Table of contents 目次

  1. About 9599...99 9599...99 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 9599...99 9599...99 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 9599...99 9599...99 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 9599...99 9599...99 について

1.1. Classification 分類

Near-repdigit of the form ABAA...AA ABAA...AA の形のニアレプディジット (Near-repdigit)

1.2. Sequence 数列

959w = { 95, 959, 9599, 95999, 959999, 9599999, 95999999, 959999999, 9599999999, 95999999999, … }

1.3. General term 一般項

96×10n-1 (0≤n)

2. Prime numbers of the form 9599...99 9599...99 の形の素数

2.1. Last updated 最終更新日

November 8, 2017 2017 年 11 月 8 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 96×1010-1 = 95(9)10<12> is prime. は素数です。
  2. 96×1012-1 = 95(9)12<14> is prime. は素数です。
  3. 96×1063-1 = 95(9)63<65> is prime. は素数です。
  4. 96×1069-1 = 95(9)69<71> is prime. は素数です。
  5. 96×10156-1 = 95(9)156<158> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / August 28, 2004 2004 年 8 月 28 日) (certified by: (証明: Jens K Andersen / November 12, 2007 2007 年 11 月 12 日)
  6. 96×10328-1 = 95(9)328<330> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / August 28, 2004 2004 年 8 月 28 日) (certified by: (証明: Jens K Andersen / November 12, 2007 2007 年 11 月 12 日)
  7. 96×10340-1 = 95(9)340<342> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / August 28, 2004 2004 年 8 月 28 日) (certified by: (証明: Jens K Andersen / November 12, 2007 2007 年 11 月 12 日)
  8. 96×10344-1 = 95(9)344<346> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / August 28, 2004 2004 年 8 月 28 日) (certified by: (証明: Jens K Andersen / November 12, 2007 2007 年 11 月 12 日)
  9. 96×10444-1 = 95(9)444<446> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Jens K Andersen / November 12, 2007 2007 年 11 月 12 日)
  10. 96×10672-1 = 95(9)672<674> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Jens K Andersen / November 12, 2007 2007 年 11 月 12 日)
  11. 96×10894-1 = 95(9)894<896> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Jens K Andersen / November 12, 2007 2007 年 11 月 12 日)
  12. 96×101464-1 = 95(9)1464<1466> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Jens K Andersen / November 12, 2007 2007 年 11 月 12 日)
  13. 96×101670-1 = 95(9)1670<1672> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Jens K Andersen / November 12, 2007 2007 年 11 月 12 日)
  14. 96×101708-1 = 95(9)1708<1710> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Jens K Andersen / November 12, 2007 2007 年 11 月 12 日)
  15. 96×102010-1 = 95(9)2010<2012> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Jens K Andersen / November 12, 2007 2007 年 11 月 12 日)
  16. 96×104306-1 = 95(9)4306<4308> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 19, 2004 2004 年 12 月 19 日) (certified by: (証明: Jens K Andersen / November 12, 2007 2007 年 11 月 12 日)
  17. 96×107888-1 = 95(9)7888<7890> is prime. は素数です。 (Jens K Andersen / November 12, 2007 2007 年 11 月 12 日)
  18. 96×108864-1 = 95(9)8864<8866> is prime. は素数です。 (Jens K Andersen / November 12, 2007 2007 年 11 月 12 日)
  19. 96×109478-1 = 95(9)9478<9480> is prime. は素数です。 (Jens K Andersen / November 12, 2007 2007 年 11 月 12 日)
  20. 96×109621-1 = 95(9)9621<9623> is prime. は素数です。 (Jens K Andersen / November 12, 2007 2007 年 11 月 12 日)
  21. 96×1026004-1 = 95(9)26004<26006> is prime. は素数です。 (Eric J. Sorensen / Proth.exe / February 24, 2002 2002 年 2 月 24 日)
  22. 96×1036992-1 = 95(9)36992<36994> is prime. は素数です。 (Eric J. Sorensen / Proth.exe / June 19, 2002 2002 年 6 月 19 日)
  23. 96×1071600-1 = 95(9)71600<71602> is prime. は素数です。 (Larry Soule / NewPGen, OpenPFGW / August 9, 2006 2006 年 8 月 9 日)
  24. 96×1098738-1 = 95(9)98738<98740> is prime. は素数です。 (Gary Barnes / srsieve, sr2sieve, LLR / November 2010 2010 年 11 月)
  25. 96×10118949-1 = 95(9)118949<118951> is prime. は素数です。 (Stefano D'Urso / Srsieve, NewPGen, OpenPFGW, LLR / December 5, 2010 2010 年 12 月 5 日)
  26. 96×10130565-1 = 95(9)130565<130567> is prime. は素数です。 (Stefano D'Urso / Srsieve, NewPGen, OpenPFGW, LLR / December 5, 2010 2010 年 12 月 5 日)
  27. 96×10140326-1 = 95(9)140326<140328> is prime. は素数です。 (Stefano D'Urso / Srsieve, NewPGen, OpenPFGW, LLR / December 5, 2010 2010 年 12 月 5 日)
  28. 96×10183452-1 = 95(9)183452<183454> is prime. は素数です。 (Stefano D'Urso / Srsieve, NewPGen, OpenPFGW, LLR / December 5, 2010 2010 年 12 月 5 日)
  29. 96×10211983-1 = 95(9)211983<211985> is prime. は素数です。 (Stefano D'Urso / Srsieve, NewPGen, OpenPFGW, LLR / December 10, 2010 2010 年 12 月 10 日)
  30. 96×10225618-1 = 95(9)225618<225620> is prime. は素数です。 (Stefano D'Urso / Srsieve, NewPGen, OpenPFGW, LLR / December 14, 2010 2010 年 12 月 14 日)
  31. 96×10846519-1 = 95(9)846519<846521> is prime. は素数です。 (Bruno DallOsto / LLR / September 22, 2011 2011 年 9 月 22 日)

2.3. Range of search 捜索範囲

  1. n≤11000 / Completed 終了 / Ray Chandler / October 15, 2010 2010 年 10 月 15 日
  2. n≤20000 / Completed 終了 / Ray Chandler / December 12, 2010 2010 年 12 月 12 日
  3. n≤100000 / Completed 終了 / Gary Barnes / December 1, 2010 2010 年 12 月 1 日
  4. n≤135000 / Completed 終了 / Gary Barnes / January 3, 2010 2010 年 1 月 3 日
  5. n≤140000 / Completed 終了 / Gary Barnes / January 14, 2011 2011 年 1 月 14 日
  6. n≤145000 / Completed 終了 / Gary Barnes / January 16, 2011 2011 年 1 月 16 日
  7. n≤150000 / Completed 終了 / Gary Barnes / January 18, 2011 2011 年 1 月 18 日
  8. n≤155000 / Completed 終了 / Gary Barnes / January 20, 2011 2011 年 1 月 20 日
  9. n≤160000 / Completed 終了 / Gary Barnes / January 24, 2011 2011 年 1 月 24 日
  10. n≤165000 / Completed 終了 / Gary Barnes / January 25, 2011 2011 年 1 月 25 日
  11. n≤170000 / Completed 終了 / Gary Barnes / January 28, 2011 2011 年 1 月 28 日
  12. n≤175000 / Completed 終了 / Gary Barnes / January 31, 2011 2011 年 1 月 31 日
  13. n≤180000 / Completed 終了 / Gary Barnes / February 3, 2011 2011 年 2 月 3 日
  14. n≤185000 / Completed 終了 / Gary Barnes / February 7, 2011 2011 年 2 月 7 日
  15. n≤190000 / Completed 終了 / Gary Barnes / February 11, 2011 2011 年 2 月 11 日
  16. n≤195000 / Completed 終了 / Gary Barnes / February 17, 2011 2011 年 2 月 17 日
  17. n≤200000 / Completed 終了 / Gary Barnes / February 20, 2011 2011 年 2 月 20 日
  18. n≤205000 / Completed 終了 / Gary Barnes / February 27, 2011 2011 年 2 月 27 日
  19. n≤210000 / Completed 終了 / Gary Barnes / February 28, 2011 2011 年 2 月 28 日
  20. n≤215000 / Completed 終了 / Gary Barnes / March 5, 2011 2011 年 3 月 5 日
  21. n≤220000 / Completed 終了 / Gary Barnes / March 9, 2011 2011 年 3 月 9 日
  22. n≤225000 / Completed 終了 / Gary Barnes / March 15, 2011 2011 年 3 月 15 日
  23. n≤230000 / Completed 終了 / Gary Barnes / April 17, 2011 2011 年 4 月 17 日
  24. 1000001≤n≤1010000 / Completed 終了 / Predrag Kurtovic / September 24, 2016 2016 年 9 月 24 日
  25. 1010001≤n≤1015000 / Completed 終了 / Predrag Kurtovic / June 12, 2017 2017 年 6 月 12 日
  26. 1015000≤n≤1020001 / Completed 終了 / Predrag Kurtovic / November 8, 2017 2017 年 11 月 8 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

  1. 96×106k+1-1 = 7×(96×101-17+864×10×106-19×7×k-1Σm=0106m)
  2. 96×108k+1-1 = 137×(96×101-1137+864×10×108-19×137×k-1Σm=0108m)
  3. 96×1016k+3-1 = 17×(96×103-117+864×103×1016-19×17×k-1Σm=01016m)
  4. 96×1018k-1 = 19×(96×100-119+864×1018-19×19×k-1Σm=01018m)
  5. 96×1021k+20-1 = 43×(96×1020-143+864×1020×1021-19×43×k-1Σm=01021m)
  6. 96×1022k+6-1 = 23×(96×106-123+864×106×1022-19×23×k-1Σm=01022m)
  7. 96×1028k+2-1 = 29×(96×102-129+864×102×1028-19×29×k-1Σm=01028m)
  8. 96×1033k+22-1 = 67×(96×1022-167+864×1022×1033-19×67×k-1Σm=01033m)
  9. 96×1035k+21-1 = 71×(96×1021-171+864×1021×1035-19×71×k-1Σm=01035m)
  10. 96×1043k+25-1 = 173×(96×1025-1173+864×1025×1043-19×173×k-1Σm=01043m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 24.08%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 24.08% です。

3. Factor table of 9599...99 9599...99 の素因数分解表

3.1. Last updated 最終更新日

April 4, 2018 2018 年 4 月 4 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=201, 202, 207, 210, 212, 213, 215, 217, 219, 222, 223, 224, 225, 226, 228, 230, 231, 232, 234, 237, 241, 242, 244, 249, 250 (25/250)

3.4. Factor table 素因数分解表

96×100-1 = 95 = 5 × 19
96×101-1 = 959 = 7 × 137
96×102-1 = 9599 = 29 × 331
96×103-1 = 95999 = 17 × 5647
96×104-1 = 959999 = 643 × 1493
96×105-1 = 9599999 = 1019 × 9421
96×106-1 = 95999999 = 23 × 1129 × 3697
96×107-1 = 959999999 = 7 × 137142857
96×108-1 = 9599999999<10> = 18869 × 508771
96×109-1 = 95999999999<11> = 137 × 700729927
96×1010-1 = 959999999999<12> = definitely prime number 素数
96×1011-1 = 9599999999999<13> = 197 × 48730964467<11>
96×1012-1 = 95999999999999<14> = definitely prime number 素数
96×1013-1 = 959999999999999<15> = 7 × 137142857142857<15>
96×1014-1 = 9599999999999999<16> = 3461 × 2773764807859<13>
96×1015-1 = 95999999999999999<17> = 1063 × 61871 × 1459657063<10>
96×1016-1 = 959999999999999999<18> = 47 × 77377 × 263974203121<12>
96×1017-1 = 9599999999999999999<19> = 59 × 137 × 5683 × 71161 × 2936831
96×1018-1 = 95999999999999999999<20> = 19 × 5052631578947368421<19>
96×1019-1 = 959999999999999999999<21> = 72 × 17 × 1152460984393757503<19>
96×1020-1 = 9599999999999999999999<22> = 43 × 49681 × 4493786637819053<16>
96×1021-1 = 95999999999999999999999<23> = 71 × 1352112676056338028169<22>
96×1022-1 = 959999999999999999999999<24> = 67 × 719 × 603640243 × 33013331641<11>
96×1023-1 = 9599999999999999999999999<25> = 61 × 4789 × 12343 × 49800551 × 53461567
96×1024-1 = 95999999999999999999999999<26> = 16829 × 5704438766415116762731<22>
96×1025-1 = 959999999999999999999999999<27> = 7 × 137 × 173 × 257 × 21617 × 12695509 × 82040417
96×1026-1 = 9599999999999999999999999999<28> = 2591 × 447238608241<12> × 8284466244529<13>
96×1027-1 = 95999999999999999999999999999<29> = 2153 × 2297 × 2620155677<10> × 7408650579307<13>
96×1028-1 = 959999999999999999999999999999<30> = 23 × 764260753 × 54613730027273307721<20>
96×1029-1 = 9599999999999999999999999999999<31> = 7251011 × 1323953308028356321621909<25>
96×1030-1 = 95999999999999999999999999999999<32> = 29 × 307 × 499 × 14322577 × 1508735635613846371<19>
96×1031-1 = 959999999999999999999999999999999<33> = 7 × 137142857142857142857142857142857<33>
96×1032-1 = 9599999999999999999999999999999999<34> = 11467 × 5379383 × 155628436486735920861259<24>
96×1033-1 = 95999999999999999999999999999999999<35> = 137 × 269643289 × 2598729342035652406216543<25>
96×1034-1 = 959999999999999999999999999999999999<36> = 479 × 414757349 × 4832163601625459422344269<25>
96×1035-1 = 9599999999999999999999999999999999999<37> = 17 × 38287 × 31453532786749<14> × 468923007707928469<18>
96×1036-1 = 95999999999999999999999999999999999999<38> = 19 × 32803 × 154029557630319434839881461419607<33>
96×1037-1 = 959999999999999999999999999999999999999<39> = 7 × 137142857142857142857142857142857142857<39>
96×1038-1 = 9599999999999999999999999999999999999999<40> = 787 × 14770350004489<14> × 825858634971414138039293<24>
96×1039-1 = 95999999999999999999999999999999999999999<41> = 823 × 116646415552855407047387606318347509113<39>
96×1040-1 = 959999999999999999999999999999999999999999<42> = 149 × 964969 × 6676849743498732278362789983147979<34>
96×1041-1 = 9599999999999999999999999999999999999999999<43> = 43 × 137 × 24265698283<11> × 593371816189<12> × 113178127011664747<18>
96×1042-1 = 95999999999999999999999999999999999999999999<44> = 501415004468116223<18> × 191458171663278197033171713<27>
96×1043-1 = 959999999999999999999999999999999999999999999<45> = 7 × 137142857142857142857142857142857142857142857<45>
96×1044-1 = 9599999999999999999999999999999999999999999999<46> = 163 × 359 × 1443571 × 34214549 × 3321545541857049803348464493<28>
96×1045-1 = 95999999999999999999999999999999999999999999999<47> = 5543174020738340083<19> × 17318597547333176678703373253<29>
96×1046-1 = 959999999999999999999999999999999999999999999999<48> = 2549 × 376618281679089839152608866222047861906630051<45>
96×1047-1 = 9599999999999999999999999999999999999999999999999<49> = 109 × 88073394495412844036697247706422018348623853211<47>
96×1048-1 = 95999999999999999999999999999999999999999999999999<50> = 97 × 1201 × 297907 × 25467979247<11> × 108612871576553343832592298523<30>
96×1049-1 = 959999999999999999999999999999999999999999999999999<51> = 7 × 137 × 1001042752867570385818561001042752867570385818561<49>
96×1050-1 = 95(9)50<52> = 23 × 417391304347826086956521739130434782608695652173913<51>
96×1051-1 = 95(9)51<53> = 17 × 191 × 815571304600981<15> × 36251585650425575969298010244112557<35>
96×1052-1 = 95(9)52<54> = 571 × 2659 × 49711223211884127481057<23> × 12719274431868208664716463<26>
96×1053-1 = 95(9)53<55> = 1217 × 7888249794576828266228430566967953985209531635168447<52>
96×1054-1 = 95(9)54<56> = 19 × 64921 × 77827383727104764576217735077207196763029398483501<50>
96×1055-1 = 95(9)55<57> = 7 × 67 × 4337 × 4363 × 763619 × 8791457 × 36301125251<11> × 443880519656239731449777<24>
96×1056-1 = 95(9)56<58> = 71 × 135211267605633802816901408450704225352112676056338028169<57>
96×1057-1 = 95(9)57<59> = 137 × 6711253189<10> × 622569466069<12> × 167710102997784718388396210143760047<36>
96×1058-1 = 95(9)58<60> = 29 × 813287 × 141468599 × 220565573 × 1304462580826804635293870116486279919<37>
96×1059-1 = 95(9)59<61> = 4721308010306630012955409807<28> × 2033334825654918141226449343463057<34>
96×1060-1 = 95(9)60<62> = 23689 × 140938029293<12> × 482950870885631<15> × 59537878709552863484876776695677<32>
96×1061-1 = 95(9)61<63> = 72 × 77477 × 9355411199<10> × 27029591124825457956538433426118349014507419837<47>
96×1062-1 = 95(9)62<64> = 43 × 47 × 1951511 × 1379153927<10> × 1764904358270067361234089465636773168143173427<46>
96×1063-1 = 95(9)63<65> = definitely prime number 素数
96×1064-1 = 95(9)64<66> = 1949 × 18119 × 75937 × 4873031 × 73463659610999768474444390183904894758587958107<47>
96×1065-1 = 95(9)65<67> = 137 × 476309260089452563014404682971<30> × 147116586999736203403312416305260037<36> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=4185754919 for P30 / November 5, 2014 2014 年 11 月 5 日)
96×1066-1 = 95(9)66<68> = 544223 × 1652011 × 19447136462664756403<20> × 5490675082409725704292726704925406161<37>
96×1067-1 = 95(9)67<69> = 7 × 17 × 233 × 311 × 79984424520552595065768671<26> × 1391882380178764381094184260447271977<37>
96×1068-1 = 95(9)68<70> = 173 × 4133 × 748379833 × 1129596509209939<16> × 2419293316345177<16> × 6564864726231674579504789<25>
96×1069-1 = 95(9)69<71> = definitely prime number 素数
96×1070-1 = 95(9)70<72> = 599 × 34694716583<11> × 3612811597905149<16> × 237305967760973443<18> × 53879938595812994610076921<26>
96×1071-1 = 95(9)71<73> = 3011 × 10973 × 12524399 × 231755103048664593121<21> × 100103415969774600718068812846540995927<39>
96×1072-1 = 95(9)72<74> = 19 × 23 × 983 × 5641 × 39616871655454711638693374480285604927702653007898950942391100909<65>
96×1073-1 = 95(9)73<75> = 7 × 137 × 1001042752867570385818561001042752867570385818561001042752867570385818561<73>
96×1074-1 = 95(9)74<76> = 57383 × 143582465573<12> × 1165162709559067067779895517159373727758274054665366919683061<61>
96×1075-1 = 95(9)75<77> = 59 × 2215723805163190577<19> × 44102459159122304947<20> × 16651018037367842949856255687592350319<38>
96×1076-1 = 95(9)76<78> = 1301 × 737893927747886241352805534204458109146810146041506533435818601076095311299<75>
96×1077-1 = 95(9)77<79> = 42123583 × 485703767188403503697<21> × 469217775513403339289391604875349086757427009188849<51>
96×1078-1 = 95(9)78<80> = 509 × 36599 × 886530709387<12> × 15192432158809<14> × 382616012748558038089614750736775678310964488383<48>
96×1079-1 = 95(9)79<81> = 7 × 363361 × 1106239949513<13> × 4548626846113423<16> × 75007593605126618651383621174763549664870480463<47>
96×1080-1 = 95(9)80<82> = 409 × 3529 × 6651142714816321072829319899872589047369299849448613340668065716061331849759<76>
96×1081-1 = 95(9)81<83> = 137 × 1494431608147<13> × 1882958569659404303815411417281251<34> × 249019786749086206858406514611200991<36> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P34 x P36 / November 6, 2014 2014 年 11 月 6 日)
96×1082-1 = 95(9)82<84> = 936924427 × 7254249217<10> × 423279617392607<15> × 333692805885919139445314569688135615499535560857923<51>
96×1083-1 = 95(9)83<85> = 17 × 43 × 61 × 550679 × 2174383031<10> × 412152937499<12> × 436245596655583394204250336798997409051744695504121939<54>
96×1084-1 = 95(9)84<86> = 254470369 × 927343317567048953431102181<27> × 406811729828797478155606513108018064972107144267891<51>
96×1085-1 = 95(9)85<87> = 7 × 2957 × 5591 × 1507853 × 1948559 × 2823318095074128002109334502551710611529673741233531060420784913993<67>
96×1086-1 = 95(9)86<88> = 29 × 193 × 677 × 422451895680801429732975156479<30> × 5997220186847013031632533291269785930855455088098449<52> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1254258185 for P30 / November 5, 2014 2014 年 11 月 5 日)
96×1087-1 = 95(9)87<89> = 15671 × 12791869 × 2775810173089<13> × 46713788082195709<17> × 3693224176962880895796554026488716905172664714001<49>
96×1088-1 = 95(9)88<90> = 67 × 27891562367<11> × 513716586414960792310821607886342264878194980436245298019268372279144342355691<78>
96×1089-1 = 95(9)89<91> = 137 × 463 × 1009 × 56519 × 7236241 × 1773043331<10> × 206848162680682381376486217382947359721526320473985768251524069<63>
96×1090-1 = 95(9)90<92> = 19 × 167 × 15265863911<11> × 21948409165919<14> × 90297707950275748003783356521241447994554233713174599563964737707<65>
96×1091-1 = 95(9)91<93> = 7 × 71 × 2357 × 2205779 × 371529466596846787263646291099295333064198390602130758100285525195124282228961089<81>
96×1092-1 = 95(9)92<94> = 2017 × 66717026900231475687111936267214979262726407<44> × 71339268222526312897464432751929141885555337321<47> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P44 x P47 / November 9, 2014 2014 年 11 月 9 日)
96×1093-1 = 95(9)93<95> = 7172781010424344160760653<25> × 6167159586893473392283206289991<31> × 2170193580686795668005784798424241056813<40> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3175078637 for P31 / November 5, 2014 2014 年 11 月 5 日)
96×1094-1 = 95(9)94<96> = 23 × 1373 × 21655147 × 100298715970617893<18> × 13996400155722090439923156293617006777805971102980299850243155462011<68>
96×1095-1 = 95(9)95<97> = 136189 × 272675323 × 76197227291<11> × 3392690147125260957491479689289589816886453472923776457562057794837208387<73>
96×1096-1 = 95(9)96<98> = 1378943 × 100545528547240885051<21> × 692408127580371956917229668560481852526073714794497486721414056842141043<72>
96×1097-1 = 95(9)97<99> = 7 × 137 × 229 × 44505225251<11> × 36459043073463761688541511<26> × 2694020365026825302589769021689673266221855152027859564569<58>
96×1098-1 = 95(9)98<100> = 32702583474651665079971809605213557<35> × 293554789255140197575448021869525443004259446890432679541880534307<66> (KTakahashi / Msieve 1.51 snfs for P35 x P66 / November 17, 2014 2014 年 11 月 17 日)
96×1099-1 = 95(9)99<101> = 172 × 2933472078596384278313<22> × 113237802132001239373244871638472315466823417520986555694306453035303680070407<78>
96×10100-1 = 95(9)100<102> = 1051 × 37633 × 1103874444623<13> × 21987709844428230668444781585549381727390524009648952664491416129075445692558001411<83>
96×10101-1 = 95(9)101<103> = 26492497104354811633139<23> × 362366747165632833983790957134977149530560870194201935372824424381283255311596741<81>
96×10102-1 = 95(9)102<104> = 175103 × 548248745024357092682592531253033928602022809432162784189876815360102339765737879990634083939167233<99>
96×10103-1 = 95(9)103<105> = 72 × 283 × 541 × 1323822961685841703<19> × 19014647627313114367501<23> × 66790288541940841083007<23> × 76113193027650124567762583863759277<35>
96×10104-1 = 95(9)104<106> = 432 × 193607 × 2569287738903931<16> × 10437596939359539757634007230914201070679160257076482347284101121146140909027476003<83>
96×10105-1 = 95(9)105<107> = 137 × 1013 × 1021 × 7603 × 29023 × 456737 × 8854693000267<13> × 119297229631754682022521233129510467<36> × 6363823474444086738433430072115451747<37> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P36 x P37 / November 6, 2014 2014 年 11 月 6 日)
96×10106-1 = 95(9)106<108> = 797 × 1489 × 7703 × 21832367 × 23917513 × 6198533891198570687<19> × 2445200386838673168225530957<28> × 13268995238423056467833911444336769209<38>
96×10107-1 = 95(9)107<109> = 109216307159<12> × 1142199504669969463<19> × 76955874469181140747660968947253538091949125781272923682894726298969657124928047<80>
96×10108-1 = 95(9)108<110> = 192 × 47 × 105379 × 1381652755688391047232603752227<31> × 38860930263626575732941044348813603713818513286362466607303995920095809<71> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=533383465 for P31 / November 5, 2014 2014 年 11 月 5 日)
96×10109-1 = 95(9)109<111> = 7 × 113 × 131 × 197 × 25997 × 912049 × 1983425178394668310211147147553635746434881201143551204749491884293432152429041448771108309859<94>
96×10110-1 = 95(9)110<112> = 1607 × 37811527609963<14> × 9603799853925380229568277529484451807<37> × 16450838245142296082271640500050555808871202591683354073477<59> (Dmitry Domanov / Msieve 1.50 snfs for P37 x P59 / November 18, 2014 2014 年 11 月 18 日)
96×10111-1 = 95(9)111<113> = 173 × 643 × 139282631 × 5139423797<10> × 1400815292187871875311<22> × 16991370662748186460664099<26> × 50651635842903235201782335763949438813784767<44>
96×10112-1 = 95(9)112<114> = 331 × 2213 × 10009 × 696503 × 1103508729811593553849871919435258793<37> × 170361859408264031287147430857211262607975159157660214645181103<63> (Serge Batalov / GMP-ECM B1=1000000, sigma=2735208683 for P37 / November 18, 2014 2014 年 11 月 18 日)
96×10113-1 = 95(9)113<115> = 137 × 483233 × 233079038707<12> × 1303344384049<13> × 6552211725741316082938991<25> × 72852381883777157848988600182827519937544674441954281669763<59>
96×10114-1 = 95(9)114<116> = 29 × 31277 × 23611520896441<14> × 113016574200757843958429<24> × 39662678901907119752605929634884548974227076953115056972366026268858140827<74>
96×10115-1 = 95(9)115<117> = 7 × 17 × 204891070739<12> × 39373247753840479387023988377501324992604954674857258162453066014386047272485109299534773663215143198339<104>
96×10116-1 = 95(9)116<118> = 23 × 8563171 × 189634264993<12> × 69087662076525606030883291<26> × 651521911009117149405975150474240893<36> × 5710346285242504732211447233770657917<37> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P36 x P37 / November 6, 2014 2014 年 11 月 6 日)
96×10117-1 = 95(9)117<119> = 179 × 14813 × 15078173863<11> × 2654392869263869<16> × 904609679499465395656288447335731916417755082219226793152336390302896702877666942078971<87>
96×10118-1 = 95(9)118<120> = 383 × 9300287 × 404137661 × 731605291 × 2224846829<10> × 11984837923507<14> × 34185163765100329988975967360744742439995952014977803536330747235410823<71>
96×10119-1 = 95(9)119<121> = 486103 × 32635457 × 605136338464333093446890023387145999286609096931007524576871313288254534917945185328947600398247430533822169<108>
96×10120-1 = 95(9)120<122> = 389 × 282418993 × 3137376013974647<16> × 31377943173696620053312862904854251<35> × 8876396376535086464927409162500667424669134218701955976187871<61> (Serge Batalov / GMP-ECM B1=1000000, sigma=3999683134 for P35 / November 17, 2014 2014 年 11 月 17 日)
96×10121-1 = 95(9)121<123> = 7 × 67 × 137 × 367 × 1326153671<10> × 19051875659<11> × 81159514772837<14> × 19853666701943040285992461788664190757773099065777259165086064939894956882785033893<83>
96×10122-1 = 95(9)122<124> = 673 × 17453681030281<14> × 23758484454576239112113691407186711<35> × 34399362981177389074598128239739401429082744833124083136930193997872079793<74> (Serge Batalov / GMP-ECM B1=1000000, sigma=451727116 for P35 / November 18, 2014 2014 年 11 月 18 日)
96×10123-1 = 95(9)123<125> = 7632691515473954455607048927422679<34> × 12577476740069567564430777034773376334848493750163768860053592509790667183885665529509197081<92> (Serge Batalov / GMP-ECM B1=1000000, sigma=1112917592 for P34 / November 17, 2014 2014 年 11 月 17 日)
96×10124-1 = 95(9)124<126> = 907 × 1058434399117971334068357221609702315325248070562293274531422271223814773980154355016538037486218302094818081587651598676957<124>
96×10125-1 = 95(9)125<127> = 43 × 163 × 821101 × 3092152997<10> × 454323216857936205721<21> × 1187388086000578231108717106890683631954375320710946820520102239477460956682482710560503<88>
96×10126-1 = 95(9)126<128> = 19 × 71 × 61921011383353<14> × 9116655585645665501575884552692336161784399<43> × 126062435698145336988092879130467537131452587183280824787083252473733<69> (Dmitry Domanov / Msieve 1.50 snfs for P43 x P69 / November 18, 2014 2014 年 11 月 18 日)
96×10127-1 = 95(9)127<129> = 7 × 6600982747<10> × 649218140908126080138156199497135367096993267814399646959<57> × 32001766251918019879413145813087892851082554155485846064533509<62> (Dmitry Domanov / Msieve 1.50 snfs for P57 x P62 / November 18, 2014 2014 年 11 月 18 日)
96×10128-1 = 95(9)128<130> = 42403 × 11510999017449499215200777137<29> × 19668064882458102962547691306472498890056774975249663204565024213744066142008295762493558983647109<98>
96×10129-1 = 95(9)129<131> = 1372 × 435709 × 20527189266200576859491054733554493650898058423<47> × 571878910698751316202372243093589626348469594533373411759255695837328189853<75> (Dmitry Domanov / Msieve 1.50 snfs for P47 x P75 / November 18, 2014 2014 年 11 月 18 日)
96×10130-1 = 95(9)130<132> = 1080791 × 1788433 × 6898963223<10> × 14832717415311252709401965216364454242130751<44> × 4853469289655761566271055441527265695126918584070842975082677892321<67> (Dmitry Domanov / Msieve 1.50 snfs for P44 x P67 / November 18, 2014 2014 年 11 月 18 日)
96×10131-1 = 95(9)131<133> = 17 × 911 × 603285833 × 1027497580317911071860776500052043979928102182869240791739645490798606688628981654006615134330231847927058810512528699769<121>
96×10132-1 = 95(9)132<134> = 5981237 × 147964334381<12> × 17515165925064747275755983720702074741<38> × 6193111815676912287421811841590575179594771051221524977944353160405246046535987<79> (Serge Batalov / GMP-ECM B1=1000000, sigma=3987384744 for P38 / November 18, 2014 2014 年 11 月 18 日)
96×10133-1 = 95(9)133<135> = 7 × 59 × 18302116429<11> × 127004721821570377604106161503843014963427073551897722576439999940012775234387460699391099668804002277390685052720668624887<123>
96×10134-1 = 95(9)134<136> = 313 × 9419141 × 11818395645896871361657<23> × 4851190647059142796742171181079983879564012654307<49> × 56794820362037459856559437853571527876097515754381469697<56> (Dmitry Domanov / Msieve 1.50 snfs for P49 x P56 / November 18, 2014 2014 年 11 月 18 日)
96×10135-1 = 95(9)135<137> = 293 × 11520911 × 46571929 × 76173019019<11> × 1410736321871<13> × 5682579856526676282805589514863943016990833911198360127505309296785989882064780993624545595745953<97>
96×10136-1 = 95(9)136<138> = 9296127117887<13> × 34295469471336979580368867<26> × 3011150253885274664141046572803268820947632543195779591643275842155406142335665881505026660188001931<100>
96×10137-1 = 95(9)137<139> = 137 × 3943718407<10> × 4756962081769747<16> × 7073890808073317<16> × 528027725562964449763311415324644107013890781737290425864459294292497495768968811188985567675839<96>
96×10138-1 = 95(9)138<140> = 23 × 1437698948593<13> × 1231259901247703<16> × 2357901756436131048530029012442806940504290725460586686274822521866964170773242269405529534824705095232365456447<112>
96×10139-1 = 95(9)139<141> = 7 × 137142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857<141>
96×10140-1 = 95(9)140<142> = 2251576561271<13> × 4263679132714396272769868565921425764315945736064348160322922125388250612553691477159567753063741872430926390591085455943248221369<130>
96×10141-1 = 95(9)141<143> = 192945864473698453252300913023<30> × 35263930445440401790020644925893<32> × 14109286176908937546393419306687625541204241453772023595514773244153240200931840141<83> (Serge Batalov / GMP-ECM B1=1000000, sigma=3052780768 for P32, B1=1000000, sigma=3529883260 for P30 / November 17, 2014 2014 年 11 月 17 日)
96×10142-1 = 95(9)142<144> = 29 × 1033 × 172002988123<12> × 82492027400087<14> × 34964662269914150020603481872169910228389832845539<50> × 64594509810038048779422447384840871627245707910746668552902301013<65> (Dmitry Domanov / Msieve 1.50 snfs for P50 x P65 / November 20, 2014 2014 年 11 月 20 日)
96×10143-1 = 95(9)143<145> = 61 × 113267541749939<15> × 9360526522502717000407770247<28> × 56214019266501723031175842969266940462570571099<47> × 2640529395394919973882427573042339842042939913024611677<55> (Erik Branger / GGNFS, Msieve gnfs for P47 x P55 / November 18, 2014 2014 年 11 月 18 日)
96×10144-1 = 95(9)144<146> = 19 × 97 × 1873 × 2032660415999<13> × 9631306887808709<16> × 554286939438895632011947<24> × 2562851390264991361343121635756644522395551242742141306601765496813595808444177544767533<88>
96×10145-1 = 95(9)145<147> = 72 × 137 × 1704103 × 57996169139<11> × 1446969700468181668673770237319658248288578974312583161666353526468034933212050321766598648652255079339232860150472258335316619<127>
96×10146-1 = 95(9)146<148> = 43 × 191 × 1164599 × 1003674747347650612323086953089803336851294522861894563759319520322840530447636730278102536751885724789971066803548093568553140583089739477<139>
96×10147-1 = 95(9)147<149> = 17 × 971 × 1987 × 3677 × 4341607 × 87539009975071309<17> × 36320836895347219975673<23> × 12561858643558184125811647<26> × 15261231591313539174637983143461<32> × 300787728194236930972600744708683371<36> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P32 x P36 / November 6, 2014 2014 年 11 月 6 日)
96×10148-1 = 95(9)148<150> = 13865377607<11> × 192467953294070473381508417753301116249569<42> × 359733682454561163667707208969233425159193878797056559797207783891824568206161462303565196152054953<99> (Dmitry Domanov / Msieve 1.50 snfs for P42 x P99 / November 21, 2014 2014 年 11 月 21 日)
96×10149-1 = 95(9)149<151> = 957093011999738504410940014941650526737<39> × 4380217410671574954441527819961638558783250490149437<52> × 2289925854758675139517617684757490991288236719451077326534971<61> (Serge Batalov / Msieve 1.51 snfs for P39 x P52 x P61 / November 19, 2014 2014 年 11 月 19 日)
96×10150-1 = 95(9)150<152> = 2714005189316893343447<22> × 23299274740924732715117<23> × 15033162239463576892115487841<29> × 8074524996542972665196416872780724733<37> × 12506933164014051893459353859045351449641217<44> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P37 x P44 / November 6, 2014 2014 年 11 月 6 日)
96×10151-1 = 95(9)151<153> = 7 × 2437500491477<13> × 4378456566187189676554123<25> × 12850127452146239283287266467796555335892927638498544234333176264096699765420638460487031496108515623847076331821967<116>
96×10152-1 = 95(9)152<154> = 334751 × 390067 × 14685067 × 67803101 × 73838803479157135751521748749445304605346450116336556523865418828850966678701505314490687042022565816409060968593166200917976741<128>
96×10153-1 = 95(9)153<155> = 137 × 5443 × 281647 × 24924868613<11> × 4854106111542508433<19> × 26488436033003041687406743300398680627395418587<47> × 142629296971116222352997210963259717535711622804085388353465030636469<69> (Jane Sullivan / yafu-x64 v.1.33 for P47 x P69 / November 23, 2014 2014 年 11 月 23 日)
96×10154-1 = 95(9)154<156> = 47 × 67 × 173 × 5399 × 260836727 × 7661205687707044784743230704103131417779533233117266003388987128081<67> × 163332751175547654809118083967021542417162055445504264168059014126987399<72> (Dmitry Domanov / Msieve 1.50 snfs for P67 x P72 / November 27, 2014 2014 年 11 月 27 日)
96×10155-1 = 95(9)155<157> = 109 × 20021077451704863012371472195933210644944388638281480307<56> × 4399033703748700806559269528641118065635706654043779773124344989452018210848265117349790440240924473<100> (Serge Batalov / Msieve 1.51 snfs / November 20, 2014 2014 年 11 月 20 日)
96×10156-1 = 95(9)156<158> = definitely prime number 素数
96×10157-1 = 95(9)157<159> = 7 × 326881 × 1085873 × 9377323 × 77589350107<11> × 979106468998107375557<21> × 542367391640983514937024232676035419348531384786165958240899553338695778392389695995598442431291546186474557<108>
96×10158-1 = 95(9)158<160> = 263 × 1095998688222894398963807<25> × 39308929814315943614134134495073<32> × 44541355290445339458184194755803743715308617257<47> × 19021764580801238134404920193941216539470552813075698399<56> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2977430510 for P32 / November 5, 2014 2014 年 11 月 5 日) (Serge Batalov / Msieve 1.51 gnfs for P47 x P56 / November 19, 2014 2014 年 11 月 19 日)
96×10159-1 = 95(9)159<161> = 290351 × 459405324290900999895661806470856849489892577894548857399116347766993<69> × 719700629836252990239414602470990014662971683551044023270461023201461109098080608362593<87> (Dmitry Domanov / Msieve 1.50 snfs for P69 x P87 / December 2, 2014 2014 年 12 月 2 日)
96×10160-1 = 95(9)160<162> = 23 × 16453026101<11> × 24273295177<11> × 104512653226348363582672752059441349695510875806133021048837228872630413102115759335805265871152587060461330715534445506466927030431639036269<141>
96×10161-1 = 95(9)161<163> = 71 × 137 × 523 × 319764301 × 4756817135782447<16> × 397129004010318693561136855719491<33> × 3124011245798727575147177858316662901066765400134912905052236850233353729694169867533384211167911147<100> (Serge Batalov / GMP-ECM B1=1000000, sigma=1029572997 for P33 / November 18, 2014 2014 年 11 月 18 日)
96×10162-1 = 95(9)162<164> = 19 × 5737 × 220747 × 3989679158663404387529989300813814700757255953401432803111396807473390996620316560867593511988257194288442426185651629493369227649973646770691364786691639<154>
96×10163-1 = 95(9)163<165> = 7 × 17 × 7990937 × 89446783 × 107509340101<12> × 1520757304344969478055965847890827727<37> × 69032838657834000556964291545181269651630215587387007821767834533445503280683723003095798448443028413<101> (Jo Yeong Uk / GMP-ECM 6.4.4 B1=3000000, sigma=3909015804 for P37 x P101 / December 9, 2014 2014 年 12 月 9 日)
96×10164-1 = 95(9)164<166> = 2847374723496364328574354536339999244043<40> × 16121583585446840483394915875185451362428841<44> × 209131237972601565914156497614830897891682874795078206748314163317231402305338074773<84> (Jo Yeong Uk / GMP-ECM 6.4.4 B1=3000000, sigma=6119287588 for P40 / November 22, 2014 2014 年 11 月 22 日) (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P44 x P84 / February 9, 2015 2015 年 2 月 9 日)
96×10165-1 = 95(9)165<167> = 3555483314346017492286049567592484845079469<43> × 288720893778435355830045250951743792272867710723<48> × 93517820063107014563424778402656728161092106267818554715096074700818537979977<77> (Erik Branger / GGNFS, Msieve snfs for P43 x P48 x P77 / November 19, 2014 2014 年 11 月 19 日)
96×10166-1 = 95(9)166<168> = 2803 × 7507 × 24677 × 163725817 × 11292034388481350240539705795261370439853765728035869564757279845808683418495906290341051714446773645621134158650118735071860616208242298423463862291<149>
96×10167-1 = 95(9)167<169> = 43 × 181 × 431626543 × 266959928134817797281943<24> × 10704588621265296883059777706813087270421643935364559139528799216521672606536114810673515125967420924847671754056799978718805265213297<134>
96×10168-1 = 95(9)168<170> = 8377 × 8951 × 235967 × 4830677 × 5429779 × 16448435849899<14> × 97155477408746024146787817599<29> × 2784144922395215142382020817301<31> × 46492832201468022695406111936618093697115194843300883449695557737977817<71> (Serge Batalov / GMP-ECM B1=1000000, sigma=2145310193 for P31, B1=1000000, sigma=1548578366 for P29 / November 17, 2014 2014 年 11 月 17 日)
96×10169-1 = 95(9)169<171> = 7 × 137 × 466877964056279<15> × 1482523533960566611471436708716975850145048234688130470394917017800111830267<76> × 1446264257462492805715438375058900282119866186231758156363858537492599723630277<79> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P76 x P79 / April 6, 2015 2015 年 4 月 6 日)
96×10170-1 = 95(9)170<172> = 29 × 269 × 10243 × 110927 × 311815483134057039115443952024899357096955689941<48> × 3473432299614782681704173572795016153798222090794007926328891388816102611338670941835256938010867387103789927399<112> (Cyp / yafu v1.34.3 for P48 x P112 / April 17, 2015 2015 年 4 月 17 日)
96×10171-1 = 95(9)171<173> = 229857409 × 404133893263<12> × 483993714847176769<18> × 459405585721242938209921387514137119507093954388703304859302226679<66> × 4647843092454635945087364404204013998781174929674557156543408899453047<70> (Ben Meekins / Msieve 1.53 snfs for P66 x P70 / January 4, 2015 2015 年 1 月 4 日)
96×10172-1 = 95(9)172<174> = 111893 × 544933764152965966120523724311736815549024685232203800187628586093385667<72> × 15744344986516019153699234196052267898979734754643674695583718760270197012050655772558655538057729<98> (Serge Batalov / Msieve 1.52 for P72 x P98 / December 1, 2014 2014 年 12 月 1 日)
96×10173-1 = 95(9)173<175> = 4538420844104219<16> × 35265924266742607<17> × 59980654072715732837406125345405125713618579105889882210791621278907331901094404350216977937867575378441967042491042232189557806216086352550403<143>
96×10174-1 = 95(9)174<176> = 145513 × 499129 × 995833 × 4155059716340000033544886488117330097<37> × 102374512642221260060737549850204579245573213399178573105189<60> × 3120333429314300355009995222051580382179621005476680442197679483<64> (Serge Batalov / GMP-ECM B1=1000000, sigma=1423228058 for P37 / November 18, 2014 2014 年 11 月 18 日) (Erik Branger / GGNFS, Msieve gnfs for P60 x P64 / November 27, 2014 2014 年 11 月 27 日)
96×10175-1 = 95(9)175<177> = 7 × 5333 × 733489 × 266251676429622625997788087252180607693245676547825300040227871634269<69> × 131678737259590535841675980414694330894900054634215228623151444579015977378971234694127821294778169<99> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P69 x P99 / May 28, 2015 2015 年 5 月 28 日)
96×10176-1 = 95(9)176<178> = 461 × 18379 × 68567 × 503656299222673<15> × 1707566806481025617737<22> × 19214155788810836014999821930482602039149318186519022629344821042336876950488219955712242765984038634097173842191487990592339225263<131>
96×10177-1 = 95(9)177<179> = 137 × 709 × 103457 × 813025833655747<15> × 40546484661082644971<20> × 2565381204599680270449457817<28> × 112962706372897594343021129571062301028367946138586129724227714695546301231952581295907298550454909614686451<108>
96×10178-1 = 95(9)178<180> = 3821 × 59710292113333363053701619307103609879693217819328081<53> × 4207702243254631619884254348035239862332372721965128383838236849339330683932710989692050170274074279660653458902712521347499<124> (Dmitry Domanov / Msieve 1.50 snfs / November 28, 2014 2014 年 11 月 28 日)
96×10179-1 = 95(9)179<181> = 17 × 2579 × 218963118399744543028533631366466710763405788837442693246356316857879250963665807540542389891202700545126930182697351914786853089432748671395661793216705061241247177428551878293<177>
96×10180-1 = 95(9)180<182> = 19 × 64679 × 255503 × 3630359 × 18719504340672465796855398866729795286266980269654895499212808279<65> × 4498983626639898755722536065743583726125140450666906562267721472540142577838337074283703882770068653<100> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P65 x P100 / January 8, 2016 2016 年 1 月 8 日)
96×10181-1 = 95(9)181<183> = 7 × 174917 × 208261 × 811799 × 101682857 × 1578299175976896794834461<25> × 506809686306801373794791317531509046915560977<45> × 57016786277035713102582427059318475800200726866027080718298925794013441453601595053069691<89> (Pierre Jammes / GMP-ECM 6.4.4 B1=11000000, sigma=3605950953 for P45 x P89 / May 20, 2015 2015 年 5 月 20 日)
96×10182-1 = 95(9)182<184> = 23 × 337 × 20423693573<11> × 60642795100048114428129793020662219873170417822153964125158315490123303548293912460546065449649915227494612243120163404332198364193045436094682056497016928792550513170613<170>
96×10183-1 = 95(9)183<185> = 307 × 36375561291484581774836191429<29> × 7817320782224689062479996578606446976317037987<46> × 1099677199691886508183818395346384763664487884075708833083090218908308765089865770341199112435958228988077259<109> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P46 x P109 / May 1, 2016 2016 年 5 月 1 日)
96×10184-1 = 95(9)184<186> = 138213481100468251120344719<27> × 6945776868916064311467990501569728626349645415268432174235651084515403342699514051392531950322808818758154975576310034711652507215183221498282024204754008031121<160>
96×10185-1 = 95(9)185<187> = 137 × 431 × 491 × 1327 × 4030778041<10> × 57444603353<11> × 1077662725854878641724335735847896414578240101410251757461044700356701633396671392293172926294438760263571800438069315985451938786890491044116935056747344997<157>
96×10186-1 = 95(9)186<188> = 899167943 × 11008218413<11> × 300206983250414227614760791971869515114433<42> × 58463575438487897763835497491876586543759748319<47> × 552595339693584133628275630821896358185973743127287692007345229422293023338653843<81> (Jo Yeong Uk / GMP-ECM v6.4.4 B1=11000000, sigma=1499982434 for P42, GGNFS/Msieve v1.39 gnfs for P47 x P81 / November 5, 2016 2016 年 11 月 5 日)
96×10187-1 = 95(9)187<189> = 72 × 67 × 3547 × 697289393 × 5847612173428274856119213<25> × 200131510441670654220695108323<30> × 101025746524046434100905052349431830727021423321110608350407054993184153430906268400173495727911471976767426739683467257<120> (Serge Batalov / GMP-ECM B1=1000000, sigma=2379344848 for P30 / November 18, 2014 2014 年 11 月 18 日)
96×10188-1 = 95(9)188<190> = 43 × 149 × 557 × 6101 × 14336471329<11> × 1184319907692667<16> × 119773388261757390793<21> × 216814664747455352291228963833710939805456587999994695801385194321868165272994968551266264426200200751179900616829164782481407223124099<135>
96×10189-1 = 95(9)189<191> = 32749 × 473520368777<12> × 10387915468943747402942962769023627<35> × 595944913985445854887658750658303452749219288844111728128340997276821944260727987249356944380152333255512345045791934117677910064083358376169<141> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=3162551692 for P35 x P141 / July 15, 2015 2015 年 7 月 15 日)
96×10190-1 = 95(9)190<192> = 65899 × 176806190332039727<18> × 1352251162653505492304567100597607088817583901<46> × 287411341387767620476732878731737944733664652948098591<54> × 211998933987899929649740736691711278789483114286768978731807350908327793<72> (Jo Yeong Uk / GMP-ECM v6.4.4 B1=11000000, sigma=8189840085 for P54, GGNFS/Msieve v1.39 gnfs for P46 x P72 / December 19, 2016 2016 年 12 月 19 日)
96×10191-1 = 95(9)191<193> = 59 × 18539 × 66067 × 315377 × 105704993 × 10955524558694039287253<23> × 38127097869271665289365669833111699<35> × 16951997807787276163963264456763147830709663237162347189<56> × 562775260115261086517773689649311642234803164333003396919<57> (Serge Batalov / GMP-ECM B1=1000000, sigma=3460371597 for P35 / November 18, 2014 2014 年 11 月 18 日) (Dmitry Domanov / Msieve for P56 x P57 / November 22, 2014 2014 年 11 月 22 日)
96×10192-1 = 95(9)192<194> = 4487205567699954102891054176053176209367536910054956610530085896182572920410439506178567<88> × 21394161366493301324969079927444401491560165848003776949927380235187003353117782026288661509479051611137097<107> (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs for P88 x P107 / December 11, 2014 2014 年 12 月 11 日)
96×10193-1 = 95(9)193<195> = 7 × 137 × 322271 × 583514817349<12> × 919024897811641<15> × 5792315819468272655704173581442311235803133005097834400505223753399614495243991950850362008480840936619710444241154241984677553078888999378888068474063832104299<160>
96×10194-1 = 95(9)194<196> = 1297 × 106646461023533487781805930233<30> × 69404049145311697862693715539338004812304593107353959046506657148238350737449145422793506252394007449247105611680814723493262658329774944166703079919568209790672199<164> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=443354225 for P30 / November 6, 2014 2014 年 11 月 6 日)
96×10195-1 = 95(9)195<197> = 17 × 14407 × 3309583 × 711736798123646224716208468847891<33> × 6166050788873905667503116523126003843930261<43> × 1738473020362508368968781121327572468257237797<46> × 15523191149510006689780410978785436319193730110248249558086619621<65> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=721069377 for P33 / November 6, 2014 2014 年 11 月 6 日) (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=3543509151 for P43 / July 16, 2015 2015 年 7 月 16 日) (KTakahashi / Msieve 1.51 gnfs for P46 x P65 / July 17, 2015 2015 年 7 月 17 日)
96×10196-1 = 95(9)196<198> = 71 × 4951475763235132393<19> × 49053232170535936129725564248795376396989155707570554229833179<62> × 55668638262138844309813508372830926619939268550936681697163248904564766882396316459321447134736925618603948889093427<116> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P62 x P116 / November 11, 2017 2017 年 11 月 11 日)
96×10197-1 = 95(9)197<199> = 173 × 3835567 × 34587397640869488509784353851620503835500623650229533137<56> × 418290180588395051475471457207436847952539183762839903104841342166880285906193046175944966375592735658406607252342552056723413328408197<135> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P56 x P135 / January 23, 2018 2018 年 1 月 23 日)
96×10198-1 = 95(9)198<200> = 19 × 29 × 2137 × 135119 × 3589517669761679<16> × 2099480804717352193<19> × 74243128877644726424810400288409<32> × 181622101248698673912603175976669965035138001<45> × 5937802162639633905696195073340635633303399507892145932306812628821755654526921<79> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3099626178 for P32 / November 6, 2014 2014 年 11 月 6 日) (Erik Branger / GGNFS, Msieve gnfs for P45 x P79 / November 30, 2014 2014 年 11 月 30 日)
96×10199-1 = 95(9)199<201> = 7 × 84739070651582967463558493264428262592289112644885741<53> × 4979548795355506483453141570533927602633203348401260204845556235962972117<73> × 325012080600687645446432825839190464928116843327685793243856150724378192281<75> (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs for P53 x P73 x P75 / December 6, 2014 2014 年 12 月 6 日)
96×10200-1 = 95(9)200<202> = 47 × 577 × 63281066323606349<17> × 907844057534260316464520663<27> × 26914237952519474663134663997<29> × 228944613634401191129892417424963290882122865275918894479655597650221299431220226245823656973886092222267436511805108771132239<126>
96×10201-1 = 95(9)201<203> = 137 × 2029331 × [345300952386426497241205451811423078492010457137204689588345764821053338612936936856185250248970079661685061381938221508812869821141696091013734428109523289842450577551272182767132271310137672317<195>] Free to factor
96×10202-1 = 95(9)202<204> = 39097 × 3658681991<10> × 41008091600319080145717023<26> × [163656619882025278200583881447574040658002559419248230398807673913668029845710423305218741293734818531273438694909666853687999659791878417342038819902578175018109519<165>] Free to factor
96×10203-1 = 95(9)203<205> = 61 × 22003 × 7152526890893417663612189991975758894278947058635074352752195490480806268593775960506130684116845467421357594307184638756413991236664448886627233395148053581367071405315072534818277388403816767162153<199>
96×10204-1 = 95(9)204<206> = 23 × 647 × 39749 × 270964686806694053<18> × 598963300942307784314837963495182270087841762960754875482203914593448009402708232092750674254417171871294624635168962722926376980498386130959785997837713046138574452870019861278807<180>
96×10205-1 = 95(9)205<207> = 7 × 29830337 × 210879943 × 1253784559392430600814800553<28> × 222005612652986228167883722542629761<36> × 30029270792106207529643536413626478222247440521587<50> × 2608243298402336566043393276617776430023321275177956020944091905504041147618637<79> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=1054847757 for P36 / February 8, 2015 2015 年 2 月 8 日) (Erik Branger / GGNFS, Msieve gnfs for P50 x P79 / February 18, 2015 2015 年 2 月 18 日)
96×10206-1 = 95(9)206<208> = 163 × 4099 × 2451317419<10> × 9604773719<10> × 610265784615517741488581106662263504521106381389060231540275489922826408177701475855486107874077486763655860481566866210352440512444433936138337875716296615236436222782401195017577107<183>
96×10207-1 = 95(9)207<209> = 197 × 7673 × 497041 × [127775501540900427964105573120660617642121949223394382645806627246752358397909703737999673577652153124478280527633829643789713599143908843944015530124582205245090920786189130993021544242950007227419<198>] Free to factor
96×10208-1 = 95(9)208<210> = 6673 × 66664249624210365458536099<26> × 2158028188236120585902143786925663484815035578615656784367682075213067561524714889028567863995991244732720750428234879763465937719353264370465467367894848200024253088203095374710437<181>
96×10209-1 = 95(9)209<211> = 43 × 137 × 8821 × 7485403 × 264455161 × 1953510319249<13> × 280547527444801<15> × 43112115488847884209<20> × 3949805090723928355302723184865866031572040097629094324064842780505829452075687197099754792246348816428867558202287023516519035685673977840203<142>
96×10210-1 = 95(9)210<212> = 3776659 × [25419292554609775465563610588088572465769347987202445335943753460399787219338574120671207011276368875241317789082890459530500370830408570114484786685798214771309774062206834135673885304445013436479173788261<206>] Free to factor
96×10211-1 = 95(9)211<213> = 7 × 17 × 4937 × 30169 × 606589 × 43115944139<11> × 773125129160203<15> × 14787709003936217<17> × 6951604230261274377967418538729349<34> × 26057459663815953436768633811232906324452794736841886343474204873344598739424100499018383572415736168442754112540956343833<122> (Serge Batalov / GMP-ECM B1=1000000, sigma=517942827 for P34 / November 18, 2014 2014 年 11 月 18 日)
96×10212-1 = 95(9)212<214> = 5827 × 506640263069117<15> × [3251820124362928841585525425880327001520865267647475386244677930643193920403816766495936930586554860898378966921323151385350584137295779110626194152507778623557819421391974706985564726692124738361<196>] Free to factor
96×10213-1 = 95(9)213<215> = 400199 × 44448410559599<14> × 14061128974793453336715691415947909<35> × [383812227677229550052714070624713578106745381482533489896334675185059742968919081113531142339443548211920495158109534749621162412699127063870873058920306155174811<162>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=205591293 for P35 / November 6, 2014 2014 年 11 月 6 日) Free to factor
96×10214-1 = 95(9)214<216> = 9413 × 11020951884336091<17> × 48391412270034338819356541<26> × 38372561247314731425337866763<29> × 203233976505186986128497106599054214425467382208458071<54> × 24521027730767666396773699596491966838257270028645011777194530609759257403483871123989121<89> (Erik Branger / GGNFS, Msieve gnfs for P54 x P89 / May 7, 2017 2017 年 5 月 7 日)
96×10215-1 = 95(9)215<217> = 17411836199<11> × 575778411961301244242177<24> × 15063045234210298764974386869341148667<38> × [63570920835020769443617998425047231988900481118907335467614649735252970008234284023110378031789565433377129726560367241421450364109983944580764139<146>] (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=3104556178 for P38 / June 25, 2015 2015 年 6 月 25 日) Free to factor
96×10216-1 = 95(9)216<218> = 19 × 267139 × 825049 × 74242219009317428914579944413<29> × 139635721074721323099016465400854158821<39> × 13103536064191069908947424466386303815317020990128453768310697<62> × 168758093192463434550674267600389150492302632794773427982737029866690897408231<78> (Serge Batalov / GMP-ECM B1=1000000, sigma=77956042 for P29 / November 18, 2014 2014 年 11 月 18 日) (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=4081090986 for P39 / July 15, 2015 2015 年 7 月 15 日) (Erik Branger / GGNFS, Msieve gnfs for P62 x P78 / October 18, 2015 2015 年 10 月 18 日)
96×10217-1 = 95(9)217<219> = 7 × 137 × 223 × 1303 × [3445112014246428166179327461094448711219661486810365327178286638925069642670218615432377114621866066382693499892919817878029117878602226616805512635700136172717618942698639712952405694984043586896891109745259769<211>] Free to factor
96×10218-1 = 95(9)218<220> = 379 × 643 × 663547 × 1618367 × 36683633510782414316669154919219893131128619370993224905340579856167799818577712004188378988376712196602681589429183000069598937059923208739014846443484588268296317724036619240222504647736228463060037283<203>
96×10219-1 = 95(9)219<221> = 727 × [132049518569463548830811554332874828060522696011004126547455295735900962861072902338376891334250343878954607977991746905089408528198074277854195323246217331499312242090784044016506189821182943603851444291609353507565337<219>] Free to factor
96×10220-1 = 95(9)220<222> = 67 × 6091 × 1147742371<10> × 209645846475303405605576579662028435024863074057821185439191127656665492154339559436822982215433<96> × 9776359282914210605717925374037088308154094534203701487387940696921014731431170080847236473849031660467394559469<112> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P96 x P112 / April 3, 2018 2018 年 4 月 3 日)
96×10221-1 = 95(9)221<223> = 113 × 2281 × 225479 × 40914611 × 20060310307<11> × 932750225042853431<18> × 21906559612281721806549817799<29> × 96946485217531295842043633661802380401679695216752714141546522329916570921<74> × 101595324652159344679757487094710456829015934547724504019228858726861167249<75> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P74 x P75 / December 13, 2017 2017 年 12 月 13 日)
96×10222-1 = 95(9)222<224> = 311 × 331 × 1153 × 328412018723045351<18> × 3806213424475303099<19> × 1452563579423093425019892231602473661<37> × [445457436131770879313749555606227590268549800343434807786052186160982298825611011221443309822848438166402510439664730128699140100861221346422067<144>] (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=3703380684 for P37 / July 15, 2015 2015 年 7 月 15 日) Free to factor
96×10223-1 = 95(9)223<225> = 7 × 359 × 74897 × 223747 × 2606509 × 166595611109959037851119059<27> × [52496979503204347883099606148262809563533699090146141750825177920909252853812079785666065246052183205988419916618832530212458846445812246959019792458259045644425975037196318808787<179>] Free to factor
96×10224-1 = 95(9)224<226> = 883397 × 463747244027101129859182429086860323<36> × [23433327990480706358706439758862044334901370823600734083849707022517985808974504857533276940145400831772664049581620676208558396442654294584231938306869948725311792498601346064520441329<185>] (Serge Batalov / GMP-ECM B1=1000000, sigma=2341254106 for P36 / November 18, 2014 2014 年 11 月 18 日) Free to factor
96×10225-1 = 95(9)225<227> = 137 × 123875401861<12> × 941075704332887354666276904262817717<36> × [6010921109326650895653957740822895776414693472533306560396583360600557512681221947414975614492582939461658886112358015641748040582861304780222473459065154713363347130776955045071<178>] (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=617916257 for P36 / July 15, 2015 2015 年 7 月 15 日) Free to factor
96×10226-1 = 95(9)226<228> = 23 × 292 × 13349624096612483125123<23> × 62989844150038879733189<23> × [59021172189411468241895454093830571759972285221757544602543307625441886786318154806889320178803943379581169414758203782561457718201244366185818176654939958652136688552980947228319<179>] Free to factor
96×10227-1 = 95(9)227<229> = 17 × 49078373 × 39643154297<11> × 539443543054491931441<21> × 73686777379372848214917519020490807599<38> × 7301774041588494375636263665537212267873435436758255025704917959242960227076399014839428864942684535881752089652030106734191784620390977697502331617093<151> (Serge Batalov / GMP-ECM B1=1000000, sigma=1135504349 for P38 / November 18, 2014 2014 年 11 月 18 日)
96×10228-1 = 95(9)228<230> = 4599303331715204059<19> × 123032609093537842088359733<27> × [169651985256611608069899725303909501552741804010912958176758271670221968594763556102946718250957966592168921383664435068918753291399276714712368652454182996911789514870284421844005035417<186>] Free to factor
96×10229-1 = 95(9)229<231> = 73 × 1252235374766068560055056317<28> × 2235070079987826305799772188159055468688614183577185656801378819495536995362141347885329888717947183145518054397455717513992370188038440571605131365033657254790101478750294727596066198425811578814530829<202>
96×10230-1 = 95(9)230<232> = 43 × 2318809 × 1229482182790097233<19> × 4740986344192438607<19> × [16517596633495060983200192869748245694785319166368009741180692308882091388815487802069674114330017507633965890028578914788854376017992766094994934013891685951408036200945558171086315489467<188>] Free to factor
96×10231-1 = 95(9)231<233> = 71 × 1567 × 34157 × 885061465243<12> × 374292314757215738774849334293348130208511<42> × [76257019304972307089617954747463827360020737062088100048988054921249759878386669922083364780034277316241190819977506899677109690035639982928964192856849974386542465881687<170>] (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=247731175 for P42 / December 1, 2014 2014 年 12 月 1 日) Free to factor
96×10232-1 = 95(9)232<234> = 33599 × 5395397816296569444067<22> × 1355104492673899226661986599321<31> × [3907946632657633999377318705728012677665162785833092625262440393790729484601136296254858228251925331247591706617742008840098740217568894829893865190239309690128616968200077845443<178>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=42483139 for P31 / November 6, 2014 2014 年 11 月 6 日) Free to factor
96×10233-1 = 95(9)233<235> = 137 × 12450656521<11> × 6580208391019533793630321<25> × 3559075632605067301938726005629211<34> × 240315370355361441168910766519782266984732114311619356710790124243467285080743485845470989339930286144219604909713768107755687639522676854029608847810716361811490477<165> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3954022229 for P34 / November 6, 2014 2014 年 11 月 6 日)
96×10234-1 = 95(9)234<236> = 19 × 16493 × 3033964797907267339<19> × 13513212224174157448640977<26> × [7472206031652503437444250644402791669380745214577858332737609429548668527287684070385868630589266696560436845595374362927244512513882067011556216448480927056668410793423915206016634413499<187>] Free to factor
96×10235-1 = 95(9)235<237> = 7 × 2166306823<10> × 733817185068791<15> × 194853065547514057094891761<27> × 442749525598803737186913739522837563164047743870038063712798555738423038582594434245766005958214858846666482181928456959818924246606029090472899730490122011629800449738130503195358147609<186>
96×10236-1 = 95(9)236<238> = 330311 × 17405986213157<14> × 52391963344103<14> × 57134779210459<14> × 557807480439537094476348437845806493947123623492614896546804717170204957683562578755638033497145813927184456101199389714366733012763967074983229982931939112617651812779498617228177983802075481<192>
96×10237-1 = 95(9)237<239> = [95999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999<239>] Free to factor
96×10238-1 = 95(9)238<240> = 355007920251285767<18> × 2704165020657797771636853742370993756650512009162682170118470548782561378580689545626965325557374951761386993112863139649984339467766166227654884834215094843905431882115413859038341020417574329825675929286997450129222701897<223>
96×10239-1 = 95(9)239<241> = 131 × 12893254768434730032700244773210079<35> × 5683781486076091515430776866441087087144848381648939504583518955278743361768642827326811828833671378394135952022338156245283169658632199011700544438398266412515871351828218362810257507716493708944266267851<205> (Serge Batalov / GMP-ECM B1=1000000, sigma=3483119016 for P35 / November 18, 2014 2014 年 11 月 18 日)
96×10240-1 = 95(9)240<242> = 97 × 173 × 17093 × 149377 × 2920721571693418777<19> × 384348008512606680851249353710519916247<39> × 1995889882014314134078056261428528023994945014985181498697144647079285824295583920989872788472412090320656414918245218184598371711505830502376039331401515521969200106612481<172> (Serge Batalov / GMP-ECM B1=1000000, sigma=311069821 for P39 / November 17, 2014 2014 年 11 月 17 日)
96×10241-1 = 95(9)241<243> = 7 × 137 × 191 × 1383731 × 3174039216431214049<19> × [1193315549309536927013424630359765095378912011762830308270028771739610954672798723892688712442402133096424252718033535462145971319450857249957060636605149170532133057921561975456946337100814031346899766087312662309<214>] Free to factor
96×10242-1 = 95(9)242<244> = 4859521 × [1975503346934811064711933542421156323843440536629021666950302303457480685853605736038593104135160646491701548362482639749884813750161795781929947416628099765388399391627281783533809196420799498551400436380458073954202482096486464406677119<238>] Free to factor
96×10243-1 = 95(9)243<245> = 17 × 463 × 27127 × 30529 × 12817087 × 40349489242289083<17> × 16032816738070103162572007735142703<35> × 25527621757893952191745332253044612757943219<44> × 69579197547652354206900067206992110295214483825028711871599401518501252761525029997798708996147595539436907459740233576459536064919<131> (Serge Batalov / GMP-ECM B1=1000000, sigma=2522279405 for P35 / November 18, 2014 2014 年 11 月 18 日) (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=1668371320 for P44 x P131 / July 15, 2015 2015 年 7 月 15 日)
96×10244-1 = 95(9)244<246> = 283 × 702529 × [4828592340543798181901191539157416772911206658335098242514611785677476679445653657535216772385091284563346898944961124223449810230536765387455026377770042082238502413695111121175149406077860840240353846891986255391783507326209392500362157<238>] Free to factor
96×10245-1 = 95(9)245<247> = 279559009 × 18927571064900480265342325597927<32> × 1814273910086596413893890722063512423997587530935866103603664524450892321368859835368014171470464953030702152312577876595145834932512395844952236258317659761563835352126630133008564711859094068764584759022793<208> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=4073175851 for P32 / November 7, 2014 2014 年 11 月 7 日)
96×10246-1 = 95(9)246<248> = 47 × 5477 × 4489493 × 663204587886496847328460180861936243<36> × 125252329993837674880036599882470367420990941953208536412970438545709186407731155146962537456056474836984259331123128152990700768068988489708364413928485281163860597955731815184382785603116157640267379<201> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=3476815481 for P36 x P201 / June 1, 2015 2015 年 6 月 1 日)
96×10247-1 = 95(9)247<249> = 7 × 19157 × 101111 × 1649296249<10> × 90720857333<11> × 312994866812520661288922651762941577<36> × 1511834515192615622158451490221039239634178750360508143338283718030488959811871583721945457376187584083212886445204231986736706808701421434550112458821491157979232903032242436008907799<184> (Serge Batalov / GMP-ECM B1=1000000, sigma=3856223107 for P36 / November 18, 2014 2014 年 11 月 18 日)
96×10248-1 = 95(9)248<250> = 23 × 601 × 1201 × 380591 × 3236083 × 1569038642274198183778829<25> × 299236186892741658556644673808797619603893072208774921410176254479542602767494465762412930791214629638159695742996356923023375775119748655239462611188955418547499390033705158412184569277547242956591275261849<207>
96×10249-1 = 95(9)249<251> = 59 × 137 × 27191 × 6155598900049<13> × 125276322916456369514089<24> × 58781534776020646538735155414501<32> × [9635921252641089752611318194191158277254475268511083655794531544148749587721755541021799458356560979724665413398516761185883779829450083052575433966839249430202141401017443903<175>] (Serge Batalov / GMP-ECM B1=1000000, sigma=3599298948 for P32 / November 18, 2014 2014 年 11 月 18 日) Free to factor
96×10250-1 = 95(9)250<252> = 13794712807679416936545717071<29> × [69591880119865557270713548488505558311091236521756848113930310438321161827254059478937982577861731777858387619043810364784234189671303774087885301613767074151430143338810430880509039863359511044540086460127319005871250265169<224>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク