Table of contents 目次

  1. About 988...889 988...889 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 988...889 988...889 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 988...889 988...889 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 988...889 988...889 について

1.1. Classification 分類

Plateau-and-depression of the form ABB...BBA ABB...BBA の形のプラトウアンドデプレッション (Plateau-and-depression)

1.2. Sequence 数列

98w9 = { 99, 989, 9889, 98889, 988889, 9888889, 98888889, 988888889, 9888888889, 98888888889, … }

1.3. General term 一般項

89×10n+19 (1≤n)

2. Prime numbers of the form 988...889 988...889 の形の素数

2.1. Last updated 最終更新日

September 21, 2014 2014 年 9 月 21 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 89×106+19 = 9888889 is prime. は素数です。 (Jean Claude Rosa / October 15, 2002 2002 年 10 月 15 日)
  2. 89×1072+19 = 9(8)719<73> is prime. は素数です。 (Jean Claude Rosa / October 15, 2002 2002 年 10 月 15 日)
  3. 89×1096+19 = 9(8)959<97> is prime. は素数です。 (Jean Claude Rosa / October 15, 2002 2002 年 10 月 15 日)
  4. 89×10114+19 = 9(8)1139<115> is prime. は素数です。 (Jean Claude Rosa / October 15, 2002 2002 年 10 月 15 日)
  5. 89×10204+19 = 9(8)2039<205> is prime. は素数です。 (Jean Claude Rosa / October 15, 2002 2002 年 10 月 15 日)
  6. 89×10984+19 = 9(8)9839<985> is prime. は素数です。 (Patrick De Geest / December 4, 2002 2002 年 12 月 4 日)
  7. 89×101226+19 = 9(8)12259<1227> is prime. は素数です。 (Patrick De Geest / July 1, 2003 2003 年 7 月 1 日)
  8. 89×104794+19 = 9(8)47939<4795> is prime. は素数です。 (discovered by: (発見: Patrick De Geest / December 4, 2002 2002 年 12 月 4 日) (certified by: (証明: Ray Chandler / Primo 4.0.1 - LX64 / February 7, 2013 2013 年 2 月 7 日)
  9. 89×1020720+19 = 9(8)207199<20721> is PRP. はおそらく素数です。 (Patrick De Geest / April 5, 2003 2003 年 4 月 5 日)
  10. 89×10133580+19 = 9(8)1335799<133581> is PRP. はおそらく素数です。 (Serge Batalov / srsieve, sr1sieve, Prime95 and PFGW 3.3.3 / May 15, 2010 2010 年 5 月 15 日)
  11. 89×10411590+19 = 9(8)4115899<411591> is PRP. はおそらく素数です。 (Serge Batalov / srsieve and LLR / September 21, 2014 2014 年 9 月 21 日)

2.3. Range of search 捜索範囲

  1. n≤175000 / Completed 終了 / Serge Batalov / June 14, 2010 2010 年 6 月 14 日
  2. n≤200000 / Completed 終了 / Serge Batalov / April 2, 2011 2011 年 4 月 2 日
  3. n≤700000 / Completed 終了 / Serge Batalov / September 21, 2014 2014 年 9 月 21 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

  1. 89×102k+1+19 = 11×(89×101+19×11+89×10×102-19×11×k-1Σm=0102m)
  2. 89×103k+1+19 = 3×(89×101+19×3+89×10×103-19×3×k-1Σm=0103m)
  3. 89×106k+4+19 = 7×(89×104+19×7+89×104×106-19×7×k-1Σm=0106m)
  4. 89×1015k+3+19 = 31×(89×103+19×31+89×103×1015-19×31×k-1Σm=01015m)
  5. 89×1016k+4+19 = 17×(89×104+19×17+89×104×1016-19×17×k-1Σm=01016m)
  6. 89×1018k+14+19 = 19×(89×1014+19×19+89×1014×1018-19×19×k-1Σm=01018m)
  7. 89×1021k+2+19 = 43×(89×102+19×43+89×102×1021-19×43×k-1Σm=01021m)
  8. 89×1022k+2+19 = 23×(89×102+19×23+89×102×1022-19×23×k-1Σm=01022m)
  9. 89×1028k+3+19 = 29×(89×103+19×29+89×103×1028-19×29×k-1Σm=01028m)
  10. 89×1034k+8+19 = 103×(89×108+19×103+89×108×1034-19×103×k-1Σm=01034m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 8.36%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 8.36% です。

3. Factor table of 988...889 988...889 の素因数分解表

3.1. Last updated 最終更新日

January 10, 2018 2018 年 1 月 10 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=207, 208, 210, 212, 213, 214, 224, 227, 229, 232, 235, 238, 240, 242, 243, 246, 248, 249, 250 (19/250)

3.4. Factor table 素因数分解表

89×101+19 = 99 = 32 × 11
89×102+19 = 989 = 23 × 43
89×103+19 = 9889 = 11 × 29 × 31
89×104+19 = 98889 = 3 × 7 × 17 × 277
89×105+19 = 988889 = 11 × 89899
89×106+19 = 9888889 = definitely prime number 素数
89×107+19 = 98888889 = 3 × 11 × 2996633
89×108+19 = 988888889 = 103 × 163 × 58901
89×109+19 = 9888888889<10> = 11 × 898989899
89×1010+19 = 98888888889<11> = 32 × 7 × 28843 × 54421
89×1011+19 = 988888888889<12> = 11 × 151 × 17729 × 33581
89×1012+19 = 9888888888889<13> = 25321 × 390541009
89×1013+19 = 98888888888889<14> = 3 × 11 × 131 × 659 × 34711777
89×1014+19 = 988888888888889<15> = 19 × 109 × 477493427759<12>
89×1015+19 = 9888888888888889<16> = 11 × 193 × 1498697 × 3108019
89×1016+19 = 98888888888888889<17> = 3 × 72 × 13581107 × 49533041
89×1017+19 = 988888888888888889<18> = 11 × 1187 × 2713 × 27916071329<11>
89×1018+19 = 9888888888888888889<19> = 31 × 33454207 × 9535315417<10>
89×1019+19 = 98888888888888888889<20> = 34 × 112 × 229 × 547 × 883 × 9277 × 9833
89×1020+19 = 988888888888888888889<21> = 17 × 383 × 6491 × 51421 × 455038009
89×1021+19 = 9888888888888888888889<22> = 11 × 140519693 × 6397607906743<13>
89×1022+19 = 98888888888888888888889<23> = 3 × 7 × 127 × 13765123 × 2693669972729<13>
89×1023+19 = 988888888888888888888889<24> = 11 × 43 × 157 × 38317 × 40841 × 8509398017<10>
89×1024+19 = 9888888888888888888888889<25> = 23 × 1613279 × 2819023 × 94539121279<11>
89×1025+19 = 98888888888888888888888889<26> = 3 × 11 × 320107 × 8469401 × 1105314049219<13>
89×1026+19 = 988888888888888888888888889<27> = 15090452766973<14> × 65530763334893<14>
89×1027+19 = 9888888888888888888888888889<28> = 11 × 173 × 691637 × 132211553 × 56827831483<11>
89×1028+19 = 98888888888888888888888888889<29> = 32 × 7 × 134371 × 11681574915705296020493<23>
89×1029+19 = 988888888888888888888888888889<30> = 11 × 47 × 1912744465935955297657425317<28>
89×1030+19 = 9888888888888888888888888888889<31> = 97 × 1307 × 52291 × 1491671623544685833801<22>
89×1031+19 = 98888888888888888888888888888889<32> = 3 × 11 × 29 × 3910607633<10> × 26423559199780639069<20>
89×1032+19 = 988888888888888888888888888888889<33> = 19 × 1193603 × 2572565321449<13> × 16949917299673<14>
89×1033+19 = 9888888888888888888888888888888889<34> = 11 × 31 × 61 × 140191903073<12> × 3391098087843850393<19>
89×1034+19 = 98888888888888888888888888888888889<35> = 3 × 7 × 83 × 766050587 × 74061526712183624655829<23>
89×1035+19 = 988888888888888888888888888888888889<36> = 11 × 359 × 144027848858921<15> × 1738656903023660341<19>
89×1036+19 = 9888888888888888888888888888888888889<37> = 17 × 1783 × 36749 × 1062219071<10> × 8357716057820201381<19>
89×1037+19 = 98888888888888888888888888888888888889<38> = 32 × 11 × 15845051 × 773284203163<12> × 81522881693673547<17>
89×1038+19 = 988888888888888888888888888888888888889<39> = 1116337 × 885833658553724268647271288946697<33>
89×1039+19 = 9888888888888888888888888888888888888889<40> = 11 × 12829 × 21630209 × 3239673855608997089760135559<28>
89×1040+19 = 98888888888888888888888888888888888888889<41> = 3 × 7 × 509 × 1106442193<10> × 43545524909<11> × 192016328478273773<18>
89×1041+19 = 988888888888888888888888888888888888888889<42> = 112 × 14593 × 54986518061179847<17> × 10185006838020359479<20>
89×1042+19 = 9888888888888888888888888888888888888888889<43> = 103 × 25686281 × 1474593283<10> × 2534759689672821625389581<25>
89×1043+19 = 98888888888888888888888888888888888888888889<44> = 3 × 11 × 7670027 × 63745027 × 27290862175333<14> × 224581045355269<15>
89×1044+19 = 988888888888888888888888888888888888888888889<45> = 43 × 4811385720030056891<19> × 4779790554919003455331153<25>
89×1045+19 = 9888888888888888888888888888888888888888888889<46> = 11 × 5465724499<10> × 46736842721<11> × 3519230430521902100030281<25>
89×1046+19 = 98888888888888888888888888888888888888888888889<47> = 33 × 7 × 23 × 6571 × 6577 × 3477285599<10> × 151376404632810557116770239<27>
89×1047+19 = 988888888888888888888888888888888888888888888889<48> = 11 × 40051889 × 41373017914634689<17> × 54251856821539777777019<23>
89×1048+19 = 9888888888888888888888888888888888888888888888889<49> = 31 × 156587646503<12> × 2037174853154829135496019369592038273<37>
89×1049+19 = 98888888888888888888888888888888888888888888888889<50> = 3 × 11 × 20147 × 148738422426812757879417928060405848662164739<45>
89×1050+19 = 988888888888888888888888888888888888888888888888889<51> = 19 × 52046783625730994152046783625730994152046783625731<50>
89×1051+19 = 9(8)509<52> = 11 × 371960063 × 2416898985711535891150200980017306293173173<43>
89×1052+19 = 9(8)519<53> = 3 × 7 × 17 × 3253 × 5087 × 449775343 × 1707806501<10> × 21792104576000909387254349<26>
89×1053+19 = 9(8)529<54> = 11 × 89898989898989898989898989898989898989898989898989899<53>
89×1054+19 = 9(8)539<55> = 59 × 546203093 × 306860741728450902353675349370237771050176047<45>
89×1055+19 = 9(8)549<56> = 32 × 11 × 36497 × 526387721 × 1072703412727<13> × 48469632041811489366398647789<29>
89×1056+19 = 9(8)559<57> = 16007 × 1374473587729927099<19> × 44947045910012240095416395526980173<35>
89×1057+19 = 9(8)569<58> = 11 × 572833 × 43940657668591519499<20> × 35715787487576618748414681105697<32>
89×1058+19 = 9(8)579<59> = 3 × 72 × 8089 × 220841059 × 12238007912017169280199<23> × 30771224329488616972463<23>
89×1059+19 = 9(8)589<60> = 11 × 29 × 167 × 421 × 75683 × 414763 × 634428659 × 2213997408649304677210070856204703<34>
89×1060+19 = 9(8)599<61> = 106693 × 923960251699<12> × 1417278205010831887<19> × 70778796429045573206509321<26>
89×1061+19 = 9(8)609<62> = 3 × 11 × 2273 × 6258214149899283371<19> × 210660786560316393235441058191638049451<39>
89×1062+19 = 9(8)619<63> = 1951 × 18199 × 1072386338237129578829<22> × 25971164928132458905566012565725109<35>
89×1063+19 = 9(8)629<64> = 112 × 31 × 149 × 17693516876732448776771632958528980887224505481113562359011<59>
89×1064+19 = 9(8)639<65> = 32 × 7 × 127 × 12359566165340443555666652779513671902123345692899498673776889<62>
89×1065+19 = 9(8)649<66> = 11 × 43 × 181 × 617 × 109111 × 171575029199457654622568803452714130330955468316800819<54>
89×1066+19 = 9(8)659<67> = 208631 × 20471641126726339992586673863<29> × 2315346520750910088578244202297913<34>
89×1067+19 = 9(8)669<68> = 3 × 11 × 313 × 577 × 34877 × 30256913 × 494623290385804104427723<24> × 31788871192263116847705871<26>
89×1068+19 = 9(8)679<69> = 17 × 192 × 23 × 191 × 4831359351739313<16> × 80573396657392831763<20> × 94225653331815476453259091<26>
89×1069+19 = 9(8)689<70> = 11 × 1619 × 71537 × 775419637 × 10010146760287921949586694689157471545474203262147509<53>
89×1070+19 = 9(8)699<71> = 3 × 7 × 173 × 701 × 420919 × 46915639187<11> × 1966291554294352925576327623074562597358232820361<49>
89×1071+19 = 9(8)709<72> = 11 × 98713451 × 2850812189082114465661<22> × 319455132451663481956780271052215746385909<42>
89×1072+19 = 9(8)719<73> = definitely prime number 素数
89×1073+19 = 9(8)729<74> = 33 × 11 × 179 × 277 × 658307858693483707<18> × 10200681984112701759061689790655459332592129244877<50>
89×1074+19 = 9(8)739<75> = 3023 × 6563 × 8719 × 584399682869<12> × 9782059418971817850528306507558376104539979050355751<52>
89×1075+19 = 9(8)749<76> = 11 × 47 × 83 × 1130827 × 20599883431<11> × 268191297019<12> × 572819372372921<15> × 64395504784438656344183033473<29>
89×1076+19 = 9(8)759<77> = 3 × 7 × 103 × 461 × 27191 × 68059 × 2810317 × 66915762961<11> × 602729981591<12> × 472794884712028329819560152033201<33>
89×1077+19 = 9(8)769<78> = 11 × 829 × 108442689866091554873219529431833412533050651265367791302652581301555969831<75>
89×1078+19 = 9(8)779<79> = 31 × 71389 × 4468425328420475409326587718126307924410912175811349308305331619667116371<73>
89×1079+19 = 9(8)789<80> = 3 × 11 × 217937 × 7827359 × 143976987494239<15> × 4115289104888486036500823<25> × 2964789767748104690702674783<28>
89×1080+19 = 9(8)799<81> = 258613 × 1016569 × 2045869437594372254941126969<28> × 1838579309266430927732768831114313643541573<43>
89×1081+19 = 9(8)809<82> = 11 × 78888702448717691509417<23> × 2861033862667531951705561<25> × 3983061398644938366729494365938827<34>
89×1082+19 = 9(8)819<83> = 32 × 7 × 1569664902998236331569664902998236331569664902998236331569664902998236331569664903<82>
89×1083+19 = 9(8)829<84> = 11 × 234029 × 1045637933<10> × 367370098943240626874287141848465184332124404578329219261445509951507<69>
89×1084+19 = 9(8)839<85> = 17 × 1459 × 123503 × 3417434998584307<16> × 944638221897114592940042617771609247312937384934165636381903<60>
89×1085+19 = 9(8)849<86> = 3 × 112 × 13716404651<11> × 900382149694799<15> × 22058384715851042823142428029740416646095649764180502046447<59>
89×1086+19 = 9(8)859<87> = 19 × 43 × 151 × 1201 × 1913 × 16441507754885304097<20> × 656351862464357885395741<24> × 323304799911431478302589621123667<33>
89×1087+19 = 9(8)869<88> = 11 × 29 × 30999651689306861720654824103099965168930686172065482410309996516893068617206548241031<86>
89×1088+19 = 9(8)879<89> = 3 × 7 × 802049200568281<15> × 5871204292278098585833518151428430408130941154522253278821217069293141789<73>
89×1089+19 = 9(8)889<90> = 11 × 163 × 4177 × 12197 × 19567007 × 2452263089258479039<19> × 225609948751041656011025831036287740045933137892428629<54>
89×1090+19 = 9(8)899<91> = 23 × 24733 × 1491661 × 1360994083618243<16> × 2877883397800536990572041<25> × 2975385878796668091731180729313803186597<40>
89×1091+19 = 9(8)909<92> = 32 × 11 × 998877665544332210998877665544332210998877665544332210998877665544332210998877665544332211<90>
89×1092+19 = 9(8)919<93> = 43058357 × 391866310094447<15> × 58676988487433051<17> × 998813259987921733783482931700460397473267775659795841<54>
89×1093+19 = 9(8)929<94> = 11 × 31 × 61 × 4699735575023386686882430649955564511835527<43> × 101155583511669168726917574761483457328085467007<48> (Tetsuya Kobayashi / February 13, 2003 2003 年 2 月 13 日)
89×1094+19 = 9(8)939<95> = 3 × 7 × 4035539 × 3609098472131581644309165761<28> × 323316539644857144535011985725687220660159402991907234438071<60> (Tetsuya Kobayashi / February 13, 2003 2003 年 2 月 13 日)
89×1095+19 = 9(8)949<96> = 11 × 1258977000768971600732317711<28> × 71406379817963648898097119681212749614157507998281975692162241525509<68>
89×1096+19 = 9(8)959<97> = definitely prime number 素数
89×1097+19 = 9(8)969<98> = 3 × 11 × 367 × 3361 × 62790289516391<14> × 279385125431142968023<21> × 138485152847504978424831525333599709998716519508605293463<57>
89×1098+19 = 9(8)979<99> = 2459 × 402150829153675839320410284216709592878767339930414350910487551398490804753513171569291943427771<96>
89×1099+19 = 9(8)989<100> = 11 × 898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989898989899<99>
89×10100+19 = 9(8)999<101> = 34 × 73 × 17 × 65119 × 3215227547938018825254913265639975962681258261681872094793608620110741474719496469888674321<91>
89×10101+19 = 9(8)1009<102> = 11 × 113 × 157 × 9181 × 53551 × 955466676668597712277<21> × 50766771409934771772764431192577<32> × 212482933709809010918183414031303961<36>
89×10102+19 = 9(8)1019<103> = 14979417260419<14> × 660165126384381103816974066078560973018917816112291295097940200928941340185329910981546131<90>
89×10103+19 = 9(8)1029<104> = 3 × 11 × 809 × 1597 × 96223240991<11> × 24104611645119777794086223924474113390639596800296386439019570174337928030902841928731<86>
89×10104+19 = 9(8)1039<105> = 19 × 26960788433<11> × 1196605098583<13> × 15810174211558957<17> × 200367316283926081<18> × 509268626315118596541664241682324520979511011737<48>
89×10105+19 = 9(8)1049<106> = 11 × 85503706891<11> × 591134598796857206817490375548303936600153731<45> × 17786213026232642908782407642051128913178378547819<50> (Robert Backstrom NFSX v1.8)
89×10106+19 = 9(8)1059<107> = 3 × 7 × 127 × 439 × 10210901 × 591428641767529<15> × 13986000615425596465385233134673870706661035604679599466226366398455684433026257<80>
89×10107+19 = 9(8)1069<108> = 112 × 43 × 4517 × 14821812431<11> × 3478937437202327<16> × 816010315706347739053022982850887164159185009009638800236200609623460676447<75>
89×10108+19 = 9(8)1079<109> = 31 × 17519 × 12347197 × 149678777 × 328133182721<12> × 30026017710625081233830232186912621852404349352787044582732242759005368904549<77>
89×10109+19 = 9(8)1089<110> = 32 × 11 × 62298244243<11> × 13619785976086613<17> × 1177243259487080887681204909105217380606930430803697271181613911452009526793073629<82>
89×10110+19 = 9(8)1099<111> = 103 × 547 × 351811 × 620555396340280441<18> × 80395728567223709402686989401133191106755663972227190928559416795569171530809151679<83>
89×10111+19 = 9(8)1109<112> = 11 × 3251 × 901399 × 4406509 × 226656009757507588908414797778917<33> × 307155905976252083971703718241822432322802022277025351058035167<63> (Robert Backstrom NFSX v1.8)
89×10112+19 = 9(8)1119<113> = 3 × 7 × 23 × 59 × 2731 × 4813432235571338434107475620019001777836411<43> × 263980466838939501524398011933524998738375194084770335885531457<63> (Robert Backstrom NFSX v1.8)
89×10113+19 = 9(8)1129<114> = 11 × 173 × 7131281 × 580164973 × 2159154282413<13> × 58170926134133743417265234968071364027722710077295816595434765027358754779577805327<83>
89×10114+19 = 9(8)1139<115> = definitely prime number 素数
89×10115+19 = 9(8)1149<116> = 3 × 11 × 29 × 1592963 × 37507318984679849<17> × 2043932142978561799080018998119854717575383<43> × 846150032584447174208828094818359813724908842337<48> (Robert Backstrom PPSIQS Ver 1.1)
89×10116+19 = 9(8)1159<117> = 17 × 83 × 2351 × 385027 × 774241897040217947892817925287212029698979756149079282001228263062153592999827304314949469380077531107487<105>
89×10117+19 = 9(8)1169<118> = 11 × 556999 × 104081983555789300432683155671<30> × 15506894646913299125808660678469855879426800234401275976841053379225777223251940331<83> (Tetsuya Kobayashi / GMP-ECM 5.0.1 B1=250000 / May 3, 2003 2003 年 5 月 3 日)
89×10118+19 = 9(8)1179<119> = 32 × 7 × 3487403 × 1671617267<10> × 15462777875500201<17> × 17413274457046114262098127515843396903228021836692311139816452223519599999119031541503<86>
89×10119+19 = 9(8)1189<120> = 11 × 1559 × 10828691313413<14> × 204038941426451<15> × 1358238383568102577706442463<28> × 19215144822036095464487662965037987303120985936971611263853869<62> (Robert Backstrom GMP-ECM 5.0c)
89×10120+19 = 9(8)1199<121> = 1151 × 176049571 × 434948068447<12> × 1289326255057625981237<22> × 87023584812328827100264257854374819663288620369596874777630663543902252680231<77>
89×10121+19 = 9(8)1209<122> = 3 × 11 × 47 × 49445023 × 23066127673231429729169473979058881<35> × 55903426060382861749160555897586700435457388435619276724509219412884013232553<77>
89×10122+19 = 9(8)1219<123> = 19 × 109 × 19267 × 897007 × 150386418703811<15> × 16059039689164730207<20> × 11440085759862073905226209453431956433146873650388026506423447038528779058343<77>
89×10123+19 = 9(8)1229<124> = 11 × 31 × 3533753936467<13> × 8206478063370187722525915214887049585675710819225125513617792369348110696521903338724909500833773227405359287<109>
89×10124+19 = 9(8)1239<125> = 3 × 7 × 373 × 79595835027484271563<20> × 158609438420949077442959924644582787941131716674527795681572930829317299296448612272373022132103268291<102>
89×10125+19 = 9(8)1249<126> = 11 × 336737227992721<15> × 25926648309656766401<20> × 10297156253690821967631349344167610563222642211213966832777760514144525966734046803262502619<92>
89×10126+19 = 9(8)1259<127> = 97 × 409 × 54695143 × 1115295800942591078710539271831<31> × 4086143606211852673376876100075241581598146243007287144377078208615335152670510257921<85> (Tetsuya Kobayashi / GMP-ECM 5.0.1 B1=250000 / May 3, 2003 2003 年 5 月 3 日)
89×10127+19 = 9(8)1269<128> = 33 × 11 × 332959221848110736999625888514777403666292555181444070332959221848110736999625888514777403666292555181444070332959221848110737<126>
89×10128+19 = 9(8)1279<129> = 43 × 4289 × 151793863508641<15> × 15113517825048529<17> × 642894495389839324520761<24> × 127580729214076089886494971750639<33> × 28495640987153246443815100369437531197<38>
89×10129+19 = 9(8)1289<130> = 112 × 8293 × 193084126031933<15> × 49672638444777431957533020899<29> × 69088809147240542516993079630133<32> × 14872327997490429989023405129943665814008567567183<50> (Tetsuya Kobayashi / GMP-ECM 5.0.1 B1=250000 / May 11, 2003 2003 年 5 月 11 日) (Robert Backstrom / PPSIQS Ver 1.1 / June 8, 2003 2003 年 6 月 8 日)
89×10130+19 = 9(8)1299<131> = 3 × 7 × 499 × 719 × 246891826330078460500137624785354974696534403587<48> × 53160866869972880996204658229364369363514239548637288387251394779310638360147<77> (Robert Backstrom NFSX v1.8)
89×10131+19 = 9(8)1309<132> = 11 × 5247314981<10> × 3062070213183247661249241775756996362510900741785360718089<58> × 5595031459456865732230016505631061372171624775100041321017259511<64> (Robert Backstrom NFSX v1.8)
89×10132+19 = 9(8)1319<133> = 17 × 72271 × 102293401421541181<18> × 78684083750601744090491575859021367166945186212428362486784511391782881326098027960449586020650702933305288467<110>
89×10133+19 = 9(8)1329<134> = 3 × 11 × 3786651889<10> × 134759189027<12> × 8995808212217<13> × 323256376325997459283<21> × 15865426721620949513537827685711<32> × 127286029990174128589001668932090895808861879191<48>
89×10134+19 = 9(8)1339<135> = 23 × 234082111 × 425393728729<12> × 743508779053497162266933862713758859<36> × 580729986576553909818180234776192273769368971008099240722299551987784750409483<78> (Robert Backstrom GMP-ECM 5.0c)
89×10135+19 = 9(8)1349<136> = 11 × 3329 × 5786635895233<13> × 19044526998691<14> × 2450443364882180232306728461876736852740285348177003646901197727277407305143876910710581149054733313030777<106>
89×10136+19 = 9(8)1359<137> = 32 × 7 × 11489 × 73726135991<11> × 3995371868898313<16> × 136583840622991027415078526881027<33> × 3395836072293004411392624068065858749008176271739245981894744668384918147<73> (Robert Backstrom GMP-ECM 5.0c)
89×10137+19 = 9(8)1369<138> = 11 × 9328301 × 142700501 × 67534667032324521437062823255721598746253357554167135681686243287494175372904624465928446941063505830756107925214889608699<122>
89×10138+19 = 9(8)1379<139> = 31 × 7739203631<10> × 123848493724489026440104908771242383090771607<45> × 332811864832857994803825785286396971936555207279064853034369400273436459201384992607<84> (Greg Childers / GGNFS)
89×10139+19 = 9(8)1389<140> = 3 × 11 × 449077 × 258744132317001338789<21> × 25789459175540883549511416436738643146090215802767261898572389038238819654998307182096633217769236811238873102961<113>
89×10140+19 = 9(8)1399<141> = 19 × 4019 × 218839 × 624313 × 149366908611581<15> × 634591714596041658578338127520296706741500878380287634104899848288184733891974435348390787878489346254172270747<111>
89×10141+19 = 9(8)1409<142> = 11 × 20089 × 131317 × 2581642123451<13> × 132001693248692203038509738275705485474769928216700545300544029852572227221401895843936206973675256083470311695255021173<120>
89×10142+19 = 9(8)1419<143> = 3 × 72 × 277 × 221941 × 868433021668253511077<21> × 12600173521767258423977417792909169070622532258714051456246240845803537093566005378172230287240066977139666135583<113>
89×10143+19 = 9(8)1429<144> = 11 × 29 × 131 × 289430598103067<15> × 503773514259041128306129341705613<33> × 10576921495804627783856314533081903784787<41> × 15344278225841622589729935912851928503568610745836513<53> (Robert Backstrom PPSIQS Ver 1.1)
89×10144+19 = 9(8)1439<145> = 103 × 43223 × 3288280659927292485957261518514170457781<40> × 2398010414429186368437822729409181213827856107<46> × 281692589781504445980061317471917376276719771370502943<54> (Robert Backstrom GMP-ECM 5.0c, PPSIQS Ver 1.1)
89×10145+19 = 9(8)1449<146> = 32 × 11 × 998877665544332210998877665544332210998877665544332210998877665544332210998877665544332210998877665544332210998877665544332210998877665544332211<144>
89×10146+19 = 9(8)1459<147> = 35317 × 28000364948576857855675422286402834014465806520624313755100628277851711325675705436160740971455358294557547042186167819715403032219296341390517<143>
89×10147+19 = 9(8)1469<148> = 11 × 2423 × 14741 × 160222624630254869280396258996178652003<39> × 4972139990969861070890682623316998893525772950021<49> × 31594192671194606533148648647345097435701380247405111<53> (Greg Childers / GGNFS)
89×10148+19 = 9(8)1479<149> = 3 × 7 × 17 × 127 × 1901 × 89839 × 459863772364107478686889603096508809277<39> × 2128370917916088221332154184568808848905317<43> × 13048242530565459049275992109100105411698480990040667801<56> (Robert Backstrom GMP-ECM 5.0c, PPSIQS Ver 1.1)
89×10149+19 = 9(8)1489<150> = 11 × 43 × 2090674183697439511392999765092788348602302090674183697439511392999765092788348602302090674183697439511392999765092788348602302090674183697439511393<148>
89×10150+19 = 9(8)1499<151> = 1427 × 77213 × 135469 × 107385552073<12> × 6169462350430949785056951722629129027783358721484314600753781506118988012532000928413934537888179388208091176302930488914170147<127>
89×10151+19 = 9(8)1509<152> = 3 × 112 × 683 × 106781 × 9592561240368708557394631004994331725705539077245555042315551<61> × 389396106087029426819397405054446679770014664080460923953210556844866305408789611<81> (Sinkiti Sibata / GGNFS-0.77.1 / 40.47 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / January 17, 2006 2006 年 1 月 17 日)
89×10152+19 = 9(8)1519<153> = 10190419905946011268576405253557768498330481<44> × 97041034424094909444203541070911753967506741360316917336324363078053621728588507016698294822884773453384829769<110> (suberi / GGNFS-0.77.1-20060513-pentium4 / 43.91 hours on Pentium 4 2.21GHz, Windows XP and Cygwin / January 14, 2007 2007 年 1 月 14 日)
89×10153+19 = 9(8)1529<154> = 11 × 31 × 61 × 563 × 617 × 1117 × 2633 × 30170927 × 13269024345448025737931<23> × 95346673734407302484957<23> × 199359831203703219591466201<27> × 61149772131444053967584347436622464995185610376773276810391<59> (Makoto Kamada / msieve 0.87 / 1 hour)
89×10154+19 = 9(8)1539<155> = 33 × 7 × 64129201 × 8158867195815295497858377615933165566648620820948823462235583355120009118101361775364685694273476150114705320018280507389222639099385748874039101<145>
89×10155+19 = 9(8)1549<156> = 11 × 221283713669917886172160387597<30> × 406261212847726601754969002512377614220777133530979514806904687969487179319278660751017693894791015220582991430552717056899767<126> (Makoto Kamada / GMP-ECM 5.0.3 B1=100040, sigma=2777052825)
89×10156+19 = 9(8)1559<157> = 23 × 173 × 3395911 × 35190907398243504644236934773128038169516636457174728867557<59> × 20796334442362108455107590366458381110422317923673323714312825264926001029408728804836633<89> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon / 35.30 hours on Cygwin on AMD XP 2700+ / April 11, 2007 2007 年 4 月 11 日)
89×10157+19 = 9(8)1569<158> = 3 × 11 × 83 × 507109 × 7608147321531382277<19> × 998766999662301920263579973857<30> × 671276082185180309721450498078371896813263139<45> × 13957571951968016563167181516143946350859587741613040809<56> (Robert Backstrom / GMP-ECM 5.0 B1=124000, sigma=2735283990 for P30, GGNFS-0.77.1-20060513-athlon-xp gnfs for P45 x P56 / 30.98 hours on Cygwin on AMD 64 3200+ / April 23, 2007 2007 年 4 月 23 日)
89×10158+19 = 9(8)1579<159> = 19 × 1301 × 153009010613<12> × 424900550000295550092866554354772812998171689914130662333763053<63> × 615335965218209178221823895527708916744280900160476438475349268969266385168270279<81> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon / 33.67 hours on Cygwin on AMD 64 3400+ / July 14, 2007 2007 年 7 月 14 日)
89×10159+19 = 9(8)1589<160> = 11 × 1607 × 117727 × 9898242372013<13> × 748314670082521201732646760076033103<36> × 641535236229688185049707266010883443210404427579829424348071950643837839950313319024896633402043943969<102> (Jo Yeong Uk / GMP-ECM 6.1.2 B1=1000000, sigma=1203473070 for P36 / July 16, 2007 2007 年 7 月 16 日)
89×10160+19 = 9(8)1599<161> = 3 × 7 × 13478561 × 2604830927057<13> × 389550479169437732233<21> × 109295694047007891577335677<27> × 3150201538334847287055332647861701653551863391303435076607939134013084778993917452235387895937<94>
89×10161+19 = 9(8)1609<162> = 11 × 151 × 54497 × 4734857424467<13> × 29333719355391524558753<23> × 24068764486818214538179925119843116225195355366201<50> × 3267965275130364758731306727795381662655553549388276194815369559709367<70> (Robert Backstrom / GGNFS-0.77.1-20050930-k8 snfs, Msieve 1.32 / December 30, 2007 2007 年 12 月 30 日)
89×10162+19 = 9(8)1619<163> = 71359 × 1175039 × 32398427 × 5007866949667<13> × 203136435361350386070013<24> × 3578342664407631301405166978462315638291644860219190836735292321825739082241846244916633154199776655995800317<109>
89×10163+19 = 9(8)1629<164> = 32 × 11 × 191 × 44453 × 169823791 × 53555495404586983124284868689499027110767249977749056417262621184569457<71> × 12935263718227109600388586097547759844207588321745878007455274683392359947511<77> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.28 / October 12, 2007 2007 年 10 月 12 日)
89×10164+19 = 9(8)1639<165> = 17 × 19597 × 7888299157<10> × 270666531521708051044165587427652002648199<42> × 1390244075564748945696789150673380726874059327867465501106095914306348058416858266414264460951086291348664927<109> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.28 / October 29, 2007 2007 年 10 月 29 日)
89×10165+19 = 9(8)1649<166> = 11 × 1543543 × 88376688350459632586628231306318307<35> × 6590196373765717129866256369308391326824122412948343208845340599055463285702949105086810818044931047876369140104917833811599<124> (Makoto Kamada / GMP-ECM 5.0.3 B1=100290, sigma=546111055)
89×10166+19 = 9(8)1659<167> = 3 × 7 × 2145267415169671460471822733293<31> × 787295564822051341879920685703659778682875348470397<51> × 2788103947756805820487521573803396169483071780461221984528675501647444463826993994429<85> (anonymous / GMP-ECM B1=250000, sigma=3985830839 for P31 / January 27, 2007 2007 年 1 月 27 日) (Erik Branger / GGNFS, Msieve snfs / 57.30 hours / November 7, 2008 2008 年 11 月 7 日)
89×10167+19 = 9(8)1669<168> = 11 × 47 × 247241048054093075068483<24> × 11735515965675694227339384230495652756357364865648203<53> × 659225790392093267074705101810375554863868616091506172922557608512373829311495920690579333<90> (Robert Backstrom / GGNFS-0.77.1-20060513-pentium-m, Msieve 1.39 snfs / 38.58 hours, 1.77 hours / April 17, 2009 2009 年 4 月 17 日)
89×10168+19 = 9(8)1679<169> = 31 × 15467 × 14156321914008218389<20> × 1197741581225809551137206782460379046419207957<46> × 1216371290130096965390512251725852109764456594341931436026498758415155508058087929946270416461522909<100> (Robert Backstrom / GGNFS-0.77.1-20060513-pentium-m, Msieve 1.39 snfs / 37.15 hours, 1.3 hours / June 7, 2009 2009 年 6 月 7 日)
89×10169+19 = 9(8)1689<170> = 3 × 11 × 1043029760492294778115192930717<31> × 2137408286980640850586822612999<31> × 1344155050671296329476443457173504996983463628893573178601520913356656425293555294725257688032563620895713451<109> (Robert Backstrom / GMP-ECM 5.0 B1=169500, sigma=2896656812 for P31(1043...), B1=75500, sigma=2425771376 for P31(2137...) / May 31, 2007 2007 年 5 月 31 日)
89×10170+19 = 9(8)1699<171> = 43 × 59 × 163 × 1171 × 2081129 × 69730009 × 57040393037<11> × 246706901509329196775525119267643736934048272993985116155106192414647029719947137804593982125562385115838835230347590895131678818907306077<138>
89×10171+19 = 9(8)1709<172> = 11 × 29 × 31153 × 20859158360218646280250430937682237384800186664930597024627057321<65> × 47704588922816156402622683680592959261170977885583403442268477509804178279463931489193875017204443487<101> (Serge Batalov / Msieve-1.38 snfs / 30.00 hours on Opteron-2.6GHz; Linux x86_64 / October 6, 2008 2008 年 10 月 6 日)
89×10172+19 = 9(8)1719<173> = 32 × 7 × 28374437137208143694859353109210241<35> × 55319684242824805539786119928055484629932205195577216102493402586162471078482629895939814487631967975891214726015347155376120908609278983<137> (Makoto Kamada / GMP-ECM 5.0.3 B1=43970, sigma=4171773387)
89×10173+19 = 9(8)1729<174> = 112 × 401 × 1972031 × 36508796972420217359188613859528017520402107<44> × 26223045467053073103521145401907892655457523884058353664729<59> × 10795017884319115590619497478062896384036042183481493808139013<62> (Serge Batalov / Msieve-1.38 snfs / 40.00 hours on Opteron-2.6GHz; Linux x86_64 / October 9, 2008 2008 年 10 月 9 日)
89×10174+19 = 9(8)1739<175> = 233 × 1237 × 52081 × 1735274687<10> × 6382549367<10> × 35304855647430403<17> × 1684789734643746528122902676255862849036595956871852569193037458878887347118046508229784807436357917212798188020527975913926926247<130>
89×10175+19 = 9(8)1749<176> = 3 × 11 × 2377 × 83045563 × 21545311091948629<17> × 127739194355601203<18> × 141537670211263258844233207<27> × 5050043729825650103372047299253484119274219<43> × 7716916809971581744577104286439612898464992845500606623694673<61> (Makoto Kamada / GMP-ECM 5.0.3 B1=400000, sigma=4189810606 for P27) (Anton Korobeynikov / GGNFS-0.73.3 gnfs / 18.27 hours for P43 x P61 / March 9, 2005 2005 年 3 月 9 日)
89×10176+19 = 9(8)1759<177> = 19 × 206065544821099<15> × 46769179170386538273401476276159760249811023880307<50> × 11941449567918718358536044806928058191426749433739891<53> × 452242858937830963822035036405149710954577535615731294875937<60> (Dmitry Domanov / Msieve 1.40 snfs / December 11, 2010 2010 年 12 月 11 日)
89×10177+19 = 9(8)1769<178> = 11 × 2089 × 73382399 × 34660765669736251<17> × 169194528443371405476473539396842457884492670802213364269120176265313946250498621034589328141325390942095783327556591814451824443784341878948335509559<150>
89×10178+19 = 9(8)1779<179> = 3 × 7 × 23 × 103 × 39671 × 145177 × 1708698525101<13> × 201988540650401741423910344670420101987492759641784044069087513574531119276742563862767053674341739287220267522844419595071776162581283776034229393919383<153>
89×10179+19 = 9(8)1789<180> = 11 × 157 × 5060505548723700473<19> × 6611847012089737787<19> × 85097940831401889847333<23> × 201103397067209717831751183249741658219827706630316803469664791159008627663575018068330483195560303196379270190563529<117>
89×10180+19 = 9(8)1799<181> = 17 × 711962455993260516463<21> × 37287164971883204362343<23> × 178087690675076789660107777<27> × 1836752405977035142322213813<28> × 66988090653869154796356914160027099834175680263483228734044444225891821948368819613<83> (Makoto Kamada / GMP-ECM 5.0.3 B1=400000, sigma=992961681 for P27) (Makoto Kamada / GMP-ECM 5.0.3 B1=400000, sigma=3486630773)
89×10181+19 = 9(8)1809<182> = 35 × 11 × 40086795901480525822645927616850833828200151<44> × 4401347710531047444920804384243769376286461546304783503<55> × 209682175547011199524064175561135108760786096939706109059852576036837707179292081<81> (Robert Backstrom / GGNFS-0.77.1-20060513-pentium-m, Msieve 1.39 snfs / 141.03 hours, 2.66 hours / July 10, 2009 2009 年 7 月 10 日)
89×10182+19 = 9(8)1819<183> = 3617 × 48354877 × 61971619 × 3090622181384609075994059932603415885414565499524281<52> × 2514064421801267257790055443234980708597029308553770909<55> × 11742039690372078442725180530764223541420039156008148800371<59> (Dmitry Domanov / Msieve 1.47 snfs / December 19, 2010 2010 年 12 月 19 日)
89×10183+19 = 9(8)1829<184> = 11 × 31 × 230939 × 6528699292836557<16> × 45042607302532677661259<23> × 855468002423990818667567862479<30> × 275723309612424883809954589539130241126436024793<48> × 1810374387839617565875816723065884562933961409570318045244551<61> (Serge Batalov / GMP-ECM 6.2.1 B1=1000000, sigma=3594520275 for P30, pol51+Msieve 1.36 gnfs for P48 x P61 / 9.00 hours on Opteron-2.6GHz; Linux x86_64 / August 6, 2008 2008 年 8 月 6 日)
89×10184+19 = 9(8)1839<185> = 3 × 72 × 72298914535541553904067220479461<32> × 550430708386191940522211731098270118979771844421<48> × 16904243125790393339203696570670975596466064552021321059199023227488558990952385101524564399671705619227<104> (Makoto Kamada / GMP-ECM 5.0.3 P-1 B1=50000000, B2=7260750615 for P32) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1025793762 for P48 / December 9, 2010 2010 年 12 月 9 日)
89×10185+19 = 9(8)1849<186> = 11 × 1987 × 616943 × 40940401384167441808899155767<29> × 1791264866192661432732845062852095165264741708650930105086935795122598812517413884118459537265905771919543758665292146582186543306950429077800614017<148> (Dmitry Domanov / ECMNET / June 22, 2009 2009 年 6 月 22 日)
89×10186+19 = 9(8)1859<187> = 9733 × 1976585369250216667<19> × 514026131151561570962760002367279258888774199959778191179251928678890401917094523682830695197742404746454591271547947511418014040506993400799160100203600232689980799<165>
89×10187+19 = 9(8)1869<188> = 3 × 11 × 2113 × 53436670079527513453372141<26> × 26539618343392390368380352055345120368680743940244939749660016224269777920657790101145291847422912050143063087742829198697524309000191824413799439858404431901<158> (Makoto Kamada / GMP-ECM 5.0.3 B1=400000, sigma=2155084681)
89×10188+19 = 9(8)1879<189> = 5715521093<10> × 2091546326560676247569725487130968152749100744835293083169<58> × 82722600185242733898512039792030400940846037334204427271661548152684517349797738972521701637486575332142872813759995282117<122> (matsui / Msieve 1.43 snfs / January 2, 2010 2010 年 1 月 2 日)
89×10189+19 = 9(8)1889<190> = 11 × 695553667 × 1292480999873585584732442937418801632022723415517409657907805838639765218718902820463311553354214289535043152750699104559388355433671948407539615342132757370538008965726434722252697<181>
89×10190+19 = 9(8)1899<191> = 32 × 7 × 127 × 599 × 1021 × 5903 × 528043 × 1880833 × 3447135486293666124586558539461395362759997985325359827772476665712151499513893474747814667007716918457188846174209305694707538786865460672807829058083797561915890463<166>
89×10191+19 = 9(8)1909<192> = 11 × 43 × 263 × 1787 × 96802175159<11> × 45953748111416674078074082115097974033748260279972189633411007767789449809891654526061647254520307841919937547228919539752251275559596223857256577743132783931075093437277267<173>
89×10192+19 = 9(8)1919<193> = 13218418284259087<17> × 9875701094636583704726750466026393168555739318445554101423<58> × 75753040681150520258072059737465334597972288947874780980937806435418896154403977556962920626531430932596646398009917689<119> (Dmitry Domanov / Msieve 1.47 for P58 x P119 / December 21, 2010 2010 年 12 月 21 日)
89×10193+19 = 9(8)1929<194> = 3 × 11 × 991 × 9859 × 10729 × 28586947951013188372006798164482771191083194203325982352001151889645333925593382704291923232127170147573580464567813241726566016160174943029155921326107723728036514612107345022535333<182>
89×10194+19 = 9(8)1939<195> = 19 × 787 × 1478629721<10> × 1769297203<10> × 2283368889277607<16> × 38346165072677325477768700865603<32> × 9097052437296664414776212359460597<34> × 3374615834793386611677694152332672045296747<43> × 9404503802431255949573827788376837390651779708209<49> (Dmitry Domanov / ECMNET / June 22, 2009 2009 年 6 月 22 日) (Jo Yeong Uk / GMP-ECM 6.2.3 B1=1000000, sigma=6364061278 for P34, Msieve 1.38/YAFU 1.10 for P43 x P49 / June 23, 2009 2009 年 6 月 23 日)
89×10195+19 = 9(8)1949<196> = 112 × 66854285429<11> × 6566120778828605513881<22> × 289585549135941085357956288116281147305069725574391<51> × 642905472768696816758515713419024979738320915296327760390263526129204875226824978343549212344127538347820829251<111> (Dmitry Domanov / Msieve 1.47 for P51 x P111 / December 23, 2010 2010 年 12 月 23 日)
89×10196+19 = 9(8)1959<197> = 3 × 7 × 17 × 9319 × 1100471 × 1831154018523601241<19> × 5639392232641971122838206299876477417<37> × 2615617237527407625662939276906569887161584996244062233469220041596471837659827895613059683208511595543935568974694375701393033509<130> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3477016352 for P37 / December 9, 2010 2010 年 12 月 9 日)
89×10197+19 = 9(8)1969<198> = 11 × 1097 × 34754543550863119<17> × 647278217121651105541<21> × 19529714814982986435712937<26> × 99429846509411749958422469<26> × 1876000427359727953324536228737013368523167019576875931142646854395957088873360379620808498186817858813341<106> (Makoto Kamada / GMP-ECM 5.0.3 B1=400000, sigma=350760833)
89×10198+19 = 9(8)1979<199> = 31 × 83 × 431 × 12487 × 83813 × 1079213 × 2166408303061502899372383833<28> × 4395777690025921192930302738422830259<37> × 829044309968406269555460993165557657147907929306084728707699607402895883204870741180673313769422382597949693648783<114> (Makoto Kamada / GMP-ECM 5.0.3 B1=400000, sigma=3280725341 for P28) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3264684808 for P37 / December 9, 2010 2010 年 12 月 9 日)
89×10199+19 = 9(8)1989<200> = 32 × 11 × 29 × 173 × 421 × 3013553 × 75505703827954394348190142512190813<35> × 2078392237191109696799707468604509557501015179027375428569828921512009119409343165258187588687754438966150764624796567341773480588321102772113091935307<151> (Dmitry Domanov / ECMNET / June 22, 2009 2009 年 6 月 22 日)
89×10200+19 = 9(8)1999<201> = 23 × 304033 × 1661454287<10> × 10579488240557<14> × 5342664851907016814443631<25> × 20502432527984094536714150970230783711779461876400423<53> × 73448436711808031978070821097623409494793851759943982262957531629491094500762361466324087150813<95> (Dmitry Domanov / Msieve 1.47 for P53 x P95 / December 25, 2010 2010 年 12 月 25 日)
89×10201+19 = 9(8)2009<202> = 11 × 547 × 811 × 2017 × 2391228423889<13> × 420164802931383642343449972554417781237129346052063675052161053649943758993512658769524077371256391369753698527955992464225405929133102358990365977806312393328462477096524228008219<180>
89×10202+19 = 9(8)2019<203> = 3 × 7 × 43347665267<11> × 5136169672091694695645928727<28> × 363308545780454593139679146766021696873722378987<48> × 58216690868425798517131054370977187595908801446281188440123643711484002123222110968711429683810302556367593308277123<116> (Beyond / GMP-ECM B1=110000000, sigma=4154729543 for P48 / May 27, 2012 2012 年 5 月 27 日)
89×10203+19 = 9(8)2029<204> = 11 × 8501 × 179119 × 487430756293254437<18> × 412494275521500033822492333623963522471<39> × 293638018552545305273111551553156796886831250314200063137192576795881747182994978587775566129874821962675471985826661245672750842605607323<138> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2905400789 for P39 / April 24, 2011 2011 年 4 月 24 日)
89×10204+19 = 9(8)2039<205> = definitely prime number 素数
89×10205+19 = 9(8)2049<206> = 3 × 11 × 223 × 1845156527<10> × 712397570473<12> × 161373946326477452413<21> × 63348980668702657433590595935054319161794633995612580131845014567735791686756500835606766196258104134612760159170307107377150026705906168869885671459087445512277<161>
89×10206+19 = 9(8)2059<207> = 112303 × 3984044791851281065679397570957905387457388492398630920985345218715533<70> × 2210201792631339340219935306191371964603619103536173980745461521027858771266980530020434731312177928204440506424077140570710773138611<133> (matsui / Msieve 1.50 snfs / February 3, 2012 2012 年 2 月 3 日)
89×10207+19 = 9(8)2069<208> = 11 × 193 × 691 × 56153701 × 1560448761559484592896031247674446768526419<43> × [76929260482783412961622711907769609345252137083814556656934657169017577444614888425554831001226339080005709014889332960257688838408018061884979502917367<152>] (Dmitry Domanov / GMP-ECM B1=43000000, sigma=1327274620 for P43 / October 2, 2011 2011 年 10 月 2 日) Free to factor
89×10208+19 = 9(8)2079<209> = 33 × 7 × 739 × 161009 × 312972157 × 9141792958154124585167<22> × [1536929751620223959178261420943659482799621286147356170549891875173684147115317104194475326556537335865730968108674276166889184291032032302224235839176127477449821900229<169>] Free to factor
89×10209+19 = 9(8)2089<210> = 11 × 48105454021<11> × 13756406956347458206287946026996143<35> × 135848697578799307539211918511982075362780105781002172938251967796011653138172415972059660159430920917592982417727785588482555828960961425098563083066945424210545633<165> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2584718580 for P35 / April 24, 2011 2011 年 4 月 24 日)
89×10210+19 = 9(8)2099<211> = 81943783 × 23496508763667483344077826191883375504838247<44> × [5136037077659050458733278094297472232290567860412981861236474291764308200365851928773206261810305384064277383969146215380968356259100808220456750424272996921289<160>] (Wataru Sakai / GMP-ECM 6.3 B1=11000000, sigma=3378403208 for P44 / August 31, 2011 2011 年 8 月 31 日) Free to factor
89×10211+19 = 9(8)2109<212> = 3 × 11 × 149 × 277 × 709 × 839 × 214987 × 7412183 × 410171761 × 15184012530991<14> × 67682675249980607175882067<26> × 12283934613220384995626558895553640179199268402442488111451783<62> × 14792230581268285126712524304756084562019285507138302777871873991818603116546341<80> (Bryan Koen / GGNFS, Msieve 1.48 gnfs for P62 x P80 / June 23, 2011 2011 年 6 月 23 日)
89×10212+19 = 9(8)2119<213> = 17 × 19 × 43 × 103 × 1613 × 267713 × 710323 × 75961510249742180482255951812219076300859<41> × [29667844804058578751235894253115612811463175144975650701622629266228142748463133650663165270830295340865189613763137596556041903521124671504482819507099<152>] (Dmitry Domanov / GMP-ECM B1=43000000, sigma=3107745991 for P41 / September 7, 2011 2011 年 9 月 7 日) Free to factor
89×10213+19 = 9(8)2129<214> = 11 × 31 × 47 × 61 × 113 × [89513179145554643919143091261344378583765103924564632965355013256353688955133469133676838448502100993497824018596437394177255600535123463350511948350404819178756630943958344130860567765862256079968716732999<206>] Free to factor
89×10214+19 = 9(8)2139<215> = 3 × 7 × 257 × 359 × 1093 × 92539477 × 1241190262366913061943<22> × [406551032355665919672989076588632918119692185033553511012007316697400178648171660013932563067075748298136837557506936416191182238208311135717350229519482080456193789805136522541<177>] Free to factor
89×10215+19 = 9(8)2149<216> = 11 × 261885571 × 1729823863<10> × 6522874282103<13> × 3462314641692593<16> × 280141946452963475338793080721<30> × 31365894309976151748909174873554198580106349038088781733390786534549309594277471934734800313449405296213932526073086013599959490295317285257<140> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=342364135 for P30 / January 21, 2011 2011 年 1 月 21 日)
89×10216+19 = 9(8)2159<217> = 601 × 1657 × 221328595283077<15> × 8821748150018449411019<22> × 328308733013961374731852802120643214788874219896287982589<57> × 15490873196110120337179277389683806178438999305059872633864620293583848924463912300254390149513692464351595227149792011<119> (Grzegorz Roman Granowski / GMP-ECM B1=110000000, sigma=1470777761 for P57 / June 1, 2012 2012 年 6 月 1 日)
89×10217+19 = 9(8)2169<218> = 32 × 113 × 241262971 × 1828596071738999942170362613845406284825334460071<49> × 18711925437552265423528061303926697276316663966077165024852236317375097564422446702012730513611675007514595351039698733443711000438379483653905269855975317351<158> (Scott O / GMP-ECM B1=110000000, sigma=406193853 for P49 / May 31, 2012 2012 年 5 月 31 日)
89×10218+19 = 9(8)2179<219> = 1493 × 8011949221525296330291921189123937364553303443933<49> × 82670297660610166094417275782701511003459153036200060240892524485506200036400932267569741388790357654505146559960577000640200974106311349559348564218779527714235982681<167> (Serge Batalov / GMP-ECM B1=3000000, sigma=658974453 for P49 / January 21, 2011 2011 年 1 月 21 日)
89×10219+19 = 9(8)2189<220> = 11 × 43760641 × 14795142883<11> × 65146180733022734911<20> × 42523358117456072009506749733660189630661<41> × 365847298128415526367418966352592824953494102199869499<54> × 1370047447043816433157509790974505699716568413773766492318477531470318966264761071103777<88> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=2151760168 for P41 / August 8, 2011 2011 年 8 月 8 日) (Erik Branger / GGNFS, Msieve gnfs for P54 x P88 / November 23, 2011 2011 年 11 月 23 日)
89×10220+19 = 9(8)2199<221> = 3 × 7 × 7591 × 202766430744014419342033<24> × 27977368029237964888051771<26> × 109351891297489481599190296232141197382206179700236525230019163910555919943493480257930791819291030939306996916404610143062621871145472938367028003429747891253461178793<168>
89×10221+19 = 9(8)2209<222> = 11 × 11112432481422281702938304515286660476265687<44> × 8089947007487573538301392968961286727163143873775135001091344207067312096563780993344206381634412006359292431879337228291847674068748479954545650816227368215995120405081101436077<178> (Wataru Sakai / GMP-ECM 6.3 B1=43000000, sigma=3531104831 for P44 / May 30, 2011 2011 年 5 月 30 日)
89×10222+19 = 9(8)2219<223> = 23 × 97 × 162186132248915806037548154148577379551351<42> × 227170381999301377785504446580448069006505431<45> × 120304674265641695138364515042973407107014913790535509027542097354437341782073654963162341455705783079097042517644388344438360069244799<135> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=215970246 for P42 / June 11, 2011 2011 年 6 月 11 日) (Crystal Pellet / GMP-ECM B1=110000000, sigma=231937672 for P45 / May 31, 2012 2012 年 5 月 31 日)
89×10223+19 = 9(8)2229<224> = 3 × 11 × 114011521759<12> × 2022041003999<13> × 1371477421358349420475858067<28> × 29423442671506610874601217779<29> × 223781721044179757976639183632597842981237140201558797<54> × 1439421877706261653276235351667015571529277358188475971736999885894442950937865166121444053<91> (Dmitry Domanov / September 8, 2011 2011 年 9 月 8 日)
89×10224+19 = 9(8)2239<225> = 3232171511669<13> × 2409345538248543347880416070379<31> × [126985463931220150990788470994700964809856266182466493546593725603842672241362608274040929608453164181847553489651487141752289284859216771024438906258080917020004416585388254360569439<183>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=376978524 for P31 / January 20, 2011 2011 年 1 月 20 日) Free to factor
89×10225+19 = 9(8)2249<226> = 11 × 167 × 2111982201895030206997<22> × 2141835847927980111751<22> × 1190040944117266181546838410245535254636335369483253836946757992778057545968061348920823183920677095449437833136675655303575452103231455253534073053682468080105056557743663200954351<181>
89×10226+19 = 9(8)2259<227> = 32 × 72 × 102915622627<12> × 1590799317502764146977<22> × 12166941341019183406254997<26> × 676654088770796084318250209671<30> × 144639833251691145488601327482786074273055267147135262363769944323<66> × 1150207430266473085745024426164383202346121699342268552366032903247475651<73> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2296030492 for P30 / January 20, 2011 2011 年 1 月 20 日) (Dmitry Domanov / Msieve 1.40 gnfs for P66 x P73 / August 26, 2011 2011 年 8 月 26 日)
89×10227+19 = 9(8)2269<228> = 11 × 29 × 644336747 × 41688013042966082059<20> × 10580831259048065935931609040120797813598319290643<50> × [10907191281864194396371055110482547463001742603338100521624651910885400894202745008699028894445729959400389502700933919241273306510533218866143452229<149>] (Beyond / GMP-ECM B1=110000000, sigma=948500751 for P50 / May 31, 2012 2012 年 5 月 31 日) Free to factor
89×10228+19 = 9(8)2279<229> = 172 × 31 × 59 × 118369 × 137168191 × 296688225931<12> × 3883687234325574744089503439359239843967744588288975375597565312679768475751997075664410094501528067575102438438685456432629502209755472564022690992827984303007025390194498021388507979073346592104081<199>
89×10229+19 = 9(8)2289<230> = 3 × 11 × 8023747 × 23198104611349711<17> × 9742026682130312377<19> × 168726404151101944041519638602873<33> × [9794256256760224166962544576171452463861297973621420077083936064802545829492314121118661363674478164603146082015444186907581827388099754946831247139391469<154>] (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=3223942821 for P33 / January 19, 2011 2011 年 1 月 19 日) Free to factor
89×10230+19 = 9(8)2299<231> = 19 × 109 × 10639 × 26297 × 4777041941358387533268500958934751<34> × 357273931246251899056906609586912977795051401429786685174448355943346833944496998993985057994407339443758813420498629386105525526958388721046225084827513327989623894672910048797426196023<186> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=931289704 for P34 / April 23, 2011 2011 年 4 月 23 日)
89×10231+19 = 9(8)2309<232> = 11 × 4931 × 7673 × 19963 × 7285127 × 3153955319<10> × 2623512468889645171<19> × 2679668171557924047154892760908696555796827<43> × 7368379581450435261753856496333003388292150153754435799024101919964769883977224808339172773504175405211383637036800092509028037847341749003251<142> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1705268611 for P43 / January 20, 2011 2011 年 1 月 20 日)
89×10232+19 = 9(8)2319<233> = 3 × 7 × 127 × 5683 × 11437 × 125113 × 863980892729<12> × 321209225614082201183603565811182889<36> × [16430096647704944767575752272893313097530226228644745016055471398698121265013925867289316181254386940577006731472551892218733649828079556385000436789144988678501891694709<170>] (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=3830702380 for P36 / January 19, 2011 2011 年 1 月 19 日) Free to factor
89×10233+19 = 9(8)2329<234> = 11 × 43 × 218059941525232927705269323393<30> × 9587612328399693634900573469043787107706654270755557313898892828026795150771973707900996317139473127920759048219159278088312727391931192723654672122724960733254526681896411561794993314785954944346316001<202> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=480813171 for P30 / January 19, 2011 2011 年 1 月 19 日)
89×10234+19 = 9(8)2339<235> = 178246213 × 183808871 × 7195569522287157953<19> × 30000350553050040471799<23> × 1181086148099951021097806580514590557811137<43> × 21468696431626754438928164939489845696332339195925098235338267683<65> × 55141930149609629077840342475295468380874837785405453910492189258950839<71> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=131683853 for P43 / April 24, 2011 2011 年 4 月 24 日) (Dmitry Domanov / Msieve 1.40 gnfs for P65 x P71 / August 23, 2011 2011 年 8 月 23 日)
89×10235+19 = 9(8)2349<236> = 33 × 11 × [332959221848110736999625888514777403666292555181444070332959221848110736999625888514777403666292555181444070332959221848110736999625888514777403666292555181444070332959221848110736999625888514777403666292555181444070332959221848110737<234>] Free to factor
89×10236+19 = 9(8)2359<237> = 151 × 1597 × 5087861 × 20723029 × 2206981713988824982764853<25> × 17622942584506961039835069483748426768130805858245576343952070756590174868663144381363007005951616473331060806482037267394044873474268362604389707350563489700894315162417890029281734671692281191<194>
89×10237+19 = 9(8)2369<238> = 11 × 12577 × 92251 × 619158001782035623<18> × 1251426013808704123339391361266658042164081547096540240999735218855293912802939777097905607297066856338066232411517160133293636990385397698054588079448437098402682931045828970553258201023914308351796293824191719<211>
89×10238+19 = 9(8)2379<239> = 3 × 7 × 30670169 × 9191927839<10> × 491222499557395721403279724105473746543<39> × [34003778339531357463842033539497779517967416122532893269024072771782364773448288571713276142700668985815398365668436372469387739662086154342386985588401961016233175488670616028922093<182>] (Dmitry Domanov / GMP-ECM B1=43000000, sigma=3388218595 for P39 / July 21, 2011 2011 年 7 月 21 日) Free to factor
89×10239+19 = 9(8)2389<240> = 112 × 83 × 80447 × 494745959797489<15> × 8669595244140989<16> × 19229241186605381517571<23> × 71549531204495373535150030414530153645282395413<47> × 75318860854526589519728381762363635887749885144687076702396467<62> × 2753724069154195239109759717516083223966263533454613703562284533057469<70> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=3852295100 for P47 / September 8, 2011 2011 年 9 月 8 日) (Warut Roonguthai / Msieve 1.48 gnfs for P62 x P70 / September 11, 2011 2011 年 9 月 11 日)
89×10240+19 = 9(8)2399<241> = 3508829 × 187549461183391<15> × 2739027869318350299912022938842017<34> × [5486217504754882022594824095426109491617742869417833448866860472717788050025109951616718370856036160138423312889003882346295827121940798519631659287971449102717059650552235320004542207603<187>] (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=2959976570 for P34 / January 19, 2011 2011 年 1 月 19 日) Free to factor
89×10241+19 = 9(8)2409<242> = 3 × 11 × 617 × 1641117288375716873<19> × 3234133013732436796301<22> × 795473016316964106692793113402904224275567<42> × 1150337937398834821465952803776306352203597696333078716831167916593444079798845252319159954641964002804575713543150011863078201061646852640015859975067191939<157> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=3588773928 for P42 / July 21, 2011 2011 年 7 月 21 日)
89×10242+19 = 9(8)2419<243> = 173 × 761 × 4849459 × 609534911390021<15> × 90703675037405240811613<23> × [28015603132901918752085809581080357866326455667726414110685524950681813213953953819257181491818800227509064946497043709518332908739929161391994456121091096331359025916398913912946267260694398359<194>] Free to factor
89×10243+19 = 9(8)2429<244> = 11 × 31 × 100899751 × 19470287314046742393696022536482195819<38> × [14761505867009942656147659190809991122593155190552512370633447372523484715363742433728785904011226132240046830644082289026889807380473329243861209569001055276440559524616004588195877521973317820841<197>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3305259718 for P38 / January 21, 2011 2011 年 1 月 21 日) Free to factor
89×10244+19 = 9(8)2439<245> = 32 × 7 × 17 × 232 × 32724883343<11> × 30336411133311677<17> × 175816668233762158489205186091991855667422436007627146706772679943501665681742106485837028284174922765244373903009616595248292570507621245856918436646396071653065134115727806478869199490338881800926735303496396061<213>
89×10245+19 = 9(8)2449<246> = 11 × 181 × 14198177618180295766417999<26> × 336338455759059021617143668299<30> × 648918177071165309522305673971897<33> × 160279200322624143161398091924643229696529920431378195279520644484713537100874588815483433682597791484624799753581444777903827161463335153098201656570419307<156> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=2767603494 for P30 / January 20, 2011 2011 年 1 月 20 日) (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=37940123 for P33 / January 20, 2011 2011 年 1 月 20 日)
89×10246+19 = 9(8)2459<247> = 103 × 1459 × 1292549 × [50910570601792447194570753394637631594700093843902174073542204459582920944871555495741577334487760663074888867263793439839189610036236477393756960713332966486256788716390541525140808552314192088611031005777982882854733095724456462421793<236>] Free to factor
89×10247+19 = 9(8)2469<248> = 3 × 11 × 229 × 2605017369049<13> × 17268115235645864480515127117<29> × 11986887206097084507219496522379<32> × 118406723275451705334624987404757538955441<42> × 204955573037749531496582037299573394095191139487591820174586179040433064555618168638845286798096210843891815922066217233163811640371<132> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=903281413 for P32 / January 20, 2011 2011 年 1 月 20 日) (Dmitry Domanov / GMP-ECM B1=43000000, sigma=1501892615 for P42 / September 7, 2011 2011 年 9 月 7 日)
89×10248+19 = 9(8)2479<249> = 19 × 269 × 1811 × 10459 × 66497214373<11> × 18092021905739<14> × 4092175702877651247839<22> × [2074857012206824984051622201008991711662986556458432426576993368396297907557941400820470793007687682236223195872168596149773198754488581266315881252839001899332956858499768051462413962906148247<193>] Free to factor
89×10249+19 = 9(8)2489<250> = 11 × 2801 × 9343 × 5385198019<10> × 945617635667<12> × [6745872271452086219047049133060149732800638555472609400890162872452328834907247430154103568058253565571335204192192587868874227064870702199034408450902939676286425440109573032070696037968498194429399933261374315442765741<220>] Free to factor
89×10250+19 = 9(8)2499<251> = 3 × 7 × 242201 × 106529513 × 58658290535035366936339<23> × [3111379074953661627881667561807360957954427038401279291150702417414670171106705717268177172189062018108862127418403592699510970246091205163257467626095831144294594236861466565439991233375280185874458806503351156087<214>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク