Table of contents 目次

  1. About 988...887 988...887 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 988...887 988...887 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 988...887 988...887 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 988...887 988...887 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

98w7 = { 97, 987, 9887, 98887, 988887, 9888887, 98888887, 988888887, 9888888887, 98888888887, … }

1.3. General term 一般項

89×10n-179 (1≤n)

2. Prime numbers of the form 988...887 988...887 の形の素数

2.1. Last updated 最終更新日

November 16, 2015 2015 年 11 月 16 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 89×101-179 = 97 is prime. は素数です。
  2. 89×103-179 = 9887 is prime. は素数です。
  3. 89×104-179 = 98887 is prime. は素数です。
  4. 89×106-179 = 9888887 is prime. は素数です。
  5. 89×109-179 = 9888888887<10> is prime. は素数です。
  6. 89×1012-179 = 9(8)117<13> is prime. は素数です。
  7. 89×1016-179 = 9(8)157<17> is prime. は素数です。
  8. 89×1034-179 = 9(8)337<35> is prime. は素数です。
  9. 89×10129-179 = 9(8)1287<130> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / December 7, 2004 2004 年 12 月 7 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 8, 2005 2005 年 1 月 8 日)
  10. 89×10243-179 = 9(8)2427<244> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / December 7, 2004 2004 年 12 月 7 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 8, 2005 2005 年 1 月 8 日)
  11. 89×10252-179 = 9(8)2517<253> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / December 7, 2004 2004 年 12 月 7 日) (certified by: (証明: Makoto Kamada / PPSIQS / January 8, 2005 2005 年 1 月 8 日)
  12. 89×10529-179 = 9(8)5287<530> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by: (証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / June 2, 2006 2006 年 6 月 2 日)
  13. 89×104885-179 = 9(8)48847<4886> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 19, 2004 2004 年 12 月 19 日) (certified by: (証明: Ray Chandler / Primo 3.0.9 / September 17, 2010 2010 年 9 月 17 日)
  14. 89×106363-179 = 9(8)63627<6364> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 25, 2004 2004 年 12 月 25 日)
  15. 89×1012951-179 = 9(8)129507<12952> is PRP. はおそらく素数です。 (Ray Chandler / srsieve, PFGW / August 25, 2010 2010 年 8 月 25 日)
  16. 89×1013188-179 = 9(8)131877<13189> is PRP. はおそらく素数です。 (Ray Chandler / srsieve, PFGW / August 25, 2010 2010 年 8 月 25 日)
  17. 89×1029931-179 = 9(8)299307<29932> is PRP. はおそらく素数です。 (Ray Chandler / srsieve, PFGW / September 6, 2010 2010 年 9 月 6 日)
  18. 89×1034888-179 = 9(8)348877<34889> is PRP. はおそらく素数です。 (Serge Batalov / October 12, 2010 2010 年 10 月 12 日)
  19. 89×1049516-179 = 9(8)495157<49517> is PRP. はおそらく素数です。 (Erik Branger / srsieve and PFGW / May 1, 2013 2013 年 5 月 1 日)
  20. 89×1067431-179 = 9(8)674307<67432> is PRP. はおそらく素数です。 (Bob Price / srsieve and LLR / November 15, 2015 2015 年 11 月 15 日)
  21. 89×1077781-179 = 9(8)777807<77782> is PRP. はおそらく素数です。 (Bob Price / srsieve and LLR / November 15, 2015 2015 年 11 月 15 日)

2.3. Range of search 捜索範囲

  1. n≤30000 / Completed 終了
  2. n≤50000 / Completed 終了 / Erik Branger / May 1, 2013 2013 年 5 月 1 日
  3. n≤100000 / Completed 終了 / Bob Price / November 15, 2015 2015 年 11 月 15 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

  1. 89×103k+2-179 = 3×(89×102-179×3+89×102×103-19×3×k-1Σm=0103m)
  2. 89×106k+2-179 = 7×(89×102-179×7+89×102×106-19×7×k-1Σm=0106m)
  3. 89×1015k+11-179 = 31×(89×1011-179×31+89×1011×1015-19×31×k-1Σm=01015m)
  4. 89×1018k+13-179 = 19×(89×1013-179×19+89×1013×1018-19×19×k-1Σm=01018m)
  5. 89×1022k+8-179 = 23×(89×108-179×23+89×108×1022-19×23×k-1Σm=01022m)
  6. 89×1028k+24-179 = 29×(89×1024-179×29+89×1024×1028-19×29×k-1Σm=01028m)
  7. 89×1030k+17-179 = 241×(89×1017-179×241+89×1017×1030-19×241×k-1Σm=01030m)
  8. 89×1033k+25-179 = 67×(89×1025-179×67+89×1025×1033-19×67×k-1Σm=01033m)
  9. 89×1046k+2-179 = 47×(89×102-179×47+89×102×1046-19×47×k-1Σm=01046m)
  10. 89×1046k+27-179 = 139×(89×1027-179×139+89×1027×1046-19×139×k-1Σm=01046m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 25.49%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 25.49% です。

3. Factor table of 988...887 988...887 の素因数分解表

3.1. Last updated 最終更新日

September 29, 2017 2017 年 9 月 29 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=195, 199, 203, 206, 210, 211, 213, 214, 216, 217, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 235, 236, 237, 238, 239, 240, 241, 242, 244, 248, 249 (32/250)

3.4. Factor table 素因数分解表

89×101-179 = 97 = definitely prime number 素数
89×102-179 = 987 = 3 × 7 × 47
89×103-179 = 9887 = definitely prime number 素数
89×104-179 = 98887 = definitely prime number 素数
89×105-179 = 988887 = 3 × 329629
89×106-179 = 9888887 = definitely prime number 素数
89×107-179 = 98888887 = 131 × 754877
89×108-179 = 988888887 = 32 × 7 × 23 × 682463
89×109-179 = 9888888887<10> = definitely prime number 素数
89×1010-179 = 98888888887<11> = 251 × 393979637
89×1011-179 = 988888888887<12> = 3 × 31 × 12503 × 850453
89×1012-179 = 9888888888887<13> = definitely prime number 素数
89×1013-179 = 98888888888887<14> = 19 × 5204678362573<13>
89×1014-179 = 988888888888887<15> = 3 × 7 × 89603 × 525539849
89×1015-179 = 9888888888888887<16> = 683 × 1609 × 77081 × 116741
89×1016-179 = 98888888888888887<17> = definitely prime number 素数
89×1017-179 = 988888888888888887<18> = 33 × 241 × 151973088810341<15>
89×1018-179 = 9888888888888888887<19> = 1117570771<10> × 8848557197<10>
89×1019-179 = 98888888888888888887<20> = 23044139 × 4291281565733<13>
89×1020-179 = 988888888888888888887<21> = 3 × 7 × 73459 × 641037137586233<15>
89×1021-179 = 9888888888888888888887<22> = 467 × 63827471 × 331759203491<12>
89×1022-179 = 98888888888888888888887<23> = 221159 × 250225357 × 1786946549<10>
89×1023-179 = 988888888888888888888887<24> = 3 × 329629629629629629629629<24>
89×1024-179 = 9888888888888888888888887<25> = 29 × 1301 × 1487132797<10> × 176247291299<12>
89×1025-179 = 98888888888888888888888887<26> = 67 × 154619 × 9545745125151529319<19>
89×1026-179 = 988888888888888888888888887<27> = 32 × 72 × 31 × 72334788156600752606897<23>
89×1027-179 = 9888888888888888888888888887<28> = 139 × 20313816599<11> × 3502201823318467<16>
89×1028-179 = 98888888888888888888888888887<29> = 3270258461<10> × 30238860343365652067<20>
89×1029-179 = 988888888888888888888888888887<30> = 3 × 761 × 1385099 × 489215693 × 639234770827<12>
89×1030-179 = 9888888888888888888888888888887<31> = 23 × 181 × 257 × 9242893798423286941276157<25>
89×1031-179 = 98888888888888888888888888888887<32> = 19 × 5204678362573099415204678362573<31>
89×1032-179 = 988888888888888888888888888888887<33> = 3 × 7 × 812857 × 667228297 × 86823961228498843<17>
89×1033-179 = 9888888888888888888888888888888887<34> = 10904989 × 906822454281144977669293283<27>
89×1034-179 = 98888888888888888888888888888888887<35> = definitely prime number 素数
89×1035-179 = 988888888888888888888888888888888887<36> = 32 × 269 × 408462985910321721969801275873147<33>
89×1036-179 = 9888888888888888888888888888888888887<37> = 197 × 30259 × 6480599201353<13> × 255983242998727873<18>
89×1037-179 = 98888888888888888888888888888888888887<38> = 1033 × 3085001 × 31030720999293680227851159239<29>
89×1038-179 = 988888888888888888888888888888888888887<39> = 3 × 7 × 21326479 × 20600039939<11> × 107186719839986074087<21>
89×1039-179 = 9888888888888888888888888888888888888887<40> = 59 × 167608286252354048964218455743879472693<39>
89×1040-179 = 98888888888888888888888888888888888888887<41> = 2557 × 27901 × 15623893 × 88717183134095850464718787<26>
89×1041-179 = 988888888888888888888888888888888888888887<42> = 3 × 31 × 10633213859020310633213859020310633213859<41>
89×1042-179 = 9888888888888888888888888888888888888888887<43> = 631 × 917967787831<12> × 17072247422250687149671005767<29>
89×1043-179 = 98888888888888888888888888888888888888888887<44> = 24917 × 3968731744948785523493554155351321944411<40>
89×1044-179 = 988888888888888888888888888888888888888888887<45> = 33 × 7 × 307 × 103393 × 164837561326833769250551890847164433<36>
89×1045-179 = 9888888888888888888888888888888888888888888887<46> = 2068639 × 235900363 × 20264420084450669646610157022491<32>
89×1046-179 = 98888888888888888888888888888888888888888888887<47> = 50283297882859507511449<23> × 1966634907663802611312463<25>
89×1047-179 = 988888888888888888888888888888888888888888888887<48> = 3 × 163 × 241 × 8391152142902263819709025014118820599995663<43>
89×1048-179 = 9888888888888888888888888888888888888888888888887<49> = 47 × 157 × 709 × 238416637 × 7928064850465383289335698525098141<34>
89×1049-179 = 98888888888888888888888888888888888888888888888887<50> = 19 × 363486223 × 6561679084427<13> × 31177170095347<14> × 69992944312979<14>
89×1050-179 = 988888888888888888888888888888888888888888888888887<51> = 3 × 7 × 47089947089947089947089947089947089947089947089947<50>
89×1051-179 = 9(8)507<52> = 827 × 11701 × 312231358199<12> × 242804039355257<15> × 13479897273326629567<20>
89×1052-179 = 9(8)517<53> = 23 × 29 × 61 × 1297 × 264192719715100987<18> × 7093017093891752400559703659<28>
89×1053-179 = 9(8)527<54> = 32 × 36941529950821<14> × 2974336562566613808912084684049739030483<40>
89×1054-179 = 9(8)537<55> = 203207039728118823873659<24> × 48664105840623155674007420325493<32>
89×1055-179 = 9(8)547<56> = 12874439 × 34307615539<11> × 42057060917994971<17> × 5323407709382960025457<22>
89×1056-179 = 9(8)557<57> = 3 × 7 × 31 × 4160911609925368217<19> × 365071574138980988169908719558630861<36>
89×1057-179 = 9(8)567<58> = 5981 × 1336568479937037397<19> × 1237036402201008832231186001610675991<37>
89×1058-179 = 9(8)577<59> = 67 × 373 × 2963 × 3437555239<10> × 109162951234313<15> × 3558830116883612639576441677<28>
89×1059-179 = 9(8)587<60> = 3 × 1487 × 371836321 × 217312714473991<15> × 323937457728851<15> × 8468707993614811447<19>
89×1060-179 = 9(8)597<61> = 251 × 406661 × 2018748689429<13> × 47990910956410340321873191969345396092973<41>
89×1061-179 = 9(8)607<62> = 21075026524953353304718526759<29> × 4692230815074040147615424481991793<34>
89×1062-179 = 9(8)617<63> = 32 × 7 × 4285297811<10> × 94592093137088481163673<23> × 38723187856300350692479151083<29>
89×1063-179 = 9(8)627<64> = 487 × 647 × 877 × 21673 × 4347919 × 10546499 × 36008569645099095340052207636224935383<38>
89×1064-179 = 9(8)637<65> = 223 × 23063 × 6261778549010110889768637323<28> × 3070641609573851101079376858781<31>
89×1065-179 = 9(8)647<66> = 3 × 2357 × 593129613073<12> × 2712878884487<13> × 11122279922535937<17> × 7814349405846723625631<22>
89×1066-179 = 9(8)657<67> = 11981 × 102840961188538652728611842707<30> × 8025799425344226060464023492056961<34>
89×1067-179 = 9(8)667<68> = 19 × 112570109 × 3604404709959468802591<22> × 12827359342310216285766666092397839567<38>
89×1068-179 = 9(8)677<69> = 3 × 72 × 193 × 1285660874016833843375346637<28> × 27111055499200565064192861378247097281<38>
89×1069-179 = 9(8)687<70> = 57727 × 370103 × 864979 × 535106639505406145252572153363331757639433232652360613<54>
89×1070-179 = 9(8)697<71> = 1091 × 90640594765251043894490273958651593848660759751502189632345452693757<68>
89×1071-179 = 9(8)707<72> = 34 × 31 × 367 × 39383 × 82097159531220665939541089<26> × 331892771327103390239939092233772673<36>
89×1072-179 = 9(8)717<73> = 4507 × 2194117792076522939624781204546014841111357641200108473239158839336341<70>
89×1073-179 = 9(8)727<74> = 139 × 238457591 × 100958918717<12> × 29551317919379016019103616602426692241874487594871839<53>
89×1074-179 = 9(8)737<75> = 3 × 7 × 23 × 68668183423121<14> × 130262054075139251<18> × 228890035087367524045609413429747476802559<42>
89×1075-179 = 9(8)747<76> = 653 × 5179 × 2924074307890502813633006924503653992250151731530027138366506299261001<70>
89×1076-179 = 9(8)757<77> = 5387 × 2458403 × 13164332552312923431822328391<29> × 567216165600748616694331210375912293137<39>
89×1077-179 = 9(8)767<78> = 3 × 241 × 11069 × 178829621570437<15> × 690973441415471391878620525226423999308090236861641065373<57>
89×1078-179 = 9(8)777<79> = 1063 × 2182867 × 4435087 × 5794734521<10> × 374801622791<12> × 442435337687956759863156267594356600559371<42>
89×1079-179 = 9(8)787<80> = 6815701 × 8004629 × 983781209672427973<18> × 14200097684645820064189<23> × 129749563074616828021034399<27>
89×1080-179 = 9(8)797<81> = 32 × 7 × 29 × 12826081 × 1310934056433187<16> × 32190974610804573167217484783723414406314925748640992223<56>
89×1081-179 = 9(8)807<82> = 2351 × 687457 × 45758081546329572898036215934679<32> × 133715428883643893217227442463215599368079<42> (Makoto Kamada / msieve 0.83 / 7.2 minutes)
89×1082-179 = 9(8)817<83> = 6949477693<10> × 18253706853881965621<20> × 164994228759072117849240371<27> × 4724713805988453791872639949<28>
89×1083-179 = 9(8)827<84> = 3 × 397 × 1051 × 3606613 × 7140458208295904027<19> × 32336326988660257625631463<26> × 948673362738100659990243139<27>
89×1084-179 = 9(8)837<85> = 419 × 7421489794312243103<19> × 3180111736776245902227896979085312846489027308835971150460277891<64>
89×1085-179 = 9(8)847<86> = 19 × 5204678362573099415204678362573099415204678362573099415204678362573099415204678362573<85>
89×1086-179 = 9(8)857<87> = 3 × 7 × 31 × 4969 × 64997284159<11> × 4703295887834216251264890384262808846599904472157798894350099089484547<70>
89×1087-179 = 9(8)867<88> = 661 × 12641 × 2756377388625943547<19> × 429364296148679725656880537663076596126077292300298129036475521<63>
89×1088-179 = 9(8)877<89> = 461 × 214509520366353338153771993251385876114726440106049650518197155941190648348999758978067<87>
89×1089-179 = 9(8)887<90> = 32 × 109 × 1043363259781<13> × 966146422518406014051114151390111324840702741511869112396013197944045427167<75>
89×1090-179 = 9(8)897<91> = 2503 × 22699 × 195527 × 12797383 × 66433727 × 14006296619311<14> × 146463798617531<15> × 510398968063864238642690280368379433<36>
89×1091-179 = 9(8)907<92> = 67 × 1498391 × 111270101 × 1409515214385772602183862737969638041<37> × 6280573297354040649186417681455014613431<40> (Makoto Kamada / msieve 0.83 / 18 minutes)
89×1092-179 = 9(8)917<93> = 3 × 7 × 1451 × 1511 × 2657 × 8083599182168509729395106783028718740327411388054334528469028157982361869079959911<82>
89×1093-179 = 9(8)927<94> = 823 × 27893 × 260057590780701463<18> × 3251718353560896493<19> × 509412946336640454804314825315131665223774339818487<51>
89×1094-179 = 9(8)937<95> = 47 × 2083 × 7621 × 4344733 × 19801600787<11> × 215364695597429859732731<24> × 7153366934770848037436871203203357787817928547<46>
89×1095-179 = 9(8)947<96> = 3 × 59479771230275345885783<23> × 5541877899184779637737308178726920578562756775513196211804286116355409163<73>
89×1096-179 = 9(8)957<97> = 23 × 13259 × 1506797177521<13> × 57899039012807666459<20> × 371691591959308441278595942716409796100961221987841670700169<60>
89×1097-179 = 9(8)967<98> = 59 × 97 × 48648259379<11> × 14837599364629736371<20> × 23938272420024214504421388427868529020446982668804573025094068941<65>
89×1098-179 = 9(8)977<99> = 33 × 7 × 2837 × 53573149753<11> × 333542274144319<15> × 103211547788664590615367436893392648218319001640685706037890887798737<69>
89×1099-179 = 9(8)987<100> = 441109 × 2383287254886158535459164900664794351<37> × 9406437795331038110087186903119098439204217862381253382293<58> (Makoto Kamada / GGNFS-0.71.4 / 0.66 hours)
89×10100-179 = 9(8)997<101> = 283638389 × 126972181347785966059151<24> × 2745831648950660399621112626400266843823945505810537799821644079496533<70>
89×10101-179 = 9(8)1007<102> = 3 × 31 × 541153 × 19649182133371358253975971712825454564345056408507785892382211007263858872279435231550079756803<95>
89×10102-179 = 9(8)1017<103> = 182767222609331<15> × 54106468040096055142475818300006529881641523388577727580733451014498619718438519775898477<89>
89×10103-179 = 9(8)1027<104> = 19 × 443 × 35966669 × 493367989 × 28302932904003288910611851712765866951<38> × 23393087332860742724134329260369661307746003521<47> (Makoto Kamada / Msieve 1.48 for P38 x P47 / October 23, 2010 2010 年 10 月 23 日)
89×10104-179 = 9(8)1037<105> = 3 × 7 × 113 × 10666493 × 93070109917<11> × 290769727808762957<18> × 850475104915726166808546259669<30> × 1697489451167596213871119227162044003<37> (Makoto Kamada / Msieve 1.48 for P30 x P37 / October 23, 2010 2010 年 10 月 23 日)
89×10105-179 = 9(8)1047<106> = 11279248747763<14> × 972260481475288614483276125526414523<36> × 901746964249684318381601421570739401951139542005183630263<57> (Sinkiti Sibata / Msieve 1.40 snfs / October 23, 2010 2010 年 10 月 23 日)
89×10106-179 = 9(8)1057<107> = 10011809421374132428806195969953<32> × 9877224458325363773665029812360951567190888760663351584160211937995724824279<76> (Sinkiti Sibata / Msieve 1.42 snfs / October 23, 2010 2010 年 10 月 23 日)
89×10107-179 = 9(8)1067<108> = 32 × 241 × 1414354746577<13> × 322351423880346797586167200205304158829921436147726445310910442766813778471870489281116908799<93>
89×10108-179 = 9(8)1077<109> = 29 × 541 × 1009 × 1709 × 9649 × 51199 × 9088328393<10> × 51524692951<11> × 12667266941140733<17> × 124736304702839666232765282718211307840541201152423047<54>
89×10109-179 = 9(8)1087<110> = 35081 × 3892764901<10> × 23329409683<11> × 31039420683297228371856222234500883391175332086139795562568712826624542257617633839169<86>
89×10110-179 = 9(8)1097<111> = 3 × 74 × 251 × 6100898379212521<16> × 192743239140797545369159<24> × 465143992833020169154557973501429486484288874576404395002595095961<66>
89×10111-179 = 9(8)1107<112> = 587 × 619 × 7019 × 9391 × 1182437 × 288824493719<12> × 245915326814666237<18> × 4916250856694660867528905936473123084073579689933632984949638341<64>
89×10112-179 = 9(8)1117<113> = 61 × 67338961 × 1672744162587464627<19> × 183471580925896387917542782001<30> × 78442770649935712864617634932871707165938804455103992561<56> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=1276000195 for P30 / October 21, 2010 2010 年 10 月 21 日)
89×10113-179 = 9(8)1127<114> = 3 × 19651504377839<14> × 13365940880601425819<20> × 1254962949329832692259826829121551513222046471630744114294734447460748163354548969<82>
89×10114-179 = 9(8)1137<115> = 853 × 1531 × 5557 × 9463 × 135221 × 54568627543<11> × 19514923993904075580164329570057374337775763198743139780083098978531033266123312698233<86>
89×10115-179 = 9(8)1147<116> = 4345811 × 170138861 × 216868637 × 3838587953<10> × 3403396887976511<16> × 47205466942334310405910731402827415597147818523221465934614342348507<68>
89×10116-179 = 9(8)1157<117> = 32 × 7 × 31 × 313 × 2467 × 11609845334821<14> × 4010260213684971531407856277<28> × 877243681109287930297855509604127<33> × 16055082091802743820372146960584611<35> (Makoto Kamada / Msieve 1.48 for P33 x P35 / October 23, 2010 2010 年 10 月 23 日)
89×10117-179 = 9(8)1167<118> = 550369 × 285219122785785181915782901097<30> × 2651377580706813493606595399737723<34> × 23759829167888143574359813607706896886552068752333<50> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=1542373506 for P30 / October 21, 2010 2010 年 10 月 21 日) (Makoto Kamada / Msieve 1.48 for P34 x P50 / October 23, 2010 2010 年 10 月 23 日)
89×10118-179 = 9(8)1177<119> = 23 × 1931 × 342497 × 25278521 × 128330491 × 502287589 × 3248281337209206949639385003863553081<37> × 1228267653709247576569111696457976693170559264533<49> (Makoto Kamada / Msieve 1.48 for P37 x P49 / October 23, 2010 2010 年 10 月 23 日)
89×10119-179 = 9(8)1187<120> = 3 × 139 × 167 × 22027448426585476346201819<26> × 176141493525888102164708154437981<33> × 3659899024715297111814553074382509240919877606643764188447<58> (Sinkiti Sibata / Msieve 1.42 for P33 x P58 / October 23, 2010 2010 年 10 月 23 日)
89×10120-179 = 9(8)1197<121> = 90841 × 966927236022596903<18> × 112582735647517731999100491840424655425313604756957705617574376698350325885235616543731121701978969<99>
89×10121-179 = 9(8)1207<122> = 19 × 2243 × 20389 × 32508479861633<14> × 74116707172224023<17> × 1296733670122854757<19> × 381056310613994236593748483<27> × 95590772806559206671443784626794618331<38>
89×10122-179 = 9(8)1217<123> = 3 × 7 × 1187 × 26096407 × 522820253819<12> × 2907664960359046990376964386259411946957211909779836130701138488590492272190045053584061308024732557<100>
89×10123-179 = 9(8)1227<124> = 916339 × 1228313137837124667161209971196407515275428379406977900679<58> × 8785818543055398637090421946426396256595286138797665255066027<61> (Dmitry Domanov / Msieve 1.40 snfs / October 23, 2010 2010 年 10 月 23 日)
89×10124-179 = 9(8)1237<125> = 67 × 7927 × 3532183 × 423165913 × 12069915067697968369081215305272597549448175859579<50> × 10320619081848397529934017781257761668370663917963603823<56> (Sinkiti Sibata / Msieve 1.42 snfs / October 23, 2010 2010 年 10 月 23 日)
89×10125-179 = 9(8)1247<126> = 33 × 233 × 2671 × 77866966424868785248589<23> × 8407921351436155177404970304797<31> × 89890133993451438991172259027128567299919583586206692457741926299<65> (Sinkiti Sibata / Msieve 1.40 snfs / October 23, 2010 2010 年 10 月 23 日)
89×10126-179 = 9(8)1257<127> = 157 × 264359205027521<15> × 238261245436322587250619697540453944856471424456799531784581113932757243853126471909580522380075470470456535971<111>
89×10127-179 = 9(8)1267<128> = 9377 × 385573 × 28293595358462634625962403<26> × 24504718221438859524736914857506627<35> × 39449283120945566398182967562205429780903977632526147800787<59> (Sinkiti Sibata / Msieve 1.40 snfs / October 23, 2010 2010 年 10 月 23 日)
89×10128-179 = 9(8)1277<129> = 3 × 7 × 163 × 17471 × 10514029 × 108478927 × 852607799 × 344194392302925905303<21> × 2990945262649543948733<22> × 481141345646614917974614259<27> × 34330019340219167226001273387<29>
89×10129-179 = 9(8)1287<130> = definitely prime number 素数
89×10130-179 = 9(8)1297<131> = 971 × 9619 × 1455439066487893024471<22> × 332429171550761341620199514448044075776339<42> × 21882915700220116129025996193340924857575555228325064001586827<62> (Dmitry Domanov / Msieve 1.40 snfs / October 23, 2010 2010 年 10 月 23 日)
89×10131-179 = 9(8)1307<132> = 3 × 31 × 7559 × 7336986965203609525107103237<28> × 459288547204822360877938379521<30> × 1378265418302661309351584501201<31> × 302875385745652983889574511100870116913<39> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=1760564436 for P30 / October 21, 2010 2010 年 10 月 21 日) (Makoto Kamada / Msieve 1.48 for P31 x P39 / October 23, 2010 2010 年 10 月 23 日)
89×10132-179 = 9(8)1317<133> = 1255589072251<13> × 11126745879564338119666187<26> × 2016352300829653410514171711<28> × 6667385940731354135449249586087<31> × 52651383860879478301274019165798515543<38>
89×10133-179 = 9(8)1327<134> = 491 × 17129392608269023<17> × 322319555519081786801<21> × 36478534793692219912819819255457982870506799229650589844849311295784085032417059185373242550059<95>
89×10134-179 = 9(8)1337<135> = 32 × 7 × 197 × 30384031331<11> × 86471760546128803827565427<26> × 21863449779878675729817485939499746595827<41> × 1387082638470257366250186330407713428953006715358931183<55> (Sinkiti Sibata / Msieve 1.40 gnfs for P41 x P55 / October 23, 2010 2010 年 10 月 23 日)
89×10135-179 = 9(8)1347<136> = 505203340218178307<18> × 19574076617581843365043065371588022169500083492062609158981452665335945130460251498100105763828073854016756691174186941<119>
89×10136-179 = 9(8)1357<137> = 29 × 165203 × 5537106060061777<16> × 424573325773335943<18> × 8780030442631238411515122260314247136443994719013907289498271918458751030089975796185801432466391<97>
89×10137-179 = 9(8)1367<138> = 3 × 131 × 241 × 27710152430394345707<20> × 376789671492118030087140552363568895514876222850154003312178676072828642030326243809034438981111535199017045351757<114>
89×10138-179 = 9(8)1377<139> = 8850121010203166279<19> × 246039436499959157311<21> × 5532992804592227975793715371496485918440615341<46> × 820792650611688108970202751481249895750860846450361803<54> (Sinkiti Sibata / Msieve 1.40 snfs / October 23, 2010 2010 年 10 月 23 日)
89×10139-179 = 9(8)1387<140> = 19 × 7517 × 47672237 × 2891012967012670412687<22> × 1772483090475788393604082589<28> × 2834338227078778261564008241542078662467951499416275403500974742484461809620759<79>
89×10140-179 = 9(8)1397<141> = 3 × 7 × 23 × 47 × 34238929 × 964407340151<12> × 98866718344261653829213128875999<32> × 13343559944190694005420201731281170827826547856630502146295519424475033441598098563147<86> (Dmitry Domanov / Msieve 1.40 snfs / October 23, 2010 2010 年 10 月 23 日)
89×10141-179 = 9(8)1407<142> = 149 × 66368381804623415361670395227442207307979120059656972408650260999254287844891871737509321401938851603281133482475764354958985831469052945563<140>
89×10142-179 = 9(8)1417<143> = 3881 × 71147 × 25261141 × 2902063988786705754615060961549350950189935104919<49> × 4885255868552087981873678729840799994667899302816952679172455841843050043620479<79> (Dmitry Domanov / Msieve 1.40 snfs / October 23, 2010 2010 年 10 月 23 日)
89×10143-179 = 9(8)1427<144> = 32 × 26203 × 726091 × 1558437814088783<16> × 118773659558454923166061<24> × 31199907182941717395423952540478466916615972094409522131339107860397533677027486773204818739757<95>
89×10144-179 = 9(8)1437<145> = 157931 × 28179191 × 21616757741<11> × 272700357617<12> × 15432558634918245092426014409507322603973923421039<50> × 24425158608453942913046521262292085993595551992422429155315409<62> (Dmitry Domanov / Msieve 1.40 snfs / October 23, 2010 2010 年 10 月 23 日)
89×10145-179 = 9(8)1447<146> = 229 × 29264281 × 1772317678319<13> × 8325926776337041551430565353230336148924968875796582435613058653491785698068131912427418404932806482109786416330269806430477<124>
89×10146-179 = 9(8)1457<147> = 3 × 7 × 31 × 68567 × 16676027 × 1431870800976689<16> × 27954127616192978093469131<26> × 33190133122357225205407534386327642067668242923234117160285959946910700186881840610208024027<92>
89×10147-179 = 9(8)1467<148> = 65447 × 7035307 × 6213342778561<13> × 3456602074996489913237891124763627127894143453885250196794632683217132851559617068888008715780126934404296431588785247275923<124>
89×10148-179 = 9(8)1477<149> = 36469 × 37644451301<11> × 409685007044015878489<21> × 619608165103391941369<21> × 283762804766188832406840954910998968820233938709376107015298215775148199935687141603688590703<93>
89×10149-179 = 9(8)1487<150> = 3 × 39635213 × 118927815195451<15> × 8266019326692889<16> × 19378088008447874659<20> × 101106559998789004566686129323159<33> × 4317923370211062672731665896440290257123416766227581704317087<61> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=3019114725 for P33 / October 21, 2010 2010 年 10 月 21 日)
89×10150-179 = 9(8)1497<151> = 281419 × 3206939 × 202787554537<12> × 334490279157922579<18> × 161539443937950956126427800637631623796838686243726445323278879933091373067340374478723447893556872888530624509<111>
89×10151-179 = 9(8)1507<152> = 431 × 21601673384939<14> × 91634082142016049401111033<26> × 2402271417662818627104023759361083392760404421719<49> × 48250711701660645665003097785828805467765807736683128693736309<62> (Dmitry Domanov / Msieve 1.40 gnfs for P49 x P62 / October 24, 2010 2010 年 10 月 24 日)
89×10152-179 = 9(8)1517<153> = 34 × 72 × 532443274201<12> × 27722064544421290403254571413563161839260918415805348553274803912899<68> × 16879807227239251267926832990586069885182745854246842032397033581729477<71> (Dmitry Domanov / Msieve 1.40 snfs / October 24, 2010 2010 年 10 月 24 日)
89×10153-179 = 9(8)1527<154> = 9214130083741411<16> × 35999904647204227<17> × 20043363490673557126544273015582478146625016329818519272439<59> × 1487377491153818819507501196562878243200420890338900273572585689<64> (Dmitry Domanov / Msieve 1.40 snfs / October 24, 2010 2010 年 10 月 24 日)
89×10154-179 = 9(8)1537<155> = 7933 × 78617635634474672926219829211424476983338411<44> × 158558695573968503667683653168045225918671686282526011203562142335455567679121624358825026655218956289365449<108> (Dmitry Domanov / Msieve 1.40 snfs / October 24, 2010 2010 年 10 月 24 日)
89×10155-179 = 9(8)1547<156> = 3 × 59 × 1997 × 2957 × 3493647640103<13> × 90119224928417094675314454269<29> × 68363539464898656373310405371937721214240759<44> × 43956565566143245294484391417911808545729859989069001825079003<62> (Sinkiti Sibata / Msieve 1.42 gnfs for P44 x P62 / October 23, 2010 2010 年 10 月 23 日)
89×10156-179 = 9(8)1557<157> = 346139 × 2832671767132705160763235796182621576828230091206259764473789081731388282147<76> × 10085576050196501699474066408313374889155297399319700250853715647899727944039<77> (Sinkiti Sibata / Msieve 1.42 snfs / October 24, 2010 2010 年 10 月 24 日)
89×10157-179 = 9(8)1567<158> = 19 × 67 × 1439 × 53983159559116503118922534954550728793883380483680617916719512540560914142332241114508410849207869919752516934486826077117187673909932919555448074478321<152>
89×10158-179 = 9(8)1577<159> = 3 × 7 × 439 × 25163 × 11796598472803<14> × 78326226259730554833786032278796309<35> × 973144063591318089504048954869616888040291<42> × 4740892707043398632361455933842920364199500187921686858295203<61> (Dmitry Domanov / Msieve 1.40 snfs / October 24, 2010 2010 年 10 月 24 日)
89×10159-179 = 9(8)1587<160> = 12243444403<11> × 97713009204324086331578214132680807303066199892222282065095665400794381<71> × 8265925668611131237646075405465471130946854607711923931305670479099073362551009<79> (Sinkiti Sibata / Msieve 1.42 snfs / October 25, 2010 2010 年 10 月 25 日)
89×10160-179 = 9(8)1597<161> = 251 × 417419 × 3210464431<10> × 280634823483295849419577992225956240809<39> × 1047591916993725004392951659192152698379679997537341285579522107295128808489417367626238236409855279320137<106> (Sinkiti Sibata / Msieve 1.42 snfs / October 25, 2010 2010 年 10 月 25 日)
89×10161-179 = 9(8)1607<162> = 32 × 31 × 6143 × 58684897 × 10378864722596542000024872653305393313874001309720035464550451813365987781<74> × 947297913014225391812790366911118076134535481841834066029532236818958326003<75> (Sinkiti Sibata / Msieve 1.42 snfs / October 25, 2010 2010 年 10 月 25 日)
89×10162-179 = 9(8)1617<163> = 23 × 4185970554206969329300728535268818909749522292624375599963048367<64> × 102712545454756606012140960515722492528111770984550240841924434561013287242558240323424528584989807<99> (Dmitry Domanov / Msieve 1.40 snfs / October 25, 2010 2010 年 10 月 25 日)
89×10163-179 = 9(8)1627<164> = 416531 × 487539033213961681911443<24> × 5733704701011401404054651527985659956080546482141300760227233927<64> × 84928891254889433498099283841428581639936913635905414315097708614732457<71> (Sinkiti Sibata / Msieve 1.40 snfs / October 26, 2010 2010 年 10 月 26 日)
89×10164-179 = 9(8)1637<165> = 3 × 7 × 29 × 87299724132413732587<20> × 1826573553769057253755310783<28> × 10183103733149150459805205439761039208113690996363125759838027377160365574334701278719207125703181336066640709677883<116>
89×10165-179 = 9(8)1647<166> = 139 × 191876371 × 116253386914309<15> × 3189375006413180812489899623297294068231871540182055738841871634138518054261110976267288076761767037049761586731571374213165233439466598792347<142>
89×10166-179 = 9(8)1657<167> = 835547189 × 854344046875502222918819151078101651285951841026706200984511913987651871560387<78> × 138529962657558935860246117868355596367594720596521901668712686445553810973287209<81> (Ignacio Santos / GGNFS, Msieve snfs / November 6, 2010 2010 年 11 月 6 日)
89×10167-179 = 9(8)1667<168> = 3 × 241 × 1741 × 43331 × 5271499127<10> × 336219509175587<15> × 10229506159242806791161932450952112429172821819957451194175081514910481990401861437672378890955303568094834299911767295354153895006511<134>
89×10168-179 = 9(8)1677<169> = 769 × 12859413379569426383470596734575928334055772287241728073977748880219621441988152001155902326253431585031064875018060973847709868516110388672157202716370466695564224823<167>
89×10169-179 = 9(8)1687<170> = 543627523 × 3420471491<10> × 1674744171296029418837007731<28> × 1877218803380947486105827551257<31> × 16915962559652330673147840815500833389469232929046247176804223130236887571115838480910654408077<95> (Serge Batalov / GMP-ECM B1=1500000, sigma=2671997876 for P31 / October 23, 2010 2010 年 10 月 23 日)
89×10170-179 = 9(8)1697<171> = 32 × 7 × 3137 × 2949715499199574737001<22> × 1473005998106423701815234797771<31> × 14668450770509032692659194615718248570343<41> × 78509739425882692723520552891761346107501029626063305504097758045878943109<74> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=1146633622 for P31 / October 22, 2010 2010 年 10 月 22 日) (Ignacio Santos / GMP-ECM 6.3 B1=1000000, sigma=3166787474 for P41 / October 23, 2010 2010 年 10 月 23 日)
89×10171-179 = 9(8)1707<172> = 94169 × 167055643891<12> × 2195155877258085783946890974834350396884699758659<49> × 286360440103242173109253063248129885317896679081127676830404983378378615080380324116391696580036127930059367<108> (Sinkiti Sibata / Msieve 1.42 snfs / April 20, 2011 2011 年 4 月 20 日)
89×10172-179 = 9(8)1717<173> = 61 × 337 × 911579851822931855141<21> × 1196956415272376315522071559879430942491706885952012753151<58> × 4408742226714726414193333214422059877771167427541643604887531358921413684520647135893567401<91> (Warut Roonguthai / Msieve 1.47 snfs / September 28, 2011 2011 年 9 月 28 日)
89×10173-179 = 9(8)1727<174> = 3 × 24023 × 3127780753<10> × 583961829443<12> × 202581280189113623681951<24> × 37083347137283315192632624719396888814322319258128618124449636214692615907823755803518036149627227455555466958414376751680087<125>
89×10174-179 = 9(8)1737<175> = 379 × 1217 × 8243 × 852199 × 56340478447864206165208064105515007<35> × 3006079176317670145532905071572826784217398231<46> × 18020649635162189586856573575932648107594308506589037791859546499307499724263561<80> (Wataru Sakai / GMP-ECM 6.2.3 B1=3000000, sigma=1983138068 for P35 / December 2, 2010 2010 年 12 月 2 日) (Wataru Sakai / GMP-ECM 6.2.3 B1=3000000, sigma=2858658845 for P46 / December 3, 2010 2010 年 12 月 3 日)
89×10175-179 = 9(8)1747<176> = 19 × 822587 × 6047012934192411009841594872820105721963867612841502736752307901371<67> × 1046335973925999782500933331961061345294456244334641897217746358051798513759993213872141487035016526549<103> (Robert Backstrom / Msieve 1.44 for P67 x P103 / October 25, 2010 2010 年 10 月 25 日)
89×10176-179 = 9(8)1757<177> = 3 × 7 × 31 × 179 × 523 × 2516526013<10> × 52957894589<11> × 6607350443539<13> × 18426901410587964409449493171903822543247058854609375439635134808776007390034599958029461208599564019220522959759063577282459818208828607<137>
89×10177-179 = 9(8)1767<178> = 2849171406307<13> × 6021337272793165807444184169932993<34> × 3821395850994380241755985540535208099<37> × 64907455826852775575616699745595718691<38> × 2323910251744753552086175570098737587944748102768952072693<58> (Serge Batalov / GMP-ECM B1=2000000, sigma=141892077 for P37 / October 23, 2010 2010 年 10 月 23 日) (Ignacio Santos / GMP-ECM 6.3 B1=1000000, sigma=747245531 for P34 / November 9, 2010 2010 年 11 月 9 日) (Erik Branger / GMP-ECM B1=1000000, sigma=3461395089 for P38 / November 9, 2010 2010 年 11 月 9 日)
89×10178-179 = 9(8)1777<179> = 121403 × 8835214577255706324023<22> × 92193643133667558249188355238315012280914075329891499609291049566244323961858748084882934734352652024767786470377279354575617339204108890119950634670323<152>
89×10179-179 = 9(8)1787<180> = 33 × 2011 × 18212587967823063684713499620400554153800189492769193305134517356187061695653330550286183194078657916439009317068878370607747921411659739744164298007051750352485199714328395471<176>
89×10180-179 = 9(8)1797<181> = 263 × 24110987 × 10804471394271308773612723606220693552828600533<47> × 144335524861988953783061412336240739143143278228724473134608215942230953947831061348691852820152710683815099813114451521147719<126> (Robert Backstrom / Msieve 1.44 snfs / January 21, 2012 2012 年 1 月 21 日)
89×10181-179 = 9(8)1807<182> = 13649 × 412483114904477<15> × 17564689952526881930610801253520458455410732702006468623347622492425572199090489045097646443088171410143410182178087991699316086621527907130382429851638533713068019<164>
89×10182-179 = 9(8)1817<183> = 3 × 7 × 397 × 1498927462352291033<19> × 146786525168739293450804852988112789449240392193174419<54> × 539101933571328296406602164119232893235467001492982541592797028536666039649528749287644745887122614304086213<108> (Dmitry Domanov / Msieve 1.50 snfs / May 27, 2013 2013 年 5 月 27 日)
89×10183-179 = 9(8)1827<184> = 31321 × 5501710499<10> × 98342778493<11> × 446192794162463<15> × 1307823440383186805900627298950251127441968472646123782950498616767796336985823830239154734800882074581977226808338317354273680777888681389679767<145>
89×10184-179 = 9(8)1837<185> = 23 × 3812333363<10> × 1127791433440958606555475550549544440780491982121336087923222852936614902453957450621422329679853556200152963208478777799402429609809098826415567205576107282817305612750539163<175>
89×10185-179 = 9(8)1847<186> = 3 × 1107518282630359<16> × 1945615222380549950716566346757<31> × 8934709301912995239606383815125212653214171993955968259671<58> × 17121348049331652669307337942818058151240019719138984540386114435267454596192995273<83> (Serge Batalov / GMP-ECM B1=1500000, sigma=3089323198 for P31 / October 23, 2010 2010 年 10 月 23 日) (Dmitry Domanov / Msieve 1.50 snfs / June 17, 2013 2013 年 6 月 17 日)
89×10186-179 = 9(8)1857<187> = 47 × 210401891252955082742316784869976359338061465721040189125295508274231678486997635933806146572104018912529550827423167848699763593380614657210401891252955082742316784869976359338061465721<186>
89×10187-179 = 9(8)1867<188> = 593 × 37967 × 5784083 × 398360805168025160009<21> × 142808978329457126419817539651433<33> × 13348113521677689128278432392002992442148175859042726153962065442306177776180996667924114020714382692185107296898847798627<122> (Serge Batalov / GMP-ECM B1=12000000, sigma=183556210 for P33 / October 23, 2010 2010 年 10 月 23 日)
89×10188-179 = 9(8)1877<189> = 32 × 7 × 1486825005504749<16> × 10557159700615640045662673888494479774472819589348365916668620112364732514436467025958492688123123006089681079513381330830566440696396177173048042506340686391220842147033101<173>
89×10189-179 = 9(8)1887<190> = 4903 × 26261 × 1766640312326847439<19> × 62148241822910671680460798649<29> × 699515530592862200266637723861447333306909537239279406514760282330434674668415800759889701338204267579997432829663791352273978910572699<135>
89×10190-179 = 9(8)1897<191> = 67 × 1066619 × 10654789 × 221447032845448620317566571650617133<36> × 586473859844907775771768955969513804379631666148911704853453187739043388463985435452853610063245862402735416918800799197139939319860518004487<141> (Serge Batalov / GMP-ECM B1=2000000, sigma=2336892952 for P36 / October 23, 2010 2010 年 10 月 23 日)
89×10191-179 = 9(8)1907<192> = 3 × 31 × 4600411 × 2311361715077263886468808769544858755850079549551814796334568940299868646586279620203286252170341706212838512301152879668932452743683186270360161085674874095783837642035290729245780569<184>
89×10192-179 = 9(8)1917<193> = 29 × 2087 × 2213 × 197971 × 713714971 × 19378503678739<14> × 17775598433940220511621<23> × 405531589970564876882758806473<30> × 679469330189234262655433671924154940839<39> × 5505290413450598431247963500606172833582108035012422791983266809601<67> (Ignacio Santos / GMP-ECM 6.3 B1=1000000, sigma=491222100 for P30 / October 23, 2010 2010 年 10 月 23 日) (Dmitry Domanov / Msieve 1.40 gnfs for P39 x P67 / October 24, 2010 2010 年 10 月 24 日)
89×10193-179 = 9(8)1927<194> = 192 × 97 × 5630052639521<13> × 964663714836977<15> × 519972244919064148899105872873394385127361953930247740685891993236485911798434341989847300858348259123265686593106183918703624332846977001918348504618774034727183<162>
89×10194-179 = 9(8)1937<195> = 3 × 72 × 27389911 × 137194019 × 11972817347<11> × 1018243856523763<16> × 845461843731762939193<21> × 173684952725683935579477616344807606979759269521645823357930885620920661709178674908271129671951517810306859291296130518134195552953<132>
89×10195-179 = 9(8)1947<196> = 181757 × 11166699664848075833<20> × [4872271892645152307367923010984797922211320891055229145596079346190862595195534454026219440716368029224804603535522806935586052423291422989818281628774716815042579458171227<172>] Free to factor
89×10196-179 = 9(8)1957<197> = 409 × 3714773 × 6258047947040378532678690725257423010705224996205132931214902073430247795937414390813<85> × 10400471365474901039817609195013381480965660640074660843754673993438467866277566305234377471571046327407<104> (matsui / Msieve 1.49 snfs / May 7, 2011 2011 年 5 月 7 日)
89×10197-179 = 9(8)1967<198> = 32 × 109 × 241 × 307 × 5411303640389<13> × 490147337722633<15> × 1545207239116517472147264540466106056087308967<46> × 4463365837140865794130396303945267066789336276211831<52> × 744809660097336811237788858402309433630508564782638915812160467629<66> (Warut Roonguthai / GMP-ECM 6.3 B1=3000000, sigma=786033229 for P46, Msieve 1.49 gnfs for P52 x P66 / February 12, 2013 2013 年 2 月 12 日)
89×10198-179 = 9(8)1977<199> = 509 × 741347 × 794266851674897<15> × 32994514520294699575553728916814683154050489394209194940884995219517911024605317167171799687634470758448959476380111097268752753333252531632077695800268361301944659951193992977<176>
89×10199-179 = 9(8)1987<200> = 3546904113057978054707599<25> × [27880338948219105993092471963977436888991444502835614307104902937280619515476975710380666235637748610779390902531472268705202584018664419284847631552167203202723381805131549913<176>] Free to factor
89×10200-179 = 9(8)1997<201> = 3 × 7 × 3727 × 4057 × 3481657 × 160254402661597<15> × 93000826918873127594233<23> × 5739769942723172446989302392932620947811<40> × 10456505078660339741747383452797103014290474537950437661384227172554899307727620006622386032094757178348867099<110> (Warut Roonguthai / GMP-ECM 6.3 B1=3000000, sigma=1969246564 for P40 / February 10, 2013 2013 年 2 月 10 日)
89×10201-179 = 9(8)2007<202> = 49771084247<11> × 1773700252354809724351213809610592784373<40> × 112018606962240466655916264153444519544150082970987788421259152204689889976529640832881980724258756211699627496545037651230011417013757337964202774730877<153> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=762163130 for P40 / February 11, 2013 2013 年 2 月 11 日)
89×10202-179 = 9(8)2017<203> = 1078611870914662857911<22> × 724781649914341019835013332694184185291<39> × 126495510535013110696623836047150788181712379581725820856241133532180731191225687285505954989094273188359149217724287115457992251955904863801187<144> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2079864479 for P39 / February 11, 2013 2013 年 2 月 11 日)
89×10203-179 = 9(8)2027<204> = 3 × 269095275478072640294070836100415945049<39> × [1224955098316059661530615366237519480547210963710226794259659444008630690419283103240075991086701995747909060691731958343789432953035554565287071021914287457255036421<166>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1205381154 for P39 / February 17, 2013 2013 年 2 月 17 日) Free to factor
89×10204-179 = 9(8)2037<205> = 157 × 11192354140398203<17> × 480836721681397469919317321<27> × 11703850723896037368845311188936556921946810256109268347148605751486271458983706008255546971977451921414242283006209463766044570847929968064908735722387975446257<161>
89×10205-179 = 9(8)2047<206> = 821 × 12653 × 1018123 × 21447476432708376329857<23> × 435947693488763215499040234682300206730318024155307459654483085348601239840195690619149428681235690979140957374763910586132624511027716938088253870611329369626730350320309<171>
89×10206-179 = 9(8)2057<207> = 33 × 7 × 23 × 31 × 10672777597<11> × [687572824907052112621905524835565527640634430747296440217665879111752619471498221390343776852068459360859662597092896029825436461169788874661711692177005593945051837069129159230234393151184903<192>] Free to factor
89×10207-179 = 9(8)2067<208> = 8573 × 34910466021257186525105745433552909128132452174953192677587935229897833692953907507491<86> × 33041444632271939663952880655331364525621375330433468678431067921700677959874430973683570220521279535952693059948400609<119> (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs / January 10, 2014 2014 年 1 月 10 日)
89×10208-179 = 9(8)2077<209> = 36753429413<11> × 25382946214766950848486241<26> × 5460610873554253768591688290053965099<37> × 25548461213004366332586099840169941154598573403467547835244134555997<68> × 759804080769822729989733104704320796491795889308671297421443741048213<69> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=160323904 for P37 / February 11, 2013 2013 年 2 月 11 日) (Erik Branger / GGNFS, Msieve gnfs for P68 x P69 / June 15, 2014 2014 年 6 月 15 日)
89×10209-179 = 9(8)2087<210> = 3 × 163 × 65899241 × 2705388416342727652844547854008305882723521058569723001071<58> × 11343017426708966793389552635058351981480873033443344353306411995783048674178111830415266710947749500638232235984130929049815177209890545558953<143> (Bob Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs for P58 x P143 / August 8, 2017 2017 年 8 月 8 日)
89×10210-179 = 9(8)2097<211> = 181 × 251 × 6270241 × 677563936387131874899662905879<30> × [51234285606325032960653838803175236457506386782861379456126114424815605920149912939193589383142277391291774958956762344631052056831039258375840044065567408766682998686343<170>] (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=3157483284 for P30 / January 30, 2013 2013 年 1 月 30 日) Free to factor
89×10211-179 = 9(8)2107<212> = 19 × 139 × 1318918070357<13> × 66435401841210601337547621379<29> × [427328355247207427258777311841379596472135702010418615179586194113109485769599727321815901794008228222359740489586251958098052078580135891689264623544863982271144568569<168>] Free to factor
89×10212-179 = 9(8)2117<213> = 3 × 7 × 9551 × 185563878434686093<18> × 1390769710502124936363342173<28> × 449340866571985522133634985483569618001<39> × 24921555605452897797714851192716946358627746303<47> × 1706002356284525284877319845589313204600935610509325770661725992578072974683891<79> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2520758523 for P39, Msieve 1.49 gnfs for P47 x P79 / February 10, 2013 2013 年 2 月 10 日)
89×10213-179 = 9(8)2127<214> = 59 × 814649990827747<15> × 27663024589689638866581295451375512081<38> × [7437462102809214649334900834603804388415879011019353693183124602974478711120027572879804236680089404179272822569282571661790553445086681475386071295811414440599<160>] (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=3536676759 for P38 / January 30, 2013 2013 年 1 月 30 日) Free to factor
89×10214-179 = 9(8)2137<215> = 294161339 × 918206869 × [366118240132160502152027909866247369294039297606097536264466676558809531460634178216333656685199827842699969947636306003493107545045888050558761925755079581023531254608610512947916948857183185508257<198>] Free to factor
89×10215-179 = 9(8)2147<216> = 32 × 61339 × 25923017688299<14> × 366234275939953867956737545883654891<36> × 188679081117240775382306367966267452613062025285457617693963154242554679317862820406178833610346026936313631572414298442023660035195587026557013339152066528835093<162> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=344421 for P36 / February 8, 2013 2013 年 2 月 8 日)
89×10216-179 = 9(8)2157<217> = 113 × 1609 × 15991 × 14135243 × [240621321413642652980051620197717782387170256143575009135337369361547903162439664324686356685813822671900165420432581150440247444774065953887941849236508369168029838931163870135316040754430690320559547<201>] Free to factor
89×10217-179 = 9(8)2167<218> = 690976777307186465237640829127<30> × [143114634437165766299492858545774204350887573840587997162600060339279649587346798648757586579577843882583992704972876850195875782333288603428425233034049679306439377035996058240186520964881<189>] (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=3209703237 for P30 / January 30, 2013 2013 年 1 月 30 日) Free to factor
89×10218-179 = 9(8)2177<219> = 3 × 7 × 3691 × 4099 × 17791 × 454513 × 52375448943060213199<20> × 29135687766714543600344501<26> × 5152132398585816389107903219720649<34> × 48957532621455825677939947229216707462991846867650869637141292635568132771324382816045352724963154830939052602364488840951<122> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=1665058386 for P34 / February 8, 2013 2013 年 2 月 8 日)
89×10219-179 = 9(8)2187<220> = 23303773 × 640683397 × 3105217987<10> × 29212268542726033742701<23> × 10002627642875347770593001898357<32> × 1423788171147592028633402473037788746016857217<46> × 512697177154109068505072719254362666908848621367647758758436930230340494917079354167731281327709<96> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=349931821 for P32 / January 31, 2013 2013 年 1 月 31 日) (Warut Roonguthai / GMP-ECM 6.3 B1=3000000, sigma=1299065095 for P46 / February 10, 2013 2013 年 2 月 10 日)
89×10220-179 = 9(8)2197<221> = 29 × 3233387 × 1379638878513583279<19> × 618117456771492820669829092822493918081569<42> × 133228035259085057439286103777986483183597535867449<51> × 9282388788817386976784300332198092701913095252070846023400296727620974651833083669529563078020093005631<103> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3420186755 for P42 / February 25, 2013 2013 年 2 月 25 日) (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P51 x P103 / September 28, 2017 2017 年 9 月 28 日)
89×10221-179 = 9(8)2207<222> = 3 × 31 × 16482787259<11> × 62517353531<11> × [10318897774365007087582899184704737546431748914679224693602369952708195265018377378400214018965603101077929591651161716532343602202424558509594052025404550321491072804970440326418932765004145741375771<200>] Free to factor
89×10222-179 = 9(8)2217<223> = 982427393 × [10065770721937604694710389543147529976181037623906002882483641097830105892506286099545769576163364256770972273661844940930804123953095930101868493897837485165571812276298049935267724043286004840552006970441721883959<215>] Free to factor
89×10223-179 = 9(8)2227<224> = 672 × 27691 × 844735464747341<15> × [941756279099199621297546507173828210536856809636705890822891505575545542685944889810329406101221830149911067278388125618808590762942068342994473818654262947169694333420994378805716233360093091150438193<201>] Free to factor
89×10224-179 = 9(8)2237<225> = 32 × 7 × 399117878247761<15> × 135819882549137258813927381<27> × 289562564973703042952087480341404329237057710232883944957595288363242474773053274621221176741275362994354557672760129398516772706244546125281106075749446493899535089816129031020779989<183>
89×10225-179 = 9(8)2247<226> = 577 × [17138455613325630656653186982476410552667051800500673984209512805699980743308299634122857693048334296167918351627190448680916618524937415751973810899287502407086462545734642788368958212979010206046601193914885422684382823031<224>] Free to factor
89×10226-179 = 9(8)2257<227> = 91033031713775897346229<23> × 2362028286714471500154073428018871<34> × [459899986137074043177906296812042244970465769438931352183843978686000812535874504978363025477219286115826991029570565772296515714759989639899474831139293907191785181732893<171>] (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=180488073 for P34 / February 2, 2013 2013 年 2 月 2 日) Free to factor
89×10227-179 = 9(8)2267<228> = 3 × 241 × 50263 × 292667 × 12281707 × [7570565222284432698801367143760322294438565334743046966478625754938919221012243138412471075680766383924959675633416513428046203879311814011029786364581568778316151520299798731870820074965102249081196839269827<208>] Free to factor
89×10228-179 = 9(8)2277<229> = 23 × 12110621753<11> × 481242609487<12> × 4664630114075497588664259817<28> × [15815099779838572753960826179980321185290658865189800197333032878567165833914419825107631187617531430984698924118374225204187478462135551103913232151092567889764710485735293095087<179>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3436648545 for P28 / February 8, 2013 2013 年 2 月 8 日) Free to factor
89×10229-179 = 9(8)2287<230> = 19 × 677 × 48315251 × 208342913 × 1217625377<10> × 4363730735341<13> × [143737676438933214045159654919613011660694632311062648857669377586669945600639622725558063975997768826084880917653559242964862541441048793301151243579679425618758231759037206418537478321439<189>] Free to factor
89×10230-179 = 9(8)2297<231> = 3 × 7 × 131743 × 12289100927<11> × [29085768468984201568082411447182797735224458529871558651779801159028885905805161426067070792100803237617833564624876338874407384089511071709565068358622179594073932302839547234063860435438375746774173128659297890427<215>] Free to factor
89×10231-179 = 9(8)2307<232> = 40825770416341636147<20> × 242221733675614592940209605559739016925379211019490453324316029938845434255141897849382654402505426868076873273599237608662526716006013250450549226768914313218179925198839601706812506131709366163860265277127293421<213>
89×10232-179 = 9(8)2317<233> = 47 × 61 × 197 × 2903 × 43254666879200407<17> × [1394355681357870410543392899579166483646889421187883180135443112780824469133704984791651889365670096504466959671233282242903427408326537283264623981355526243525439263167188404514019807054601774403981704784953<208>] Free to factor
89×10233-179 = 9(8)2327<234> = 35 × 119617 × [34021097338721067211701465451887194038093973143875729050613870755357312710065224597976610908419911578862209047418486970258018945615169654095538634226258317016298999329818785784054356783964873652773624050261408364332955855879277<227>] Free to factor
89×10234-179 = 9(8)2337<235> = 157906027861<12> × 257079291899<12> × 19359159406703004356573390862810053611691<41> × 12583318732766916210305054843538707120842749183365207307496515423061560121077285244237846311428917124006782484287339728607778172624860801459957877971311844407153211353124963<173> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1396411233 for P41 / February 22, 2013 2013 年 2 月 22 日)
89×10235-179 = 9(8)2347<236> = 108481601 × 7421994129182812487801660511467<31> × [122820484067833234608039745195722049799711085508398428702028736360094311950172632415114034345268223057607862429225071464460946157622052635158835527249022481544662690357129326524451390271651352650661<198>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2622039859 for P31 / February 11, 2013 2013 年 2 月 11 日) Free to factor
89×10236-179 = 9(8)2357<237> = 3 × 72 × 31 × 1098191827<10> × [197601511078994997675111090054126507945850964680423181920228212036161782848240403194670509120577548800733699758115079795945213774867170920006808740593227503406871767612644291177178767412260804884448967017048015434742772375233<225>] Free to factor
89×10237-179 = 9(8)2367<238> = 25025645797<11> × 3816624592147<13> × 16291944921117123220188004277629313050360583<44> × [6354916174073876348609304554428125293732369023703712811683696946114662200323040580650858857696434996862552437587282876943466365694082180808981203000024473419719597166660271<172>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3392241177 for P44 / February 25, 2013 2013 年 2 月 25 日) Free to factor
89×10238-179 = 9(8)2377<239> = 3511 × 2623348318457<13> × 125465126771777707<18> × 3259494598492918517<19> × 1621686227062524960923<22> × 82123988263607761197763<23> × [197129015669620718827574995244357730740414553653409503332101845737658891839032869833218384134356868978795425721138601575627319530687548754321951<144>] Free to factor
89×10239-179 = 9(8)2387<240> = 3 × 1020014680033708587643<22> × 1434038014528507177222048493<28> × [225350827021720481317111922410137071116809446838308293096912643294536669726073892083880520849967864323443570076266605807671939649135279650122012833908585098486019718476346010816727043592582371<192>] Free to factor
89×10240-179 = 9(8)2397<241> = 13633 × 29921962799<11> × 59190444809985011<17> × 29083895516951349791445389939<29> × 18962545012244390874943275642247451333<38> × [742617500687784863328270058977714680166499092292051744839720836881688453437038289569631050594450267955427315191739388802941311809278978428718173<144>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2663765582 for P38 / February 16, 2013 2013 年 2 月 16 日) Free to factor
89×10241-179 = 9(8)2407<242> = 46702301 × 1196840793439607<16> × [1769183316316790727977190766097279485777306032989594680593347604275013132191738348578571515486669133846339031553477141106636181144960125557818732254063086471553177232568223856500929366392843740668239702308060572160290741<220>] Free to factor
89×10242-179 = 9(8)2417<243> = 32 × 7 × 1229443901586876383887697<25> × [12767275521658430534154025607624423842928742035195963684108322441005923609709668399443313904188877865015944881766975999909847507805766978486787110170737809022286361774445374013279859506630158062736652324581977785391417<218>] Free to factor
89×10243-179 = 9(8)2427<244> = definitely prime number 素数
89×10244-179 = 9(8)2437<245> = 373 × [265117664581471551980935358951444742329460828120345546619005064045278522490318736967530533214179326779862972892463509085492999702114983616324098897825439380399165921954125707476913911230265117664581471551980935358951444742329460828120345546619<243>] Free to factor
89×10245-179 = 9(8)2447<246> = 3 × 348160171 × 16805927821<11> × 3425826556326304881362054273731<31> × 16444447623396946581991682711412726667235851696770120043334631117123110409367124172405327078704863499708942177671221380399361076066052735597373038416069165496361579860718213338859011886375180246449<197> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=3708432945 for P31 / February 8, 2013 2013 年 2 月 8 日)
89×10246-179 = 9(8)2457<247> = 59441 × 47784337 × 191071032957278411010286086218602507<36> × 532175786127953872488633802812487411<36> × 34239377766017481642781402556556473693632004777210302402665118783485265227282377256651536439362201838151039089904309625635257205970706450418899238456561607430330343<164> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2134739051 for P36 / February 8, 2013 2013 年 2 月 8 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3693293020 for P36 / February 11, 2013 2013 年 2 月 11 日)
89×10247-179 = 9(8)2467<248> = 19 × 6843437 × 760535731179098954984853131923783241550214952307312745803706290066394914602805339272225259793387206249301252456138393993120622752087637041606347103754789088158393977277552576738766675966822310645866281033691487639824141681783959302820381729<240>
89×10248-179 = 9(8)2477<249> = 3 × 7 × 29 × 1167826046552932453499892309955134936041<40> × [1390439341335664747066877572358106213797297557094005237187103408668904888246688353440953311986907705358184693441533004089978645472040240120750294603646969170255934684315301866383800924637246506510909927575423<208>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4033398981 for P40 / February 18, 2013 2013 年 2 月 18 日) Free to factor
89×10249-179 = 9(8)2487<250> = 536093954469871472971273065925863505187<39> × [18446186170235287194412396063515195745146965564938888187730596881770937939755368693711036413585540903741539918058802972426400432496935753764185400526892617011153456382881987351272874232820089612268545207498395101<212>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3274264046 for P39 / February 12, 2013 2013 年 2 月 12 日) Free to factor
89×10250-179 = 9(8)2497<251> = 23 × 43082603633<11> × 4153421669311<13> × 13757293029882989869<20> × 63566738087379753091<20> × 27475700983686488802793632906192606356499563257666873409795016970567927508431519904497398641046993085046374782206460127617523963205282809505868626717767530428481077349362446027062421647097<188>
plain text versionプレーンテキスト版

4. Related links 関連リンク