Table of contents 目次

  1. About 699...997 699...997 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 699...997 699...997 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 699...997 699...997 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 699...997 699...997 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

69w7 = { 67, 697, 6997, 69997, 699997, 6999997, 69999997, 699999997, 6999999997, 69999999997, … }

1.3. General term 一般項

7×10n-3 (1≤n)

2. Prime numbers of the form 699...997 699...997 の形の素数

2.1. Last updated 最終更新日

September 9, 2015 2015 年 9 月 9 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 7×101-3 = 67 is prime. は素数です。
  2. 7×103-3 = 6997 is prime. は素数です。
  3. 7×104-3 = 69997 is prime. は素数です。
  4. 7×106-3 = 6999997 is prime. は素数です。
  5. 7×1010-3 = 69999999997<11> is prime. は素数です。
  6. 7×1020-3 = 6(9)197<21> is prime. は素数です。
  7. 7×1051-3 = 6(9)507<52> is prime. は素数です。
  8. 7×10138-3 = 6(9)1377<139> is prime. は素数です。 (Makoto Kamada / PPSIQS / January 6, 2004 2004 年 1 月 6 日)
  9. 7×10190-3 = 6(9)1897<191> is prime. は素数です。 (Makoto Kamada / PPSIQS / January 6, 2004 2004 年 1 月 6 日)
  10. 7×10360-3 = 6(9)3597<361> is prime. は素数です。 (Makoto Kamada / PPSIQS / January 6, 2004 2004 年 1 月 6 日)
  11. 7×10378-3 = 6(9)3777<379> is prime. は素数です。 (Makoto Kamada / PPSIQS / January 6, 2004 2004 年 1 月 6 日)
  12. 7×10393-3 = 6(9)3927<394> is prime. は素数です。 (Makoto Kamada / PPSIQS / January 6, 2004 2004 年 1 月 6 日)
  13. 7×101384-3 = 6(9)13837<1385> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / September 7, 2006 2006 年 9 月 7 日)
  14. 7×101594-3 = 6(9)15937<1595> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / August 7, 2006 2006 年 8 月 7 日)
  15. 7×102759-3 = 6(9)27587<2760> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Youcef L / Primo 3.0.9 / July 16, 2012 2012 年 7 月 16 日)
  16. 7×102868-3 = 6(9)28677<2869> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Ray Chandler / Primo 4.0.1 - LX64 / January 5, 2013 2013 年 1 月 5 日)
  17. 7×105395-3 = 6(9)53947<5396> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 21, 2004 2004 年 12 月 21 日)
  18. 7×107494-3 = 6(9)74937<7495> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 29, 2004 2004 年 12 月 29 日)
  19. 7×1010491-3 = 6(9)104907<10492> is PRP. はおそらく素数です。 (Dmitry Domanov / Prime95 v25.11, pfgw / March 8, 2010 2010 年 3 月 8 日)
  20. 7×1011199-3 = 6(9)111987<11200> is PRP. はおそらく素数です。 (Dmitry Domanov / Prime95 v25.11, pfgw / March 8, 2010 2010 年 3 月 8 日)
  21. 7×1012190-3 = 6(9)121897<12191> is PRP. はおそらく素数です。 (Dmitry Domanov / Prime95 v25.11, pfgw / March 8, 2010 2010 年 3 月 8 日)
  22. 7×1033594-3 = 6(9)335937<33595> is PRP. はおそらく素数です。 (Dmitry Domanov / Prime95 v25.11, pfgw / March 8, 2010 2010 年 3 月 8 日)
  23. 7×1038256-3 = 6(9)382557<38257> is PRP. はおそらく素数です。 (Dmitry Domanov / Prime95 v25.11, pfgw / March 8, 2010 2010 年 3 月 8 日)
  24. 7×1089169-3 = 6(9)891687<89170> is PRP. はおそらく素数です。 (Dmitry Domanov / Prime95 v25.11, pfgw / March 8, 2010 2010 年 3 月 8 日)
  25. 7×10165916-3 = 6(9)1659157<165917> is PRP. はおそらく素数です。 (Bob Price / September 8, 2015 2015 年 9 月 8 日)

2.3. Range of search 捜索範囲

  1. n≤100000 / Completed 終了 / Dmitry Domanov / March 8, 2010 2010 年 3 月 8 日
  2. n≤200000 / Completed 終了 / Bob Price / September 8, 2015 2015 年 9 月 8 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

  1. 7×105k+2-3 = 41×(7×102-341+63×102×105-19×41×k-1Σm=0105m)
  2. 7×108k+5-3 = 73×(7×105-373+63×105×108-19×73×k-1Σm=0108m)
  3. 7×1016k+2-3 = 17×(7×102-317+63×102×1016-19×17×k-1Σm=01016m)
  4. 7×1018k+11-3 = 19×(7×1011-319+63×1011×1018-19×19×k-1Σm=01018m)
  5. 7×1021k+5-3 = 43×(7×105-343+63×105×1021-19×43×k-1Σm=01021m)
  6. 7×1022k+21-3 = 23×(7×1021-323+63×1021×1022-19×23×k-1Σm=01022m)
  7. 7×1028k+7-3 = 29×(7×107-329+63×107×1028-19×29×k-1Σm=01028m)
  8. 7×1033k+1-3 = 67×(7×101-367+63×10×1033-19×67×k-1Σm=01033m)
  9. 7×1041k+14-3 = 83×(7×1014-383+63×1014×1041-19×83×k-1Σm=01041m)
  10. 7×1042k+8-3 = 127×(7×108-3127+63×108×1042-19×127×k-1Σm=01042m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 22.39%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 22.39% です。

3. Factor table of 699...997 699...997 の素因数分解表

3.1. Last updated 最終更新日

May 27, 2014 2014 年 5 月 27 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=192, 197, 198, 201, 206, 208, 214, 219, 221, 224, 226, 227, 229, 230, 231, 235, 236, 246, 247, 250 (20/250)

3.4. Factor table 素因数分解表

7×101-3 = 67 = definitely prime number 素数
7×102-3 = 697 = 17 × 41
7×103-3 = 6997 = definitely prime number 素数
7×104-3 = 69997 = definitely prime number 素数
7×105-3 = 699997 = 43 × 73 × 223
7×106-3 = 6999997 = definitely prime number 素数
7×107-3 = 69999997 = 29 × 41 × 113 × 521
7×108-3 = 699999997 = 127 × 5511811
7×109-3 = 6999999997<10> = 1361 × 5143277
7×1010-3 = 69999999997<11> = definitely prime number 素数
7×1011-3 = 699999999997<12> = 19 × 139 × 797 × 332561
7×1012-3 = 6999999999997<13> = 41 × 68351 × 2497867
7×1013-3 = 69999999999997<14> = 73 × 15259 × 62841871
7×1014-3 = 699999999999997<15> = 83 × 77263 × 109156193
7×1015-3 = 6999999999999997<16> = 30403 × 230240436799<12>
7×1016-3 = 69999999999999997<17> = 2011 × 34808552958727<14>
7×1017-3 = 699999999999999997<18> = 41 × 3637 × 4694300448641<13>
7×1018-3 = 6999999999999999997<19> = 17 × 773 × 44809 × 11887878913<11>
7×1019-3 = 69999999999999999997<20> = 61 × 8929 × 128518421279713<15>
7×1020-3 = 699999999999999999997<21> = definitely prime number 素数
7×1021-3 = 6999999999999999999997<22> = 23 × 73 × 6571 × 634476990193433<15>
7×1022-3 = 69999999999999999999997<23> = 41 × 163 × 41538923 × 252157184533<12>
7×1023-3 = 699999999999999999999997<24> = 16521641 × 44677183 × 948329099
7×1024-3 = 6999999999999999999999997<25> = 231109 × 888799 × 34078276656967<14>
7×1025-3 = 69999999999999999999999997<26> = 2356802281<10> × 29701261138587637<17>
7×1026-3 = 699999999999999999999999997<27> = 43 × 47 × 28607 × 4335593 × 2792613956207<13>
7×1027-3 = 6999999999999999999999999997<28> = 41 × 1021 × 1559 × 22717 × 4721623438020859<16>
7×1028-3 = 69999999999999999999999999997<29> = 1907 × 36706869428421604614577871<26>
7×1029-3 = 699999999999999999999999999997<30> = 19 × 73 × 179 × 2819476946748136124346989<25>
7×1030-3 = 6999999999999999999999999999997<31> = 20521 × 2541503 × 134217422053074868619<21>
7×1031-3 = 69999999999999999999999999999997<32> = 1511 × 59467 × 95575279 × 8151020239232639<16>
7×1032-3 = 699999999999999999999999999999997<33> = 41 × 12347 × 281994292651<12> × 4903570419562861<16>
7×1033-3 = 6999999999999999999999999999999997<34> = 15731 × 444981247218867204882079969487<30>
7×1034-3 = 69999999999999999999999999999999997<35> = 17 × 67 × 2293 × 117435813608647<15> × 228228407669813<15>
7×1035-3 = 699999999999999999999999999999999997<36> = 29 × 6518111 × 13717063 × 269971025878306230601<21>
7×1036-3 = 6999999999999999999999999999999999997<37> = 2703683 × 11107697 × 233087103628509622361647<24>
7×1037-3 = 69999999999999999999999999999999999997<38> = 41 × 73 × 173 × 24860656395787<14> × 5437917680324416579<19>
7×1038-3 = 699999999999999999999999999999999999997<39> = 647 × 3217 × 585991093 × 573920428525059482866271<24>
7×1039-3 = 6999999999999999999999999999999999999997<40> = 86891257 × 1064998556265869<16> × 75643730913398009<17>
7×1040-3 = 69999999999999999999999999999999999999997<41> = 89 × 15137 × 102006107399843<15> × 509380185741578542103<21>
7×1041-3 = 699999999999999999999999999999999999999997<42> = 263 × 877 × 17351 × 1142039 × 86565509 × 1769262881624307547<19>
7×1042-3 = 6999999999999999999999999999999999999999997<43> = 41 × 1097 × 8693 × 17903497341040352434335080643912377<35>
7×1043-3 = 69999999999999999999999999999999999999999997<44> = 23 × 229 × 13290298082399848110879058287450161382191<41>
7×1044-3 = 699999999999999999999999999999999999999999997<45> = 373 × 13749236177<11> × 136493080710657878820121727544857<33>
7×1045-3 = 6999999999999999999999999999999999999999999997<46> = 73 × 97 × 129041964831226343977<21> × 7660770967131485076781<22>
7×1046-3 = 69999999999999999999999999999999999999999999997<47> = 59 × 489653 × 8046831307<10> × 301115222846773218569445624673<30>
7×1047-3 = 699999999999999999999999999999999999999999999997<48> = 19 × 41 × 43 × 20897393796459384422485595724990297638594501<44>
7×1048-3 = 6999999999999999999999999999999999999999999999997<49> = 109 × 167 × 965201 × 44780447 × 8897108428688707112966062731017<31>
7×1049-3 = 69999999999999999999999999999999999999999999999997<50> = 587 × 59743 × 49903933 × 365217315839767<15> × 109518321015514911947<21>
7×1050-3 = 699999999999999999999999999999999999999999999999997<51> = 17 × 127 × 2861 × 225001433353161397463<21> × 503665559698023352387481<24>
7×1051-3 = 6(9)507<52> = definitely prime number 素数
7×1052-3 = 6(9)517<53> = 41 × 151 × 13477 × 35332871828422297373<20> × 23744611577893285068279427<26>
7×1053-3 = 6(9)527<54> = 73 × 181 × 332790733035152738284291<24> × 159193518156073151098346059<27>
7×1054-3 = 6(9)537<55> = 1950621617817709<16> × 3588599621812542330626333781353696148433<40>
7×1055-3 = 6(9)547<56> = 83 × 271110043 × 3110816127073181182217699420678432112812244413<46>
7×1056-3 = 6(9)557<57> = 45943 × 231495795892073<15> × 65816620871158019962531533677311998323<38>
7×1057-3 = 6(9)567<58> = 41 × 139 × 37619221171538057<17> × 32650480948311116884733480250070255879<38>
7×1058-3 = 6(9)577<59> = 1013 × 2897 × 31231 × 763755250964632398904297204110555144123578081767<48>
7×1059-3 = 6(9)587<60> = 521 × 761177 × 17075923 × 103369037373932582894237384672350822244887567<45>
7×1060-3 = 6(9)597<61> = 3691 × 6054430033763<13> × 313242535071973781823190422514061927715329309<45>
7×1061-3 = 6(9)607<62> = 73 × 1879949 × 3547640561<10> × 143777027479134080109940464527991045872383801<45>
7×1062-3 = 6(9)617<63> = 41 × 4019942952376054552540060531<28> × 4247117666586769298878711597015607<34>
7×1063-3 = 6(9)627<64> = 29 × 1229 × 1531 × 4243 × 8663 × 364853 × 1146916925641<13> × 8340301275681186462254894329951<31>
7×1064-3 = 6(9)637<65> = 16061 × 72283091 × 319837963493<12> × 188520564119369463003503538518531267796479<42>
7×1065-3 = 6(9)647<66> = 19 × 23 × 6143 × 27763 × 45827 × 69709 × 2940081803969408664189374602957531838204931563<46>
7×1066-3 = 6(9)657<67> = 17 × 18055039931129<14> × 22806081152577372093090172143540383369121783532143829<53>
7×1067-3 = 6(9)667<68> = 41 × 67 × 40428293 × 249839150734793<15> × 2522861917183973266936883614100847978444899<43>
7×1068-3 = 6(9)677<69> = 43 × 410750429 × 39632508253428654276868154092098201705019074439164535703651<59>
7×1069-3 = 6(9)687<70> = 73 × 3183250920815377<16> × 276133889596110981949<21> × 109089913186022202558812181565993<33>
7×1070-3 = 6(9)697<71> = 268973 × 175805720345501559421457<24> × 1480322537171067288495536767840741474882177<43>
7×1071-3 = 6(9)707<72> = 37344526507<11> × 18744380113342428888651272570812782751558264388198686875374071<62>
7×1072-3 = 6(9)717<73> = 41 × 47 × 2017 × 104893910111351861<18> × 17169599003384228570152202859536607387691535475503<50>
7×1073-3 = 6(9)727<74> = 9267622087<10> × 1509007874479068507487<22> × 5005393416169114281651185841858869985295813<43>
7×1074-3 = 6(9)737<75> = 10064445648113<14> × 69551769116190138929534662662720217327076832105123840793195469<62>
7×1075-3 = 6(9)747<76> = 40459 × 1228949 × 16518475470293<14> × 8522736714169264296983866206998299667175827899314319<52>
7×1076-3 = 6(9)757<77> = 49958197 × 1401171463413701659409365794366037669453923647404649130952424083679401<70>
7×1077-3 = 6(9)767<78> = 41 × 73 × 149 × 433 × 35841017 × 599153339437<12> × 168810264272347403500868761280637683820613269376853<51>
7×1078-3 = 6(9)777<79> = 4783 × 71399 × 15374179 × 205520369 × 145753045823893<15> × 44508308202100358050147009243984541138587<41>
7×1079-3 = 6(9)787<80> = 61 × 184848899 × 263011663 × 49675681901924267202278437<26> × 475151923966749862231243253056527233<36>
7×1080-3 = 6(9)797<81> = 173 × 63857 × 3592261 × 8915630027<10> × 9608460870337039<16> × 205906320515478622003863126730227402534569<42>
7×1081-3 = 6(9)807<82> = 4999 × 59926901563<11> × 34964781561383<14> × 668285841603905432350506388470864368898996272226468407<54>
7×1082-3 = 6(9)817<83> = 17 × 41 × 5081 × 143263 × 64180688687<11> × 2149698991853611514836838652349443839665335408146094936377341<61>
7×1083-3 = 6(9)827<84> = 19 × 3833 × 35279 × 56383 × 58073 × 778153 × 367988631533<12> × 114569167950042587<18> × 2536294935522043093996723374377<31>
7×1084-3 = 6(9)837<85> = 89 × 1213 × 1549657 × 2183225360817558015355766696515933247<37> × 19165187946232640510767119110199013999<38> (Makoto Kamada / msieve 0.83)
7×1085-3 = 6(9)847<86> = 73 × 150617564707<12> × 6366482630723850214232975228847786319567025811658138723232072481074087527<73>
7×1086-3 = 6(9)857<87> = 1193 × 586756077116512992455993294216261525565800502933780385582564962279966471081307627829<84>
7×1087-3 = 6(9)867<88> = 23 × 41 × 10231097 × 520230712207<12> × 3800955960577<13> × 366923324573595727742347889129060181184170413005855013<54>
7×1088-3 = 6(9)877<89> = 131 × 18959 × 238853 × 6889442867<10> × 5090721828293<13> × 46050889948054898968120421<26> × 73059907891553201809095933031<29>
7×1089-3 = 6(9)887<90> = 43 × 16279069767441860465116279069767441860465116279069767441860465116279069767441860465116279<89>
7×1090-3 = 6(9)897<91> = 14215376641<11> × 14024128065801970883933<23> × 35112665568116599653081057307570990587976697907415467938849<59>
7×1091-3 = 6(9)907<92> = 29 × 5801 × 85843 × 2761253903<10> × 701704596531139<15> × 4471372996255926723825050381<28> × 559487935528514859422863153963<30>
7×1092-3 = 6(9)917<93> = 41 × 127 × 20681 × 34439 × 4275897209<10> × 46063445902169<14> × 316177512014113<15> × 3030914865722457122795904497747972552067653<43>
7×1093-3 = 6(9)927<94> = 73 × 49199 × 156307 × 31458780224023<14> × 967500703220799564031748987117<30> × 409682400795639824383995728074680022603<39>
7×1094-3 = 6(9)937<95> = 53067904297<11> × 569362892093670906312801683737<30> × 2316738115953116862146499230067433214801910366621246973<55> (Makoto Kamada / GGNFS-0.71.1 / 0.27 hours)
7×1095-3 = 6(9)947<96> = 233 × 10559738620716495489268199438963219381694613<44> × 284504375856389912213706749348216675785104553012193<51> (Makoto Kamada / GGNFS-0.71.1 / 0.33 hours)
7×1096-3 = 6(9)957<97> = 83 × 1319 × 2063 × 751867 × 41222554454953269664553261606393738112567318696336874667017874206456176961002252341<83>
7×1097-3 = 6(9)967<98> = 41 × 70053553 × 24371598585024398510052347676522664269051003475973832093437597766341318487182332023518789<89>
7×1098-3 = 6(9)977<99> = 17 × 3271 × 372707 × 274779293 × 17363418997<11> × 18656404363<11> × 379449366143216305891546539384640822508803378389527259093611<60>
7×1099-3 = 6(9)987<100> = 316501 × 69520869420173415204758174428187500581792823<44> × 318132295216405205934675541188647621086156745627839<51> (Makoto Kamada / GGNFS-0.71.1 / 0.43 hours)
7×10100-3 = 6(9)997<101> = 67 × 1093 × 1154380808120080756009227761<28> × 10203943881176290266293356404453361<35> × 81149512659446215772923053697088147<35> (Makoto Kamada / GGNFS-0.71.1)
7×10101-3 = 6(9)1007<102> = 19 × 73 × 75193 × 1371731 × 68679023513563<14> × 71244460390633318375078114881437129297242402377239958620472777850330627439<74>
7×10102-3 = 6(9)1017<103> = 41 × 762542808435428703690881<24> × 223897865704585614961048377289756337212585384612139532511183153050099885519157<78>
7×10103-3 = 6(9)1027<104> = 139 × 163 × 642523940381<12> × 10066205959752302953<20> × 227501093618404212533<21> × 2099698899205351928256625901543237709409015979509<49>
7×10104-3 = 6(9)1037<105> = 59 × 227 × 1181 × 7669 × 30707 × 91513 × 30839792993281523<17> × 5158915194628811308337404270661<31> × 12907481494848250485826639485216420457<38> (Makoto Kamada / Msieve 1.25 for P31 x P38 / 1.6 minutes on Pentium 4 3.06GHz, Windows XP and Cygwin / July 21, 2007 2007 年 7 月 21 日)
7×10105-3 = 6(9)1047<106> = 16751166114271<14> × 3362329295960017<16> × 124283292502160624972430812747002437455221651091094362652090807619237174270771<78>
7×10106-3 = 6(9)1057<107> = 2376525156911<13> × 11538868667468585886113122047289<32> × 2552656594942148000248359822941564882107186678502009741447584043<64> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=1601383238 for P32 / July 14, 2007 2007 年 7 月 14 日)
7×10107-3 = 6(9)1067<108> = 41 × 68881 × 84319691 × 2939583042839641562081867454570800621829252974172830223992337623835274830810023979207377936527<94>
7×10108-3 = 6(9)1077<109> = 47507 × 147346706801102995348053970993748289725724630054518281516408108278779969267686867198518113120171764161071<105>
7×10109-3 = 6(9)1087<110> = 23 × 73 × 8689 × 228859484167433722234911564635934681814193<42> × 20965664506503249718202161151414441563687134934979206768443859<62> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / 0.61 hours on Core 2 Quad Q6600 / July 22, 2007 2007 年 7 月 22 日)
7×10110-3 = 6(9)1097<111> = 43 × 1873 × 142469 × 165288811 × 4333284643<10> × 6502688707<10> × 13098386269437031106604877534553204620531844179085265519971512448455928297<74>
7×10111-3 = 6(9)1107<112> = 521 × 9974803213<10> × 3490206865009589<16> × 385926687475262344441857485349133100089046333653950058995610345029152671032449465701<84>
7×10112-3 = 6(9)1117<113> = 41 × 1707317073170731707317073170731707317073170731707317073170731707317073170731707317073170731707317073170731707317<112>
7×10113-3 = 6(9)1127<114> = 6089 × 44927 × 103168519459<12> × 41459368074281333711<20> × 598239066295616476893162573432748411378467040949192858128420027704189251351<75>
7×10114-3 = 6(9)1137<115> = 17 × 94651 × 79863677 × 47138419262927<14> × 1155578878986719768961544726557507588224675340870529750884331320401542603879680909390029<88>
7×10115-3 = 6(9)1147<116> = 1945303 × 35984111472608637317682643783513416675962562130423897973734682977407632641290328550359506976548126435830305099<110>
7×10116-3 = 6(9)1157<117> = 257 × 271861 × 9968346863<10> × 5492745356335264771<19> × 38690791643388328103740921502952607<35> × 4729310014865205650831153297596976512403898451<46> (Jo Yeong Uk / Msieve v. 1.25 for P35 x P46 / 00:12:05 on Core 2 Quad Q6600 / July 22, 2007 2007 年 7 月 22 日)
7×10117-3 = 6(9)1167<118> = 41 × 73 × 1970115948257<13> × 43606045392073<14> × 27224056284112453903923041741928392123882423643421176731556990708271234684564461227758789<89>
7×10118-3 = 6(9)1177<119> = 47 × 45817 × 72937 × 200515813 × 7173315979<10> × 3261153288959138743<19> × 203756251240953604393<21> × 466310175940868673297499168512350741919685704497003<51>
7×10119-3 = 6(9)1187<120> = 19 × 29 × 113 × 121866583 × 92253608692503151089071894583987930512282438861405961153383309271090824178937491543400584981242582791399693<107>
7×10120-3 = 6(9)1197<121> = 7584150319<10> × 55564188579517<14> × 16611013501163017688490554069217651394007913477460708536454226144798090533109385115737389605873039<98>
7×10121-3 = 6(9)1207<122> = 47653 × 1369371443767<13> × 36358147136114613307985190682380569<35> × 29504263852952324258374435890140498246794971645497980237929073951677863<71> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / 1.34 hours on Core 2 Quad Q6600 / July 22, 2007 2007 年 7 月 22 日)
7×10122-3 = 6(9)1217<123> = 41 × 957934333651<12> × 146538937832239847<18> × 121625714552917132489827834612649621764598457759632945716179963605515061469271373965154329361<93>
7×10123-3 = 6(9)1227<124> = 173 × 61027 × 713562389 × 135311009685237351278540689388809518241159030458513113<54> × 6866964940815089427027581044049877493885455562590216551<55> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / 1.38 hours on Core 2 Quad Q6600 / July 22, 2007 2007 年 7 月 22 日)
7×10124-3 = 6(9)1237<125> = 12435393851<11> × 1653859776119932304506498458736364717902994881823<49> × 3403610153505365266823631691628573931926592430091798145981178781689<67> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / 1.76 hours on Core 2 Quad Q6600 / July 22, 2007 2007 年 7 月 22 日)
7×10125-3 = 6(9)1247<126> = 73 × 21227 × 114827 × 653901299 × 9325811484738142607573<22> × 645124758011811292663606940006446111587998358404084331702679742071206001822933781683<84>
7×10126-3 = 6(9)1257<127> = 3733064887567996534792974929164593204373697227583<49> × 1875134831787061276782822033581045574929236611892954682370632550609251043832259<79> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / 2.18 hours on Core 2 Quad Q6600 / July 22, 2007 2007 年 7 月 22 日)
7×10127-3 = 6(9)1267<128> = 412 × 151 × 2347 × 39819539 × 55136742586585039706768971261<29> × 996661217419669522960891631306797<33> × 53697664591766885637251106829273235075760230423267<50> (Jo Yeong Uk / Msieve v. 1.25 for P33 x P50 / 00:20:50 on Core 2 Quad Q6600 / July 22, 2007 2007 年 7 月 22 日)
7×10128-3 = 6(9)1277<129> = 89 × 677 × 2702469269<10> × 1151376564109<13> × 41269911823520309<17> × 1963897306975553200512676343<28> × 46066890629393229261516810290309161016322334297076442332987<59>
7×10129-3 = 6(9)1287<130> = 39791 × 55451581 × 3172482633155234864021274086911288667287879330809973988505569171378667125710452874764527816918702328727394621853373007<118>
7×10130-3 = 6(9)1297<131> = 17 × 6967 × 22159 × 12377339630211913014729356379781933602404602590397460483<56> × 2154893656072748577302512740902433579438090282103291765000036292359<67> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / 1.95 hours on Core 2 Quad Q6600 / July 22, 2007 2007 年 7 月 22 日)
7×10131-3 = 6(9)1307<132> = 23 × 43 × 200357 × 686073298051849<15> × 3492650375317905457798484924118526607821958419517<49> × 1474251565366503210694631337567966010127470661351122913594633<61> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / 3.06 hours on Core 2 Quad Q6600 / July 22, 2007 2007 年 7 月 22 日)
7×10132-3 = 6(9)1317<133> = 41 × 761 × 823 × 8863 × 6082088060418354263973053<25> × 27212650857151474320206035877612519<35> × 185834091366309855618215438086593893231210033409435324983518879<63> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon / 5.60 hours on AMD Athlon(tm) XP 2400+ stepping 01 / July 22, 2007 2007 年 7 月 22 日)
7×10133-3 = 6(9)1327<134> = 67 × 73 × 49575859867580844937<20> × 5110246217906895142589357<25> × 56492175048162159719487517145163130895209614708013345538713487979343064026699370518763<86>
7×10134-3 = 6(9)1337<135> = 127 × 186103 × 284041 × 67139650373<11> × 224080515702813399469184201<27> × 1657367916841120248990423676418651639587<40> × 4181747575834472305239024549045571460403317707<46> (Jo Yeong Uk / Msieve v. 1.25 for P40 x P46 / 00:22:28 on Core 2 Quad Q6600 / July 22, 2007 2007 年 7 月 22 日)
7×10135-3 = 6(9)1347<136> = 59621 × 59893189 × 387559111 × 5058053228711327873641724431313217240436024160314841113254212885738391279506752391089731217823169355710539445501683<115>
7×10136-3 = 6(9)1357<137> = 1911173014322791<16> × 6688529150867410750543674810071273572433<40> × 5476050080158143153708958738926903788962439257212131688978965251785087525399823499<82> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / 4.99 hours on Core 2 Quad Q6600 / July 22, 2007 2007 年 7 月 22 日)
7×10137-3 = 6(9)1367<138> = 19 × 41 × 83 × 14431 × 32687 × 220474522090692269<18> × 3088175041540998887<19> × 53204897233454695830562193693392037137397<41> × 633576518273911287795959707919898837003414686923<48> (Kenichiro Yamaguchi / Msieve v. 1.25 for P41 x P48 / 01:54:43 on Pentium M 760 (2GHz), Windows XP / July 22, 2007 2007 年 7 月 22 日)
7×10138-3 = 6(9)1377<139> = definitely prime number 素数
7×10139-3 = 6(9)1387<140> = 61 × 54287 × 1685963 × 2144057522904982639061<22> × 5847737783593161371794272142297451702374364410726154145530711658809328796128452366232795337254472213279097<106>
7×10140-3 = 6(9)1397<141> = 991 × 1057391 × 345418457 × 11250180495689321348084945885182355115543862335246134474303<59> × 171903114767847828998563831031206474014001920428664101581017239147<66> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon / 8.58 hours on AMD Athlon(tm) XP 2400+ stepping 01 / July 23, 2007 2007 年 7 月 23 日)
7×10141-3 = 6(9)1407<142> = 73 × 97 × 569773 × 17000363320325641<17> × 102057136155821494393264209198120079139408184484309203076720028873200726176384309781986331596047453929401641064578209<117>
7×10142-3 = 6(9)1417<143> = 41 × 684820152391010899426909<24> × 293996872467290101398339992619243102794207<42> × 8479982205197969383707708914235563099398323494880780373423205897700123689959<76> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / 7.68 hours on Core 2 Quad Q6600 / July 23, 2007 2007 年 7 月 23 日)
7×10143-3 = 6(9)1427<144> = 1390760561015147597115111631999<31> × 176985412377038489455150177398295039807447995083<48> × 2843859925569024851779496154354305448575151654276681477679351507241<67> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=2369682267 for P31 / July 16, 2007 2007 年 7 月 16 日) (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / 10.45 hours on Core 2 Quad Q6600 / July 23, 2007 2007 年 7 月 23 日)
7×10144-3 = 6(9)1437<145> = 293 × 459361558229520911<18> × 4158372341169850597634039<25> × 12506978341974524355506903470968282858758688752543638783604340786179450801571016162030630669014544001<101>
7×10145-3 = 6(9)1447<146> = 135899 × 2882653 × 4137260381<10> × 769330598837417<15> × 213310674409584473<18> × 38419676520928330018576887493317188578379<41> × 6850105473822077822398812945194215058951502092829389<52> (Sinkiti Sibata / Msieve v. 1.23 for P41 x P52 / 17:55:41 on Celeron 750MHz, Windows 2000 / July 23, 2007 2007 年 7 月 23 日)
7×10146-3 = 6(9)1457<147> = 17 × 2772341545407390176277168504286752739988576758255116308281<58> × 14852596591660026569344293574475374603014785217941966344202020052222211474146804385683861<89> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon / 12.83 hours on Cygwin on AMD 64 3400+ / July 23, 2007 2007 年 7 月 23 日)
7×10147-3 = 6(9)1467<148> = 29 × 41 × 11719 × 49927 × 1107031 × 1729033 × 5256868282161588249354936506256557665929366672297170262905536849321942904199979956943289764863536943097167369245088256074727<124>
7×10148-3 = 6(9)1477<149> = 311 × 7912579919<10> × 301037510767131424181611457969<30> × 5434594245435338312688573491110293470744533<43> × 17387286194393844709918894508724977643672044365413394191742373729<65> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / 12.60 hours on Core 2 Quad Q6600 / July 23, 2007 2007 年 7 月 23 日)
7×10149-3 = 6(9)1487<150> = 73 × 139 × 79426057057573470993450111694681586724818267<44> × 10135149856645968832942226206178100278444840800939<50> × 85697312347290420035372811292253154086540948455681127<53> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon / 28.79 hours on AMD Athlon(tm) XP 2400+ stepping 01 / July 24, 2007 2007 年 7 月 24 日)
7×10150-3 = 6(9)1497<151> = 23537 × 117047527 × 8764729519896434388185150658193376696083145995054647761<55> × 289898636097657769901727571746993680083346617528438604091309287391756698440245150523<84> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 / 26.99 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / July 28, 2007 2007 年 7 月 28 日)
7×10151-3 = 6(9)1507<152> = 2423 × 113437 × 1974319 × 366051779 × 1988244101<10> × 4983380413033695949<19> × 523671508060551731383<21> × 67916822259268674139672549285633806999882217903348381664369199967359295145093141<80>
7×10152-3 = 6(9)1517<153> = 41 × 43 × 28020241 × 14170130875488483629645666458572417529645641484728901686585278779216458914025984030890887899674540116235988014895451210726703857626305741469359<143>
7×10153-3 = 6(9)1527<154> = 232 × 10303 × 4132288063902465163<19> × 73545936976938384659<20> × 368950902030040136294932320283019<33> × 11454095970935197036364142614850850481119263863106296451412205403591388218697<77> (Jo Yeong Uk / GMP-ECM 6.1.2 B1=1000000, sigma=2779761892 for P33 / July 23, 2007 2007 年 7 月 23 日)
7×10154-3 = 6(9)1537<155> = 170500391 × 5874692119<10> × 37945772041674357967<20> × 1841722341009725224902266300239153123276700770217411417460877461917358156582270030107021373351933974361848659624929779<118>
7×10155-3 = 6(9)1547<156> = 19 × 661 × 863 × 15524921 × 10034681220980419<17> × 86052277375997863373093099<26> × 98193488402561885576481803<26> × 8130939598025915992280491549<28> × 6034112629411735864758588925953439274740594603<46>
7×10156-3 = 6(9)1557<157> = 109 × 709 × 375563 × 47570482973933517041<20> × 159741449154198535717<21> × 31738567891395608361450399516204832685084634228740203656630118113430157373625722120646005893261121956045467<107>
7×10157-3 = 6(9)1567<158> = 41 × 73 × 919 × 226063769279<12> × 43511672366186777<17> × 153359639443560911863<21> × 16870501497607098194443201184850703240697108431496756615650453885917247705196631632012386754552126164379<104>
7×10158-3 = 6(9)1577<159> = 1303 × 2473 × 133346505599<12> × 42315979991490290739022320497289947523549183832673097091435256957<65> × 38498469586434182358752612193019411923606426698177641577645805015090636763441<77> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon / 35.97 hours on Cygwin on AMD 64 3400+ / July 25, 2007 2007 年 7 月 25 日)
7×10159-3 = 6(9)1587<160> = 11480647 × 2123843629199706450095966417930509967<37> × 287084098820217654683647609855563415797505527535490938568019121616173404487170471297898238166611115453129796922918453<117> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp / 52.22 hours on Cygwin on AMD 64 3200+ / July 25, 2007 2007 年 7 月 25 日)
7×10160-3 = 6(9)1597<161> = 1023557 × 676040311822727<15> × 225167822909311193771939915964703697<36> × 26553121374225817669622704350957054548498613613<47> × 16919655045991966846784423102442420227389002548091598746443<59> (Jo Yeong Uk / GMP-ECM 6.1.2 B1=1000000, sigma=1655651950 for P36 / July 24, 2007 2007 年 7 月 24 日) (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs for P47 x P59 / 8.63 hours on Core 2 Quad Q6600 / July 26, 2007 2007 年 7 月 26 日)
7×10161-3 = 6(9)1607<162> = 11759927 × 890858477521139<15> × 5434034586523956104106766412088428719802308238404951<52> × 12295955952110120403085408303775786006169912054674465432621806697568821168788407881446399<89> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.26 / October 2, 2007 2007 年 10 月 2 日)
7×10162-3 = 6(9)1617<163> = 17 × 41 × 59 × 269 × 125471 × 4332593611327<13> × 1164044695092484665105050115271553273923537788625034732036886314462540349341531730302525663241917002510212682446417885174788888334755923643<139>
7×10163-3 = 6(9)1627<164> = 521 × 8929 × 20049478817<11> × 18834724717582733339854276484953<32> × 39846954049113870438326350054437585548327057756753553930562437288636637623138186710621577302650844411531338277069533<116> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp snfs / 69.78 hours on Cygwin on AMD 64 3200+ / August 16, 2007 2007 年 8 月 16 日)
7×10164-3 = 6(9)1637<165> = 47 × 193 × 1621 × 2267 × 610889581248729734327409484516692590832461<42> × 34375230566759292489277721179939552331809978623383280776559465068189748526644096155791768378027428880241905345241<113> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon / 71.77 hours on Cygwin on AMD 64 3400+ / August 8, 2007 2007 年 8 月 8 日)
7×10165-3 = 6(9)1647<166> = 73 × 14243 × 745201 × 23023009575953<14> × 6459466023437342863<19> × 60749340038221197567027576513711877827403768644270709667691468796178616522277621246798230025216723401018012444447707695657<122>
7×10166-3 = 6(9)1657<167> = 67 × 173 × 153583387324042801184481984693585153371533<42> × 2067097285247959280399851585395695989586036741113<49> × 19022691978446235710973810593733140748567297663247313327626391472876229823<74> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon / 97.45 hours on Cygwin on AMD 64 3200+ / August 1, 2007 2007 年 8 月 1 日)
7×10167-3 = 6(9)1667<168> = 41 × 35734094801<11> × 477783775601041202184578368139676363163172415211424309438388033932577569402555444088908385416391248458067162924542992604153783633202695075403674046107735717<156>
7×10168-3 = 6(9)1677<169> = 71630501 × 10175069063<11> × 14460468205181<14> × 117286754295728424397037543<27> × 5662801815266456380085671176457580014487214064636386068007187963982326790874272294598048969877769224156506865693<112>
7×10169-3 = 6(9)1687<170> = 22741 × 349307507062883<15> × 116106895929109073299<21> × 75896639690350204219372714008470048868387970839745459067568730513056934189391886227579885227959515279563251851633292636114915569201<131>
7×10170-3 = 6(9)1697<171> = 1429327603703<13> × 28390070271134877038117841913<29> × 10977412137489495157200178568512469140915422117788701<53> × 1571447302297785507555396244163363334714959786940690062024588758974391266160223<79> (matsui / Msieve 1.41 snfs / 43.50 hours / May 17, 2009 2009 年 5 月 17 日)
7×10171-3 = 6(9)1707<172> = 367 × 8773759 × 47099267 × 33654115905746275236497<23> × 4401678529009692453561497<25> × 311584337819708190192394396981312980161015050214380902655102811252589573402553502981016400385430642089451383<108>
7×10172-3 = 6(9)1717<173> = 41 × 89 × 24763 × 1569239476963<13> × 633026319599681810459<21> × 6642012076990737526607383<25> × 107544053816796399142307393<27> × 1091751664800655779832582541845785171311291763851633689703622943809005592478797697<82>
7×10173-3 = 6(9)1727<174> = 19 × 43 × 73 × 4787 × 2451826280808567614120175431532896466693111597916938199130164189313955434071377293483399158856160973771809025415620719034694136965678008232441061327366139242990299591<166>
7×10174-3 = 6(9)1737<175> = 24436495439<11> × 28492947169<11> × 8219681345081<13> × 61682357626151<14> × 82924857227697113<17> × 3471884568896140913253317<25> × 68874076561470946106687026633811142189444081342327987528805294900716377035726277629217<86>
7×10175-3 = 6(9)1747<176> = 23 × 29 × 1945849999<10> × 2698778453724854253232121<25> × 35295282339376795682867577001<29> × 566211848432648253496266298077169810224298129799525026373713085611725821142446735214380281508918974507036807529<111> (Serge Batalov / GMP-ECM 6.2.1 B1=1000000, sigma=3820573387 for P29 / August 6, 2008 2008 年 8 月 6 日)
7×10176-3 = 6(9)1757<177> = 127 × 1427 × 1823167117<10> × 3122832099875424913<19> × 4959902390670157503819923<25> × 96538958547137354194163712683<29> × 226468883271578475618379567962241702278977<42> × 6256204756417669062376992564657832577417523732181<49> (Kenichiro Yamaguchi / Msieve v. 1.25 for P42 x P49 / 02:43:11 on Pentium M 760 (2GHz), Windows XP / July 22, 2007 2007 年 7 月 22 日)
7×10177-3 = 6(9)1767<178> = 41 × 20118803742137<14> × 8486175893226254656425353194105453902673923006354528604417587658423419376082640015883393246759158253449359884460309119754803628220146742046068278278295030528818141<163>
7×10178-3 = 6(9)1777<179> = 17 × 83 × 1522457 × 1749179 × 7727113 × 33058042237903<14> × 58644682468827499716567940696889<32> × 1243565610221113123527108520724475443189489139795418640164381297804207986122086729793093304125021658462622933979<112> (Makoto Kamada / GMP-ECM 6.1.2 B1=250000, sigma=479112729 for P32 / July 18, 2007 2007 年 7 月 18 日)
7×10179-3 = 6(9)1787<180> = 83251080449638728944649575376467201073537285846278352308844383882413696253<74> × 8408299282355291944507594847871979982320198163187651997979672667927349257101780731688554079997824589461249<106> (Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona snfs / 259.62 hours on Core 2 Quad Q6600 / August 13, 2007 2007 年 8 月 13 日)
7×10180-3 = 6(9)1797<181> = 594985119959<12> × 21872591584729<14> × 10410857401760907405765318871488626486365186725727774670121996270034345806871<77> × 51666042138888495750238115025686628528392926770393748144606679938478062325654837<80> (Kenji Ibusuki / Msieve v. 1.49 (SVN unknown) + GGNFS-0.77.1-VC8 with factMsieve.pl (decomposed + modified) snfs / October 8, 2013 2013 年 10 月 8 日)
7×10181-3 = 6(9)1807<182> = 73 × 2131 × 16561886107406089<17> × 27169518157420660575454399778639335125492093745447422561328510379607026210007954011250001757184882427310430854330883370929574264844918439148385718713243638134271<161>
7×10182-3 = 6(9)1817<183> = 41 × 1570061 × 5343463943<10> × 177987862590760849194620803<27> × 38562549324224800163366676089725693246956659796103927251469669<62> × 296495870853958950477370697377647132758749452746196181594675970268549307252097<78> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / April 21, 2014 2014 年 4 月 21 日)
7×10183-3 = 6(9)1827<184> = 236835922205111<15> × 10048562185968045401281<23> × 2941348882882880894359180139062331289092346150550750126518096734351302081543801266880553811949970462897476069920088882344761230649750877286489700267<148>
7×10184-3 = 6(9)1837<185> = 163 × 383 × 1823 × 63261666496225721<17> × 419657197882466330835892880741648934017<39> × 36486327920777884367613635759244640504554794714135113<53> × 634979246554742018609620477133706275083774231222429042768474368090751<69> (Ignacio Santos / GMP-ECM 7.0 B1=3000000, sigma=1:3661707285 for P39 / January 11, 2014 2014 年 1 月 11 日) (Cyp / yafu v1.34.3 / January 14, 2014 2014 年 1 月 14 日)
7×10185-3 = 6(9)1847<186> = 1069 × 1637 × 6036119 × 11027447 × 810267593 × 3468753641<10> × 1171345933162459<16> × 45356854513568779<17> × 158678431065482510071<21> × 253624355718450430830932263100417662109807298078142056385672335425777656409482078161620447288531<96>
7×10186-3 = 6(9)1857<187> = 887 × 439823 × 1196059 × 1026017623085007713<19> × 92337907616891958329226316547999<32> × 158346705035860066410666443177431638272396001523007818205086265361406331827017357270653495045419576915774032335665253102209<123> (Serge Batalov / GMP-ECM 6.2.1 B1=11000000, sigma=2080995158 for P32 / February 14, 2009 2009 年 2 月 14 日)
7×10187-3 = 6(9)1867<188> = 41 × 1707317073170731707317073170731707317073170731707317073170731707317073170731707317073170731707317073170731707317073170731707317073170731707317073170731707317073170731707317073170731707317<187>
7×10188-3 = 6(9)1877<189> = 7619015837<10> × 8980629593779837881775872309824081556163029918148921<52> × 10230394460543631963862926785288748328173848556134820932383789990085930266983455379884348909161445413917516502102654062516131561<128> (Robert Backstrom / Msieve 1.44 snfs / February 6, 2012 2012 年 2 月 6 日)
7×10189-3 = 6(9)1887<190> = 73 × 6788524597<10> × 3776109085412750517153311913748972678304046315269<49> × 3740720434766872348365351117177538899374989956055202566679779940172660680562211266192691020932308804012313181754465823523384768173<130> (Robert Backstrom / Msieve 1.44 snfs / February 18, 2012 2012 年 2 月 18 日)
7×10190-3 = 6(9)1897<191> = definitely prime number 素数
7×10191-3 = 6(9)1907<192> = 19 × 17489 × 7678102579107782621<19> × 3075529554084878360947<22> × 13899137371025356280273<23> × 6418267289379705494471377214792657429144168444062088982549616898758887596875552733756902332219778964937845642748824792245817<124>
7×10192-3 = 6(9)1917<193> = 41 × 983 × 1542529463<10> × 2037988259<10> × 2598578093<10> × 5024193847067<13> × [4231782707994587956134028190296576655567060539335886889722720908885008293628960341950823255755326329036235653962920699540873112927961497889965502537<148>] Free to factor
7×10193-3 = 6(9)1927<194> = 135391 × 308941571 × 784047751 × 6463670201813352033221<22> × 32665964050477191352790761<26> × 569756699704183297346120295651615869<36> × 296810751027062020613622711817064044961881<42> × 59778586616800168827028392336187139434362916103<47> (Robert Backstrom / GMP-ECM 6.0.1 B1=1906000, sigma=2468668459 for P36, Msieve v. 1.33 for P42 x P47 / January 28, 2008 2008 年 1 月 28 日)
7×10194-3 = 6(9)1937<195> = 17 × 43 × 89923 × 1001588031141917173388460599<28> × 10632141541917806207600763606017011495707284001851504845655696662199158265775506858356682738981807434334530073043581832016164704447016859240226240894069610375931<161>
7×10195-3 = 6(9)1947<196> = 139 × 3067 × 17876051 × 24527621194063819800299250874272523<35> × 10810175462712766378399682400374658337<38> × 3464253826178025203451630850730623859360665647158270629727669693950603939546671253113435093020109567689734805669<112> (Serge Batalov / GMP-ECM 6.2.1 B1=11000000, sigma=2507872870 for P35 / February 14, 2009 2009 年 2 月 14 日) (Serge Batalov / GMP-ECM 6.2.1 B1=11000000, sigma=705256189 for P38 / February 15, 2009 2009 年 2 月 15 日)
7×10196-3 = 6(9)1957<197> = 18033767867<11> × 141495983476838949092592646497867851174695559554350351260657<60> × 27432630435267847935229431019945977082597974015201181064111065842647928558201181966539670098926699405205686622932164705026103063<128> (Robert Backstrom / Msieve 1.44 snfs / March 15, 2012 2012 年 3 月 15 日)
7×10197-3 = 6(9)1967<198> = 23 × 41 × 73 × 25667 × 98133907 × [4037097952062703265549276427233942757386489774329001553978425862975741353355424331531697110444689706045796958405717590278444664262899875096132251795431724258024168255492200560011667<181>] Free to factor
7×10198-3 = 6(9)1977<199> = 379 × 343307 × 348216691 × [154499325256182153115558407746555588390841362966061522626811306977985398007231093124335268324928999720942940078272944371325009226821200737210858116113306504228932477121047305307486039<183>] Free to factor
7×10199-3 = 6(9)1987<200> = 61 × 67 × 29950117907077<14> × 751700843577682897<18> × 148490863889449218423534149409903686312968097<45> × 5123303623561183197178521374282039005592296982519393433739009002403007263804961068333521848025520122231463235793828473567<121> (Serge Batalov / GMP-ECM B1=3000000, sigma=300766072 for P45 / May 26, 2014 2014 年 5 月 26 日)
7×10200-3 = 6(9)1997<201> = 24557726809849<14> × 28504266922590794318935222732130361158315682254098080669233114992089701496431197775261883486359401536417705170814996678464681743824976076575125455903825324125815439183273418429100697622053<188>
7×10201-3 = 6(9)2007<202> = 3452421121<10> × [2027562616107630978660091449486877357103273265486432528403014598519483452088404715793070830306741134086579468588530860166754263116443261963232555487543606647979373197676599430119174039197404157<193>] Free to factor
7×10202-3 = 6(9)2017<203> = 41 × 151 × 35640085409<11> × 2928860895245108939<19> × 43462333569626657527<20> × 2492221932473848570437959537287173435131677139622917227111982178243358755382354331064421027052643467450967137888620544517771244816164612106555250565071<151>
7×10203-3 = 6(9)2027<204> = 29 × 42597327582643<14> × 15635776076261063<17> × 36240839239969947149676715988698615782783507870036387985220935607443739949710110426374459864842418700869161920281608395588045411038590234352962446033721653322989085463982477<173>
7×10204-3 = 6(9)2037<205> = 739 × 2243 × 2731 × 6829 × 76213408478070187883920573218083179<35> × 2971078524836534317318481594502217338893492356047830293243972731358633798336073387169910239300403256515925754628074019751947188452967029261473360925230345841<157> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=878309754 for P35 / April 17, 2013 2013 年 4 月 17 日)
7×10205-3 = 6(9)2047<206> = 73 × 958904109589041095890410958904109589041095890410958904109589041095890410958904109589041095890410958904109589041095890410958904109589041095890410958904109589041095890410958904109589041095890410958904109589<204>
7×10206-3 = 6(9)2057<207> = 30367 × 16175673259<11> × 107072564500197853<18> × 859978728217678421824663<24> × [15476326065960759083858533323795298894726075513585003797037529193560343116454728756019996174016052433034261811827488219068287346797332993787694639017291<152>] Free to factor
7×10207-3 = 6(9)2067<208> = 41 × 179 × 2415389 × 167322821 × 481072729 × 6144435945897212532197584158651184837<37> × 798410299331389448890805920065709222254892614476078092665283532405483333325645118511738542685665623203581738405632887685686374543711205071820179<144> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2978056675 for P37 / April 13, 2013 2013 年 4 月 13 日)
7×10208-3 = 6(9)2077<209> = 2621 × 165277439 × 149948486917292651479957768183421<33> × [1077644102415343612609715232215243094339381597001084415835504726853859573652268420970524994793611560576775643007119303487146596410899659404890979399268108360162013803<166>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=493041438 for P33 / April 13, 2013 2013 年 4 月 13 日) Free to factor
7×10209-3 = 6(9)2087<210> = 19 × 173 × 242932998840951239365511960107<30> × 876620908011100992540001449591564847219537438494662127860350632524997297968906075423942657795346198068704293874317760537082614201757685770623035205046598148570336472341667950433<177> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=2850060178 for P30 / March 9, 2013 2013 年 3 月 9 日)
7×10210-3 = 6(9)2097<211> = 17 × 47 × 797 × 21377 × 37589 × 1531360471<10> × 204885636557151578701<21> × 19707715297636941326771373292907<32> × 29064231622497067450572666676066095468506963<44> × 76120448500339612770689658967354495257686633840516297871337908227953445836726528388271569753<92> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=1958676336 for P32 / April 13, 2013 2013 年 4 月 13 日) (Ignacio Santos / GMP-ECM 7.0 B1=11000000, sigma=1 for P44 / October 2, 2013 2013 年 10 月 2 日)
7×10211-3 = 6(9)2107<212> = 773 × 78192536404721801790642078328805693699791<41> × 1158119155867112669015039228337631845453672391362924291848975474184598375655007384608653740817287019641358589910833588868841029601297930589403900532449515397903320941079<169> (Serge Batalov / GMP-ECM B1=11000000, sigma=4057297583 for P41 / May 24, 2014 2014 年 5 月 24 日)
7×10212-3 = 6(9)2117<213> = 41 × 39857 × 474294481538897002317560228538199427711<39> × 903153366351426561939986365132883074860180107111508012722405761548643273117333859191462101562541106978218246414629092719415606485592757933108268143299348300999320397371<168> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=739350787 for P39 / April 17, 2013 2013 年 4 月 17 日)
7×10213-3 = 6(9)2127<214> = 73 × 118417540814734604804359653227<30> × 846369053621681972406315926433508535431<39> × 956751973029188152237136350546330120510942891155261525892849394074557661414747782326889341172022592787688874302341331759696666026330813649268297<144> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=2740450335 for P30 / March 9, 2013 2013 年 3 月 9 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=4057347062 for P39 / April 17, 2013 2013 年 4 月 17 日)
7×10214-3 = 6(9)2137<215> = 167 × 5093047634561<13> × [82300757173820664496034028769295124708950047873920722073751833511345915557984921345775664182321838956798960755870198768122211330957609307163835655609365568585001456333469342663052414217546335668707131<200>] Free to factor
7×10215-3 = 6(9)2147<216> = 43 × 521 × 43613 × 205837 × 4165492273<10> × 12696715070146189<17> × 2318669312392206166146006037<28> × 2690316335233454309187842851<28> × 987026434763980316729750527471948806720965833<45> × 10688673283538961211239873366831286900151226232067635486764441878945542326517<77> (Warut Roonguthai / Msieve 1.49 gnfs for P45 x P77 / November 7, 2013 2013 年 11 月 7 日)
7×10216-3 = 6(9)2157<217> = 89 × 78651685393258426966292134831460674157303370786516853932584269662921348314606741573033707865168539325842696629213483146067415730337078651685393258426966292134831460674157303370786516853932584269662921348314606741573<215>
7×10217-3 = 6(9)2167<218> = 41 × 227 × 7521220586655205759106049210271838401203395293864832921456967873643494144192543247018373267433114859782959063070806919522939722789298377565273450091329107123670355646287740410443752014612657139787256903406038465671<214>
7×10218-3 = 6(9)2177<219> = 127 × 131 × 467 × 2377 × 22013 × 37130644184814827<17> × 2975856859220546861789<22> × 250759154941424042027713460769869168231<39> × 62143600001449265595072825195948871887317405209777090361997480120852315254552214543122427794895228526928049379301016467946645751<128> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=3405600379 for P39 / April 13, 2013 2013 年 4 月 13 日)
7×10219-3 = 6(9)2187<220> = 23 × 83 × 71503 × [51282341694140143372387009927902375593672775890518412972404598305893702973131122566723399832879639677373411059683143846668084061750767277238866708014397766516289502503922604631306813188033658241888798388579885511<212>] Free to factor
7×10220-3 = 6(9)2197<221> = 59 × 1484663 × 1244054998751<13> × 9480348348930607<16> × 67757015271224427949514977322828245676273813080741524489931634870160341943842904256635952753206908308644507468077308878743998595215206091891914551299423412825763924243469659385333004513<185>
7×10221-3 = 6(9)2207<222> = 73 × 1831 × 9319 × 9589186506294569<16> × [58605146817325287579714500714309288989131780234213063686889099518981278126237436203207571591336726681675564817949703829937935863788060714007740940316534078666456260935232032056635811716588260704029<197>] Free to factor
7×10222-3 = 6(9)2217<223> = 41 × 1091 × 3041 × 182339 × 192304007867<12> × 1467591231510929036095291060423970472180518577946934207013563483621309505696962673818889838677926476910884500313739463149480766424534298265793840881011593227561795441806802829292907273999308911413239<199>
7×10223-3 = 6(9)2227<224> = 389 × 631 × 22273 × 2580341 × 4962074258238345788286492361958185445667107401374711848585597499373956106960518060234287264334232585011397911713301795300126748476503330844632540597146518662573444557174411649530936897670057985368766392834131<208>
7×10224-3 = 6(9)2237<225> = 6451 × 24664356781<11> × [4399478544800147651810455886959678356863033329996577150892052182015760879469543537016308675053739660253669710013094385182511647846446891481223777988867705146174747371938068630959699672463137029537801277003474987<211>] Free to factor
7×10225-3 = 6(9)2247<226> = 149 × 46979865771812080536912751677852348993288590604026845637583892617449664429530201342281879194630872483221476510067114093959731543624161073825503355704697986577181208053691275167785234899328859060402684563758389261744966442953<224>
7×10226-3 = 6(9)2257<227> = 17 × 479 × 1567545193<10> × [5483950608549017562718868531224356336961539020003987146010983242455015962647351278294404315033629812031958182087694399206245519339170305526229140674137653716907393671554533455558446847006106438279973275438780199803<214>] Free to factor
7×10227-3 = 6(9)2267<228> = 19 × 41 × 223 × 1993 × 12821 × 73738657 × 22669950079870693181484743<26> × [94336711508149990808042682184120804594750546217128492949708733824916879888263948847743806887296515566014018524030545997578103109172373665136204862731150431204873572729354905584881147<182>] Free to factor
7×10228-3 = 6(9)2277<229> = 3192151 × 7048862248942899242674757<25> × 47456399105373603351879737229347324281363<41> × 6555424318804076359104043268481239909377553801639391626173777820388980985480752547317553264095495373922584285512045088920072782220767912692583100674932514517<157> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=1829652120 for P41 / April 14, 2013 2013 年 4 月 14 日)
7×10229-3 = 6(9)2287<230> = 73 × 128683 × 22630177096823<14> × [329280528529388751703248724135120183402518358530710582267159996392076215391241555524214751835801480228481052081709148150956946226659918761426741741071738882888541900985204127036535033974700312891750498670553721<210>] Free to factor
7×10230-3 = 6(9)2297<231> = 373 × 3511 × 1363837878193727<16> × [391918379467922332128845906592875147453606208218578221141995786725675093506152005611895192759380540394383970751130752049042607795258199334613803679747439623748591893016487003976040377974582012568160092394083937<210>] Free to factor
7×10231-3 = 6(9)2307<232> = 292 × 113 × 5545037492981599<16> × 3745094416701857054194148414201<31> × [3546960423241365508432828379845840554057911899240418028313054117179555981546727420542835949729282718325459802628490254331364725288771319673296048234880650473991874194455546896257491<181>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=302257984 for P31 / April 14, 2013 2013 年 4 月 14 日) Free to factor
7×10232-3 = 6(9)2317<233> = 41 × 67 × 106591 × 174301458920947<15> × 476074936098026988805794327411641<33> × 2880994996044432072075729534223700409567508634080153172142190313702424307466850153536802852322618935694763486352364203395141551032469078021498004086161429786832856613774748726843<178> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=84713334 for P33 / April 14, 2013 2013 年 4 月 14 日)
7×10233-3 = 6(9)2327<234> = 181 × 227137884844233974588208767370204330099432802765581068108786411139485855575905395492164445832887<96> × 17026676626707626585222876430124630378768314389880887279265089316716870836208196655832355303663027041457797545104181923670363849173848351<137> (matsui / Msieve 1.53 snfs / May 11, 2014 2014 年 5 月 11 日)
7×10234-3 = 6(9)2337<235> = 452234188577<12> × 15478705893568547938730691097932629623510181647820542902447584845769651417842189171034227178581312649362508173127841418537856101900144332306908031152465779577521116523305212311929173510466366785301305802384729373941120858461<224>
7×10235-3 = 6(9)2347<236> = 9067 × 832217 × 41667727 × 631456326971<12> × [352577595853361611763615963624242541128064875659663310630760991438761892757213732747514911167292351624392858376149223780297773780221074886332072039470896276543598595166585268041874995589352631947907161164019<207>] Free to factor
7×10236-3 = 6(9)2357<237> = 43 × 419 × 563 × 12911 × 148387 × 306847 × [117389580131023827821739252518610888292350746841822448142261952224825242083250934101936782645153525683121402018438713073764238538675437050713014790183460334073486122769208664199437097214363388950563158210057830899733<216>] Free to factor
7×10237-3 = 6(9)2367<238> = 41 × 73 × 97 × 54833 × 138136522033<12> × 2860030679603681<16> × 1113008221456302727545045359290879204643729706435312733447056349041018193079231834267043713143954085522814428446856533172606599385614213654029912694450886030741889046202358446425364413518211207874836973<202>
7×10238-3 = 6(9)2377<239> = 5351 × 9829 × 5642074330954424417<19> × 235892944014708836497663637985548354058372999630125925022520434436137315765782488130408691161918928221999244520401641703416779631389819175544355837052978660514822190053342557020707852729957781275077028503989439679<213>
7×10239-3 = 6(9)2387<240> = 5153 × 22621348454523149<17> × 9629187332333725043<19> × 191773616280460393385570343461123<33> × 3251927946670027595804446714406222556834016816586751961849863605583611620729801862791670002747936709903598435130351575011188292362053310110950142368483609340966222934009<169> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2063873334 for P33 / April 14, 2013 2013 年 4 月 14 日)
7×10240-3 = 6(9)2397<241> = 6547 × 7451 × 1324288653669409<16> × 108357375516898594527041804209953592860199330755317292038560079093007956368922739004490962158871639251836995833530965531023367101927356065207002252870067362144424106588054787038324760090033578280482048342772894163258589<219>
7×10241-3 = 6(9)2407<242> = 23 × 139 × 21895527056615577103534563653425086018142008132624335314357209884266499843603378167031592117610259618392242727557084766969033468877072255239286831404441664060056302783859868626837660306537378792618079449483891147951204253988113856740694401<239>
7×10242-3 = 6(9)2417<243> = 17 × 41 × 709912897 × 4569255940860571<16> × 6913054276134893<16> × 44786254535494659796110783737055127551871484765362995924000588136908004509040880772941823824753223847858692726233532143703301880561844590303822749779833075580481204587259525309099103955524906079570011<200>
7×10243-3 = 6(9)2427<244> = 3733 × 15644897 × 1670473011932741<16> × 240375141942375086988588967237799324929<39> × 298495868583755156132441877444009016238479557401331112639790593420608902942767356326720488865552122840545725948809195046608288315553464593728950613879703205584507223281012561957973<180> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=590210410 for P39 / April 14, 2013 2013 年 4 月 14 日)
7×10244-3 = 6(9)2437<245> = 51047 × 3259931065121<13> × 8448855846272266246079716360219<31> × 49787635256674857142015157565888047985169358319018147947530216571877598261544155052607871791669090355243366052841774241683113837618576481885115225748843565487322059741022060067274382860400868555649<197> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=3286033992 for P31 / April 14, 2013 2013 年 4 月 14 日)
7×10245-3 = 6(9)2447<246> = 19 × 73 × 313 × 87589 × 178248866806141<15> × 223836432707183<15> × 461392063599808170405255733222702700682556993434338146745723177829150302414286222091338614022961549755380788305670142777104341558776276067638243741837176594122961127564264510944842172899250763812912972002161<207>
7×10246-3 = 6(9)2457<247> = 240946723906168677182671294292590303<36> × [29052065479528967301999316727592016667862496915581379275218089243194262221409553975458988511708417435929901408870201563836546950235755927538285772504137604258714094423844762284306351488571443030018915463492520099<212>] (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=2470356486 for P36 / March 11, 2013 2013 年 3 月 11 日) Free to factor
7×10247-3 = 6(9)2467<248> = 41 × 422549 × 4492726850659<13> × [899346585097352202342015341412734236911052509496646441140800521237367429839344384938856351693718583313089633338975570230118961947187228492675131144690087528456756214089478099726107231900760964068835862006693863916728008234860587<228>] Free to factor
7×10248-3 = 6(9)2477<249> = 1544928623944819124800922240030856898391<40> × 453095365799243680032591946511913016363159474436034081089340098860700075757184271305874656845428211668046505523957318540512386334639168478840829642925964010262220548228872453426664893102836181100072688106545867<210> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=779563603 for P40 / April 29, 2013 2013 年 4 月 29 日)
7×10249-3 = 6(9)2487<250> = 51238027 × 1237757220881<13> × 66352285722310699<17> × 765191211233876569<18> × 50258155777309824797<20> × 17446059480828890671303613299603<32> × 101256825770638963944986891688457908531603851<45> × 24485901945203305046012120408388323278579972819621093338491786861610136724411455808568961022176815761<101> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=4237200579 for P32 / March 12, 2013 2013 年 3 月 12 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3190438662 for P45 / April 17, 2013 2013 年 4 月 17 日)
7×10250-3 = 6(9)2497<251> = 65685341492152489<17> × [1065686778965181884918476574547435047163503238456956343331587732261609865823534438041381128564408192375792207735711406538402184536645562930891604760879017553233706791616430883867516303342809852532502051293395311114390475252665033534773<235>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク