Table of contents 目次

  1. About 822...229 822...229 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 822...229 822...229 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 822...229 822...229 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 822...229 822...229 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

82w9 = { 89, 829, 8229, 82229, 822229, 8222229, 82222229, 822222229, 8222222229, 82222222229, … }

1.3. General term 一般項

74×10n+619 (1≤n)

2. Prime numbers of the form 822...229 822...229 の形の素数

2.1. Last updated 最終更新日

October 27, 2015 2015 年 10 月 27 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 74×101+619 = 89 is prime. は素数です。
  2. 74×102+619 = 829 is prime. は素数です。
  3. 74×105+619 = 822229 is prime. は素数です。
  4. 74×108+619 = 822222229 is prime. は素数です。
  5. 74×1014+619 = 8(2)139<15> is prime. は素数です。
  6. 74×1055+619 = 8(2)549<56> is prime. は素数です。
  7. 74×10103+619 = 8(2)1029<104> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / December 6, 2004 2004 年 12 月 6 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 6, 2005 2005 年 1 月 6 日)
  8. 74×10331+619 = 8(2)3309<332> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / December 6, 2004 2004 年 12 月 6 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 6, 2005 2005 年 1 月 6 日)
  9. 74×101067+619 = 8(2)10669<1068> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / September 14, 2006 2006 年 9 月 14 日)
  10. 74×1013711+619 = 8(2)137109<13712> is PRP. はおそらく素数です。 (Ray Chandler / srsieve, PFGW / September 9, 2010 2010 年 9 月 9 日)
  11. 74×1024397+619 = 8(2)243969<24398> is PRP. はおそらく素数です。 (Ray Chandler / srsieve, PFGW / September 14, 2010 2010 年 9 月 14 日)
  12. 74×1054583+619 = 8(2)545829<54584> is PRP. はおそらく素数です。 (Bob Price / October 26, 2015 2015 年 10 月 26 日)

2.3. Range of search 捜索範囲

  1. n≤30000 / Completed 終了 / Ray Chandler / September 19, 2010 2010 年 9 月 19 日
  2. n≤50000 / Completed 終了 / Erik Branger / May 1, 2013 2013 年 5 月 1 日
  3. n≤100000 / Completed 終了 / Bob Price / October 26, 2015 2015 年 10 月 26 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

  1. 74×103k+619 = 3×(74×100+619×3+74×103-19×3×k-1Σm=0103m)
  2. 74×106k+3+619 = 13×(74×103+619×13+74×103×106-19×13×k-1Σm=0106m)
  3. 74×106k+4+619 = 7×(74×104+619×7+74×104×106-19×7×k-1Σm=0106m)
  4. 74×1016k+4+619 = 17×(74×104+619×17+74×104×1016-19×17×k-1Σm=01016m)
  5. 74×1018k+17+619 = 19×(74×1017+619×19+74×1017×1018-19×19×k-1Σm=01018m)
  6. 74×1021k+10+619 = 43×(74×1010+619×43+74×1010×1021-19×43×k-1Σm=01021m)
  7. 74×1022k+9+619 = 23×(74×109+619×23+74×109×1022-19×23×k-1Σm=01022m)
  8. 74×1028k+25+619 = 29×(74×1025+619×29+74×1025×1028-19×29×k-1Σm=01028m)
  9. 74×1030k+3+619 = 211×(74×103+619×211+74×103×1030-19×211×k-1Σm=01030m)
  10. 74×1032k+21+619 = 353×(74×1021+619×353+74×1021×1032-19×353×k-1Σm=01032m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 14.00%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 14.00% です。

3. Factor table of 822...229 822...229 の素因数分解表

3.1. Last updated 最終更新日

July 30, 2017 2017 年 7 月 30 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=196, 201, 202, 203, 208, 209, 210, 213, 214, 216, 217, 218, 219, 224, 225, 226, 227, 229, 230, 231, 233, 239, 241, 242, 243, 244, 245, 246, 248, 250 (30/250)

3.4. Factor table 素因数分解表

74×101+619 = 89 = definitely prime number 素数
74×102+619 = 829 = definitely prime number 素数
74×103+619 = 8229 = 3 × 13 × 211
74×104+619 = 82229 = 7 × 17 × 691
74×105+619 = 822229 = definitely prime number 素数
74×106+619 = 8222229 = 34 × 83 × 1223
74×107+619 = 82222229 = 173 × 475273
74×108+619 = 822222229 = definitely prime number 素数
74×109+619 = 8222222229<10> = 3 × 13 × 23 × 2333 × 3929
74×1010+619 = 82222222229<11> = 7 × 43 × 273163529
74×1011+619 = 822222222229<12> = 227 × 3622124327<10>
74×1012+619 = 8222222222229<13> = 3 × 399277 × 6864259
74×1013+619 = 82222222222229<14> = 2215181 × 37117609
74×1014+619 = 822222222222229<15> = definitely prime number 素数
74×1015+619 = 8222222222222229<16> = 32 × 13 × 33751 × 2082172487<10>
74×1016+619 = 82222222222222229<17> = 7 × 265819 × 44188081913<11>
74×1017+619 = 822222222222222229<18> = 19 × 47629 × 908582036179<12>
74×1018+619 = 8222222222222222229<19> = 3 × 50909 × 53836074971827<14>
74×1019+619 = 82222222222222222229<20> = 120401 × 283697 × 2407156757<10>
74×1020+619 = 822222222222222222229<21> = 17 × 5443 × 17223793 × 515909063
74×1021+619 = 8222222222222222222229<22> = 3 × 13 × 353 × 346210357 × 1725082391<10>
74×1022+619 = 82222222222222222222229<23> = 7 × 1136063 × 10339243286711869<17>
74×1023+619 = 822222222222222222222229<24> = 60048409 × 13692656240437981<17>
74×1024+619 = 8222222222222222222222229<25> = 32 × 95479 × 25624019 × 373414855481<12>
74×1025+619 = 82222222222222222222222229<26> = 29 × 4583 × 11489 × 53846704096219423<17>
74×1026+619 = 822222222222222222222222229<27> = 109 × 2320897 × 3749587 × 866808996979<12>
74×1027+619 = 8222222222222222222222222229<28> = 3 × 13 × 71 × 107 × 337 × 739 × 17578909 × 6338933849<10>
74×1028+619 = 82222222222222222222222222229<29> = 7 × 643 × 577867 × 659689757 × 47919531391<11>
74×1029+619 = 822222222222222222222222222229<30> = 157 × 397 × 123475087783<12> × 106836513673147<15>
74×1030+619 = 8222222222222222222222222222229<31> = 3 × 2740740740740740740740740740743<31>
74×1031+619 = 82222222222222222222222222222229<32> = 23 × 43 × 8529109 × 9747410451729265247029<22>
74×1032+619 = 822222222222222222222222222222229<33> = 1637 × 502273807099708138193171791217<30>
74×1033+619 = 8222222222222222222222222222222229<34> = 33 × 13 × 211 × 111019594958510177046248662889<30>
74×1034+619 = 82222222222222222222222222222222229<35> = 7 × 313 × 991 × 2310917630173<13> × 16386594708353033<17>
74×1035+619 = 822222222222222222222222222222222229<36> = 19 × 617 × 70137526420047958903200735496223<32>
74×1036+619 = 8222222222222222222222222222222222229<37> = 3 × 17 × 322568177383636957<18> × 499801452457730947<18>
74×1037+619 = 82222222222222222222222222222222222229<38> = 47 × 853 × 911 × 1044739 × 2154845499264488406084011<25>
74×1038+619 = 822222222222222222222222222222222222229<39> = 65428159 × 38895316969<11> × 323092736627512061299<21>
74×1039+619 = 8222222222222222222222222222222222222229<40> = 3 × 13 × 132111631 × 1595818696888321863279594291181<31>
74×1040+619 = 82222222222222222222222222222222222222229<41> = 72 × 17366939 × 750340428371<12> × 128769053806434513509<21>
74×1041+619 = 822222222222222222222222222222222222222229<42> = 8426023536038539<16> × 97581287152300868792239711<26>
74×1042+619 = 8222222222222222222222222222222222222222229<43> = 32 × 479 × 433351393 × 4401198846905695110791393152723<31>
74×1043+619 = 82222222222222222222222222222222222222222229<44> = 7213 × 11399171249441594651632084045781536423433<41>
74×1044+619 = 822222222222222222222222222222222222222222229<45> = 1039 × 9373753331<10> × 616905957079<12> × 136848858074127638639<21>
74×1045+619 = 8222222222222222222222222222222222222222222229<46> = 3 × 13 × 89 × 70313 × 1868051 × 78873433879<11> × 228654362014187581687<21>
74×1046+619 = 82222222222222222222222222222222222222222222229<47> = 7 × 59 × 191597649298654772423<21> × 1039079991637686245717471<25>
74×1047+619 = 822222222222222222222222222222222222222222222229<48> = 83 × 67484663 × 5855182693<10> × 25070649425665594398053202157<29>
74×1048+619 = 8222222222222222222222222222222222222222222222229<49> = 3 × 382661 × 213503489 × 33546620596563807366991198144680667<35>
74×1049+619 = 82222222222222222222222222222222222222222222222229<50> = 97 × 39929 × 69389 × 305941515503175493293021071886588857297<39>
74×1050+619 = 822222222222222222222222222222222222222222222222229<51> = 173 × 698058903669877<15> × 6808493643207762947871750320506949<34>
74×1051+619 = 8(2)509<52> = 32 × 13 × 17240087532914998901<20> × 4076278816715183684417236989437<31>
74×1052+619 = 8(2)519<53> = 7 × 17 × 43 × 5926758587<10> × 2711168785628214140112371062911439663451<40>
74×1053+619 = 8(2)529<54> = 19 × 23 × 29 × 269 × 353 × 4602644710168377152893<22> × 148448337473263274598973<24>
74×1054+619 = 8(2)539<55> = 3 × 199 × 7300963 × 336622269494541243671<21> × 5603919499230068390001709<25>
74×1055+619 = 8(2)549<56> = definitely prime number 素数
74×1056+619 = 8(2)559<57> = 2025923 × 9815946583521103<16> × 21383714393783591<17> × 1933530128642057551<19>
74×1057+619 = 8(2)569<58> = 3 × 13 × 23687 × 8900502842327471871103398945675299793592528003808453<52>
74×1058+619 = 8(2)579<59> = 7 × 172673 × 19870951 × 32830663 × 154990757 × 672763824507898381770500374679<30>
74×1059+619 = 8(2)589<60> = 22414698556079<14> × 9313371564288485809<19> × 3938668029319623035332741739<28>
74×1060+619 = 8(2)599<61> = 33 × 185327 × 475831 × 3453297688748276822901565855572150492523649157671<49>
74×1061+619 = 8(2)609<62> = 961993 × 4500610591<10> × 167137561823<12> × 113624451067858206133040167284007021<36>
74×1062+619 = 8(2)619<63> = 71 × 2411 × 82633 × 134699 × 43687683031<11> × 9877720811772602049873602014645174517<37>
74×1063+619 = 8(2)629<64> = 3 × 13 × 131 × 211 × 3637603 × 2858188050947676399881<22> × 733609174005588318522313890497<30>
74×1064+619 = 8(2)639<65> = 7 × 797 × 1460278555541784487<19> × 10092462428364953186607218203248835959542473<44>
74×1065+619 = 8(2)649<66> = 12524014519<11> × 17483929727489<14> × 560359278255159853<18> × 6701006332570590033628223<25>
74×1066+619 = 8(2)659<67> = 3 × 30139 × 167729 × 542164352728672188302195610033975780010135646375253955253<57>
74×1067+619 = 8(2)669<68> = 223979346938519270115182371301<30> × 367097338866657355486077683351882604529<39> (Makoto Kamada / msieve 0.81 / 1.8 minutes)
74×1068+619 = 8(2)679<69> = 17 × 118423 × 806382079 × 166287068002019<15> × 3045824577484717243560429429045958745119<40>
74×1069+619 = 8(2)689<70> = 32 × 132 × 151 × 56101 × 5909064163682923019026588391<28> × 107992536161182895847170730300289<33>
74×1070+619 = 8(2)699<71> = 7 × 167 × 72353 × 392669947457<12> × 2619772094512404686273<22> × 944989493265168807256971783077<30>
74×1071+619 = 8(2)709<72> = 19 × 431 × 674529601 × 470163823897<12> × 316597963035551557000833652487430155940335137313<48>
74×1072+619 = 8(2)719<73> = 3 × 379 × 3761 × 349930700064245863<18> × 15903407792249498117287<23> × 345504072946379831200792837<27>
74×1073+619 = 8(2)729<74> = 43 × 8784277 × 217678097223297632916392794159706299933504136099613302537848132739<66>
74×1074+619 = 8(2)739<75> = 1697 × 564359 × 19527727 × 43964305572316495472495164949971585109850598412131062582349<59>
74×1075+619 = 8(2)749<76> = 3 × 13 × 23 × 3788779 × 5324432383819505809<19> × 454385200178730938705858862725140817025326579087<48>
74×1076+619 = 8(2)759<77> = 7 × 125120627141459<15> × 24799980604582444273<20> × 3785392493424905360810343406302705018565921<43>
74×1077+619 = 8(2)769<78> = 10490587 × 3349033304129<13> × 3740656752913<13> × 6256365255083443007922893799675773252465299871<46>
74×1078+619 = 8(2)779<79> = 32 × 97607 × 9359782053680373814517199042216032117712666580404891523288086376116264683<73>
74×1079+619 = 8(2)789<80> = 5737 × 213359 × 306326770233773587<18> × 219284755687583620813217143621439525269453874890874449<54>
74×1080+619 = 8(2)799<81> = 107 × 34877 × 5235679 × 258610223 × 162722500929741591551299194812231739833518797780353154736283<60>
74×1081+619 = 8(2)809<82> = 3 × 13 × 29 × 113 × 728461626307766556203<21> × 88316425421650167985030868849757290919903706204531205581<56>
74×1082+619 = 8(2)819<83> = 72 × 1289 × 1567 × 4247729 × 69316823 × 40302824441791135813157<23> × 70006809048337767199869022568953912193<38>
74×1083+619 = 8(2)829<84> = 47 × 599 × 1709 × 17089228912352815869495821767822396669070959519766618035570828153247420098577<77>
74×1084+619 = 8(2)839<85> = 3 × 17 × 58071365186347<14> × 447327961297969429<18> × 168534047452586308540891<24> × 36825046330561179042975798563<29>
74×1085+619 = 8(2)849<86> = 353 × 8203317937<10> × 2750224906978602537519339368906003<34> × 10324208107816513438410086288534102145863<41> (Makoto Kamada / msieve 0.83)
74×1086+619 = 8(2)859<87> = 172219 × 2866539780659724703<19> × 619814931575197921499719141<27> × 2687126671950306927018741660274877917<37>
74×1087+619 = 8(2)869<88> = 38 × 13 × 6716579435927<13> × 14352503610125050042404636574804836429433514317230377239041019371385439<71>
74×1088+619 = 8(2)879<89> = 7 × 83 × 141518454771466819659590743928093325683687129470262000382482310193153566647542551157009<87>
74×1089+619 = 8(2)889<90> = 192 × 89 × 17165105959<11> × 1490889695623738992687932482708041118161338599773847772113317431478681405539<76>
74×1090+619 = 8(2)899<91> = 3 × 331 × 13447310654468501<17> × 241859659949060751467297<24> × 2545898504622942173102178707903694930837412603649<49>
74×1091+619 = 8(2)909<92> = 179 × 263 × 208809179 × 219746377 × 13575187156151075184631427<26> × 2803905004289845410589022861920656892491028697<46>
74×1092+619 = 8(2)919<93> = 478913951 × 9735676337<10> × 17077772111<11> × 16559034290824680001<20> × 623590334465348234686683012096621302944098197<45>
74×1093+619 = 8(2)929<94> = 3 × 13 × 173 × 211 × 389 × 1347251324738525653<19> × 11020411827804523389442009799372140432707145928075023550658355035661<68>
74×1094+619 = 8(2)939<95> = 7 × 43 × 199889967962361140036073813323288704102309<42> × 1366569477008063671462698083022701233736523666258581<52> (Makoto Kamada / GGNFS-0.71.4 / 0.33 hours)
74×1095+619 = 8(2)949<96> = 907 × 1072105907<10> × 30914260237033<14> × 2926702539384094591<19> × 9345591448026352087888807147003596873554981623126307<52>
74×1096+619 = 8(2)959<97> = 32 × 2083 × 5801 × 2734133 × 491847211 × 56221796086221546290773297835143418915971891714530829648022353737597564689<74>
74×1097+619 = 8(2)969<98> = 23 × 71 × 919 × 3540255091<10> × 236730630706979<15> × 163922473039198838694723457<27> × 398804459045804103657421739642015806995499<42>
74×1098+619 = 8(2)979<99> = 2281 × 2389 × 8329822738797011<16> × 66673889218286309<17> × 255586759058505449185256333339<30> × 1062962333963175154396719640421<31>
74×1099+619 = 8(2)989<100> = 3 × 13 × 237681107 × 97168581300265602297322098342853357<35> × 9128597948442007212617265101803062392310080985881205589<55> (Makoto Kamada / GGNFS-0.71.4 / 0.49 hours)
74×10100+619 = 8(2)999<101> = 7 × 17 × 47547405758463454155029<23> × 14531666509717667645987696021956451729980200639083160468268718628893323924679<77>
74×10101+619 = 8(2)1009<102> = 35969 × 7225091 × 1504183714746463896123527701<28> × 2103374684621462200370272319922474903776790433769866549337774251<64>
74×10102+619 = 8(2)1019<103> = 3 × 2740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740743<103>
74×10103+619 = 8(2)1029<104> = definitely prime number 素数
74×10104+619 = 8(2)1039<105> = 59 × 20249 × 46152103 × 3925779039426133<16> × 49884644869313957<17> × 77153939509088154602197897<26> × 986941202584019113518046166628689<33>
74×10105+619 = 8(2)1049<106> = 32 × 13 × 127272179963<12> × 14523262420729368499<20> × 38019436954092381757482827356978235743438667110620335967181703674073773601<74>
74×10106+619 = 8(2)1059<107> = 7 × 11595403223<11> × 1012990365245166087118661966174882198984140643716167733285391393760912425645107878283548159086389<97>
74×10107+619 = 8(2)1069<108> = 19 × 157 × 282439 × 2106917 × 42635101 × 2250840383065374476660390416449163<34> × 4826717376865668928860462385967332051145261248208927<52> (Serge Batalov / Msieve 1.44 snfs / 0.29 hours / January 7, 2010 2010 年 1 月 7 日)
74×10108+619 = 8(2)1079<109> = 3 × 39733 × 109789 × 28007521 × 404211584725349<15> × 55497617887756017082338783928097095905661157365031419760523348338444461329691<77>
74×10109+619 = 8(2)1089<110> = 29 × 2801 × 1152187 × 416513629667<12> × 269288411582341<15> × 368834081315578377221<21> × 21236219537195773634928663182344140887677371721068929<53>
74×10110+619 = 8(2)1099<111> = 2183402180243<13> × 376578456164550342884716039305793962645450088036175658132498309265233550820568691276484861914920503<99>
74×10111+619 = 8(2)1109<112> = 3 × 13 × 23452305379<11> × 563602112372708317617980288191911035029<39> × 15950211657730988415038334312149400688661818233423030683679421<62> (Dmitry Domanov / Msieve 1.40 snfs / 1.67 hours / January 8, 2010 2010 年 1 月 8 日)
74×10112+619 = 8(2)1119<113> = 7 × 270294352107837988914785147<27> × 12315529416530574258342835486792509285359<41> × 3528589303767227768984353376316517100677173239<46> (Serge Batalov / Msieve 1.44 snfs / 0.40 hours / January 7, 2010 2010 年 1 月 7 日)
74×10113+619 = 8(2)1129<114> = 36353 × 3674415115243<13> × 6155463138166200847406801433500049401058130963037916861659911316208610920509288304040578559335551<97>
74×10114+619 = 8(2)1139<115> = 33 × 466789304825129780672681<24> × 652385874790503772678597142031161472691287271725828741905246495565456208423749802897662967<90>
74×10115+619 = 8(2)1149<116> = 43 × 1912144702842377260981912144702842377260981912144702842377260981912144702842377260981912144702842377260981912144703<115>
74×10116+619 = 8(2)1159<117> = 17 × 20143 × 3395884229<10> × 707071382267859275956798831556882624129582069479716277701842857112456921991413557544633805517166827471<102>
74×10117+619 = 8(2)1169<118> = 3 × 13 × 353 × 2237 × 3613 × 1589671 × 69433913 × 54361775901370432690685956933<29> × 64313171285297783929945243109<29> × 191488853364873933409263314808215117<36>
74×10118+619 = 8(2)1179<119> = 7 × 21377 × 37021 × 14842131238553343364114555467084639839589104890241638116095814472597033676228429782475338549249721800862088991<110>
74×10119+619 = 8(2)1189<120> = 23 × 683505316609<12> × 152311743602256834131893227862610363<36> × 343388769460329724607509143765235446375447611714594605904033116462036969<72> (Dmitry Domanov / Msieve 1.40 snfs / 2.10 hours / January 8, 2010 2010 年 1 月 8 日)
74×10120+619 = 8(2)1199<121> = 3 × 1483 × 3266587 × 565760437932938050214397598818167430679114992754820569347871810716225869319681993363487139727356693364701193583<111>
74×10121+619 = 8(2)1209<122> = 4241 × 2287133 × 8476752785510683192158216865791095478348230674620357664284016331501291804139079383010829364510032897117505493193<112>
74×10122+619 = 8(2)1219<123> = 71578810946775887<17> × 308559185494221721031115233840989489929686135251099<51> × 37227703913746085009705651168927833103843223313423056833<56> (Dmitry Domanov / Msieve 1.40 snfs / 2.70 hours / January 8, 2010 2010 年 1 月 8 日)
74×10123+619 = 8(2)1229<124> = 32 × 13 × 149 × 211 × 617 × 26191735476509<14> × 695752493577978895594182027155123<33> × 198806423896384388179349647760961233335965448691161387893058084659857<69> (Serge Batalov / GMP-ECM B1=2000000, sigma=4164752218 for P33 / January 7, 2010 2010 年 1 月 7 日)
74×10124+619 = 8(2)1239<125> = 72 × 227 × 1423 × 109819 × 611660091677869443698438990618077<33> × 77334760119304703633257726425254190631007829847515523658433192775691093059416727<80> (Sinkiti Sibata / Msieve 1.40 snfs / 2.39 hours / January 7, 2010 2010 年 1 月 7 日)
74×10125+619 = 8(2)1249<126> = 19 × 13331 × 156703 × 2677228606403198399020169521<28> × 7737668386127618568862361507435438138227246466684601364757330476548277984518509088335747<88>
74×10126+619 = 8(2)1259<127> = 3 × 224153 × 1282685381<10> × 3748746471157<13> × 10027193854501279<17> × 169321191289383588566797568339453<33> × 1497705616135215151950571088201633519490405701642989<52> (Erik Branger / YAFU, Msieve 1.38 for P33 x P52 / January 7, 2010 2010 年 1 月 7 日)
74×10127+619 = 8(2)1269<128> = 828881 × 4935360959<10> × 223152903907<12> × 90069045761470901877599762395961239026209990634061720399671874279202952507369877205629369127914001993<101>
74×10128+619 = 8(2)1279<129> = 397 × 11158333 × 1099819187<10> × 58513667018190925187807399<26> × 92081313164167325482147471<26> × 7543019893855306236985531607<28> × 4152446258124089689826224201889<31> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=444168257 for P31 / January 2, 2010 2010 年 1 月 2 日)
74×10129+619 = 8(2)1289<130> = 3 × 13 × 47 × 83 × 652969 × 599981715287<12> × 137948846786667396010680661718931330921013238029880611601312391498059985427199204256488538151186121533763537<108>
74×10130+619 = 8(2)1299<131> = 7 × 1277 × 93187921 × 8439850721<10> × 13486540559<11> × 29276487208640226109<20> × 1504620058279480755828742183<28> × 19686091943740488517416537607406219340630135090807427<53>
74×10131+619 = 8(2)1309<132> = 2141 × 413185358904376313699<21> × 30077909008622548044353253013906869320109768993839<50> × 30901529644113559795933340314846783596945720882425778499229<59> (Sinkiti Sibata / Msieve 1.40 snfs / 4.88 hours / January 7, 2010 2010 年 1 月 7 日)
74×10132+619 = 8(2)1319<133> = 32 × 17 × 71 × 5683 × 414325098739<12> × 4906204250966572979<19> × 525286868194175456461425833469200997553121<42> × 124732137236597124299479259344598093222594463617754001<54> (shyguy7129 / GGNFS + Msieve snfs / 5.18 hours / January 8, 2010 2010 年 1 月 8 日)
74×10133+619 = 8(2)1329<134> = 89 × 107 × 73767698332311011634096296921<29> × 5294399409827762808332632881330818085333095447<46> × 22107136437040060994768073626652028750232701115579239529<56> (Dmitry Domanov / Msieve 1.40 snfs / 3.37 hours / January 7, 2010 2010 年 1 月 7 日)
74×10134+619 = 8(2)1339<135> = 109 × 63368731 × 154960141651481<15> × 4057458586062703612029335761127479<34> × 15436543152310225598368474527791023<35> × 12264886975559850192793987844965840654871963<44> (Sinkiti Sibata / GGNFS-0.77.1-20050930-pentium4 snfs / 8.40 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / January 8, 2010 2010 年 1 月 8 日)
74×10135+619 = 8(2)1349<136> = 3 × 13 × 643 × 21637002193<11> × 184088286094780011242811811<27> × 82317161580846753831857776887518958840739590870910584441492851143668360379061910712226750149499<95>
74×10136+619 = 8(2)1359<137> = 7 × 43 × 173 × 1129 × 206602763 × 13201031184343<14> × 31842338635991009798141<23> × 13097137395671920573521050117<29> × 1229581576431608065785143757471702126160256609674176134969<58>
74×10137+619 = 8(2)1369<138> = 29 × 359 × 701 × 5699647 × 281283920903983<15> × 83384128687997302789133<23> × 850320701796123859458682106390536633<36> × 991105148313600438455540385460772304998188865430751<51> (Erik Branger / YAFU, Msieve 1.38 for P36 x P51 / January 7, 2010 2010 年 1 月 7 日)
74×10138+619 = 8(2)1379<139> = 3 × 1621 × 8429 × 217439 × 393272022966326824531264897427936939608690387548592243471<57> × 2345732001028880186193569612081078799907505960957335755961949462064583<70> (Sinkiti Sibata / Msieve 1.40 snfs / 6.00 hours on Core i7 2.93GHz,Windows 7 64bit,and Cygwin / January 7, 2010 2010 年 1 月 7 日)
74×10139+619 = 8(2)1389<140> = 1093 × 1453 × 5949673 × 35584671959<11> × 268903685413698705335803697688053334250971456393227647447<57> × 909390924870270212389431646476961814963913114366986796434269<60> (Sinkiti Sibata / Msieve 1.40 snfs / 5.29 hours on Core i7 2.93GHz,Windows 7 64bit,and Cygwin / January 8, 2010 2010 年 1 月 8 日)
74×10140+619 = 8(2)1399<141> = 92867 × 69339283267<11> × 127687518196948416699715654344150365592424183648912151749215310632266960497950027540097331396877153078970437941382623163247661<126>
74×10141+619 = 8(2)1409<142> = 33 × 13 × 23 × 443 × 2299061197001241275567618791793010176670114947778222987871737612743708642335702018802530247334556993121239966966840174329732786020067511<136>
74×10142+619 = 8(2)1419<143> = 7 × 409 × 2287 × 20029 × 9148429427928414152709476008831<31> × 68532391768702194951548065759169593855181238118508786626701094696198350057951521995708110204774589991<101> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=1568952423 for P31 / January 3, 2010 2010 年 1 月 3 日)
74×10143+619 = 8(2)1429<144> = 19 × 883979 × 157796428721882109569<21> × 310239071136081606414230320282100308124220255959586220946486475867188600730740703066887834148857287023508160751297541<117>
74×10144+619 = 8(2)1439<145> = 3 × 151 × 8489587 × 20340059521<11> × 138365813388194921214268739999485931<36> × 759667286995725489569349363880057661728543433984309394319325938667903899066235091809916289<90> (Sinkiti Sibata / Msieve 1.40 snfs / 10.98 hours / January 9, 2010 2010 年 1 月 9 日)
74×10145+619 = 8(2)1449<146> = 97 × 709 × 98419 × 397729 × 526297 × 11638507862518469588560300721230689632287<41> × 4986281992248512052445605743357890520827837027950743835582519202556415425478329591357<85> (Sinkiti Sibata / Msieve 1.40 snfs / 13.91 hours / January 8, 2010 2010 年 1 月 8 日)
74×10146+619 = 8(2)1459<147> = 523 × 6427 × 184039 × 184463 × 200789 × 152520018401<12> × 15285115135031868663563677727191519<35> × 15393047483266650909725303829490391528592330488710286215563521004931224980954927<80> (shyguy7129 / GGNFS + Msieve snfs / 19.81 hours / January 10, 2010 2010 年 1 月 10 日)
74×10147+619 = 8(2)1469<148> = 3 × 132 × 262111 × 1583418967105781831<19> × 39075105634199783054781981785279063899941080520772870966370543060939688493087530861139505429047090266554980293778157556167<122>
74×10148+619 = 8(2)1479<149> = 7 × 17 × 223 × 18835290329<11> × 359375423939382003085342542851294115949019065457009145021002605667<66> × 457737710087231678535107657848337878598286151785054391716728576121319<69> (Dmitry Domanov / Msieve 1.40 snfs / 15.72 hours / January 8, 2010 2010 年 1 月 8 日)
74×10149+619 = 8(2)1489<150> = 353 × 4127 × 128341 × 3081017 × 13206917 × 6389396731019416694573130656746545918967681429894297<52> × 16914502120444679276888342279115445975072760206981608675730931356352137603<74> (Sinkiti Sibata / Msieve 1.42 snfs / 14 hours / January 8, 2010 2010 年 1 月 8 日)
74×10150+619 = 8(2)1499<151> = 32 × 467 × 122143427592167<15> × 16016208626391003957830554488291572094962230680403382732783025921946802999240373616006755653447516834601629372598353397534245741273129<134>
74×10151+619 = 8(2)1509<152> = 30553 × 2691134167584925284660171577986522509155311171479796492070245875109554617295264694865388741603843230524734796001120093680562374307669368710837633693<148>
74×10152+619 = 8(2)1519<153> = 1627 × 611991748695769888423987<24> × 197935957828519560016482701316644219216278736938883<51> × 4171876020433259762883063864950224175027277146864817123355751540268198683687<76> (Sinkiti Sibata / Msieve 1.40 snfs / March 31, 2010 2010 年 3 月 31 日)
74×10153+619 = 8(2)1529<154> = 3 × 13 × 199 × 211 × 227849 × 23615868443<11> × 577309307595364985090157123790789703741070254251<48> × 1616327881230949276363851496813791544360107076908992190408156743793736244284562112407<85> (Sinkiti Sibata / Msieve 1.40 snfs / March 31, 2010 2010 年 3 月 31 日)
74×10154+619 = 8(2)1539<155> = 7 × 27340240007<11> × 407034933470917<15> × 1055497390004396058481884465547516210062291548992329260525498351622760577811174389320617254960211692018048514318519181258635455713<130>
74×10155+619 = 8(2)1549<156> = 517268953 × 8255733750613<13> × 2988220443458389<16> × 19671462372971664251<20> × 806746457347771742426228999691748425494695465561<48> × 4060044310782874680411903731568586134482027285271959<52> (Sinkiti Sibata / Msieve 1.40 gnfs for P48 x P52 / March 30, 2010 2010 年 3 月 30 日)
74×10156+619 = 8(2)1559<157> = 3 × 3115781 × 3757399 × 36892877748459391136453404288867469198815076017401205567<56> × 6345577939776117441025008898664938991576378096469733596811861656744435072075364217259491<88> (Sinkiti Sibata / Msieve 1.40 snfs / April 1, 2010 2010 年 4 月 1 日)
74×10157+619 = 8(2)1569<158> = 43 × 233 × 2741003 × 1036635259236066206747041644334067361649966967<46> × 2888213850558619199204779365515972699538403861938660428442717490889004527922004611327893538367641780691<103> (Sinkiti Sibata / Msieve 1.40 snfs / April 2, 2010 2010 年 4 月 2 日)
74×10158+619 = 8(2)1579<159> = 373 × 31854333997<11> × 3125710237970084363<19> × 1907844787992786459991635189704524108378760204194429<52> × 11604330622337887122785123626985149308587875103018952594868664658472878827867<77> (Sinkiti Sibata / Msieve 1.40 snfs / April 2, 2010 2010 年 4 月 2 日)
74×10159+619 = 8(2)1589<160> = 32 × 13 × 1433 × 292183 × 1306033 × 602517989070160070464048347523<30> × 213293708718106577700012677394310993694280852710645804879329093304972889705850516156305826690570058284729675266437<114> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=2977238158 for P30 / March 26, 2010 2010 年 3 月 26 日)
74×10160+619 = 8(2)1599<161> = 7 × 643469 × 154091199386573<15> × 27956652337617131<17> × 155283479091715192741<21> × 27288224995898390818248949681662013544910950030066125997423259094761406005827741064406328183545002008461<104>
74×10161+619 = 8(2)1609<162> = 19 × 43274853801169590643274853801169590643274853801169590643274853801169590643274853801169590643274853801169590643274853801169590643274853801169590643274853801169591<161>
74×10162+619 = 8(2)1619<163> = 3 × 59 × 1063 × 219839 × 2797637 × 3377700311<10> × 2468532907573<13> × 195005648311587175471983994378671737<36> × 43699790073342239707069512943552382784135903153381120509984664853651407068029515931391323<89> (Sinkiti Sibata / Msieve 1.40 snfs / April 3, 2010 2010 年 4 月 3 日)
74×10163+619 = 8(2)1629<164> = 23 × 3772193 × 947692556306938721485978444878802678974713604460003046114395781494630544944824705442329795290941557156277439101273130052076179815344436215015258535312646611<156>
74×10164+619 = 8(2)1639<165> = 17 × 181 × 860490671 × 68684155681<11> × 2950966949004318223128413622912556490328321176164233575621<58> × 1532126549828528676858853358370651175606147270025143052910551740219744157252440586387<85> (Sinkiti Sibata / Msieve 1.40 snfs / April 17, 2010 2010 年 4 月 17 日)
74×10165+619 = 8(2)1649<166> = 3 × 13 × 29 × 296666179 × 9415565013791<13> × 22124646391264159069<20> × 3242001031489982657771<22> × 174506595901583296335511054465270540313<39> × 207926980614571210707980939839080101188475789866681527118290013<63> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=2312737436 for P39 / March 26, 2010 2010 年 3 月 26 日)
74×10166+619 = 8(2)1659<167> = 72 × 147229 × 15252609482317049123<20> × 1727649013684251081659797571<28> × 319122607682136767445840456248044388031107<42> × 1355322125715911879483600834499924273229590414476588822701207912228743979<73> (Sinkiti Sibata / Msieve 1.40 gnfs for P42 x P73 / April 3, 2010 2010 年 4 月 3 日)
74×10167+619 = 8(2)1669<168> = 71 × 977 × 27091 × 287298871 × 1905919571111<13> × 83350072325475005387719862663237840155651015145429<50> × 9586648224892040765052446033902581847341000008033336584919265695673385064516575216504093<88> (Sinkiti Sibata / Msieve 1.40 snfs / April 20, 2010 2010 年 4 月 20 日)
74×10168+619 = 8(2)1679<169> = 34 × 2963562936419205337643268578330198833152684779492137<52> × 34252323470606524591921573285858219165216135534598184036189659993506763894282993614070761544724076556049056982028157<116> (Dmitry Domanov / GGNFS/msieve snfs / April 1, 2010 2010 年 4 月 1 日)
74×10169+619 = 8(2)1689<170> = 257 × 1431228607018069<16> × 1089550377607358700748446419<28> × 1271083983332198121494593086838073166164743<43> × 161408171215766129106114473918398384481725808287760698958734719042091040872511642189<84> (Andreas Tete / factmsieve.py + Msieve v.1.44 snfs / April 9, 2010 2010 年 4 月 9 日)
74×10170+619 = 8(2)1699<171> = 83 × 2083831721737<13> × 701357832202523<15> × 6778113264889885208807597691307294107194786604262517434650323696008874512984123085185669181631617988566967489933622254777534542021796993007213<142>
74×10171+619 = 8(2)1709<172> = 3 × 13 × 453421 × 163581403273354133807783<24> × 591019048499090493563443<24> × 341056268164008648254993101498575206275477<42> × 14101377185774550947233004881767227833667396586652565110730665035216616282807<77> (Sinkiti Sibata / Msieve 1.40 gnfs for P42 x P77 / April 3, 2010 2010 年 4 月 3 日)
74×10172+619 = 8(2)1719<173> = 7 × 8233 × 2946263 × 481819241463148204219<21> × 640158551776056676147<21> × 571152926347588656826935482867<30> × 2748763945283636460422246411729222711226850514116600381558698452317711446224337921066566303<91> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=1000184660 for P30 / March 26, 2010 2010 年 3 月 26 日)
74×10173+619 = 8(2)1729<174> = 877 × 63798480461689<14> × 127924023378064126746719<24> × 114875435789498466844245607843933247263626850978981641516125825103259601250757258209953150708628857713729777476383300321431181195824847<135>
74×10174+619 = 8(2)1739<175> = 3 × 1289 × 2473 × 33637 × 18428522872489289301429846522372290153765221855763837<53> × 1387021332635116781138865369055580232390098631757576603767088265754731642382415468689880731120724106487177342151<112> (Ignacio Santos / GGNFS, Msieve snfs / June 18, 2010 2010 年 6 月 18 日)
74×10175+619 = 8(2)1749<176> = 47 × 50551 × 2238088667471<13> × 15462663788627847668947791711498181621862633074719493970442360915675767379541311488875969431708372684156580032364121935755696366265425823998750744290535014867<158>
74×10176+619 = 8(2)1759<177> = 401 × 6079 × 62515058502546559708116318634737590343992641379<47> × 37932592897241475492559008185970618894826185560774173687<56> × 142237962396746912702647069659033931170459868410440074568496828217087<69> (Ignacio Santos / GGNFS, Msieve snfs / June 26, 2010 2010 年 6 月 26 日)
74×10177+619 = 8(2)1769<178> = 32 × 13 × 89 × 6682051 × 8917789 × 588464651 × 22517801347410922915807275170108036420277278162776554070359482885020676852204832433439111003212114427910605118786072821709435669081052176969125963407997<152>
74×10178+619 = 8(2)1779<179> = 7 × 432 × 35419 × 11324011 × 32986704488731017048713983173950954906055421<44> × 480152010067435088569150478715915040082944653436131498814464375785839505436531476350825863055732658940274816006676761727<120> (matsui / Msieve 1.47 snfs / September 8, 2010 2010 年 9 月 8 日)
74×10179+619 = 8(2)1789<180> = 19 × 173 × 677 × 51050495832703521339075341794172473211<38> × 7237704918915649931333583426480118845310098801801064208907334518416140313702580852491659146187548953636216993178650315062007137071206261<136> (Wataru Sakai / GMP-ECM 6.2.3 B1=3000000, sigma=2139430795 for P38 / June 28, 2010 2010 年 6 月 28 日)
74×10180+619 = 8(2)1799<181> = 3 × 172 × 27107 × 6644873 × 20475165567734167<17> × 154757179217756893904353849772561802401567<42> × 8030532659592034605011090227045008614608159062811<49> × 2069090048853393904845709644233327104002561634162890562720423<61> (Rich Dickerson / GMP-ECM 6.4.2 [config GMP 5.0.4] [ECM] B1=11000000, sigma=3343207952 for P42 / July 4, 2012 2012 年 7 月 4 日) (Warut Roonguthai / Msieve 1.48 gnfs for P49 x P61 / July 5, 2012 2012 年 7 月 5 日)
74×10181+619 = 8(2)1809<182> = 353 × 81937 × 2842722363188598544367111255767264230340660822851572526208546053959656983136536850177341121793331863799532233108350681718820115482983773176047963548800663310079979647951807589<175>
74×10182+619 = 8(2)1819<183> = 16369 × 16571969 × 274865321 × 931753600907<12> × 6607789892863711<16> × 1791082929238625015775790296586937401783766960006017210715253745776977830684331550458899314790679379925306319566480183509473253815635817<136>
74×10183+619 = 8(2)1829<184> = 3 × 13 × 211 × 3442580126808111033863955051765291151<37> × 422147227590106759463893091918110491831528159167<48> × 687533951527226813277498824659790602331337122675900634904913424270134207920090503113642330359553<96> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2467750341 for P37 / April 7, 2010 2010 年 4 月 7 日) (Dmitry Domanov / Msieve 1.40 snfs / November 2, 2012 2012 年 11 月 2 日)
74×10184+619 = 8(2)1839<185> = 7 × 193 × 127703 × 372076171 × 12009993167<11> × 17401209037<11> × 73115356007242952092198392125084062900100622763<47> × 83824335778015096338801269889685744374697977610616212049509235176592129433089004182213919477034428479<101> (Dmitry Domanov / Msieve 1.40 snfs / November 2, 2012 2012 年 11 月 2 日)
74×10185+619 = 8(2)1849<186> = 23 × 157 × 439 × 2939 × 562493 × 313747658495735212518189072181378785772054673402222863186803550367645311563608310035811770992064337532647638344583003248532599672217349886676067473820089830062271051185863<171>
74×10186+619 = 8(2)1859<187> = 32 × 107 × 4302743 × 66711433 × 29745224205748728193937066897559437743687681383333577258097013962626052814079136203699348794088476657100594563845398254675146609279390692017359378535282021276404138174857<170>
74×10187+619 = 8(2)1869<188> = 229 × 1163 × 77213 × 110745429379087602719086514215002201247<39> × 2787092486174505229601396694094890204172504689737765601871<58> × 12954074630555391105403652050787276739573831463798127093008969860067483585980339167<83> (Serge Batalov / GMP-ECM B1=1000000, sigma=339917771 for P39 / March 30, 2010 2010 年 3 月 30 日) (Dmitry Domanov / Msieve 1.40 snfs / November 4, 2012 2012 年 11 月 4 日)
74×10188+619 = 8(2)1879<189> = 2103009218807950241<19> × 4941752748973923982071400587593509169<37> × 642830615472361994353102612313264489844965945185261<51> × 123075176988218654445516139775769476582145320606592080428806313473194403672132078841<84> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1847879941 for P37 / October 29, 2012 2012 年 10 月 29 日) (Dmitry Domanov / November 5, 2012 2012 年 11 月 5 日)
74×10189+619 = 8(2)1889<190> = 3 × 13 × 19427 × 10852226840284697905534884996459094364071972555011624348114799548371381387287085542091461687899635086539909724137860237103558254533701077171504926691007918165997128266135318176292078593<185>
74×10190+619 = 8(2)1899<191> = 7 × 2903 × 3621237457403190741186482152085125067798657<43> × 6395279381638236458283151379527163947078002709<46> × 3685282567163983611865499700893355932282695100141<49> × 47408565664698889468202069470119222508978501346053<50> (Robert Backstrom / Msieve 1.42 snfs / April 7, 2010 2010 年 4 月 7 日)
74×10191+619 = 8(2)1909<192> = 953 × 8117 × 637528231 × 3707433489217<13> × 4977061424826233<16> × 676499604594649029559<21> × 86370460430638842374741147<26> × 154640124838348170871329817531554600236424340284501239387905731555901580757937373723937631560166960003<102>
74×10192+619 = 8(2)1919<193> = 3 × 679219 × 285727254362441<15> × 45570406716148198371173473993<29> × 81614885740563668687187065770877<32> × 25286104213455281469465971510906643929202629049100943<53> × 150166222641527318586444911508350902333311017811377248560479<60> (Makoto Kamada / GMP-ECM 6.2.3 B1=1e6, sigma=426062648 for P32 / March 27, 2010 2010 年 3 月 27 日) (Dmitry Domanov / Msieve 1.40 gnfs for P53 x P60 / March 31, 2010 2010 年 3 月 31 日)
74×10193+619 = 8(2)1929<194> = 29 × 113 × 131 × 70249 × 121943123 × 2064757569647<13> × 2420932904132653<16> × 144583508673718947277<21> × 859611249374567532300214723<27> × 35989129606215141320317185956620548412316256366815503092082077757336051670456724877208083579634685061<101>
74×10194+619 = 8(2)1939<195> = 6333419 × 64580430372294425914848067<26> × 2010249926035514082199352867635665568810378100121977774192783817846089388548877284856872477290703675340728137970670714122600648230379310871058977778939278236964373<163>
74×10195+619 = 8(2)1949<196> = 33 × 13 × 549203 × 1698713 × 50023234169<11> × 501946483069535840667138863561969233723707974943477277293724122515473926580296610362329795849545282077204221576603082633705252750339117403919781260080611641607057133734169<171>
74×10196+619 = 8(2)1959<197> = 7 × 17 × 883 × 7951 × 23549327 × [4179085838236387468079369857210218819601983324256573794901239329694428088753590232340707013337134907981491268976888272847931490602744925718492059517526212517056394568016550712104001<181>] Free to factor
74×10197+619 = 8(2)1969<198> = 19 × 1181 × 38083 × 153269912496139<15> × 569567753423758503299<21> × 5205285097541548714469<22> × 231320299902547506673721<24> × 476328262020391513079144130514216408137573328404846431<54> × 19217090616663627747080726084974468641977981757992890763<56> (Jo Yeong Uk / GGNFS/Msieve v1.39 gnfs for P54 x P56 / March 30, 2010 2010 年 3 月 30 日)
74×10198+619 = 8(2)1979<199> = 3 × 45177315295276235327233516956367458715840788087048997058591829921283016644327573<80> × 60666303936553619955888502152966745346543348424726601855455386095265283215113430373295104338945746294231865217126629291<119> (Dmitry Domanov / Msieve 1.40 snfs / June 3, 2010 2010 年 6 月 3 日)
74×10199+619 = 8(2)1989<200> = 43 × 27501194867<11> × 69529513611674058939422886301707480543593717452738590580936338554621998447962099630974995654643981809831590694597249492565510859559289956809615918057053949998556521299890040326910075752709<188>
74×10200+619 = 8(2)1999<201> = 331 × 499 × 464937204544848719<18> × 460583032584960198883242442674333092048693475909669249544853910029431973730747376592999<87> × 23246546099157826351728557243841478376567037070722724426606138687399989847349463079517745661<92> (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs / September 29, 2012 2012 年 9 月 29 日)
74×10201+619 = 8(2)2009<202> = 3 × 13 × 5542409 × [38038732043450930129989723029500498106658352140055132382115107496796217350763217010186513880665647523705093978236938274712462795659109752854909518735663648462397165352865662965476963325191415179<194>] Free to factor
74×10202+619 = 8(2)2019<203> = 7 × 71 × 1224943 × 9078449 × 96478729 × 304425986581<12> × 27970982568611297<17> × [18108574529837817159357295539332959791063210856245538478110481876392395888047399655929127386532409350155143477412598490900443954707537349260404531252567<152>] Free to factor
74×10203+619 = 8(2)2029<204> = 49057 × 1183411 × [14162914141429910357508672906655617947063608883212069527223600277375898643931816062569532844800612028963167235621646897288195562410759077629363383436071242373877321447703646187869498973181091127<194>] Free to factor
74×10204+619 = 8(2)2039<205> = 32 × 1085081384239<13> × 1314210329667341<16> × 640648054586456841950027055161130388557579728657105974131814245135490891552490953158664221980617555772154847067404644161050829454432524054996900731226000207516748222852015567919<177>
74×10205+619 = 8(2)2049<206> = 2444737 × 13179297891664370865031646130575119342669129613<47> × 2551906689825954261688445825490344934259508509195700145112376555400217282644122528760030091866445356730470596795675627227071226928493329669630044112495209<154> (Bob Backstrom / Msieve 1.44 snfs for P47 x P154 / July 30, 2017 2017 年 7 月 30 日)
74×10206+619 = 8(2)2059<207> = 287429238240377951<18> × 102976571424632220263364193<27> × 27779206641449957590431886397036292702076090665803432168423741561809851689139147180658330377235781519319532896901265869212948471262363674553786624130934463464516203<164>
74×10207+619 = 8(2)2069<208> = 3 × 13 × 23 × 8089 × 12827183489<11> × 56661605300585377<17> × 1559127924900476746802644022046949286161060211467433481783960434260194765299424810672478487826886572848619174431168251817293627465118380720112934167661745100647076623390677821<175>
74×10208+619 = 8(2)2079<209> = 72 × 3242530667<10> × [517498431772701655145034625689775694824866147674443921424996733711109902037425763801319817875186619565824890656793891078045696607749164318818851204849100221621348453035826909739801511733936496060463<198>] Free to factor
74×10209+619 = 8(2)2089<210> = 2526931177<10> × 25295880803<11> × [12863110203175963596541262375394358811254977125475487352833417418826028201494462360335108275553249512888728102093996075156310640548628157563474024144913169168569867676098815070070758769324559<191>] Free to factor
74×10210+619 = 8(2)2099<211> = 3 × 124206091301325330377<21> × [22066073507551846639747428711546919904255014883725317245860006021064125518227474833406121372310059914978334815957048930274775980058332494821044951870152077534580022910474621532834056531780559<191>] Free to factor
74×10211+619 = 8(2)2109<212> = 83 × 617 × 319747 × 2839972699<10> × 149544206857769093<18> × 65838949127127085867<20> × 179577874218954883076123767321504766423373084427944688197767312759919818318660601153476331748641578294245494421708094203081309972422378568842261534635320873<156>
74×10212+619 = 8(2)2119<213> = 17 × 11677279226689<14> × 172195150476110489243<21> × 24053468343005315541134539309506431348761536134750753375135287803330245587422461730361461966956949023581116664926306542068935306064428703236764611973500267202562593089790335492831<179>
74×10213+619 = 8(2)2129<214> = 32 × 13 × 211 × 353 × 980571754417<12> × [962203226175292242423898014409833246411855492836184448585936716434516760485469830982069038306179563644189052575899717169053720471193378291162692430124851307789139562918188478538759721253226032267<195>] Free to factor
74×10214+619 = 8(2)2139<215> = 7 × 5309201 × 4558655897<10> × 189731241981137<15> × [2557916372580663801723824390701667569286601191727723190721357849705403834618588025679209126884196364705457682628806915045702326217599732961361680497353983364812273417266573116005372123<184>] Free to factor
74×10215+619 = 8(2)2149<216> = 19 × 15061 × 17789 × 326340832123646895643854626263229<33> × 191382427899478991117016667289744191<36> × 425100255296843733066290944486751863322238127<45> × 6083666850930727742129759978046354525452646259409658481906694485953225343294672771398348585043<94> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=1103997946 for P36, B1=1000000, sigma=2768122652 for P33 / October 22, 2012 2012 年 10 月 22 日) (Erik Branger / GGNFS, Msieve gnfs for P45 x P94 / November 5, 2012 2012 年 11 月 5 日)
74×10216+619 = 8(2)2159<217> = 3 × 5827 × 1743143 × [269829806079765078565418627753265672642575884977675625178064410586710355889013142054203675171121513375316865868314804032508745760037870063705614321449728918190365769963464164793949424868468004378980425084363<207>] Free to factor
74×10217+619 = 8(2)2169<218> = 2729 × 16268601463<11> × 47741438891771057<17> × [38791801624883624326388306291610361235345470766726486515219274482244175256939178856706469252796427202090052398880733431106265091569255670350738606493942671722942050604214614928260729267211<188>] Free to factor
74×10218+619 = 8(2)2179<219> = 9640549 × [85287904477454782110668409259910636025212072696505377673224027202415777589245407312614895917465096875937482629072495998124403726615799807897062939280970639973120018602905521482461447187522434896832350753284094321<212>] Free to factor
74×10219+619 = 8(2)2189<220> = 3 × 13 × 151 × 383 × 3782869 × 7563431 × 614031137 × 723641123 × [286744500577767827669449574017217970402720195457253224197590063444181285718631296240553217522941033782621991609824952214812629027025922831201924780923715048408263791718604489957599203<183>] Free to factor
74×10220+619 = 8(2)2199<221> = 7 × 43 × 59 × 503 × 111699241 × 769407887296980233<18> × 982276138423973136229357<24> × 93982425368473484629227735092039<32> × 26355872289887574136004237654781923969275571<44> × 44018802602126389464376527118262363223587857683750972383950696860997714121794615615401373<89> (Makoto Kamada / GMP-ECM 6.4 B1=1e6, sigma=2250073189 for P32 / October 16, 2012 2012 年 10 月 16 日) (Erik Branger / GGNFS, Msieve gnfs for P44 x P89 / October 31, 2012 2012 年 10 月 31 日)
74×10221+619 = 8(2)2209<222> = 292 × 47 × 89 × 4834935311<10> × 48340894473824867667231798918209888915650332765348381560320635186462639308205312966016831992873429458674879597752736229152994601930995027455301995739191011323157943541680363139951397107185835815938708173813<206>
74×10222+619 = 8(2)2219<223> = 33 × 173 × 2495387 × 9904277 × 706773461 × 16586566986107214075426363098739360497<38> × 6075498473836138882178556728117437127262449688583544600264994312739839088336210729717072547422554043847580631235168362441654030644779053650564742779670404345353<160> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3070585272 for P38 / October 29, 2012 2012 年 10 月 29 日)
74×10223+619 = 8(2)2229<224> = 25867 × 7945057 × 10173697783<11> × 206154477793960811<18> × 179702011979437727455188710493943804393<39> × 1061503878944282468142664050764947493459892808755026228209848970630847336375062280967766106214765056555838010731909622625540991693065582982195302899<148> (Makoto Kamada / GMP-ECM 6.4 B1=1e6, sigma=659396470 for P39 / October 16, 2012 2012 年 10 月 16 日)
74×10224+619 = 8(2)2239<225> = 1861 × 929248300493<12> × 1741734641160482475266612569<28> × 72290766080046333633926513045729699<35> × [3776123981366047077636173918412424046115108212533997937991483551625863188202146515076520189006740483258444644142479139008101538783637653510975760383<148>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=123202846 for P35 / October 22, 2012 2012 年 10 月 22 日) Free to factor
74×10225+619 = 8(2)2249<226> = 3 × 132 × 165317 × 2960047 × 580579388297729461229726374018546373183<39> × [57082569622751894179567523767917615907762435798891302236275563755704681776160435091297512327965048214646778234850387319401399666684531349191054078175871413625628557566848691<173>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=289954965 for P39 / November 4, 2012 2012 年 11 月 4 日) Free to factor
74×10226+619 = 8(2)2259<227> = 7 × 2247463 × 28167397873<11> × [185546126024418804668989227275925897265432076831808818959651108531965979975277398747028551879948807912577287135539184469898516726372153183079386057514428398694623028578633697925957044502912285076302158891976853<210>] Free to factor
74×10227+619 = 8(2)2269<228> = 397 × 601 × 3387737819<10> × 19321614713213<14> × 141333242063029<15> × 1755679617066986011<19> × [212168757393878461961218882260429658304360935235070382997998403483459736276765212029657097701533978821719998322778868919019491346470630862133617181730729624424129188249<168>] Free to factor
74×10228+619 = 8(2)2279<229> = 3 × 17 × 254489 × 158013081739<12> × 4009193114087588523548014291691906318727267581105357312783618387052922398962073771047259048103869406724056762914210869935147094555949423578913459423100185428774247898443400402349193126045687385379986807127399149<211>
74×10229+619 = 8(2)2289<230> = 23 × 83903 × 744761 × [57209342740283282954015108247061244883390842087697670854276962935685318940085499955990876178469740078597366236955801479523912092199349977596320619477770754771410381043513662914760519983272163048508948323640641845441781<218>] Free to factor
74×10230+619 = 8(2)2299<231> = 3576311 × 1256267158839626320667202067<28> × [183008779689594633560805774738967507065212501781142225518215893836242448291639885149012256062767806009725482608633278650091667945252270903269124197372311340431129118843896730881421520344630122590017<198>] Free to factor
74×10231+619 = 8(2)2309<232> = 32 × 13 × [70275403608736942070275403608736942070275403608736942070275403608736942070275403608736942070275403608736942070275403608736942070275403608736942070275403608736942070275403608736942070275403608736942070275403608736942070275403608737<230>] Free to factor
74×10232+619 = 8(2)2319<233> = 7 × 176681524540130607670059350530064370399191904139098716062196490346973451551<75> × 66481380985388813611112176923719905563096108750371521734043142237097774198814966088960966763062064008401232195775295440525480102411596278549766806749713466397<158> (matsui / Msieve 1.53 snfs / August 25, 2014 2014 年 8 月 25 日)
74×10233+619 = 8(2)2329<234> = 19 × 1910429 × 2623459 × [8634365444751798443410805170016104791710292399068219044130325890300786710831366098024315399780852235325387944630747156008234971043382307044783605145713140080060052772609648112637420581667062127864353329838336956854634881<220>] Free to factor
74×10234+619 = 8(2)2339<235> = 3 × 691 × 3966339711636383126976469957656643619016990941737685587179074878061853459827410623358524950420753604545210912794125529291954762287613228278930160261564024226831752157367208018438119740579943184863590073430883850565471404834646513373<232>
74×10235+619 = 8(2)2349<236> = 286987 × 9181391 × 8839406346111033766193<22> × 230535493698917285673842122425650593707023<42> × 15312905580037200091000645957353890998288019286920677993756532863447043252461140140027038820052710034692649709446790967032839414630171202412590846131718408833583<161> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2679640466 for P42 / October 29, 2012 2012 年 10 月 29 日)
74×10236+619 = 8(2)2359<237> = 167 × 15848093 × 310667432391525536548979557299101120027509497022697649642043134194875660695898443228447361160914931388770725796292276630562904837629330813795939100153576392278771737425591119137249567598468327256629446625534902320417576186664959<228>
74×10237+619 = 8(2)2369<238> = 3 × 13 × 71 × 227 × 7526941 × 190749341078710283<18> × 4001293703712263156278705592309<31> × 564856641151780118227755303185687<33> × 4031068416385242248385538310183142371842947449633698918053166153375504137357810510847992592445632172658987206261736469527289757326945600176409667<145> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=3969121495 for P31, B1=1000000, sigma=1011648459 for P33 / October 22, 2012 2012 年 10 月 22 日)
74×10238+619 = 8(2)2379<239> = 7 × 1033 × 2143 × 63541 × 7331511966263<13> × 8637143343707<13> × 2807217152920912254087894019798601002037<40> × 469758825830147918194270900722212890625746879416433576699204001462836724755560293776759507058800350248239813526866554787111704325069239489504920217154802456290129<162> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2801438124 for P40 / November 6, 2012 2012 年 11 月 6 日)
74×10239+619 = 8(2)2389<240> = 107 × 35051 × 98893 × 10376235949<11> × 28776932144977<14> × 172097894785891<15> × 176608921090829<15> × [244268205148080712583480465127809461130446076821144550394907517451064251819283608513061930687242553445375514497182976771286163594290878165899884308609085422200711152758277167507<177>] Free to factor
74×10240+619 = 8(2)2399<241> = 32 × 7517 × 356144948933<12> × 14259558911022377172261228184981<32> × 23931464126923974249169526749498759934862587754850070047342463831696170807140598425943821563302362377936361453768784601623997242669363980191368773856572077862631563034135290744159794386580268841<194> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2073182918 for P32 / October 22, 2012 2012 年 10 月 22 日)
74×10241+619 = 8(2)2409<242> = 43 × 97 × 947 × 7756118413<10> × 25253974795136768770813351<26> × 107178845101566071616753788303<30> × [991552685003176982427327092066441248005189490690577840845520164622800804351687400266946853501517796746227226689558151654774607829860057769603582453943687653815453880195953<171>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2928645401 for P30 / October 22, 2012 2012 年 10 月 22 日) Free to factor
74×10242+619 = 8(2)2419<243> = 109 × 643 × 1794817 × 146229164309297<15> × [44698975270963660153294020443302192359442147480284616967598294133127599169739944186205771395126675971346665945058145717729657825842631838164460118975965351208325570263108929886778092313611054725451058784984129063365683<218>] Free to factor
74×10243+619 = 8(2)2429<244> = 3 × 13 × 211 × 587 × 1511 × 304373 × 3162167 × 70463693434767267319<20> × 37431137305110178278277<23> × [443762121413713712015584357733171270012366129183918500156477732717107657020537559915497590837623593534822223493961980722173647641902842191007019166706009650836596550990192350574621<180>] Free to factor
74×10244+619 = 8(2)2439<245> = 7 × 17 × 114973 × 6141104072059759597058798828573<31> × [978588094797172690251275135545952035912125596458822498921489892247074245424342961594340467758167090901575123752263303465699107285971847077017279088061041886709284806942443935234746785171333277329406082581179<207>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=3165473746 for P31 / October 22, 2012 2012 年 10 月 22 日) Free to factor
74×10245+619 = 8(2)2449<246> = 353 × 18329611 × 27306301073<11> × 2238236454523057889<19> × 151739133253355695841<21> × [13702342486953785073153972817611673273853865886325794566641219026009149081050787436821008788653799427787429262884291874540720718385007649094880824644557405107618475620350022401407991211919<188>] Free to factor
74×10246+619 = 8(2)2459<247> = 3 × 907 × 937 × 3122881 × 50971759 × 16786108218703<14> × [1206940894216094744609586015011847779074902212583579708284037004133279066320859977676171806605980864280428889049940185721120387827891841800754764619819479948642312762206305974518099118286338986056205504967555274221<214>] Free to factor
74×10247+619 = 8(2)2469<248> = 60457 × 14824387 × 2767906139<10> × 33144732215921312622397459225629010506432329019691373101218405659672277686632272458930280190991619104881160368079885520690704266659776325621588111108664507735721873176419064114376122476027800736286227262017044834510636553269629<227>
74×10248+619 = 8(2)2479<249> = 3917 × 2935733 × 34093907 × 71338523 × 4789550623801221667<19> × [6137951189877379468275702778759150546031935735112532334614781254952468758232276996805277326313984894915037209915899590447816068764186522888628644738260447467030185091708752247718294800074473153503330065047<205>] Free to factor
74×10249+619 = 8(2)2489<250> = 34 × 13 × 29 × 10333 × 1856284987<10> × 3812442824360639690638349<25> × 2340552471723315820527870441302279631930937969<46> × 1573149651854185834227513077661950927071321821192129450582888413124057572415299880926685061522070948318645473560888738414358848020621816056831167456489599134283167<163> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2262744772 for P46 / November 6, 2012 2012 年 11 月 6 日)
74×10250+619 = 8(2)2499<251> = 72 × 853 × [1967179994311128124559710558705701897797024241505902869158605216217006536885954069005484178821978185568873895787310625696155758121927942728478652109534708764318544924808532244472622968687279522985434892988066660818293710606556026083743384028093457<247>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク