Table of contents 目次

  1. About 9299...99 9299...99 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 9299...99 9299...99 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 9299...99 9299...99 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 9299...99 9299...99 について

1.1. Classification 分類

Near-repdigit of the form ABAA...AA ABAA...AA の形のニアレプディジット (Near-repdigit)

1.2. Sequence 数列

929w = { 92, 929, 9299, 92999, 929999, 9299999, 92999999, 929999999, 9299999999, 92999999999, … }

1.3. General term 一般項

93×10n-1 (0≤n)

2. Prime numbers of the form 9299...99 9299...99 の形の素数

2.1. Last updated 最終更新日

November 8, 2017 2017 年 11 月 8 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 93×101-1 = 929 is prime. は素数です。
  2. 93×108-1 = 9299999999<10> is prime. は素数です。
  3. 93×109-1 = 92999999999<11> is prime. は素数です。
  4. 93×1014-1 = 92(9)14<16> is prime. は素数です。
  5. 93×1054-1 = 92(9)54<56> is prime. は素数です。
  6. 93×1080-1 = 92(9)80<82> is prime. は素数です。
  7. 93×10487-1 = 92(9)487<489> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Jens K Andersen / November 12, 2007 2007 年 11 月 12 日)
  8. 93×10551-1 = 92(9)551<553> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Jens K Andersen / November 12, 2007 2007 年 11 月 12 日)
  9. 93×10600-1 = 92(9)600<602> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Jens K Andersen / November 12, 2007 2007 年 11 月 12 日)
  10. 93×102502-1 = 92(9)2502<2504> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Jens K Andersen / November 12, 2007 2007 年 11 月 12 日)
  11. 93×102544-1 = 92(9)2544<2546> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Jens K Andersen / November 12, 2007 2007 年 11 月 12 日)
  12. 93×105593-1 = 92(9)5593<5595> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 22, 2004 2004 年 12 月 22 日) (certified by: (証明: Jens K Andersen / November 12, 2007 2007 年 11 月 12 日)
  13. 93×107949-1 = 92(9)7949<7951> is prime. は素数です。 (Jens K Andersen / November 12, 2007 2007 年 11 月 12 日)
  14. 93×108635-1 = 92(9)8635<8637> is prime. は素数です。 (Jens K Andersen / November 12, 2007 2007 年 11 月 12 日)
  15. 93×1013407-1 = 92(9)13407<13409> is prime. は素数です。 (Ray Chandler / srsieve, PFGW / October 28, 2010 2010 年 10 月 28 日)
  16. 93×1031128-1 = 92(9)31128<31130> is prime. は素数です。 (Eric J. Sorensen / Proth.exe / March 17, 2002 2002 年 3 月 17 日)
  17. 93×1045504-1 = 92(9)45504<45506> is prime. は素数です。 (Eric J. Sorensen / Proth.exe / April 13, 2004 2004 年 4 月 13 日)
  18. 93×1045933-1 = 92(9)45933<45935> is prime. は素数です。 (Eric J. Sorensen / Proth.exe / April 23, 2004 2004 年 4 月 23 日)
  19. 93×1052303-1 = 92(9)52303<52305> is prime. は素数です。 (Eric J. Sorensen / Proth.exe / August 29, 2004 2004 年 8 月 29 日)
  20. 93×1065121-1 = 92(9)65121<65123> is prime. は素数です。 (Larry Soule / NewPGen, OpenPFGW / July 20, 2006 2006 年 7 月 20 日)
  21. 93×10167501-1 = 92(9)167501<167503> is prime. は素数です。 (Gary Barnes / Srsieve, LLR / January 28, 2011 2011 年 1 月 28 日)
  22. 93×10359354-1 = 92(9)359354<359356> is prime. は素数です。 (Predrag Kurtovic / Srsieve, LLR / December 18, 2013 2013 年 12 月 18 日)

2.3. Range of search 捜索範囲

  1. n≤11000 / Completed 終了 / Ray Chandler / October 15, 2010 2010 年 10 月 15 日
  2. n≤20000 / Completed 終了 / Ray Chandler / December 12, 2010 2010 年 12 月 12 日
  3. n≤100000 / Completed 終了 / Gary Barnes / December 1, 2010 2010 年 12 月 1 日
  4. n≤135000 / Completed 終了 / Gary Barnes / January 3, 2010 2010 年 1 月 3 日
  5. n≤140000 / Completed 終了 / Gary Barnes / January 14, 2011 2011 年 1 月 14 日
  6. n≤145000 / Completed 終了 / Gary Barnes / January 16, 2011 2011 年 1 月 16 日
  7. n≤150000 / Completed 終了 / Gary Barnes / January 18, 2011 2011 年 1 月 18 日
  8. n≤155000 / Completed 終了 / Gary Barnes / January 20, 2011 2011 年 1 月 20 日
  9. n≤160000 / Completed 終了 / Gary Barnes / January 24, 2011 2011 年 1 月 24 日
  10. n≤165000 / Completed 終了 / Gary Barnes / January 25, 2011 2011 年 1 月 25 日
  11. n≤170000 / Completed 終了 / Gary Barnes / January 28, 2011 2011 年 1 月 28 日
  12. n≤175000 / Completed 終了 / Gary Barnes / January 31, 2011 2011 年 1 月 31 日
  13. n≤180000 / Completed 終了 / Gary Barnes / February 3, 2011 2011 年 2 月 3 日
  14. n≤185000 / Completed 終了 / Gary Barnes / February 7, 2011 2011 年 2 月 7 日
  15. n≤190000 / Completed 終了 / Gary Barnes / February 11, 2011 2011 年 2 月 11 日
  16. n≤195000 / Completed 終了 / Gary Barnes / February 17, 2011 2011 年 2 月 17 日
  17. n≤200000 / Completed 終了 / Gary Barnes / February 20, 2011 2011 年 2 月 20 日
  18. n≤205000 / Completed 終了 / Gary Barnes / February 27, 2011 2011 年 2 月 27 日
  19. n≤210000 / Completed 終了 / Gary Barnes / February 28, 2011 2011 年 2 月 28 日
  20. n≤215000 / Completed 終了 / Gary Barnes / March 5, 2011 2011 年 3 月 5 日
  21. n≤220000 / Completed 終了 / Gary Barnes / March 9, 2011 2011 年 3 月 9 日
  22. n≤225000 / Completed 終了 / Gary Barnes / March 15, 2011 2011 年 3 月 15 日
  23. n≤230000 / Completed 終了 / Gary Barnes / April 17, 2011 2011 年 4 月 17 日
  24. n≤240000 / Completed 終了 / Predrag Kurtovic / October 6, 2013 2013 年 10 月 6 日
  25. n≤250000 / Completed 終了 / Predrag Kurtovic / October 7, 2013 2013 年 10 月 7 日
  26. n≤260000 / Completed 終了 / Predrag Kurtovic / October 9, 2013 2013 年 10 月 9 日
  27. n≤300000 / Completed 終了 / Predrag Kurtovic / October 17, 2013 2013 年 10 月 17 日
  28. n≤350000 / Completed 終了 / Predrag Kurtovic / December 20, 2013 2013 年 12 月 20 日
  29. n≤385000 / Completed 終了 / Predrag Kurtovic / December 24, 2013 2013 年 12 月 24 日
  30. n≤400000 / Completed 終了 / Predrag Kurtovic / January 17, 2015 2015 年 1 月 17 日
  31. n≤450000 / Completed 終了 / Predrag Kurtovic / June 14, 2015 2015 年 6 月 14 日
  32. n≤467000 / Completed 終了 / Predrag Kurtovic / July 12, 2015 2015 年 7 月 12 日
  33. n≤500000 / Completed 終了 / Predrag Kurtovic / October 16, 2015 2015 年 10 月 16 日
  34. 1000001≤n≤1010000 / Completed 終了 / Predrag Kurtovic / September 22, 2016 2016 年 9 月 22 日
  35. 1010001≤n≤1015000 / Completed 終了 / Predrag Kurtovic / June 12, 2017 2017 年 6 月 12 日
  36. 1015000≤n≤1020001 / Completed 終了 / Predrag Kurtovic / November 8, 2017 2017 年 11 月 8 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

  1. 93×106k+4-1 = 7×(93×104-17+837×104×106-19×7×k-1Σm=0106m)
  2. 93×1016k+2-1 = 17×(93×102-117+837×102×1016-19×17×k-1Σm=01016m)
  3. 93×1018k+10-1 = 19×(93×1010-119+837×1010×1018-19×19×k-1Σm=01018m)
  4. 93×1022k-1 = 23×(93×100-123+837×1022-19×23×k-1Σm=01022m)
  5. 93×1028k+18-1 = 29×(93×1018-129+837×1018×1028-19×29×k-1Σm=01028m)
  6. 93×1033k+7-1 = 67×(93×107-167+837×107×1033-19×67×k-1Σm=01033m)
  7. 93×1034k+16-1 = 103×(93×1016-1103+837×1016×1034-19×103×k-1Σm=01034m)
  8. 93×1041k+40-1 = 83×(93×1040-183+837×1040×1041-19×83×k-1Σm=01041m)
  9. 93×1044k+16-1 = 89×(93×1016-189+837×1016×1044-19×89×k-1Σm=01044m)
  10. 93×1046k+23-1 = 47×(93×1023-147+837×1023×1046-19×47×k-1Σm=01046m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 32.21%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 32.21% です。

3. Factor table of 9299...99 9299...99 の素因数分解表

3.1. Last updated 最終更新日

May 29, 2018 2018 年 5 月 29 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=202, 205, 211, 212, 214, 215, 216, 217, 221, 224, 226, 227, 230, 232, 233, 234, 236, 237, 238, 239, 241, 242, 245, 246, 248, 249 (26/250)

3.4. Factor table 素因数分解表

93×100-1 = 92 = 22 × 23
93×101-1 = 929 = definitely prime number 素数
93×102-1 = 9299 = 17 × 547
93×103-1 = 92999 = 113 × 823
93×104-1 = 929999 = 7 × 132857
93×105-1 = 9299999 = 61 × 152459
93×106-1 = 92999999 = 109 × 853211
93×107-1 = 929999999 = 67 × 13880597
93×108-1 = 9299999999<10> = definitely prime number 素数
93×109-1 = 92999999999<11> = definitely prime number 素数
93×1010-1 = 929999999999<12> = 7 × 19 × 263 × 26587381
93×1011-1 = 9299999999999<13> = 919 × 10119695321<11>
93×1012-1 = 92999999999999<14> = 14321 × 6493959919<10>
93×1013-1 = 929999999999999<15> = 733 × 1268758526603<13>
93×1014-1 = 9299999999999999<16> = definitely prime number 素数
93×1015-1 = 92999999999999999<17> = 1259 × 2383 × 8081 × 3835907
93×1016-1 = 929999999999999999<18> = 7 × 89 × 103 × 35317 × 410368363
93×1017-1 = 9299999999999999999<19> = 571 × 1852241 × 8793248509<10>
93×1018-1 = 92999999999999999999<20> = 17 × 29 × 997 × 10259 × 18443181541<11>
93×1019-1 = 929999999999999999999<21> = 59 × 34875493 × 451971011977<12>
93×1020-1 = 9299999999999999999999<22> = 56737 × 6592823 × 24862521049<11>
93×1021-1 = 92999999999999999999999<23> = 229 × 20135379349<11> × 20169152519<11>
93×1022-1 = 929999999999999999999999<24> = 72 × 23 × 825199645075421472937<21>
93×1023-1 = 9299999999999999999999999<25> = 47 × 8355961 × 23680381038821497<17>
93×1024-1 = 92999999999999999999999999<26> = 78308551 × 1187609766907831049<19>
93×1025-1 = 929999999999999999999999999<27> = 566653 × 1641216052857745392683<22>
93×1026-1 = 9299999999999999999999999999<28> = 557 × 1621 × 1811 × 6689 × 236323 × 3597982951<10>
93×1027-1 = 92999999999999999999999999999<29> = 99997787012867<14> × 930020581235797<15>
93×1028-1 = 929999999999999999999999999999<30> = 7 × 19 × 6992481203007518796992481203<28>
93×1029-1 = 9299999999999999999999999999999<31> = 48221 × 201203 × 958544510098276360073<21>
93×1030-1 = 92999999999999999999999999999999<32> = 924566147 × 100587719225674828866517<24>
93×1031-1 = 929999999999999999999999999999999<33> = 739 × 17105147 × 73571853830361849762703<23>
93×1032-1 = 9299999999999999999999999999999999<34> = 29917 × 520031 × 597772144598340768087637<24>
93×1033-1 = 92999999999999999999999999999999999<35> = 457 × 168265169 × 4970486179<10> × 243317671620157<15>
93×1034-1 = 929999999999999999999999999999999999<36> = 7 × 17 × 136531590757<12> × 57240423312210512013253<23>
93×1035-1 = 9299999999999999999999999999999999999<37> = 2381 × 1933523 × 2020106242109542401422143673<28>
93×1036-1 = 92999999999999999999999999999999999999<38> = 167 × 751 × 3637 × 56467 × 4963037 × 5916853 × 122956143113<12>
93×1037-1 = 929999999999999999999999999999999999999<39> = 159079 × 13170121072727<14> × 443895077323888315903<21>
93×1038-1 = 9299999999999999999999999999999999999999<40> = 34381 × 270498240307146388993921061051161979<36>
93×1039-1 = 92999999999999999999999999999999999999999<41> = 12577 × 1462377089<10> × 5056459269274704903283373983<28>
93×1040-1 = 929999999999999999999999999999999999999999<42> = 7 × 67 × 83 × 163 × 146569770914600098564230892463335099<36>
93×1041-1 = 9299999999999999999999999999999999999999999<43> = 1099081 × 3080556719<10> × 2746781027228160935966316841<28>
93×1042-1 = 92999999999999999999999999999999999999999999<44> = 20021 × 202737026629<12> × 22912058534566868448270434311<29>
93×1043-1 = 929999999999999999999999999999999999999999999<45> = 2777 × 34660363 × 9662154151578608338425437226400549<34>
93×1044-1 = 9299999999999999999999999999999999999999999999<46> = 23 × 2449080709<10> × 165101878676778439211139298873391557<36>
93×1045-1 = 92999999999999999999999999999999999999999999999<47> = 313 × 977 × 9337 × 9394067 × 209606491 × 34535282347<11> × 478977702653<12>
93×1046-1 = 929999999999999999999999999999999999999999999999<48> = 7 × 19 × 29 × 241120041483017889551464869069224786103189007<45>
93×1047-1 = 9299999999999999999999999999999999999999999999999<49> = 10304106763112902505593<23> × 902552760157003774238591543<27>
93×1048-1 = 92999999999999999999999999999999999999999999999999<50> = 239597 × 4459923967963<13> × 87031028848148740168892783663809<32>
93×1049-1 = 929999999999999999999999999999999999999999999999999<51> = 384283168480132685147<21> × 2420090381991530543945077257517<31>
93×1050-1 = 92(9)50<52> = 17 × 103 × 179 × 29671791697641252085799335734727801192614595331<47>
93×1051-1 = 92(9)51<53> = 1223 × 76042518397383483237939493049877350776778413736713<50>
93×1052-1 = 92(9)52<54> = 7 × 2560115429<10> × 51894981512235109904826538529151162403645333<44>
93×1053-1 = 92(9)53<55> = 319930330813<12> × 29068828755207554788619940962933986274870123<44>
93×1054-1 = 92(9)54<56> = definitely prime number 素数
93×1055-1 = 92(9)55<57> = 673 × 2549 × 15731 × 34462098372934549944029259302465576409594315377<47>
93×1056-1 = 92(9)56<58> = 833821 × 3318545664003854426245757<25> × 3360952090727264273106344167<28>
93×1057-1 = 92(9)57<59> = 33961 × 12484621 × 219344685271524889662816488580929396165788717379<48>
93×1058-1 = 92(9)58<60> = 7 × 373 × 401 × 7756533694994343401<19> × 114515433292887048814930078478387309<36>
93×1059-1 = 92(9)59<61> = 347 × 7246181179<10> × 3698658931607175231422032677505032387365371440823<49>
93×1060-1 = 92(9)60<62> = 89 × 509 × 21077307631241<14> × 17750289562921957<17> × 5487247927617374780647513327<28>
93×1061-1 = 92(9)61<63> = 798938236493<12> × 675448500802597<15> × 1723365917823304730247001725404997919<37>
93×1062-1 = 92(9)62<64> = 10513 × 38219 × 1354057 × 17093855087134200547735256703167684803639343790181<50>
93×1063-1 = 92(9)63<65> = 857 × 365912128113491<15> × 100274999920279747<18> × 2957553789529491958538046358991<31>
93×1064-1 = 92(9)64<66> = 73 × 19 × 6724801 × 229186500415094763533<21> × 92590569888920802352492000689283759<35>
93×1065-1 = 92(9)65<67> = 61 × 939511 × 235794287 × 688205225369751648824755286691309538879354286029987<51>
93×1066-1 = 92(9)66<68> = 17 × 23 × 157 × 9627223 × 38559583 × 16506803170710509375681<23> × 247235144440959397784145013<27>
93×1067-1 = 92(9)67<69> = 131 × 50128145649196721737<20> × 141621768554990139238261793084833390095398371117<48>
93×1068-1 = 92(9)68<70> = 97 × 6679 × 5087119 × 2821810686651110428323195238535975034683641415354963422967<58>
93×1069-1 = 92(9)69<71> = 47 × 3877 × 4109683249271<13> × 5446486354031<13> × 1604238041444581<16> × 14213325727894285043269441<26>
93×1070-1 = 92(9)70<72> = 7 × 1123 × 1435937 × 25146691 × 3276339674056597139882630459346331596716672686458950977<55>
93×1071-1 = 92(9)71<73> = 7592317 × 1224922510480002349743826555187303164501692961450371474215315298347<67>
93×1072-1 = 92(9)72<74> = 37637850614149542624427599583<29> × 2470916869122108063177750630543925204399958753<46>
93×1073-1 = 92(9)73<75> = 67 × 15061 × 1321341661<10> × 6431092040789303<16> × 108456224979190829943607543498822589202079219<45>
93×1074-1 = 92(9)74<76> = 29 × 733 × 393859 × 427281252171262949353<21> × 2599718737819254486774582652522062793468595941<46>
93×1075-1 = 92(9)75<77> = 185681 × 2033034446202853122477137783<28> × 246360311822833834595157668816647422774132713<45>
93×1076-1 = 92(9)76<78> = 7 × 5734217 × 221131523 × 932294125517<12> × 1430159874449279<16> × 78581911874087558325936373086114089<35>
93×1077-1 = 92(9)77<79> = 59 × 197 × 827 × 51092654399147<14> × 18936544604867712718211835103637311103087729883244863712577<59>
93×1078-1 = 92(9)78<80> = 20748887 × 90907249 × 23219963602698777947231<23> × 2123381811256539923074102550344795849620983<43>
93×1079-1 = 92(9)79<81> = 11657 × 100109 × 16711183 × 469892616287667466402031<24> × 101488588659016787076000601420102789606051<42>
93×1080-1 = 92(9)80<82> = definitely prime number 素数
93×1081-1 = 92(9)81<83> = 83 × 14947 × 42599418221<11> × 6495747336062550141646462489<28> × 270905629424370070361424679532161287371<39>
93×1082-1 = 92(9)82<84> = 7 × 17 × 19 × 108557 × 696603877 × 22710569737973835997<20> × 239502822870669615019953793131364876103478397823<48>
93×1083-1 = 92(9)83<85> = 283 × 2129 × 78132750933473<14> × 197554868211077626604608794644786551040968427781177629720193571709<66>
93×1084-1 = 92(9)84<86> = 103 × 14997019860643<14> × 54740971546207<14> × 25468997781366558070787<23> × 43183357001079817688977082377038559<35>
93×1085-1 = 92(9)85<87> = 181 × 1451 × 5969774117102399<16> × 7017544001120843<16> × 1497280557103484003<19> × 56453481875786301027563926651799<32>
93×1086-1 = 92(9)86<88> = 36038727206809008948960210293150656216520477<44> × 258055728401054525476881276672136155044240587<45> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P44 x P45 / November 4, 2014 2014 年 11 月 4 日)
93×1087-1 = 92(9)87<89> = 181639 × 45681015887368156744602067<26> × 11208257315829037677348327201910557589248156412261875563123<59>
93×1088-1 = 92(9)88<90> = 7 × 23 × 269 × 4248917 × 169984523 × 2012469497<10> × 31868149757767849<17> × 51658845984674147<17> × 8974005019048724521735097231<28>
93×1089-1 = 92(9)89<91> = 439 × 17231 × 49559 × 125851771 × 4622330717<10> × 6443705531962780138361818331<28> × 6618039871572859738470101726042237<34>
93×1090-1 = 92(9)90<92> = 38628683392785561888108327127548173632294597<44> × 2407537400494706728159769956405976795946518446067<49> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P44 x P49 / November 9, 2014 2014 年 11 月 9 日)
93×1091-1 = 92(9)91<93> = 3571 × 110533 × 1957997 × 136022813 × 8046127667<10> × 855534719089<12> × 1285147006702522242313864743355788905639035606051<49>
93×1092-1 = 92(9)92<94> = 3181 × 7001 × 29879 × 13808270923<11> × 1012170892788898257692204229213324582878008543638365591217810322240088687<73>
93×1093-1 = 92(9)93<95> = 547 × 9769 × 33029 × 214016443 × 1330422254296938020790701143456259<34> × 1850603780698358396714758658797935758636441<43> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P34 x P43 / November 4, 2014 2014 年 11 月 4 日)
93×1094-1 = 92(9)94<96> = 7 × 193 × 945802307 × 1249842099710833<16> × 582333911107236567752318440496315760235139955784379454004730741864179<69>
93×1095-1 = 92(9)95<97> = 947033 × 2290386979<10> × 10151686580926018411<20> × 15588450525463140252257592737<29> × 27093668949318738896206774400996951<35>
93×1096-1 = 92(9)96<98> = 2351 × 449681 × 16663932881639<14> × 5278958813595777081796946613974227895809546608356156092034594450391510137911<76>
93×1097-1 = 92(9)97<99> = 19333 × 209868209604791236293897012759724551018777227<45> × 229211836087734206356649639791262942598103507930489<51> (KTakahashi / Msieve 1.51 snfs for P45 x P51 / November 17, 2014 2014 年 11 月 17 日)
93×1098-1 = 92(9)98<100> = 172 × 25873 × 195507026231791<15> × 47930224315193636107<20> × 132729202778216904600345963163873279631425519296764901272291<60>
93×1099-1 = 92(9)99<101> = 14723 × 85999 × 92041 × 1046654627<10> × 1696070546477088541<19> × 449536123932091811649709008320326769057247024503128079782901<60>
93×10100-1 = 92(9)100<102> = 7 × 19 × 207239171 × 1301921925354913183<19> × 25916390809778811571118620244585120726140650499577896732464305671285905871<74>
93×10101-1 = 92(9)101<103> = 767247589551321138387193820179463<33> × 12121250202217707509586361438427327185992503258921295424838450039078473<71> (KTakahashi / Msieve 1.51 snfs for P33 x P71 / November 17, 2014 2014 年 11 月 17 日)
93×10102-1 = 92(9)102<104> = 29 × 1741 × 219451 × 136572444963127039<18> × 153131593598645553254749<24> × 285344944055496034868339<24> × 1406535011321827148617133203229<31>
93×10103-1 = 92(9)103<105> = 399423979219607549<18> × 2328352949207078315189764903298723233890635734155369155666850423453929684966836674235051<88>
93×10104-1 = 92(9)104<106> = 89 × 661 × 444348211 × 5941479293<10> × 410739772943<12> × 82926773399900420657<20> × 32609706139628090082931907<26> × 53909468107642889577305521<26>
93×10105-1 = 92(9)105<107> = 113603461 × 941747304756318371<18> × 618332564820400410667168787<27> × 1405836712771169001899303878801807832521770521207876267<55>
93×10106-1 = 92(9)106<108> = 72 × 67 × 398941 × 443117 × 25090635822599<14> × 8952826494084127<16> × 7133672166640317445984517786903009067808927113584176962311833013<64>
93×10107-1 = 92(9)107<109> = 257 × 11009844123378481<17> × 3286765009794824512490736502490131220814552128318701184822196948624877707681639480015584047<91>
93×10108-1 = 92(9)108<110> = 2709097 × 12653367630203<14> × 46337314153073<14> × 6485854640083684715767661<25> × 9027223576029914550136686288348512404275521760695113<52>
93×10109-1 = 92(9)109<111> = 30727 × 986287 × 30687356547623003526494431772604498026759401241259006390325525304159030385129278908186660588156438151<101>
93×10110-1 = 92(9)110<112> = 23 × 16466023741<11> × 208448113339000842740791<24> × 117806270295762220074380447973945428792152971181475654311294313895727653536923<78>
93×10111-1 = 92(9)111<113> = 17903 × 98573 × 4680143777<10> × 16372504397069<14> × 47866959522064889440675491301036164733<38> × 14367758170795642611132629726907890818240349<44> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P38 x P44 / November 4, 2014 2014 年 11 月 4 日)
93×10112-1 = 92(9)112<114> = 7 × 389 × 4940286683461<13> × 449162279202233<15> × 153914621491592585398037833160402313614590760704161675388409565358264643439654148601<84>
93×10113-1 = 92(9)113<115> = 4297374697967563<16> × 120285678876950962553<21> × 17991434930152972913491207658801147332835771779141161015927451407412962211487941<80>
93×10114-1 = 92(9)114<116> = 17 × 109 × 5518736019703981<16> × 2943123426300920298658676807<28> × 3090006784094207582400875205587789418771991953952862596431198157962449<70> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=1057128031 for P28 / November 17, 2014 2014 年 11 月 17 日)
93×10115-1 = 92(9)115<117> = 47 × 113 × 41727915259568470709426480181042097229537176534469273<53> × 4196429770671305324965636852879288105807131205921688514915433<61> (Dmitry Domanov / Msieve 1.50 snfs for P53 x P61 / November 18, 2014 2014 年 11 月 18 日)
93×10116-1 = 92(9)116<118> = 11027 × 1643701 × 133655107 × 24056881363<11> × 679655799260659979779055842640341<33> × 234794999450372863272876362713645027168604857240378397077<57> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P33 x P57 / November 4, 2014 2014 年 11 月 4 日)
93×10117-1 = 92(9)117<119> = 773 × 73061 × 358571 × 8198729395468315961<19> × 52047063044787962344211367450221<32> × 10762171285398419227124970928712710619386687713037864033<56> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P32 x P56 / November 4, 2014 2014 年 11 月 4 日)
93×10118-1 = 92(9)118<120> = 7 × 19 × 103 × 5119 × 5743 × 57223 × 894611 × 45109216151762859704793112758613367622302118116640059830913521199495280743734005081003365502979201<98>
93×10119-1 = 92(9)119<121> = 1454081 × 11598413 × 32718046913<11> × 28066224280669929241761719<26> × 6047790889824845649299426190743<31> × 99295061935272979109519346377959856710123<41> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P31 x P41 / November 4, 2014 2014 年 11 月 4 日)
93×10120-1 = 92(9)120<122> = 677 × 1230973279<10> × 8760223111616598781<19> × 107954422506606571014293<24> × 118002184826235306745725092764472817967852000995126733571720602856141<69>
93×10121-1 = 92(9)121<123> = 163 × 1549 × 4813 × 186679 × 54909017601851104624297702966198171729<38> × 74660161540949731029297947598934720342657089150093593955214033184822219<71> (Dmitry Domanov / Msieve 1.50 snfs for P38 x P71 / November 18, 2014 2014 年 11 月 18 日)
93×10122-1 = 92(9)122<124> = 83 × 1210399 × 1398568811<10> × 154266439729<12> × 10888835280297842759149<23> × 116252169594337963735712246227<30> × 338952240840005208423942589015325411091790631<45> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2046245841 for P30 / November 3, 2014 2014 年 11 月 3 日)
93×10123-1 = 92(9)123<125> = 2882750511564264686332885563414124350444856943<46> × 32260856299193051479266752761418807600647232671454194636374247163395855776270193<80> (Serge Batalov / Msieve 1.51 snfs for P46 x P80 / November 18, 2014 2014 年 11 月 18 日)
93×10124-1 = 92(9)124<126> = 7 × 132857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857<126>
93×10125-1 = 92(9)125<127> = 61 × 2503 × 200612321344396015896307<24> × 303622995499273054471913969679173496989636242606055582296723255079600147494816889982892124651291279<99>
93×10126-1 = 92(9)126<128> = 5443 × 17086165717435237920264559985302223038765386735256292485761528568803968399779533345581480801028844387286422928532059525996693<125>
93×10127-1 = 92(9)127<129> = 505099985743<12> × 3528880572823<13> × 17956675109999347<17> × 29056460272775542583817751740398133459801829038735339043584394048459734772186892771184653<89>
93×10128-1 = 92(9)128<130> = 224699 × 118928081 × 20217577990121<14> × 17213463800694791029084970375938372462699001743465144537381545291862111607934802821309956851703220006901<104>
93×10129-1 = 92(9)129<131> = 149 × 1373081 × 8913739 × 50996527997753576915238143148480920923094713112361623680590836704056958217856516666223699798251997151750580149287889<116>
93×10130-1 = 92(9)130<132> = 7 × 17 × 29 × 28854495922065296847047<23> × 9339518732705467015282444049670360113627928638305686556817708235114756549389774389254835600273854685115467<106>
93×10131-1 = 92(9)131<133> = 16087 × 15706129 × 36952483 × 1509245831<10> × 32612665583813335488482830708398647098623790169<47> × 20237125208298054384899877432253254427558391915489813244749<59> (Dmitry Domanov / Msieve 1.50 snfs for P47 x P59 / November 18, 2014 2014 年 11 月 18 日)
93×10132-1 = 92(9)132<134> = 23 × 1511 × 13001 × 43063 × 31326116483<11> × 48991081439<11> × 42066105571083432122745619463283809417<38> × 74037835886591980186215633224775478986586133244961814229650429<62> (Dmitry Domanov / Msieve 1.50 snfs for P38 x P62 / November 18, 2014 2014 年 11 月 18 日)
93×10133-1 = 92(9)133<135> = 3548407 × 186633035773199179<18> × 1607373267856354173726171825273712849<37> × 873663635728135172694520835969381940919627423421986400170073356146996381467<75> (Dmitry Domanov / Msieve 1.50 snfs for P37 x P75 / November 18, 2014 2014 年 11 月 18 日)
93×10134-1 = 92(9)134<136> = 13328033 × 106317505392595171<18> × 3239418558643254231504427277190195526783449791683<49> × 2026026144649504093518476674477039257010076299535871900719168071<64> (Dmitry Domanov / Msieve 1.50 snfs for P49 x P64 / November 18, 2014 2014 年 11 月 18 日)
93×10135-1 = 92(9)135<137> = 59 × 733 × 194177483 × 180564029839650387146859491681214399248793707948168033<54> × 61333373990336246231229722123911163923675635612218759013314544763200403<71> (Dmitry Domanov / Msieve 1.50 snfs for P54 x P71 / November 18, 2014 2014 年 11 月 18 日)
93×10136-1 = 92(9)136<138> = 7 × 19 × 307 × 1663 × 439157 × 354718933 × 428383946267<12> × 29258750192804925001904092184835668697433157<44> × 7014674858927313777553660399196838330928927894707084500024497<61> (Dmitry Domanov / Msieve 1.50 snfs for P44 x P61 / November 19, 2014 2014 年 11 月 19 日)
93×10137-1 = 92(9)137<139> = 350943825557988143969010511913<30> × 26499967580889426603532800185113295770855111203474878296250598679980738392060696931836280069747367901308802023<110> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=329693046 for P30 / November 4, 2014 2014 年 11 月 4 日)
93×10138-1 = 92(9)138<140> = 541 × 346134724953310619610730953662674220115881<42> × 496638647635663481570999837346590257139848857556801325137936845461307335114976456393857247835219<96> (Erik Branger / GGNFS, Msieve snfs for P42 x P96 / November 18, 2014 2014 年 11 月 18 日)
93×10139-1 = 92(9)139<141> = 67 × 31267 × 55661 × 145709 × 8737453 × 2218851137<10> × 2823394283357906592915530208469919528607413885112728343227806658331684703817749737159524257875150565658410219<109>
93×10140-1 = 92(9)140<142> = 35311 × 58863583 × 1728835465919<13> × 726508245902199383145704569671984212980135002104593<51> × 3562312597147736014774288571552017537338764199253674782260648944769<67> (Dmitry Domanov / Msieve 1.50 snfs for P51 x P67 / November 20, 2014 2014 年 11 月 20 日)
93×10141-1 = 92(9)141<143> = 78925225797991<14> × 6486253708821103281469<22> × 181665803258778391067821124246245309755702177231876885676052379887239160714977721114309829380264719263529181<108>
93×10142-1 = 92(9)142<144> = 7 × 327465851 × 375852125217765529<18> × 1884828099277791217655296756238393329<37> × 572703890370573223382320612888426332675040704752704727542823899172590758296531827<81> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2167640403 for P37 / November 4, 2014 2014 年 11 月 4 日)
93×10143-1 = 92(9)143<145> = 90145915819<11> × 3432696830956046359<19> × 153621663337639490063803<24> × 195636093039538609661116967833050086011927412374517842000929836033432289422510534008674841073<93>
93×10144-1 = 92(9)144<146> = 157 × 1181 × 14983 × 33359 × 460087 × 78932621657<11> × 4204467071746148684607573783791887<34> × 6572251137485643201119910368629353294191113503843299812924633060139672660860226047<82> (Serge Batalov / GMP-ECM B1=1000000, sigma=2347621384 for P34 / November 18, 2014 2014 年 11 月 18 日)
93×10145-1 = 92(9)145<147> = 1789 × 15277 × 34027851540362172693688268949406182889896153949025473432608553511522434251513315519082252012976100410408819755677830594938931532047668409783<140>
93×10146-1 = 92(9)146<148> = 17 × 5136709 × 7286857 × 29509859 × 55175303 × 621173953890173885905594580360105893953054152920273<51> × 14450528093728544179985080612859060693263585702524337904945736353839<68> (Dmitry Domanov / Msieve 1.50 snfs for P51 x P68 / November 21, 2014 2014 年 11 月 21 日)
93×10147-1 = 92(9)147<149> = 10142712403<11> × 9959996124988697323<19> × 916582256156916982009759876090879252129988233<45> × 1004380384237012798148566816261663796991474074776061840712994873721207261687<76> (Dmitry Domanov / Msieve 1.50 snfs for P45 x P76 / November 21, 2014 2014 年 11 月 21 日)
93×10148-1 = 92(9)148<150> = 72 × 89 × 797 × 907 × 702203 × 6576083 × 38549808533<11> × 38992548728376247587560017236178079888891<41> × 42500832588726052758738116652140341122570296868405862317645886086633048465743<77> (Jane Sullivan / yafu-x64 v.1.34.5 for P41 x P77 / November 23, 2014 2014 年 11 月 23 日)
93×10149-1 = 92(9)149<151> = 233 × 5717 × 1051643 × 931992603901<12> × 6897283615734810277164880247296940505668693013859176341<55> × 1032761285678373172452725919209166594485358025984582734088561836109649393<73> (Dmitry Domanov / Msieve 1.50 snfs for P55 x P73 / November 26, 2014 2014 年 11 月 26 日)
93×10150-1 = 92(9)150<152> = 2619113304344791<16> × 45208294739321547231622322988065381978986164349667802535697<59> × 785435517394028273327030903053809790056090180770059363602781057911795748793737<78> (Dmitry Domanov / Msieve 1.50 snfs for P59 x P78 / November 26, 2014 2014 年 11 月 26 日)
93×10151-1 = 92(9)151<153> = 5857583 × 239656539233<12> × 5211235105579489042893259<25> × 216535441768004460885970871538199<33> × 587091181003587627382620150384680403310439484155772877006722018320099017636901<78> (Serge Batalov / GMP-ECM B1=1000000, sigma=1899458354 for P33 / November 18, 2014 2014 年 11 月 18 日)
93×10152-1 = 92(9)152<154> = 103 × 128655299 × 37132655959717737881942946527885670799<38> × 1043707680017813141290900325986926430697998495877969<52> × 18108528143779850497859283509456037239242195121625769757<56> (Dmitry Domanov / Msieve 1.50 snfs for P38 x P52 x P56 / November 24, 2014 2014 年 11 月 24 日)
93×10153-1 = 92(9)153<155> = 9693839 × 9593722363245356148374240587243093267796174456786418672726047956851769458931595624808705818200611749380199114097108483027209343996738547029716503441<148>
93×10154-1 = 92(9)154<156> = 7 × 19 × 23 × 1237 × 24671 × 26309 × 6950888088909186197<19> × 54475645041148719513823000805467862095234284895790359090174662000284535685113914303020073255296398598516666239274585992791<122>
93×10155-1 = 92(9)155<157> = 95869 × 4952452230991831<16> × 19587745650446286529544712481313185185532206041665765759607086032374931438120530552871258535067196598767321667770026539758517983614849741<137>
93×10156-1 = 92(9)156<158> = 4002808217<10> × 73842297139116697268951<23> × 113283914497600570471654672043<30> × 2777440217368363027829988838685527318715696302153692029271200120241399515097490581995391370293379<97> (Serge Batalov / GMP-ECM B1=1000000, sigma=610784384 for P30 / November 18, 2014 2014 年 11 月 18 日)
93×10157-1 = 92(9)157<159> = 5791 × 11923 × 19076597 × 12933263730151<14> × 3859272972928655709122297353<28> × 16244752092166234831082054608575112192897<41> × 870795577578392321260208303824928414081510579781004210264993009<63> (Serge Batalov / Msieve 1.51 gnfs for P41 x P63 / November 19, 2014 2014 年 11 月 19 日)
93×10158-1 = 92(9)158<160> = 29 × 320689655172413793103448275862068965517241379310344827586206896551724137931034482758620689655172413793103448275862068965517241379310344827586206896551724137931<159>
93×10159-1 = 92(9)159<161> = 4417521767<10> × 62761045674920702359753<23> × 109049989029328992391113244036503601236188978350271<51> × 3076015031176400238197992756358855052222646596442472042024319529311382376077919<79> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P51 x P79 / December 7, 2014 2014 年 12 月 7 日)
93×10160-1 = 92(9)160<162> = 7 × 5297 × 4733153582831<13> × 203587823452633879388373594370012756736269277053127890128541<60> × 26028703688363557610344373146830361386297354833924183655202809054168452287472473426211<86> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P60 x P86 / December 7, 2014 2014 年 12 月 7 日)
93×10161-1 = 92(9)161<163> = 47 × 751 × 3343 × 264839 × 264036257 × 232018180727<12> × 4857818147936898806500518154214570659667836345962923574582797531788218675435826314891463159797629416398439164016018112029303323089<130>
93×10162-1 = 92(9)162<164> = 17 × 5233 × 59357 × 289033 × 43963883 × 368220503290931<15> × 3764089213890170908094794477785657523675113793505297904367787537354868561641664186889508778918009771556785280258458446876560643<127>
93×10163-1 = 92(9)163<165> = 83 × 52543 × 10505483 × 3344071871101219883<19> × 294717072264634338429517768727<30> × 20596483068316067485043585090188761222912097356316612416663062221307162748407653773823472910282016093157<104> (Serge Batalov / GMP-ECM B1=1000000, sigma=1277225431 for P30 / November 18, 2014 2014 年 11 月 18 日)
93×10164-1 = 92(9)164<166> = 97 × 772379459716557391<18> × 248188605034980114809<21> × 7302829893075399019559<22> × 17332120241112979029097<23> × 3951443554205690720893032303584983245718724446685274228517246363047507049431880391<82>
93×10165-1 = 92(9)165<167> = 1543 × 176797 × 984446820986269<15> × 11365237411800133506621822623<29> × 30469923088720670450970093723974949587863507569205217214953959193291416532150346813116598180332543571858644130363487<116>
93×10166-1 = 92(9)166<168> = 7 × 14722849 × 41557271576299067940203005664513<32> × 11253523682083615981215458133942841062728423641<47> × 19295564786028354971158527291309986977564530057472495301976881367832164454846963921<83> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2026215068 for P32 / November 4, 2014 2014 年 11 月 4 日) (Cyp / yafu v1.34.3 for P47 x P83 / March 9, 2015 2015 年 3 月 9 日)
93×10167-1 = 92(9)167<169> = 42667523 × 217964375386872118168190827482532791978573492536700572001800995103465462478335102790007284931914139941988195565043698458895774193407008885891969871323441953731413<162>
93×10168-1 = 92(9)168<170> = 383 × 4259 × 108131 × 107646179 × 940685909 × 2307103081<10> × 2256919446743421319807322993548606031510032544684792434319958470408644357957502486504807847683953291028029612560589783127238343218127<133>
93×10169-1 = 92(9)169<171> = 3643 × 397337 × 1126371061764045977020283152771912138487945394535363086172510969375677308033339<79> × 570404948648889182941247608631153170444398205798146114505491966274817409938219296751<84> (Cyp / yafu v1.34.3 for P79 x P84 / March 23, 2015 2015 年 3 月 23 日)
93×10170-1 = 92(9)170<172> = 1451570068002880387<19> × 393221496810165717809555945634287849<36> × 16293248911062667473718062255131299127624676971023144397757164134618771419241917200619412114037774583461683471327023373<119> (Ignacio Santos / GMP-ECM 7.0 B1=3000000, sigma=1:4036303817 for P36 x P119 / February 19, 2015 2015 年 2 月 19 日)
93×10171-1 = 92(9)171<173> = 10657 × 2510568161<10> × 3759649327007576173<19> × 924546219330806666770250978172614511923731594765266538545459782806377295674463386063407122555670507500378544651647413132234254130611426421019<141>
93×10172-1 = 92(9)172<174> = 7 × 19 × 67 × 3147945917<10> × 71294764840371626644640599815771211<35> × 465019967664694281984459046482192329580646285830431775215678511250732085365712324670119387016622986737290922219330673355168207<126> (Serge Batalov / GMP-ECM B1=1000000, sigma=2737746799 for P35 / November 18, 2014 2014 年 11 月 18 日)
93×10173-1 = 92(9)173<175> = 223 × 181927547 × 529434572435311<15> × 432979489549512334111155015204390375522859214169173048054939868494725401950647398927381093647813693458471151386663973856831587417838680457081819152989<150>
93×10174-1 = 92(9)174<176> = 83617 × 9984059 × 84551641 × 61770391109274649938277<23> × 104987716205902221865335532419135818511095381246076723277<57> × 203161002479716834583278205881102336125929136554077516327341597081114041882197<78> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P57 x P78 / May 11, 2015 2015 年 5 月 11 日)
93×10175-1 = 92(9)175<177> = 197 × 4596599459<10> × 50325131683<11> × 283520795040047<15> × 12195365638346555112535325600059379262899916930979<50> × 5902220049276750939638878101955048666990146396286413916595508854041974327820910469267759847<91> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P50 x P91 / May 22, 2015 2015 年 5 月 22 日)
93×10176-1 = 92(9)176<178> = 23 × 310463 × 163487117 × 7966393001764257765292094356894908262687364077397282315586277635630086228383145435543554583980897512193837328321567059695864668014513428530859870576707435241390403<163>
93×10177-1 = 92(9)177<179> = 3467 × 525731 × 33020857 × 34488577 × 509761375004769449<18> × 62593046024855218277613654150881456017905594472340570699<56> × 1404135089104781411226598514935271092646353326820883910303295886763169890059831933<82> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P56 x P82 / October 21, 2015 2015 年 10 月 21 日)
93×10178-1 = 92(9)178<180> = 7 × 17 × 8719 × 1601644123997<13> × 356901213222517984611697771015754551819415145419202578372662537981<66> × 1568033224189020218795268163013402526589121356675071994559845975336428068627176465860959563325087<97> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P66 x P97 / November 18, 2015 2015 年 11 月 18 日)
93×10179-1 = 92(9)179<181> = 2015005754352876119612780978872203027109035544433910742878509686486114969<73> × 4615371434999557642675437991100679192596498611638737035137173448112935881953594718296002484064661588070198871<109> (Serge Batalov / Msieve v. 1.52 (SVN 923M) for P73 x P109 / December 1, 2014 2014 年 12 月 1 日)
93×10180-1 = 92(9)180<182> = 32520338610454990842120063639054458704433641704104086811650605612611<68> × 2859748821007089768296792192844920951335057544241990875182255993573107646761936419963254870386600982519753069871509<115> (Dmitry Domanov / Msieve 1.50 snfs / November 22, 2014 2014 年 11 月 22 日)
93×10181-1 = 92(9)181<183> = 433 × 2147806004618937644341801385681293302540415704387990762124711316397228637413394919168591224018475750577367205542725173210161662817551963048498845265588914549653579676674364896073903<181>
93×10182-1 = 92(9)182<184> = 569 × 7499201 × 37130493567969633571<20> × 6843345232011365887352705443265842579155386807797510129116802031577173<70> × 8577416837729394634875279512187628675514792311112436208233752216238784008559631900137<85> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P70 x P85 / March 18, 2016 2016 年 3 月 18 日)
93×10183-1 = 92(9)183<185> = 17033 × 89374543 × 2905258513<10> × 8906510325361095743<19> × 5358245830682593878474523200217098767723<40> × 440618751078558436667852921508176494058093418324831490382699893931643568503535741856757636140561194104853<105> (KTakahashi / GMP-ECM 6.4.4 B1=11000000, sigma=2621828509 for P40 x P105 / May 28, 2015 2015 年 5 月 28 日)
93×10184-1 = 92(9)184<186> = 7 × 547 × 997 × 4673 × 2290929793505102980424829553<28> × 44575848408364308544794971968869416639184858947791587279559<59> × 510499410352376330494292364565448801645899334302046361268230559264845057305896758721035313<90> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P59 x P90 / June 21, 2016 2016 年 6 月 21 日)
93×10185-1 = 92(9)185<187> = 61 × 457 × 2851 × 573847 × 178816407269906916818819358886620159330085292052305765806381867930962319164851<78> × 1140344876678500392853187731122739275712794990856118161322423217283491646075519298846851940419021<97> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P78 x P97 / August 21, 2016 2016 年 8 月 21 日)
93×10186-1 = 92(9)186<188> = 29 × 103 × 607 × 165511 × 256702163 × 5315171546950420360899930166556316332117102952444638553952917982324419352166632817<82> × 227135678289781026281660508387434558490435775517176393862940534468842494442859258437431<87> (Jo Yeong Uk / GGNFS/Msieve 1.39 snfs for P82 x P87 / November 17, 2016 2016 年 11 月 17 日)
93×10187-1 = 92(9)187<189> = 249058387 × 2141430757<10> × 10084531014367<14> × 172910766266175945580698025505599460759826066982009987776566486055769100631131162591865914099580183357152960935252579158098905091323307550697004674586937852383<159>
93×10188-1 = 92(9)188<190> = 577 × 65707 × 71983563930465779<17> × 3407706255735128646072621496645588580935996544886535024419345063727446934207917658695707187806631616456015803805682138033148015603976484608462912007619131683747176079<166>
93×10189-1 = 92(9)189<191> = 18313 × 96461 × 4443777707<10> × 4245406474783<13> × 280199772243741002089<21> × 350815097613640525146146675584123<33> × 28389257640021946622968216091940425492412321597671372740090051720734608880434507094794749964139549489951149<107> (Serge Batalov / GMP-ECM B1=1000000, sigma=3304028489 for P33 / November 18, 2014 2014 年 11 月 18 日)
93×10190-1 = 92(9)190<192> = 72 × 19 × 96782209481718540258700428834627456485593710424654556466178235118322340962238513482747891<89> × 10321379223447271427104055976969279827148227156016915459801129522146845957473604500359647547279424119<101> (Serge Batalov / November 20, 2014 2014 年 11 月 20 日)
93×10191-1 = 92(9)191<193> = 425003 × 1798441 × 12167315179424276134426118909026140380810480638777001599459033949419099710176685892873214216366880777546255368569511146781031971478094964262993046160953335167081274788494445781954613<182>
93×10192-1 = 92(9)192<194> = 89 × 4481 × 9124412594917<13> × 71115941600735455427<20> × 359373556868705812045243748731290127266616853496531089918537601517654257510435295338605249986648020894985638944138093768032567693617157941711664533519914329<156>
93×10193-1 = 92(9)193<195> = 59 × 888755109673<12> × 1373697584122328663639828440980974077882038209541506981254663945721<67> × 12910934915386575326324774085374416454577142964663174922125722206108231136718015435395393253957926228252297681311917<116> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P67 x P116 / June 1, 2017 2017 年 6 月 1 日)
93×10194-1 = 92(9)194<196> = 17 × 5974063237268730384292283<25> × 5849613447406728262365563370447677<34> × 35131027407457566574432406589308555601495181<44> × 445601036861538203783547798257207191450542828710998674670943161561081809129325957496486332357<93> (Serge Batalov / GMP-ECM B1=1000000, sigma=3487278742 for P34 / November 18, 2014 2014 年 11 月 18 日) (Erik Branger / GGNFS, Msieve gnfs for P44 x P93 / December 6, 2014 2014 年 12 月 6 日)
93×10195-1 = 92(9)195<197> = 999566300242423183<18> × 93040351577924207551855780924713532290234536857663232302283961837460810555049946829424716665247820106717761459062876153847176886265142876132953944143649674532136824403749261291153<179>
93×10196-1 = 92(9)196<198> = 7 × 733 × 855667 × 6633817115315884870045171<25> × 23788734178037353467376037439619778051011553<44> × 15666288594208372830101014292481708058006373368481<50> × 85679160055408350138434669781205166158024580638445268940473857751175829<71> (Jo Yeong Uk / GMP-ECM 6.4.4 B1=11000000, sigma=1568809302 for P44, B1=11000000, sigma=4576096898 for P50 x P71 / August 27, 2017 2017 年 8 月 27 日)
93×10197-1 = 92(9)197<199> = 131 × 6883 × 86341 × 107999 × 75490141 × 620993153351<12> × 23595002422559984742276882111840757795784385403766955575247583383062409448676101115352861460667688866683400990409837323459696236496493878568610551921441895780146127<164>
93×10198-1 = 92(9)198<200> = 23 × 2083531349<10> × 24657963363440839<17> × 7645387125960611303159181633574222378027<40> × 10294337188977774665798646085253447616598669032563119990941289871199270056156564242512006039233102166140581186486223917125716935778729<134> (Jo Yeong Uk / GMP-ECM 6.4.4 B1=11000000, sigma=5257180480 for P40 x P134 / July 21, 2017 2017 年 7 月 21 日)
93×10199-1 = 92(9)199<201> = 40867 × 26782000216885637469758322694631574895927938398428939603486486605799<68> × 849703058535317256362658454121224267342450853764472015240935088213550454126182623760416259061230923837298655565725808359759409603<129> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P68 x P129 / May 29, 2018 2018 年 5 月 29 日)
93×10200-1 = 92(9)200<202> = 9423079217399071663775311<25> × 82187529301590153600913034882353<32> × 110792987822643711000662881486009<33> × 108385680082218060422246722447489484565927946273242035764754654997841383117098431882600358822721207018152716584617<114> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3154904604 for P32 / November 4, 2014 2014 年 11 月 4 日) (Serge Batalov / GMP-ECM B1=1000000, sigma=2053217026 for P33 / November 18, 2014 2014 年 11 月 18 日)
93×10201-1 = 92(9)201<203> = 2801 × 24029 × 109315145522483379276419721601631<33> × 3874313943124491225452738561541761020406729<43> × 3262563667753955443653755197049065473708827152546695899896778734553859363303925960526293631906848514506867141184699439869<121> (Serge Batalov / GMP-ECM B1=1000000, sigma=1796757114 for P33 / November 18, 2014 2014 年 11 月 18 日) (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=1156723808 for P43 x P121 / December 5, 2014 2014 年 12 月 5 日)
93×10202-1 = 92(9)202<204> = 7 × 163 × 167 × 90529 × 454523574763<12> × [118614203312973963684402652555915994820941519808316662376608819074892851778498185163814198734567090020846705880612249532217633383157107281147038108292815887723835825985340257321489871<183>] Free to factor
93×10203-1 = 92(9)203<205> = 130087 × 29746616941831<14> × 2760958028799553217365153<25> × 361289546902134952960423947583<30> × 987499950732326315436312377583301475094030086654507799926951<60> × 2439827856826646695489342723032892615495990209461450073813022911849605383<73> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=4109537841 for P30 / November 4, 2014 2014 年 11 月 4 日) (Erik Branger / GGNFS, Msieve gnfs for P60 x P73 / December 8, 2014 2014 年 12 月 8 日)
93×10204-1 = 92(9)204<206> = 83 × 1277 × 877432989593456048155032031021501825626704154126293741921483899576379126529611004707946901151984602466247134190638827825004009774414808804521138587238539121246143540489286826239963770508816786330914889<201>
93×10205-1 = 92(9)205<207> = 67 × 1831 × 3607339741<10> × 20735684454442004019195004564820987<35> × [101347812640881797041988498834811661353746561534407722887762701973417434191105205084773989306217649843940975950942353290438964618537542032098025141687722018061<159>] (Serge Batalov / GMP-ECM B1=1000000, sigma=1875645127 for P35 / November 18, 2014 2014 年 11 月 18 日) Free to factor
93×10206-1 = 92(9)206<208> = 96948393427<11> × 1665069893691276055439402350250983227472607<43> × 57611590302876592530052417363325127100827886422541151184604714609194830613108445183264462039097691842641134259011745047153585157934627052133382053425079291<155> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=1344974756 for P43 x P155 / December 3, 2014 2014 年 12 月 3 日)
93×10207-1 = 92(9)207<209> = 47 × 4021891 × 1528428263<10> × 67059528259782137114598126332245702607<38> × 4800088454025982260550867398446770385988590945541679794161347198697793339830971563940269572190879877287415936406106934738576220356282792597894621239380707<154> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=266372674 for P38 x P154 / July 16, 2015 2015 年 7 月 16 日)
93×10208-1 = 92(9)208<210> = 7 × 192 × 144829 × 11151040633<11> × 501510100225526217746939<24> × 112318636465330658060914499<27> × 4045528544058118625514750308505960795915082036120993382378728547638567898039645551105632431751779165798225834990948458277856414716703771043181<142>
93×10209-1 = 92(9)209<211> = 536803 × 1947351979<10> × 603404517187327<15> × 14743989093778937382506661590144990355610796633208150206523460316986729088480302920851454181648704391325994717735973006840722187137799778942541249808973231983805346496789754823944801<182>
93×10210-1 = 92(9)210<212> = 17 × 9772170585377<13> × 15752667174888268675793<23> × 35537665105480396135094627556339209149544870580985547123374154686654931749182739986487900749693230817893485536149916014152938697217218119357831431580264700155359424396793833727<176>
93×10211-1 = 92(9)211<213> = 8291 × 102784559 × 16477509057027647<17> × 2406398609539879793206049293<28> × [27522572824995999825053326494564502703451964083754166525759207399497257422639033853538390350109483274497240804232588806187504807919716947388405464659655827001<158>] Free to factor
93×10212-1 = 92(9)212<214> = 31274312486166660885685689286303<32> × 235001632974502062605653493506801<33> × [1265389706276134621814513451043735169245405842952430713679154955425350052352612074330975565288661134466099019628849547533001109318131517525076077779633<151>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1190080545 for P33 / November 4, 2014 2014 年 11 月 4 日) (Serge Batalov / GMP-ECM B1=1000000, sigma=3188868923 for P32 / November 18, 2014 2014 年 11 月 18 日) Free to factor
93×10213-1 = 92(9)213<215> = 11492212338538300526489<23> × 8092436622331737245840293573746371126617622810789779679684008077411994706460443280833910255955347596559058604569377039331388890545329332190750513973128106202262705636502700619764772779967605591<193>
93×10214-1 = 92(9)214<216> = 7 × 29 × 1109 × 58099 × 2101280564521<13> × [33837842412286445189087472202685113151975793460671103560766517372052752101877292909035942446325712713801693481282412217891264281981700358057943239827477668485514843769556771541682594602521231803<194>] Free to factor
93×10215-1 = 92(9)215<217> = 587 × 1871 × 513760309 × 437000486175989<15> × 1008289878785516616892122231462088479976997<43> × [37406164764180169907189535121502449715900258203751184521715140028833423477771168170415623255528283948882751406066060011653709109829801626594043471<146>] (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=1805088931 for P43 / May 15, 2015 2015 年 5 月 15 日) Free to factor
93×10216-1 = 92(9)216<218> = 947 × 303907 × 5956361 × 57036486892308078786597151<26> × [951170750946202930424357052128849411587792348052653476748358345238305474677726966007822629728812233706347189251465506799164421187744064935585977818491713593265697949222196913121<177>] Free to factor
93×10217-1 = 92(9)217<219> = 15947081 × 2075721587<10> × 43456901767<11> × 463296161969<12> × [1395452903781240064033515473287977963800958579896162272814879469569794772079429791740244241447648550118447632196122773781816505974348424201022939944023095397108528088861754255697579<181>] Free to factor
93×10218-1 = 92(9)218<220> = 5387 × 16547 × 36612143 × 77168473727<11> × 47069903433152993<17> × 4243909215242098770209<22> × 563315259984213181672541037523<30> × 147704787102899582134373609090478843875891729006804992477<57> × 2221754998432020847950116228361697112374551221803348962566640917465753<70> (Serge Batalov / GMP-ECM B1=1000000, sigma=1783915948 for P30 / November 18, 2014 2014 年 11 月 18 日) (Erik Branger / GGNFS, Msieve gnfs for P57 x P70 / December 2, 2014 2014 年 12 月 2 日)
93×10219-1 = 92(9)219<221> = 112859 × 186283 × 21368804203<11> × 221887771081121657393735117791588861<36> × 1049785183937761542664513396402015759<37> × 888708841516497326715794810325641607007140484506478686795294197032765832844944465816279699149560918691590606164673663635815625911<129> (Serge Batalov / GMP-ECM B1=3000000, sigma=2603065434 for P37 / June 20, 2015 2015 年 6 月 20 日) (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=2376234064 for P36 x P129 / July 16, 2015 2015 年 7 月 16 日)
93×10220-1 = 92(9)220<222> = 7 × 23 × 103 × 16891722908475414823349762163508506950563900746643<50> × 3320059746470948074515466933813955453510646579751398307904417698732914235280239540554678438920940491329322405827704361340558603394000803269070840205673084391348513350771<169> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P50 x P169 / April 2, 2018 2018 年 4 月 2 日)
93×10221-1 = 92(9)221<223> = 152685557 × 128587369093<12> × [473681780037052501066132961339463142505181249188523988420020316740920928389062330726774171936973665968941107014286666308628257910773083326396410809929419421708008836061852013507373419415264938433937249799<204>] Free to factor
93×10222-1 = 92(9)222<224> = 109 × 157 × 793767503278969<15> × 29511011301976051297<20> × 26330188015017820507289<23> × 1961911118822088151244215517867<31> × 4491031508533358587426590763776026892427335965966986622336610710305012158209966056225224681783669511358790896881988776981290872499797<133> (Serge Batalov / GMP-ECM B1=1000000, sigma=2091878193 for P31 / November 18, 2014 2014 年 11 月 18 日)
93×10223-1 = 92(9)223<225> = 131735984347256471602170851<27> × 177156944527352926571933543<27> × 36108060990929216855682849321437<32> × 1103611402644787343835245380654776637672971797019103667403172554056881484782702107061248114419747036143281783310408068371827608386129053363039<142> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=373984773 for P32 / November 4, 2014 2014 年 11 月 4 日)
93×10224-1 = 92(9)224<226> = 283 × 22271 × 71798887 × 1752237101241037451307181<25> × [11728600981100945994031947028453256702647011465606679979196941773840198856358004193164126397246640746850958297542768429951124842707507118432179095291703709556463759613512282983283159592169<188>] Free to factor
93×10225-1 = 92(9)225<227> = 46727 × 239335569223074131988877<24> × 138474167220475936850960395871837<33> × 60053599148547821541128017652046715852096480931813909499978077710453805158026408984149993685055046537099410764296876181592568287948336261727288952988729576578114967313<167> (Serge Batalov / GMP-ECM B1=1000000, sigma=1718786471 for P33 / November 18, 2014 2014 年 11 月 18 日)
93×10226-1 = 92(9)226<228> = 7 × 17 × 19 × 2221 × [185196948989790470561551002542774023280252170538112635987829573403806414624903493471608411605595815425153449611793341711669857165359567841923849802486458219867012659704987234354392483313854464272023651044341526273771671279<222>] Free to factor
93×10227-1 = 92(9)227<229> = 113 × 91695453649<11> × 616208770431857896108490110063<30> × [1456561499584374913516085683470465093717849745277556732792656595123524875288590653798319420193543191411796723272395061677609509673383451203580261461890705066538402865367178384605414881329<187>] (Serge Batalov / GMP-ECM B1=1000000, sigma=3182936505 for P30 / November 18, 2014 2014 年 11 月 18 日) Free to factor
93×10228-1 = 92(9)228<230> = 179 × 6323 × 47688331 × 5366574137<10> × 305949216407332215201955132307341435922137<42> × 31989852313092259726846541725238299181426473829<47> × 32804687038612601583421191515763893431019637007267842327750159227720866968262201361911476464585509557882332144061711137<119> (Serge Batalov / GMP-ECM B1=1000000, sigma=695283216 for P47 / November 17, 2014 2014 年 11 月 17 日) (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=645687006 for P42 x P119 / June 23, 2015 2015 年 6 月 23 日)
93×10229-1 = 92(9)229<231> = 2861 × 105107 × 16604601917946883240596307<26> × 522129167249076639588973859953<30> × 587319027126286854728777910481341928079<39> × 4765326486003191087597051118794563776928747627<46> × 127456003337676668046352628742490478965361345492082016956319596444890572678027475959<84> (Serge Batalov / GMP-ECM B1=1000000, sigma=2378696836 for P30 / November 18, 2014 2014 年 11 月 18 日) (Serge Batalov / GMP-ECM B1=2000000, sigma=1891732714 for P39, Msieve 1.51 gnfs for P46 x P84 / June 11, 2015 2015 年 6 月 11 日)
93×10230-1 = 92(9)230<232> = 33091 × 988711 × 184664317700927033<18> × [1539290911804470300970035315504686309768806746562319332037276746740793322516654162395183476584259775116205238198183872365825941826381684209041135433234247347381409256823251262110232656743710237270175326203<205>] Free to factor
93×10231-1 = 92(9)231<233> = 29327 × 176137481159<12> × 31214430082817135315918781179<29> × 1432046876060664869146932593112944461<37> × 402764221099418390951981742535997623480982159910845306389376358655701407940837833278264770275786654689054148076263241275568978550352566201113217030150297<153> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=647478474 for P37 x P153 / June 15, 2015 2015 年 6 月 15 日)
93×10232-1 = 92(9)232<234> = 72 × 347 × 881 × 299623 × 2800757154950485955208133<25> × [73982820309351513693319971280711626844902792005945230539457457575795523923579502037608685359349764956587767688425016763799493227453170864612731983200156625071413015040706001427741527777036884143727<197>] Free to factor
93×10233-1 = 92(9)233<235> = 367 × 10333 × 61403 × [39939338237812501650835374829840951551449385696053984242866952375737813015977178999133037613720436273741963681066206137716091349183007705805566513524139778603894352196523113021794086369775756977137846785562888868836106818303<224>] Free to factor
93×10234-1 = 92(9)234<236> = 9257459 × 23504131871189<14> × 34503666507487518580646646583<29> × [12387443557158515436578937831523609744657419437613673146526773442164260505519415960172918647580073096132306445923456864919526422328780458463205754349963717412675720177079469962226043660503<188>] (Serge Batalov / GMP-ECM B1=1000000, sigma=190700721 for P29 / November 18, 2014 2014 年 11 月 18 日) Free to factor
93×10235-1 = 92(9)235<237> = 487 × 1909650924024640657084188911704312114989733059548254620123203285420944558521560574948665297741273100616016427104722792607802874743326488706365503080082135523613963039014373716632443531827515400410677618069815195071868583162217659137577<235>
93×10236-1 = 92(9)236<238> = 89 × 2402597057286137<16> × [43492262552133461879321588705348318996799017594133654899997024141645345035965202215483969679692430262954766583568643792712637069529628022522805953153843488010640846974078453944190882792709494470785110466499226372163660943<221>] Free to factor
93×10237-1 = 92(9)237<239> = 7418077 × 2103059215031448735995204008355971334833843<43> × [5961288090242446984770226805413221610462737224390463816444198785508696380105811104504466194267175090128748596645775250346515384006272875260462306390966291377424547667050067448945214025732809<190>] (Serge Batalov / GMP-ECM B1=11000000, sigma=1962426349 for P43 / December 18, 2014 2014 年 12 月 18 日) Free to factor
93×10238-1 = 92(9)238<240> = 7 × 67 × 5657 × 1281267362786186999<19> × 1898018725741781389<19> × [144139718839675499499518862917277995492113339277749111844662759994846191749675367678511371298025029888701767441385208447700682710718757914124133226791628837893811828586474821449396541464645245854673<198>] Free to factor
93×10239-1 = 92(9)239<241> = 934133050089393607<18> × [9955755231131174653846222021098289788816693483060477849205560691719357157216299789409194849311210724697353773942822773257180506071161378898020454004076042975674664134961747167025333932588697016325887973110994185042151349257<223>] Free to factor
93×10240-1 = 92(9)240<242> = 941 × 10247815046980340802042930397<29> × 9644107584416284462361674442960961946496570388434647186502360529588893658029183706146802818274547338219418458100081188616928551848576612427885392300842687780483350378885586406210454715130365819772015942193854487<211>
93×10241-1 = 92(9)241<243> = [929999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999<243>] Free to factor
93×10242-1 = 92(9)242<244> = 17 × 232 × 29 × 52734077191<11> × 602292001588208202297076762640495736289688839<45> × [1122747019605633405506432035739630145054821306592805666524505718884262943146233223211645072599508892476213939867169750577694106649688391111107854349540548295420700813865498287288225883<184>] (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=1096484741 for P45 / May 13, 2015 2015 年 5 月 13 日) Free to factor
93×10243-1 = 92(9)243<245> = 1045023911<10> × 88993179027843316017675312311585949921867385865011082985640890278155558873140463481701137841237395380515843526952561758177799244633743122074840256932647352602059265225750418260046874659502408265948280297291685606225329709226146118296809<236>
93×10244-1 = 92(9)244<246> = 7 × 19 × 373 × 224881 × 848641045914059<15> × 32657317372373202538859<23> × 3007912315095096174063492836106306814252201128087802798656529167594787570222234014245826497751468339163990693543287710313651702017573848787408951936862879086068220182359636352992630873475957443820751<199>
93×10245-1 = 92(9)245<247> = 61 × 83 × 96369487734684207500313201288170730003280982051<47> × [19060551865287167600120271595099458100723359019052556114370603925167115971703600182967916476867387348105479141059131768099395177432280223047919361172745484039948920715106752031740680191388905738723<197>] (Serge Batalov / GMP-ECM B1=11000000, sigma=2978404791 for P47 / November 19, 2014 2014 年 11 月 19 日) Free to factor
93×10246-1 = 92(9)246<248> = 56009 × 12189533 × 361770864120391783163<21> × [376534240365040595579028932224490270680322657470218997152982615378152537314144106994356019701813363002681634160548681457540685991682665809405642848390801277404544523636711958351540329252735571329202050180858260672809<216>] Free to factor
93×10247-1 = 92(9)247<249> = 913471142464677628405871143644065711176355800353156179014750240837863999112572098851<84> × 1018094559058237041498019534230885695909116960976023414318297655238028074996922271351015638587163724909886787539497975702108924746730018047917462532553639370561151349<166> (NFS@Home + Dmitry Domanov / ggnfs-lasieve4I14e on the NFS@Home grid + msieve for P84 x P166 / November 28, 2016 2016 年 11 月 28 日)
93×10248-1 = 92(9)248<250> = 6343 × [1466183194072205580955383887750275894687056597824373324925114299227494876241526091754690209679962163014346523726943086867412896105943559829733564559356771243890903358032476746019233801040517105470597509065111146145357086552104682326974617688790793<247>] Free to factor
93×10249-1 = 92(9)249<251> = 229 × 20357 × 77662733645062847<17> × [256874513318835418190489466845197929927173709519385115397924292163951521320697774789048537993600694619967875649092905671962040717773462227202031319804035178095936814685554548697926427585200302436735541262174243710126793099495689<228>] Free to factor
93×10250-1 = 92(9)250<252> = 7 × 25679 × 100269979 × 133119211296082601<18> × 4160882360082002813<19> × 19637125019397115285834633539439<32> × 14906751453839575538199698723672377597<38> × 1042500912347923647718048767593479768781<40> × 305261718674508282554977580210897814733257360977112324993023012536876756270631407133619270087623<96> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2065167440 for P38 / November 5, 2014 2014 年 11 月 5 日) (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2118725129 for P32 / November 10, 2014 2014 年 11 月 10 日) (KTakahashi / GMP-ECM 6.4.4 B1=11000000, sigma=1864674593 for P40 / November 19, 2014 2014 年 11 月 19 日)
plain text versionプレーンテキスト版

4. Related links 関連リンク