x P132 / December 16, 2017 2017 年 12 月 16 日)
62×10218+19 = 6(8)2179<219> = 13 × 47 × 31769 × 244619 × 17855317 × 8125435996160974704093402123671243737935991161252628720355842805954499429767266182209856804813008159801214720874783884903460746611688461481892364965927343903597876232900085294531811793788930460986077<199>
62×10219+19 = 6(8)2189<220> = 17 × 191 × 2074889 × 49797149 × 296142449 × 2197819690652609<16> × 113151109806986593161805532303<30> × 278814915148982285597125376405098918274551198746981226600597319727656951701889915299510280982240476660294262749596633838323883710817047286178277315829<150> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1807557199 for P30 / October 29, 2013 2013 年 10 月 29 日)
62×10220+19 = 6(8)2199<221> = 3 × 1602371923<10> × 2951577765107<13> × 181307249700328368465754038253<30> × 11844901186863930755633582056145527<35> × 418576063240595029970394780989920627398260725071093323707<57> × 5401188913282875083123800012820447803769852089964359365470490500911028874965699<79> (Serge Batalov / GMP-ECM B1=3000000, sigma=1090028328 for P35 / November 15, 2013 2013 年 11 月 15 日) (Serge Batalov / GMP-ECM B1=3000000, sigma=1257133333 for P30 / January 9, 2014 2014 年 1 月 9 日) (Erik Branger / GGNFS, Msieve gnfs for P57 x P79 / January 20, 2015 2015 年 1 月 20 日)
62×10221+19 = 6(8)2209<222> = 23 × 23447 × 146701 × 2140235666411<13> × [4068547485518000553814483777697203353763692213493936642284270553914977279037376420725273661217013070889114345463579793465686233852405442819522622870578873191640495724926754233964874124261928442251879<199>] Free to factor
62×10222+19 = 6(8)2219<223> = 73 × 72863731 × 16064618189267056075921099851973283522339085351408141244242376326822239161291820887<83> × 17158260076498160813790482721148350199650158780942931330382350927731118582547807510924267338333741349407297340887932072057085855859<131> (Bob Backstrom / Msieve 1.53 snfs for P83 x P131 / July 4, 2018 2018 年 7 月 4 日)
62×10223+19 = 6(8)2229<224> = 32 × 19 × 53 × 1248529 × 76259603770114097228929838543<29> × 79833288901973193147273110927443640595096198834122657589766259302867919362441388491712317207372650830912547869654951056314358237853876454537641692090923772169826187662994947739738724449<185> (Serge Batalov / GMP-ECM B1=2000000, sigma=3105911689 for P29 / November 15, 2013 2013 年 11 月 15 日)
62×10224+19 = 6(8)2239<225> = 134 × 97 × 919 × 40314650941233924019602029<26> × 763215230162694735143671871<27> × 8793840678333173244561214201336781299313875008889193134791522347032986920854102713198892166527417910916647609843733299405331474675995153657922782525829373510783877<163>
62×10225+19 = 6(8)2249<226> = 667863352902102349<18> × 10314817932372290735588261884152283813842128272232590266981078091391846882012874898960990742149662796632124187118355868147268124416121631899756211331094984411972475933565126397104389134948540569181781436194461<209>
62×10226+19 = 6(8)2259<227> = 3 × 197 × 1063 × 9245759 × 95355491932467623<17> × 124377022169898760711774678938353021827265185927698380580976352999634361504653078555857668864715386597771748235634854565469112311447835215212608881039789512529390868609843780974040604678242610234969<198>
62×10227+19 = 6(8)2269<228> = 43 × 71 × 311 × 96120797 × 144343032613411<15> × 392359234468851431<18> × 133279980209055189917129519673271953014981332646113453498132126104758681043633124320840291973229863451509905320331806835773854611464348407522757147450726667221856994153125036753360779<183>
62×10228+19 = 6(8)2279<229> = 7 × 442716269 × 25076558233<11> × [88645711281854638074705836284764971234139000894429730404902199346402562948522150323863149265328744899947515011510369161880096578123759802808498963780467468738598206868046725074858627157756181914519819848408851<209>] Free to factor
62×10229+19 = 6(8)2289<230> = 3 × 59 × 277 × 1193 × 3527 × 8087 × 3656882833<10> × 11291502953817630785658343260293725706490434727760613928537552409719441826406725719384879705453387005318081763067486062516951530179658661255460911742556346978396867902162103306347001372177082160484254727661<206>
62×10230+19 = 6(8)2299<231> = 13 × 411583013 × 55222477168465687<17> × 85502877759512833744789937<26> × 5709437593839557593715694179577815719<37> × 1041052550734730479844739135491652592027680670297781200412033<61> × 4587602560477640799968985374357729624280210153654504596691300637466951791219642537<82> (Serge Batalov / GMP-ECM B1=3000000, sigma=503207709 for P37 / May 19, 2014 2014 年 5 月 19 日) (Erik Branger / GGNFS, Msieve gnfs for P61 x P82 / April 1, 2017 2017 年 4 月 1 日)
62×10231+19 = 6(8)2309<232> = 2695267 × 39125759 × 137367248408267041<18> × [475555721984903985845712340124021875794715156640620381724766885457457321427161986096941364884604543608762327554668522499944969362948307701642927877563588549880603962963824915048074789525961583893330093<201>] Free to factor
62×10232+19 = 6(8)2319<233> = 33 × 677 × 68683969 × 1882522351<10> × 1810073271723035547961253941075359460759<40> × [16102936004707671056082608126505236770415656947097042624973565043751224635925996300642769382882879359511516085886633798678827341751174961479730602974518830414316402128006871<173>] (Serge Batalov / GMP-ECM B1=3000000, sigma=121813158 for P40 / January 9, 2014 2014 年 1 月 9 日) Free to factor
62×10233+19 = 6(8)2329<234> = 839 × 5581 × 7067155321<10> × 537503019035707<15> × 2205632386797083390287<22> × 14788759314271708846925698803282521<35> × [1187366471857826797187492768581625078265359724297120492395032539465013078978082526737486501023159648515667456139947155287523850201134569222599215359<148>] (Serge Batalov / GMP-ECM B1=2000000, sigma=1631373818 for P35 / November 15, 2013 2013 年 11 月 15 日) Free to factor
62×10234+19 = 6(8)2339<235> = 7 × 1868693 × 29410121679512597<17> × 2985755253368561087963072092229573105117341<43> × 5997388117263061554889991679656055311708266618045204800689934722238159346778567116879459061285242516023639452136929370722550648575091582914782702826168994582954863723107<169> (Serge Batalov / GMP-ECM B1=11000000, sigma=64906969 for P43 / May 27, 2014 2014 年 5 月 27 日)
62×10235+19 = 6(8)2349<236> = 3 × 17 × 50452216281588403311521<23> × 9600237981362451588159766649<28> × 21952473987397178092520330041751173<35> × 20501815348587987637344525206041616079320407<44> × 6196421715889571244427390472182976043282393045310658638309210830758811530325521369313624712992762049210681<106> (Serge Batalov / GMP-ECM B1=3000000, sigma=1595430610 for P35 / May 19, 2014 2014 年 5 月 19 日) (Serge Batalov / GMP-ECM B1=11000000, sigma=4262237335 for P44 / May 27, 2014 2014 年 5 月 27 日)
62×10236+19 = 6(8)2359<237> = 13 × 53 × 367111164727192421<18> × [2723531267241061063650059103221190296667074681668324271064211954188434250423319752471710509286684799967413233166320676991787066606988819182274931127457312485369952125177238480832866653343275873039363224080112918093781<217>] Free to factor
62×10237+19 = 6(8)2369<238> = 521 × 2213677 × 373230859 × [16003672656760033326260286074136013634991815459133166294309968082987260146713761681333947978769871917689145136726809578364559553882012186885753198400661163555575804649538436907977640442403200354384707512075168394133044063<221>] Free to factor
62×10238+19 = 6(8)2379<239> = 3 × 1534139 × 3219901 × 732608251702139<15> × 814004260122069251<18> × [7795109354563490771708644809863388036079212459880038270481876067275846739546755538379843811629309514680815708316545107891376718194387207896874651348184940560120649421027253135703418994564183053<193>] Free to factor
62×10239+19 = 6(8)2389<240> = 3648160739335232143<19> × 18879872251354230326588135741<29> × [10001753881757847361931219507480759548470013238000100791607376292225461518782419394124017541800991819316489171552486353843203225705501602937675920886167441160083954324115760898805054346943840003<194>] Free to factor
62×10240+19 = 6(8)2399<241> = 7 × 769 × 7963 × 160711918129636977879671207574137036424171641717942905800204846002975747060343781819096697875288126983753717736489486261309683257779679673722456442994066041623282549170763958696508246630095943900508477215408671964814997603020623012141<234>
62×10241+19 = 6(8)2409<242> = 32 × 19 × 673 × 117582486383<12> × 15503339885689847101<20> × 1731871523175285854268056383<28> × 572179195681126654503304831567<30> × 331377001193353023537008749017113305600187468263635858199061209127376773247486081442974491596911809584894566079773662924934814951186178112263715249241<150> (Serge Batalov / GMP-ECM B1=3000000, sigma=1604879190 for P30 / November 15, 2013 2013 年 11 月 15 日)
62×10242+19 = 6(8)2419<243> = 13 × 257 × 2544739 × [81026943859962367882002360719199090564988618459959530258311620037748944736314480606466683615127403075029324600762459900737316948621949968261583382721924931026105801549239769455646196282267079085190692557372221888526476239975752114111<233>] Free to factor
62×10243+19 = 6(8)2429<244> = 23 × 6857 × 10680148111<11> × 2229722158256470358781731<25> × 506253027683124826786270954362129609181<39> × 184116007061371098456265217330029342151238961317059<51> × 19678862355260975785467026288815831598694122249518384039071865644973284180481962187425848967935312512458643109920741<116> (Serge Batalov / GMP-ECM B1=3000000, sigma=2396420688 for P39 / May 19, 2014 2014 年 5 月 19 日) (Dmitry Domanov / GMP-ECM B1=43000000, sigma=970980490 for P51 / May 23, 2014 2014 年 5 月 23 日)
62×10244+19 = 6(8)2439<245> = 3 × 29 × 1663 × 6324091 × 119773963334149820629025517112043<33> × [628604009818573395829616312340235511153437524267814177576032227725996110066688010047082259078465751394155994944738972430636204796174034088688286675427609409823725687254651411195804674081948844657604713<201>] (Serge Batalov / GMP-ECM B1=2000000, sigma=2536032117 for P33 / November 15, 2013 2013 年 11 月 15 日) Free to factor
62×10245+19 = 6(8)2449<246> = 1805806148903<13> × 2599844662976686340401443349<28> × 146733964738250164309303981073530708865319829625968380426824354925826670061544739645840943750845285194375920994114438084376113858784481326198252257331093821587910640191140910641635008699821638265620620540387<207> (Serge Batalov / GMP-ECM B1=2000000, sigma=4166567423 for P28 / November 15, 2013 2013 年 11 月 15 日)
62×10246+19 = 6(8)2459<247> = 7 × 139 × 660653429 × 10716738814531864659635320974866289363916844170556142611231668507912596784126480723838581069084387082990366193779046655339958365011475077059018867584683150743401337422803321111314313593211632983325082708597839878505394482568197834609417<236>
62×10247+19 = 6(8)2469<248> = 3 × 1997 × 67667503058359<14> × 245881719677988522824358094387<30> × 47903463502486255491355303391071674089558809<44> × [14427017299498798576761355412440126004509545798304063237614537817668755588670589172922781616455697968378405289476955586598979986176544665751994401145200093307<158>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2647736170 for P30 / October 29, 2013 2013 年 10 月 29 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1834468008 for P44 / May 26, 2014 2014 年 5 月 26 日) Free to factor
62×10248+19 = 6(8)2479<249> = 13 × 43 × 206557823 × 372655805688717370020337717482593<33> × [16009871009407785274901555778391975082391876559813881120256738142935107821268802823507029129291737590352232946724922764607776737926516060162674228381780287490153992762332337502287907544666099227106504743689<206>] (Serge Batalov / GMP-ECM B1=3000000, sigma=477461861 for P33 / November 15, 2013 2013 年 11 月 15 日) Free to factor
62×10249+19 = 6(8)2489<250> = 53 × 83 × 17498311 × 10090168369<11> × 297560430707<12> × 3720011623509911<16> × 8542875271135505407<19> × [937944482124679372321545697233411153768345784823083450929942767544229837701628582656808274927807157090182163314310886271246128744833293111117350806840983698828650654984975433938798211<183>] Free to factor
62×10250+19 = 6(8)2499<251> = 32 × 6073 × 172421 × [7309930197987880821285286564893983566575845456416888961328599360709255158732102809463516463278764262390381024670741911085442781693612532600461642609326371026299980686340281237245720374905409209956563152900737053993008462748764658867907830437<241>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク