Table of contents 目次

  1. About 99...9979 99...9979 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 99...9979 99...9979 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 99...9979 99...9979 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 99...9979 99...9979 について

1.1. Classification 分類

Near-repdigit of the form AA...AABA AA...AABA の形のニアレプディジット (Near-repdigit)

1.2. Sequence 数列

9w79 = { 79, 979, 9979, 99979, 999979, 9999979, 99999979, 999999979, 9999999979, 99999999979, … }

1.3. General term 一般項

10n-21 (2≤n)

2. Prime numbers of the form 99...9979 99...9979 の形の素数

2.1. Last updated 最終更新日

December 27, 2014 2014 年 12 月 27 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 102-21 = 79 is prime. は素数です。
  2. 106-21 = 999979 is prime. は素数です。
  3. 1032-21 = (9)3079<32> is prime. は素数です。
  4. 10108-21 = (9)10679<108> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / August 23, 2004 2004 年 8 月 23 日) (certified by: (証明: Robert Backstrom / APLOG.UB / August 8, 2009 2009 年 8 月 8 日)
  5. 10408-21 = (9)40679<408> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Erik Branger / Primo 3.0.9 / April 10, 2010 2010 年 4 月 10 日)
  6. 101286-21 = (9)128479<1286> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Erik Branger / Primo 3.0.9 / September 4, 2010 2010 年 9 月 4 日)
  7. 102268-21 = (9)226679<2268> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Ray Chandler / Primo 4.0.1 - LX64 / December 13, 2012 2012 年 12 月 13 日)
  8. 102328-21 = (9)232679<2328> is prime. は素数です。 (discovered by: (発見: Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日) (certified by: (証明: Ray Chandler / Primo 4.0.1 - LX64 / December 15, 2012 2012 年 12 月 15 日)
  9. 104284-21 = (9)428279<4284> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / December 23, 2004 2004 年 12 月 23 日)
  10. 1053558-21 = (9)5355679<53558> is PRP. はおそらく素数です。 (Bob Price / PFGW / March 4, 2011 2011 年 3 月 4 日)
  11. 10181182-21 = (9)18118079<181182> is PRP. はおそらく素数です。 (Serge Batalov / LLR / December 25, 2014 2014 年 12 月 25 日)
  12. 10249010-21 = (9)24900879<249010> is PRP. はおそらく素数です。 (Serge Batalov / LLR / December 26, 2014 2014 年 12 月 26 日)

2.3. Range of search 捜索範囲

  1. n≤11000 / Completed 終了 / Ray Chandler / October 15, 2010 2010 年 10 月 15 日
  2. n≤20000 / Completed 終了 / Ray Chandler / December 12, 2010 2010 年 12 月 12 日
  3. n≤40000 / Completed 終了 / Bob Price / December 25, 2010 2010 年 12 月 25 日
  4. n≤100000 / Completed 終了 / Bob Price / March 4, 2011 2011 年 3 月 4 日
  5. n≤221000 / Completed 終了 / Serge Batalov / December 25, 2014 2014 年 12 月 25 日
  6. n≤250000 / Completed 終了 / Serge Batalov / December 27, 2014 2014 年 12 月 27 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

  1. 102k+1-21 = 11×(101-2111+9×10×102-19×11×k-1Σm=0102m)
  2. 1013k+2-21 = 79×(102-2179+9×102×1013-19×79×k-1Σm=01013m)
  3. 1016k+4-21 = 17×(104-2117+9×104×1016-19×17×k-1Σm=01016m)
  4. 1018k+17-21 = 19×(1017-2119+9×1017×1018-19×19×k-1Σm=01018m)
  5. 1021k+12-21 = 43×(1012-2143+9×1012×1021-19×43×k-1Σm=01021m)
  6. 1022k+19-21 = 23×(1019-2123+9×1019×1022-19×23×k-1Σm=01022m)
  7. 1028k+19-21 = 29×(1019-2129+9×1019×1028-19×29×k-1Σm=01028m)
  8. 1030k+14-21 = 211×(1014-21211+9×1014×1030-19×211×k-1Σm=01030m)
  9. 1033k+8-21 = 67×(108-2167+9×108×1033-19×67×k-1Σm=01033m)
  10. 1041k+38-21 = 83×(1038-2183+9×1038×1041-19×83×k-1Σm=01041m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 17.00%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 17.00% です。

3. Factor table of 99...9979 99...9979 の素因数分解表

3.1. Last updated 最終更新日

July 9, 2018 2018 年 7 月 9 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=199, 202, 205, 207, 211, 212, 214, 215, 218, 219, 223, 225, 226, 227, 229, 234, 235, 238, 240, 241, 242, 245, 248, 249, 250, 252, 253, 254, 255, 257, 258, 260, 262, 263, 268, 270, 271, 273, 274, 275, 277, 279, 280, 282, 283, 285, 287, 288, 289, 290, 291, 292, 293, 295, 296, 298, 300 (57/300)

3.4. Factor table 素因数分解表

102-21 = 79 = definitely prime number 素数
103-21 = 979 = 11 × 89
104-21 = 9979 = 17 × 587
105-21 = 99979 = 11 × 61 × 149
106-21 = 999979 = definitely prime number 素数
107-21 = 9999979 = 11 × 909089
108-21 = 99999979 = 67 × 109 × 13693
109-21 = 999999979 = 11 × 90909089
1010-21 = 9999999979<10> = 47 × 3613 × 58889
1011-21 = 99999999979<11> = 11 × 2549 × 3566461
1012-21 = 999999999979<12> = 43 × 108637 × 214069
1013-21 = 9999999999979<13> = 113 × 7513148009<10>
1014-21 = 99999999999979<14> = 151 × 211 × 3138633439<10>
1015-21 = 999999999999979<15> = 11 × 79 × 203279 × 5660929
1016-21 = 9999999999999979<16> = 269 × 1973 × 18841723867<11>
1017-21 = 99999999999999979<17> = 11 × 19 × 6679 × 71637804989<11>
1018-21 = 999999999999999979<18> = 59 × 119851 × 141418532531<12>
1019-21 = 9999999999999999979<19> = 11 × 23 × 29 × 743 × 1834394194069<13>
1020-21 = 99999999999999999979<20> = 17 × 1049 × 3301 × 1698752332663<13>
1021-21 = 999999999999999999979<21> = 11 × 163 × 557724484104852203<18>
1022-21 = 9999999999999999999979<22> = 3917427523<10> × 2552695599673<13>
1023-21 = 99999999999999999999979<23> = 11 × 9090909090909090909089<22>
1024-21 = 999999999999999999999979<24> = 1801 × 556253 × 3708893 × 269134651
1025-21 = 9999999999999999999999979<25> = 11 × 11174664913<11> × 81352856319953<14>
1026-21 = 99999999999999999999999979<26> = 1429 × 16217 × 4315163488814858903<19>
1027-21 = 999999999999999999999999979<27> = 11 × 367 × 276707645239<12> × 895200038153<12>
1028-21 = 9999999999999999999999999979<28> = 79 × 1307 × 51769 × 1870800792240059447<19>
1029-21 = 99999999999999999999999999979<29> = 11 × 23887 × 97928921 × 3886285801408807<16>
1030-21 = 999999999999999999999999999979<30> = 1129 × 1747 × 400713121 × 1265259450502273<16>
1031-21 = 9999999999999999999999999999979<31> = 11 × 909090909090909090909090909089<30>
1032-21 = 99999999999999999999999999999979<32> = definitely prime number 素数
1033-21 = 999999999999999999999999999999979<33> = 11 × 43 × 2171377491319<13> × 973651478526809717<18>
1034-21 = 9999999999999999999999999999999979<34> = 131 × 499 × 238200353 × 3683061127<10> × 174372033061<12>
1035-21 = 99999999999999999999999999999999979<35> = 112 × 192 × 54184152902129<14> × 42250819759581371<17>
1036-21 = 999999999999999999999999999999999979<36> = 17 × 479 × 197921 × 620474144090711314493628293<27>
1037-21 = 9999999999999999999999999999999999979<37> = 11 × 348637 × 2607557170039063813964355214997<31>
1038-21 = 99999999999999999999999999999999999979<38> = 83 × 1673591 × 8841026717<10> × 81427269704984491979<20>
1039-21 = 999999999999999999999999999999999999979<39> = 11 × 113 × 389 × 1901 × 12037 × 18553 × 3410051 × 1428577723920407<16>
1040-21 = 9999999999999999999999999999999999999979<40> = 579612469 × 17252906959115125592648352773791<32>
1041-21 = 99999999999999999999999999999999999999979<41> = 11 × 232 × 67 × 79 × 77862675719<11> × 41698499254488057125923<23>
1042-21 = 999999999999999999999999999999999999999979<42> = 263134112870431780253<21> × 3800343441188120424743<22>
1043-21 = 9999999999999999999999999999999999999999979<43> = 11 × 909090909090909090909090909090909090909089<42>
1044-21 = 99999999999999999999999999999999999999999979<44> = 211 × 117865755101893<15> × 4020961379998725738227702773<28>
1045-21 = 999999999999999999999999999999999999999999979<45> = 11 × 116548301 × 316802597 × 2462139382578592432493671937<28>
1046-21 = 9999999999999999999999999999999999999999999979<46> = 781251623 × 12799973408823241574245024000417340573<38>
1047-21 = 99999999999999999999999999999999999999999999979<47> = 11 × 29 × 89 × 223 × 614701 × 25695112744556108783455528889830703<35>
1048-21 = 999999999999999999999999999999999999999999999979<48> = 75123371690111<14> × 13311436607572245011631738713879189<35>
1049-21 = 9999999999999999999999999999999999999999999999979<49> = 11 × 101478361681267552363<21> × 8958470495870482410247604003<28>
1050-21 = 99999999999999999999999999999999999999999999999979<50> = 1164119981<10> × 85901798467627195551074387065262476583159<41>
1051-21 = 999999999999999999999999999999999999999999999999979<51> = 11 × 59149 × 1536950597796935013117873352196840336961049061<46>
1052-21 = (9)5079<52> = 17 × 448733 × 1310880399073941650878204660153601099881090039<46>
1053-21 = (9)5179<53> = 11 × 19 × 18743 × 77945801 × 109577375500114637<18> × 2988828459738356976841<22>
1054-21 = (9)5279<54> = 43 × 79 × 2293 × 128380894817404495205679673491437828791495433299<48>
1055-21 = (9)5379<55> = 11 × 97 × 2382323 × 857704607562311<15> × 4586666821530430070761842598829<31>
1056-21 = (9)5479<56> = 47 × 3617 × 14969 × 39297131027163724879966726616156023326448453709<47>
1057-21 = (9)5579<57> = 112 × 12510149579<11> × 241782987968309<15> × 2732287447716234951247271071909<31>
1058-21 = (9)5679<58> = 257 × 820969 × 47395828388862277974419646731117062373568961757363<50>
1059-21 = (9)5779<59> = 11 × 907 × 1511 × 236879 × 64264787 × 192901438661<12> × 2258917986011969590936094069<28>
1060-21 = (9)5879<60> = 47839743473698118669<20> × 20903122119578075025350913955176088171991<41>
1061-21 = (9)5979<61> = 11 × 158017 × 5810155517<10> × 7902611413<10> × 125298282523772060506686627061457377<36>
1062-21 = (9)6079<62> = 33229649 × 3009360706759195680941438773548285147399540693312770171<55>
1063-21 = (9)6179<63> = 11 × 23 × 2251791494161443442496541697<28> × 1755299804714997589032414505312519<34>
1064-21 = (9)6279<64> = 881 × 1965496613462029<16> × 5774997382449649090670773384304110088632176071<46>
1065-21 = (9)6379<65> = 11 × 61 × 2753 × 5003 × 10820336463017226267040784373271032300130570655610707711<56>
1066-21 = (9)6479<66> = 2819 × 354735721887194040439872295140120610145441645973749556580347641<63>
1067-21 = (9)6579<67> = 11 × 79 × 73939 × 104851 × 157909153 × 104099387257<12> × 90298096803675295229691899406593039<35>
1068-21 = (9)6679<68> = 17 × 1487 × 3955852684046046125242295976897820325171090628584991494916729301<64>
1069-21 = (9)6779<69> = 11 × 111599 × 8001491 × 101806636802827328234288273157274881181940184393696879221<57>
1070-21 = (9)6879<70> = 12775943 × 46512581 × 16828158549061856969998056555406782985633900764630391513<56>
1071-21 = (9)6979<71> = 11 × 19 × 349 × 795854063 × 9169675171<10> × 187862846189515179803136059557978767109168639603<48>
1072-21 = (9)7079<72> = 15439 × 6110353992376704253<19> × 10600209819959334163525097028836759483033672110537<50>
1073-21 = (9)7179<73> = 11 × 909090909090909090909090909090909090909090909090909090909090909090909089<72>
1074-21 = (9)7279<74> = 67 × 167 × 211 × 919 × 32719 × 85213 × 11207789 × 146461669 × 4087348059336915073<19> × 2463878770776554256049<22>
1075-21 = (9)7379<75> = 11 × 29 × 43 × 179 × 125014859 × 4215214153<10> × 772870180347371377158398648839149241971606696850039<51>
1076-21 = (9)7479<76> = 59 × 3267491264561<13> × 26268493409058352422310881781<29> × 1974687549755194886498716303870141<34>
1077-21 = (9)7579<77> = 11 × 9161 × 12180979 × 3306667607592375828619608310727<31> × 24637219694775623846832189108130853<35> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=4210571708 for P35 / November 14, 2014 2014 年 11 月 14 日)
1078-21 = (9)7679<78> = 3567673 × 2419112274447581<16> × 1627019710313671820874503<25> × 71214121159115721858708724353961<32>
1079-21 = (9)7779<79> = 112 × 83 × 368059 × 1276183 × 779741628373<12> × 2718663269413902264178064824406985844680249085885313<52>
1080-21 = (9)7879<80> = 79 × 29837 × 1828830528202841042459<22> × 12909104342078729583587<23> × 1797000428196508554624331235081<31>
1081-21 = (9)7979<81> = 11 × 293 × 25031 × 18152214239<11> × 4678121048023<13> × 1059673463263986629<19> × 137748973697046912819682273579991<33>
1082-21 = (9)8079<82> = 4663 × 1199437 × 413844900735735528241849<24> × 4320356000518327530857424758868602628264238870441<49>
1083-21 = (9)8179<83> = 11 × 181 × 1913 × 201781 × 130116837727433457355956869977679779763086794616103563301101019787234673<72>
1084-21 = (9)8279<84> = 17 × 3469 × 30661 × 1277870886208139<16> × 1109319818092211317<19> × 390136619179942366584403307733392260758061<42>
1085-21 = (9)8379<85> = 11 × 23 × 4587880121080816741<19> × 8615240733511852674668234896351848351567395111141139139041961723<64>
1086-21 = (9)8479<86> = 192121351 × 2756006694563212118298571535596409<34> × 188861789280364186511420186801935735209641381<45> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P34 * P45 / November 17, 2014 2014 年 11 月 17 日)
1087-21 = (9)8579<87> = 11 × 10289329 × 156409788040120421311<21> × 56488017547611978859788561850084005394631540563686086666831<59>
1088-21 = (9)8679<88> = 118842913859<12> × 212831826695870765623978003349<30> × 395357640270097453679754086452666992854750952469<48> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=406374670 for P30 / November 14, 2014 2014 年 11 月 14 日)
1089-21 = (9)8779<89> = 11 × 19 × 151 × 25853103941747<14> × 236579554584323<15> × 75843144616567092525763<23> × 6830783694629211144350392255989527<34>
1090-21 = (9)8879<90> = 3067 × 1486480284696454817093978383012033<34> × 219344662351933624575992722781469833835987266784054289<54> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P34 * P54 / November 17, 2014 2014 年 11 月 17 日)
1091-21 = (9)8979<91> = 11 × 89 × 233 × 1172740043<10> × 2294671471<10> × 16290676390868631020830767058415390673419786566840260623690267053549<68>
1092-21 = (9)9079<92> = 227 × 440528634361233480176211453744493392070484581497797356828193832599118942731277533039647577<90>
1093-21 = (9)9179<93> = 11 × 79 × 1150747986191024165707710011507479861910241657077100115074798619102416570771001150747986191<91>
1094-21 = (9)9279<94> = 1109 × 410203601 × 221755361640729341<18> × 320182883246761825149350147<27> × 309597001000324798928421767997940829353<39>
1095-21 = (9)9379<95> = 11 × 7844243302541<13> × 250632767108419<15> × 4304773900733165962630301153<28> × 1074157745331902279047956420774774772247<40>
1096-21 = (9)9479<96> = 43 × 30449 × 453726568935688859<18> × 218572880240194951181189<24> × 7701370622116479824207188155878170780606015942247<49>
1097-21 = (9)9579<97> = 11 × 574643 × 77369249 × 875061229745057357413734022158601<33> × 23366968348319016193341816458092266657373178851427<50> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2785294385 for P33 / November 14, 2014 2014 年 11 月 14 日)
1098-21 = (9)9679<98> = 457 × 328121 × 274216703 × 36407925801421163727229<23> × 66797457326530637025870187482402790584945173901350022613561<59>
1099-21 = (9)9779<99> = 11 × 41651 × 192038642398294597673300147<27> × 11365623224415582734820341476713281733876410224325284588787311786937<68>
10100-21 = (9)9879<100> = 17 × 391351 × 10416773 × 897493301 × 5923736935526701<16> × 27140912879701840060599507430839096087631227926940089389432169<62>
10101-21 = (9)9979<101> = 112 × 52402192762804553373908341<26> × 175211949533624070484180059231367<33> × 90012214699870741028903652562375514712817<41> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3846595466 for P33 / November 14, 2014 2014 年 11 月 14 日)
10102-21 = (9)10079<102> = 47 × 1632 × 7643 × 110341316279<12> × 2343469653740141<16> × 4024535415176775416697642173<28> × 100681534416961948360024537113746114393<39> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P28 * P39 / November 17, 2014 2014 年 11 月 17 日)
10103-21 = (9)10179<103> = 11 × 29 × 467 × 44427196271<11> × 2716557076905073<16> × 556191945815212086228608280411821634174420425237651873768799277816756681<72>
10104-21 = (9)10279<104> = 211 × 2647 × 1069689248152560784613646023601296162773<40> × 167380928566341408876131841908127319110362623117521294742819<60> (KTakahashi / Msieve 1.51 snfs for P40 x P60 / November 17, 2014 2014 年 11 月 17 日)
10105-21 = (9)10379<105> = 11 × 6983 × 187171 × 1076213 × 64629155095902444263963806439089201090498271510681620879393026187936269908369318103338921<89>
10106-21 = (9)10479<106> = 79 × 10651 × 109621 × 150157807 × 722006067981104998357697445837789688973194530416663964576338941826215684397817928264333<87>
10107-21 = (9)10579<107> = 11 × 19 × 23 × 67 × 310492472110013692718020051603848864684275729734932576559681310526626281945794224219033809525288059391<102>
10108-21 = (9)10679<108> = definitely prime number 素数
10109-21 = (9)10779<109> = 11 × 5717 × 109919 × 171614779621<12> × 8429691225584480874838874594196335279887753287630545047581060320557048152240136895517383<88>
10110-21 = (9)10879<110> = 503 × 1835569 × 108308190570691744928531524507413618204207591895760358952492439365340993656836591101641456442463444797<102>
10111-21 = (9)10979<111> = 11 × 209563 × 46573164539171<14> × 103567069557375227<18> × 89936352807260210276407390732792957011318074737035405779707741325407945859<74>
10112-21 = (9)11079<112> = 1051 × 4519 × 823741 × 3814061 × 1151406617703494698391<22> × 582033395688726898754550148864624949621605378027254184055152005850174201<72>
10113-21 = (9)11179<113> = 11 × 1370922437501833847<19> × 352497811535646304920589207<27> × 18812131476647218064926100339645999898297356328687732560772178435441<68>
10114-21 = (9)11279<114> = 7072651173731656595058872611<28> × 6040950385735610407562937701669117<34> × 23405207303676030916599941048862636268895942385575117<53> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2476535617 for P34 / November 14, 2014 2014 年 11 月 14 日)
10115-21 = (9)11379<115> = 11 × 3767 × 314234000494793<15> × 767995225689320060566119580039294839325037159199685249540687031445023665822856984294894314188719<96>
10116-21 = (9)11479<116> = 17 × 109 × 1811 × 856469 × 6094027 × 889957573 × 260176330821110627502594347<27> × 24657725889171126461584530978801963348545240605457790421556221<62>
10117-21 = (9)11579<117> = 11 × 43 × 491 × 2309810616664097<16> × 4261037695234659262093<22> × 672552406769034432306003151133<30> × 650488295577719970166522671863369816683776721<45> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P30 * P45 / November 17, 2014 2014 年 11 月 17 日)
10118-21 = (9)11679<118> = 311 × 22268075424126257414334249991<29> × 1443965866990704079069372443831454539768144854103258013863035212785913764848671530051179<88>
10119-21 = (9)11779<119> = 11 × 79 × 55441 × 3430279403<10> × 909695618598275581808089<24> × 305725526748384923290487779<27> × 2175664211346664788722483482972164201895626257850007<52>
10120-21 = (9)11879<120> = 83 × 2729 × 4414874595487115188493070854322382972711660125294141019924329049433350845669228765556914355847722145452458422918497<115>
10121-21 = (9)11979<121> = 11 × 822011 × 110946466772147<15> × 1067775276414402195187<22> × 9335473459905537506257089929137564980820934930573005995447877582746549128046491<79>
10122-21 = (9)12079<122> = 2521 × 21001 × 3449297 × 51885304024721<14> × 3146109774856188351909735363207743399<37> × 3354581524791441540067340295304780889014287458545214943773<58> (Serge Batalov / GMP-ECM B1=1000000, sigma=360984677 for P37 / November 17, 2014 2014 年 11 月 17 日)
10123-21 = (9)12179<123> = 112 × 8978989 × 13321874323142266789<20> × 212389952638383917415130355715937<33> × 325302866218968468473234531779233732505611902389765106002559587<63> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3649449932 for P33 / November 14, 2014 2014 年 11 月 14 日)
10124-21 = (9)12279<124> = 3229 × 1130321 × 224063385551711<15> × 12228107973129551767186336932337476229173923417926429192893890952344481726877415925679986125654434921<101>
10125-21 = (9)12379<125> = 11 × 19 × 61 × 66923 × 48156473634959783181545962328353<32> × 62474364420962885484279556812744112127<38> × 38957578456899995954095124169750938894129219867<47> (Serge Batalov / GMP-ECM B1=1000000, sigma=3897314047 for P32 / November 18, 2014 2014 年 11 月 18 日) (Dmitry Domanov / YAFU for P38 x P47 / November 18, 2014 2014 年 11 月 18 日)
10126-21 = (9)12479<126> = 20966993 × 305991589 × 155867066166364805439043676388455507801225290175020207700931645120280066752629742525150266140223478050857760927<111>
10127-21 = (9)12579<127> = 11 × 3257 × 6858985343295755490705830146475581<34> × 40693934474264958127119588860278754981517698929741158075298627457063078459502565347649117<89> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2962349770 for P34 / November 14, 2014 2014 年 11 月 14 日)
10128-21 = (9)12679<128> = 222289 × 245159347687<12> × 262441749281<12> × 752270744333<12> × 95361738036919870345741069<26> × 1134593252734294378233311267<28> × 85903749472205520400727076594677207<35>
10129-21 = (9)12779<129> = 11 × 23 × 101537 × 2035031 × 640417152404449531<18> × 10235979039231857767096189285106131<35> × 2918043614642514396591017922148790607954513967691597581170466129<64> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1854908152 for P35 / November 14, 2014 2014 年 11 月 14 日)
10130-21 = (9)12879<130> = 228783917 × 2619993071<10> × 25212674983972242955073386486699949071<38> × 661691324509787868089320427919562965560787942214531374642297251505886892407<75> (Dmitry Domanov / Msieve 1.50 snfs for P38 x P75 / November 18, 2014 2014 年 11 月 18 日)
10131-21 = (9)12979<131> = 11 × 29 × 173618474595818488288561601537<30> × 1805566052542667635283958274436700951470436947950689906932248676043437634741272301095274558910340693<100> (Serge Batalov / GMP-ECM B1=1000000, sigma=3468544921 for P30 / November 18, 2014 2014 年 11 月 18 日)
10132-21 = (9)13079<132> = 17 × 79 × 3697 × 1285619 × 8198020529<10> × 84085396546836431<17> × 227265062350588081592794493965680005626606592657159323464839160766170935682704511209264997529<93>
10133-21 = (9)13179<133> = 11 × 2643260771<10> × 112826650177<12> × 28830058754225273190221<23> × 105732885061058166045538936664168296084341239903287928118057748208611946349434344036101527<90>
10134-21 = (9)13279<134> = 59 × 211 × 6381821 × 1115269797355913<16> × 81411527151272221<17> × 11145254323490443249<20> × 449226865826262370637698838641939<33> × 2768849607685678583269240089706908924617<40> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P33 * P40 / November 17, 2014 2014 年 11 月 17 日)
10135-21 = (9)13379<135> = 11 × 89 × 631 × 51157 × 189989 × 51004982061040446617324791<26> × 3265440875048916475231623963933627346036712024128168097516581831453344396968571431041087315697<94>
10136-21 = (9)13479<136> = 383 × 498817147724392476140926494334324240996033471478692594739269093<63> × 52343149576001943066124757184863830745116599760477403421367845344915441<71> (Dmitry Domanov / Msieve 1.50 snfs for P63 x P71 / November 18, 2014 2014 年 11 月 18 日)
10137-21 = (9)13579<137> = 11 × 547776582074108490689<21> × 58316084449436533254579851269054740230747827<44> × 284587287842213721110157081465126040745492430499186666656625324566497563<72> (Dmitry Domanov / Msieve 1.50 snfs for P44 x P72 / November 18, 2014 2014 年 11 月 18 日)
10138-21 = (9)13679<138> = 43 × 38141161 × 364872757 × 2272973480691338494335583<25> × 735193787930848031560212264114993428329310261721229101321729783767321146402808012977180491399883<96>
10139-21 = (9)13779<139> = 11 × 802476890998733<15> × 2097703442066661388451<22> × 540045919760204932018853195701690874163865311962465900361538349903726007559017486775936398155761560983<102>
10140-21 = (9)13879<140> = 67 × 303939746438625558496732442295928496490278690146952083<54> × 4910635515497553832056299138977181517917661686663928718677337291732394219407593291139<85> (Dmitry Domanov / Msieve 1.50 snfs for P54 x P85 / November 19, 2014 2014 年 11 月 19 日)
10141-21 = (9)13979<141> = 11 × 128831 × 269419 × 545117 × 7078567 × 942690011 × 4981210957<10> × 511253725966958113<18> × 282737437683741614627357316316864155280828106616345575263853104392303225099580009<81>
10142-21 = (9)14079<142> = 63667 × 281082049753831<15> × 47778316229238862243<20> × 287541154482590757490006239192240431<36> × 40674446251389812172200438523326659683443712618886815139415024270219<68> (Serge Batalov / GMP-ECM B1=1000000, sigma=373127147 for P36 / November 17, 2014 2014 年 11 月 17 日)
10143-21 = (9)14179<143> = 11 × 19 × 86399748109<11> × 5537850630280835793385158924798585959711630523655733039869444968470991361168447402811525949960092140267365793582245494756146065959<130>
10144-21 = (9)14279<144> = 596214435197252344092939656153<30> × 1677248890609565205679699350423448719628858645813625836009593247084647535253072739280575884350713526277696211071843<115> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=538128886 for P30 / November 14, 2014 2014 年 11 月 14 日)
10145-21 = (9)14379<145> = 112 × 79 × 661 × 299232476930437<15> × 65119925024129163865631<23> × 68900194117141484598773<23> × 65788843751872824341448880966481<32> × 17918050669779381625887268035473225426385158111<47> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P32 * P47 / November 17, 2014 2014 年 11 月 17 日)
10146-21 = (9)14479<146> = 9109 × 1638121 × 207206758033773261367<21> × 2831680838529378715854998496270877<34> × 166360755297262672296732093617562409<36> × 68656904520921016910880092965639127121797728381<47> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3802593086 for P34 / November 14, 2014 2014 年 11 月 14 日) (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P36 * P47 / November 17, 2014 2014 年 11 月 17 日)
10147-21 = (9)14579<147> = 11 × 3511 × 971612918347<12> × 8532161661480929594371744219229<31> × 3123374996725134146970348108731068951499149202469987813549072553468324879356786965248240306917171673<100> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1559842588 for P31 / November 14, 2014 2014 年 11 月 14 日)
10148-21 = (9)14679<148> = 17 × 47 × 193 × 379 × 4821653940953562944031653035795231<34> × 5801286672436788408529773590861749<34> × 6116969821377532065249126839084739357669615590284611583964953833614916397<73> (Serge Batalov / GMP-ECM B1=1000000, sigma=4013601964 for P34(5801...), B1=1000000, sigma=1011461797 for P34(4821...) / November 17, 2014 2014 年 11 月 17 日)
10149-21 = (9)14779<149> = 11 × 9090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909089<148>
10150-21 = (9)14879<150> = 77219796458659<14> × 7149889395501518836169964358977719321<37> × 141077033818449795791597315394884436277072941937<48> × 12838541933615775957842727514735830240016788192279953<53> (Dmitry Domanov / Msieve 1.50 snfs for P37 x P48 x P53 / November 24, 2014 2014 年 11 月 24 日)
10151-21 = (9)14979<151> = 11 × 23 × 97 × 113 × 114221 × 502528639 × 21129291878673507593<20> × 52859620458798511550611<23> × 56248836413787172862848789560308424142959290642412619943583731578290088974646771429196999<89>
10152-21 = (9)15079<152> = 4012621 × 21009618193<11> × 562544965903<12> × 3685799633182867<16> × 529466506829192499152520337489<30> × 123341986938601021256946103526644823569<39> × 8760225795590963966970401618463393479923<40> (Serge Batalov / GMP-ECM B1=1000000, sigma=4253235306 for P30 / November 18, 2014 2014 年 11 月 18 日) (KTakahashi / Msieve 1.51 for P39 x P40 / November 18, 2014 2014 年 11 月 18 日)
10153-21 = (9)15179<153> = 11 × 149 × 60062435660173<14> × 4805123532406873061<19> × 2114041699119463980105342820402439551880770222715153893415400988161943742456287868364316677070855307115994189542002237<118>
10154-21 = (9)15279<154> = 2851 × 403501107911635039853855290963<30> × 8692767243596753493534564877296685132691157652130835897436043234718205533240222133980065620062760523700370527415472934883<121> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=547151845 for P30 / November 14, 2014 2014 年 11 月 14 日)
10155-21 = (9)15379<155> = 11 × 627084511894619609069<21> × 14497103529861699640310866155420454828449556134795642465475376348820094506629948581166872228422542941846386430535564067493062763160581<134>
10156-21 = (9)15479<156> = 312241902916548461<18> × 7206776198851739306727757<25> × 13351400029906948022258136360708382756588399<44> × 33284418282956649898316177201986544012881424534867213042796423974857373<71> (Rich Smith / YAFU 1.31 for P44 x P71 / November 26, 2014 2014 年 11 月 26 日)
10157-21 = (9)15579<157> = 11 × 11612837 × 8457499693183489951<19> × 9256077748136585318415043033629633046797255232415619257682388595120306210609736956850464557808740908884826640844698086194563072147<130>
10158-21 = (9)15679<158> = 79 × 3319 × 65393 × 68695981 × 84899095781222773355421673412093005354403945271715273040700854015253223012668177638521564309979276140277885310296035739092604926851169887263<140>
10159-21 = (9)15779<159> = 11 × 29 × 43 × 7611282473<10> × 9578180596676119497063479901434206663440373037131421633305032513428028044431106610444794385191741080502880035410580923888423332883194147047017319<145>
10160-21 = (9)15879<160> = 9469774147<10> × 219348324301<12> × 2815206178510987<16> × 8127071626715887402289288048864126849530768591079800507<55> × 210417454964726003317255223556369075259744304092200896497781417597173<69> (Dmitry Domanov / Msieve 1.50 snfs for P55 x P69 / December 4, 2014 2014 年 12 月 4 日)
10161-21 = (9)15979<161> = 11 × 19 × 83 × 195709 × 1058153774383712554346585628038800346512253011614695449442427349<64> × 27836590347215176768987535287437794380890717338185843058231277741526753221132333645262777<89> (Dmitry Domanov / Msieve 1.50 snfs for P64 x P89 / December 2, 2014 2014 年 12 月 2 日)
10162-21 = (9)16079<162> = 10528867908653<14> × 94976972707404207736601139278724386106240148290083874719893126596142855545141360446538778215281811267018222073665804506538617851300170622588932244343<149>
10163-21 = (9)16179<163> = 11 × 909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909090909089<162>
10164-21 = (9)16279<164> = 17 × 131 × 151 × 211 × 162751 × 78482296068108076169202755983298308448216894828673836867<56> × 110337976328075571194996914650176452561415333315173510486896193234955238499734172804482353333321<96> (Maksym Voznyy / Msieve 1.51 snfs for P56 x P96 / February 7, 2015 2015 年 2 月 7 日)
10165-21 = (9)16379<165> = 11 × 691 × 58621066369337152370831648570013473606772881<44> × 2244272320088251022999286371718046958935627540825587356778669872132481327411466595630003385614022826661254787391791659<118> (Dmitry Domanov / Msieve 1.50 snfs / November 25, 2014 2014 年 11 月 25 日)
10166-21 = (9)16479<166> = 796361 × 12557119195942543645407045297296075523537692076834500936133236057516628765095226913422430279734944328012044788732748087864674437849166395642177354240099653297939<161>
10167-21 = (9)16579<167> = 112 × 2013659 × 638645093311<12> × 4988069330669431878367027871<28> × 128835824487285353536537527830538740561513944001471152754421882582624097465201271131882244335823852062927892138727185881<120>
10168-21 = (9)16679<168> = 719 × 22259 × 3113760997<10> × 16777166980976787421<20> × 1349466532213018459285029281237<31> × 60208675833163076375252252891303683<35> × 14721103450708185467668772595335001600604512075763565688101336097737<68> (Serge Batalov / GMP-ECM B1=1000000, sigma=3292867672 for P31, B1=1000000, sigma=3322079401 for P35 / November 17, 2014 2014 年 11 月 17 日)
10169-21 = (9)16779<169> = 11 × 1215721533716357<16> × 13757242080184524654209974685137<32> × 54355291119831264337988426550607670278443247279769288789118988017433316438300947215195014570655303019862388177597654445021<122> (Serge Batalov / GMP-ECM B1=1000000, sigma=3618810634 for P32 / November 18, 2014 2014 年 11 月 18 日)
10170-21 = (9)16879<170> = 887 × 30593 × 4131791 × 1744780901<10> × 511181431104341104166276214121686995300945015868674265924351947779258879806142253550855717082085409687978980908790015397078360615135216969049853959<147>
10171-21 = (9)16979<171> = 11 × 79 × 1150747986191024165707710011507479861910241657077100115074798619102416570771001150747986191024165707710011507479861910241657077100115074798619102416570771001150747986191<169>
10172-21 = (9)17079<172> = 2652007 × 18927551939473<14> × 1611484724292306532451<22> × 3226445621235415298541143214019<31> × 11335308406948106130845047431756292452975611<44> × 3380235851303644608346749026126495656317335591735904601471<58> (Serge Batalov / GMP-ECM B1=1000000, sigma=398509899 for P31 / November 18, 2014 2014 年 11 月 18 日) (KTakahashi / Msieve 1.51 gnfs for P44 x P58 / November 19, 2014 2014 年 11 月 19 日)
10173-21 = (9)17179<173> = 11 × 23 × 67 × 4241 × 26263 × 7226078737<10> × 2318819185328675483<19> × 3160985441369615292994927043648745483232196081832217032614376939172446751267963816447150876221936800375770965331505617608562004758753<133>
10174-21 = (9)17279<174> = 372751 × 70733737 × 123228936709537788315410317<27> × 115411497932795415183792614907101<33> × 2666814455209833157321691543740798930532316569307436729716925484301415667815679360272180605480534319301<103> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1314707290 for P33 / November 14, 2014 2014 年 11 月 14 日)
10175-21 = (9)17379<175> = 11 × 29251 × 1425378118327164781295502533908747960221189906346350572767001538776431879657651<79> × 21804016879160633105398501977976510667332127153702430931115693893054073383691552188952852489<92> (Cyp / yafu v1.34.3 for P79 x P92 / April 15, 2015 2015 年 4 月 15 日)
10176-21 = (9)17479<176> = 47900955480819381879498592616285304525011<41> × 4900635175775997963854211752166941512456711769486954876142013706309<67> × 425993969011766099839022605784177269864964509164387425108028401442421<69> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P41 x P67 x P69 / November 23, 2014 2014 年 11 月 23 日)
10177-21 = (9)17579<177> = 11 × 229 × 18731949227<11> × 74129888187292589<17> × 4251839380734222253<19> × 9586983209381035391<19> × 14279967763935737009368281239577266561304902699<47> × 491144711002886604310807609308517414654368105197444221308918611<63> (Dmitry Domanov / Msieve 1.50 gnfs for P47 x P63 / November 20, 2014 2014 年 11 月 20 日)
10178-21 = (9)17679<178> = 9749 × 1025746230382603343932711047286901220638014155297979279926146271412452559236844804595343112114062980818545491845317468458303415734947174069135295927787465381064724587137142271<175>
10179-21 = (9)17779<179> = 11 × 19 × 892 × 263 × 313 × 5555920913<10> × 1073849379553<13> × 177861182771044757<18> × 10834548337391750017688783927<29> × 63823732897682776778907917179994333913450916430156437766751574791326618623307044251204389932594476839<101>
10180-21 = (9)17879<180> = 17 × 43 × 4831011297698203<16> × 149183723933411883554623<24> × 1898117643531733276593061798946604869721934612147466797514743814153825630290227906996532600929123170770194578469583815928388660668715423261<139>
10181-21 = (9)17979<181> = 11 × 577 × 14759 × 163986852296551<15> × 867484793526891109<18> × 4257391637522963477383<22> × 21735366053536414223045683<26> × 195380801352450171888012738630211110675318041<45> × 41506032384757313942050974450222622341263051853953<50> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P45 * P50 / November 17, 2014 2014 年 11 月 17 日)
10182-21 = (9)18079<182> = 373 × 1916872155847074534708584419619591624138612634651504692854306760410388939887054174693951<88> × 139861447685766628640848151103414837312657755230756252939414551338111149334128346084233253473<93> (Dmitry Domanov / Msieve 1.50 snfs for P88 x P93 / November 27, 2014 2014 年 11 月 27 日)
10183-21 = (9)18179<183> = 11 × 163 × 11833 × 599387059 × 17568990317279185417<20> × 192799708791124887533736203<27> × 23214765801519668073343088657746053200728591916682490205020942417268588879129858735897797363481550946836716205595790308699<122>
10184-21 = (9)18279<184> = 79 × 1033 × 36943 × 6502946152127<13> × 18649717493821549<17> × 791341124983142541851819<24> × 16441393406200805269415000852464347737036292761<47> × 2102111047947943244928189071194012495360582951060227410462485356800535177947<76> (Erik Branger / GGNFS, Msieve gnfs for P47 x P76 / November 26, 2014 2014 年 11 月 26 日)
10185-21 = (9)18379<185> = 11 × 61 × 642809 × 2488092959609<13> × 16716737813723<14> × 1935282900915011<16> × 60996400587003859301<20> × 47220298745984866653388926093784698397422827551730246344190354931259117758981211061603048766403210573076394018363793<116>
10186-21 = (9)18479<186> = 647 × 25488119633000693281289<23> × 9959541370833176026790671367504579<34> × 363300374273621898446408857877232889373<39> × 1159013727741013197052238346699811855765967<43> × 14459862301520710959676611224864042180296457117<47> (Serge Batalov / GMP-ECM B1=1000000, sigma=2350390138 for P34 / November 18, 2014 2014 年 11 月 18 日) (Serge Batalov / GMP-ECM B1=3000000, sigma=1948649842 for P43, SIQS for P39 x P47 / November 22, 2014 2014 年 11 月 22 日)
10187-21 = (9)18579<187> = 11 × 29 × 349 × 65257 × 12210871 × 51380820652625518388498528557940650076134010158284317467153<59> × 2193860989568611420707726608560110319562693603532261475605136683385331987245916117433473813722520042083517666599<112> (LegionMammal978 / Msieve 1.53 snfs for P59 x P112 / February 13, 2017 2017 年 2 月 13 日)
10188-21 = (9)18679<188> = 823 × 6871 × 2220271 × 492403119018036580444718118812874041<36> × 2045579923402731394970951422995979030946532817<46> × 7907459604603152154413302375669683194588881951117040059813151989369917745449333036897628128749<94> (Serge Batalov / GMP-ECM B1=1000000, sigma=953598839 for P36 / November 18, 2014 2014 年 11 月 18 日) (Pierre Jammes / GMP-ECM 6.4.4 B1=11000000, sigma=3672100791 for P46 x P94 / March 28, 2015 2015 年 3 月 28 日)
10189-21 = (9)18779<189> = 112 × 311237 × 82867954096610166969731<23> × 29900550015445877965309411363447<32> × 8493094294945188615385789180319455182786729462204895898261<58> × 1261803330287819875122303434030080977477841506399783349757860257943151<70> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=188945894 for P32 / December 3, 2014 2014 年 12 月 3 日) (Erik Branger / GGNFS, Msieve gnfs for P58 x P70 / February 10, 2015 2015 年 2 月 10 日)
10190-21 = (9)18879<190> = 839 × 180837929 × 670275658379140318237907<24> × 1008394377720494191901389193<28> × 97513478957540828588953074544868154685205621438028361297728229649185446042134528808595465270459509832439118065414842480912096159<128>
10191-21 = (9)18979<191> = 11 × 2408658771164052509694142099<28> × 822577955564890297881061793671067<33> × 4588333421422571121998349812363501673692728477570603326229781811252654912447853170521839472572186069499955531055448680308228246433<130> (Serge Batalov / GMP-ECM B1=1000000, sigma=3284743430 for P33 / November 18, 2014 2014 年 11 月 18 日)
10192-21 = (9)19079<192> = 59 × 253340263305721340980665206130457861549<39> × 66902719375164192804615011230377063811021932743050408987914677874222488520299212905440354048731785868205944328681473377970562792462451880439249339774069<152> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1475884955 for P39 / November 14, 2014 2014 年 11 月 14 日)
10193-21 = (9)19179<193> = 11 × 32315167 × 2466767052730514539<19> × 638404590431757736277<21> × 24526882204876791132097<23> × 51090486845205697034017469<26> × 14255891570453642309905645513485605546911803047026904132752739688211065168711691149362093175934973<98>
10194-21 = (9)19279<194> = 47 × 211 × 1171301 × 1280857 × 124580275433<12> × 23825626074964468137301<23> × 119530390778401278551303173699<30> × 6284033067659845637427748720736809776205783885457<49> × 3014672347136406499823384779788404698870590080505641107137072926389<67> (Serge Batalov / GMP-ECM B1=1000000, sigma=3055455106 for P30 / November 18, 2014 2014 年 11 月 18 日) (Cyp / yafu v1.34.3 for P49 x P67 / November 24, 2014 2014 年 11 月 24 日)
10195-21 = (9)19379<195> = 11 × 23 × 12491761 × 107809811 × 2061924659<10> × 2095401863<10> × 3981015633821<13> × 5555944084501<13> × 30711827520633353428850369169926175522401797399809768722111120061240106699050714881521186104549671559282561213037284827736438724012969<134>
10196-21 = (9)19479<196> = 17 × 168153954258529072051622267<27> × 934363342172878626387889061<27> × 38643854270176102918555274819458391<35> × 24687473220417136066425748400365208131<38> × 3924380645036505920142141190873072238944726784842980961409578945459081<70> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2337082815 for P35 / November 14, 2014 2014 年 11 月 14 日) (Erik Branger / GMP-ECM B1=3000000, sigma=1:4016643395 for P38 / November 18, 2014 2014 年 11 月 18 日)
10197-21 = (9)19579<197> = 11 × 19 × 79 × 103587157 × 390767057 × 390290784817<12> × 8958927548690409327214007432536608122359<40> × 21473663791645814131973607783250136158078390748301802856927197<62> × 1992747595846942211830381346261872306419706680712207774740776371<64> (KTakahashi / GMP-ECM 6.4.4 B1=11000000, sigma=1609586038 for P40 / July 7, 2015 2015 年 7 月 7 日) (Cyp / yafu v1.34.3 for P62 x P64 / July 13, 2015 2015 年 7 月 13 日)
10198-21 = (9)19679<198> = 1091 × 200903 × 7015506871<10> × 3431453772577403651390341<25> × 189518504449072692096582829466442627752619587370213402419383150542319301694770254639383281915759317548661164001004844797790282570188530243762565992362277093<156>
10199-21 = (9)19779<199> = 11 × 677 × 929 × 34114842347<11> × 22411870937527459<17> × [1890520759654467585017669467694636168058404057037576679119781245704440652845883673987699713116375021825849170978505975540538001669163187503452311707633993796900279821<166>] Free to factor
10200-21 = (9)19879<200> = 4289 × 48463 × 20712221 × 43898820555075109003<20> × 215880768497450158416926413<27> × 306097770886964116411748044259979701<36> × 14158657033069896656898540404673746597102851<44> × 565532999202842129500483418044494191105130943031194138228313<60> (Erik Branger / GMP-ECM B1=11000000, sigma=1:498182220 for P36 / November 20, 2014 2014 年 11 月 20 日) (KTakahashi / Msieve 1.51 gnfs for P44 x P60 / November 21, 2014 2014 年 11 月 21 日)
10201-21 = (9)19979<201> = 11 × 43 × 9941 × 35638747100179<14> × 5967416594880838014824295383095326472563656969370460535776863568329131075313894397618161761995882149314018222350999055376862396660072769743156256307615307612342083948802673541133357<181>
10202-21 = (9)20079<202> = 83 × 61752553 × 127004641 × [15361987214277976956726539498163461105454499107035593366746453830743037308150882883131882213720097808700561771638972517277966895437390482700269396180545576323102893366605904621958774081<185>] Free to factor
10203-21 = (9)20179<203> = 11 × 107579406921015039661895483204502198589290980960969290078316731039<66> × 84504175576870858429571695071290942574996539863071966601197621187093717754269390290983638593354619438065870807323499545642777376242069951<137> (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs for P66 x P137 / December 21, 2014 2014 年 12 月 21 日)
10204-21 = (9)20279<204> = 1995311 × 2066149 × 4933363 × 49168243477803872389404091600028756745190337628709171450412754993750633380069144385772911113845969870261924034535461274715809390921404274199414199699908636467111700187348779272388497947<185>
10205-21 = (9)20379<205> = 11 × 227 × 45181 × [88639157321004501123000507804868376302686483557609163310441000460595653187135689185447538706437543781649774510404495310044570693393192656313181714341045380261408752586723288414878979584602694079047<197>] Free to factor
10206-21 = (9)20479<206> = 67 × 2269 × 13457 × 96067858357<11> × 19485785588654156388944704835387757299<38> × 26112377790798404166924162664094904938803912698525381833235880781837286162229888990348646863086873160526379932233767546854960699590786887942833241523<149> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2986604350 for P38 / November 15, 2014 2014 年 11 月 15 日)
10207-21 = (9)20579<207> = 11 × 1141632828278867968091189<25> × [79630761009339546226398014165385022583227560455142091972888259095330164210222888114107091103437224682231353019207722629701562559471237185574721607678057007026310605084446299489591101<182>] Free to factor
10208-21 = (9)20679<208> = 7719343975627<13> × 4532049424237783656079<22> × 538456888303619497176799<24> × 530852701541240392817284133630999918613967647275589284268722321787093870276172379747404491185738318345907859128087997740327172425923127821829806966737<150>
10209-21 = (9)20779<209> = 11 × 2857887989238234444609570998499247<34> × 15646777094384238139772084681582471983<38> × 500472825415574298880274508695001402831197145114166213<54> × 406215709500807941170463584710106793833255693060672894257658634047210964287315354253<84> (Serge Batalov / GMP-ECM B1=1000000, sigma=3458216917 for P34 / November 17, 2014 2014 年 11 月 17 日) (Erik Branger / GGNFS, Msieve gnfs for P54 x P84 / November 30, 2014 2014 年 11 月 30 日)
10210-21 = (9)20879<210> = 79 × 907 × 2693 × 122599 × 29532007198487<14> × 430776580116337439<18> × 2994991468854415889<19> × 1109434587044548710345325204038672427328820020044324367271406514760949629663970918319811274078049890177486587722107201385422755946612632901535226637<148>
10211-21 = (9)20979<211> = 112 × 48714905879<11> × 220034541901<12> × [7710133509956225544720095534916430830829709317367899666202629638584885518096016887801969629284501662488617343043603373565411852584997734687457472402023790426983958588659653292620583342281<187>] Free to factor
10212-21 = (9)21079<212> = 172 × 247553 × 2213881012282054422437837004314265371<37> × [631363815313029683304701580140323378505481464146524920029616467120081462155761990865019395847206961840978239533607275851041563662144111881381261761527670981703164482897<168>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1816508937 for P37 / December 3, 2014 2014 年 12 月 3 日) Free to factor
10213-21 = (9)21179<213> = 11 × 56891 × 16498882524371713785483376018726111653677<41> × 96852139062964567300858967434158835965996152559441358217107538615650166480644924206236473534989138406418261530290835542636563961160221569085027762299102381704408182527<167> (Serge Batalov / GMP-ECM B1=3000000, sigma=3607303167 for P41 / November 22, 2014 2014 年 11 月 22 日)
10214-21 = (9)21279<214> = 7519159 × 1172006767<10> × 47694504293473<14> × [23792072407368455025468831013548500313031092838939933054423559283094022605606953434307950580015510874933501774215253822074942296986575830588520942922650001793350393814792857765563633091<185>] Free to factor
10215-21 = (9)21379<215> = 11 × 19 × 29 × 11100539 × [1486317697699901687838416580403736594196225592790587731598745820210050938714650049166239773173576959739277464530664245755531829016618641676120102656552578279527844606181610117376066396940195555558780798901<205>] Free to factor
10216-21 = (9)21479<216> = 186976104713<12> × 5348276997934872471577629662051093175829412755512483591590929711508306514369223648251562342943224710048941771377932428239782869072054332416859327578989983854729059450175411784304433885257009311798219737683<205>
10217-21 = (9)21579<217> = 11 × 23 × 2243 × 663049 × 1746720575358001354715330408351454473537<40> × 15215321898944979609414317912295314294681243500030236469186514902785872486335428371847175128583443211229681101179837317720189674158444122014791115098300561378298575877<167> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=124642762 for P40 x P167 / December 5, 2014 2014 年 12 月 5 日)
10218-21 = (9)21679<218> = 22937 × 556655689 × [7832073122563901354638610328666457700619661719445145805316159680419574297342023003556920842664321998696180772105217438294392466979256051098447962704106099478406116945451743110051308941395442354099202779403<205>] Free to factor
10219-21 = (9)21779<219> = 11 × 9151 × 50263 × 76303 × 30138461681087<14> × [85946393670340064774050863693647713358206480782069867872524241637157474217314839937910817531908615715902199776254616361122010915692823737096738149631145407239413891529370752271961728383276873<191>] Free to factor
10220-21 = (9)21879<220> = 2437 × 342828022639694560645613132045307128515170683212578348010397577490618330610731311835748034948256711<99> × 11969283593683565626980978529436267425678631007254640395261666321133032365320436604031373021199642468502279111879886297<119> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P99 x P119 / March 16, 2018 2018 年 3 月 16 日)
10221-21 = (9)21979<221> = 11 × 13591 × 1769280473<10> × 4751084557<10> × 465797769128339<15> × 16434675931441825355079729318771079<35> × 24182058442926898952842552215165829931<38> × 817726191399486228627620261817029389981<39> × 525662183257515289771813894400536698653596248705749062564197441682177729<72> (Serge Batalov / GMP-ECM B1=1000000, sigma=2649604334 for P35 / November 17, 2014 2014 年 11 月 17 日) (Jane Sullivan / yafu-x64 v.1.33 for P38 x P39 x P72 / November 21, 2014 2014 年 11 月 21 日)
10222-21 = (9)22079<222> = 43 × 1297963 × 24999131183489601869726716543<29> × 716711406503313845556975891533466708546291028581409114354584597560251632498902239681991319436716537619076214425136515786021442068945901199198986473203047335469765828973174627154274003517<186>
10223-21 = (9)22179<223> = 11 × 79 × 89 × 2849207 × 13887865480399<14> × 2459876140607813693853064341130201<34> × [1328365148981338039022592929759054677048773915023757299630555411198434855429086898795934298635479967950783088122588713869106030986663422669629762352549754517764374583<166>] (Serge Batalov / GMP-ECM B1=1000000, sigma=471660996 for P34 / November 18, 2014 2014 年 11 月 18 日) Free to factor
10224-21 = (9)22279<224> = 109 × 211 × 90359 × 17688044950867916082045647<26> × 2720444044614824977374061916092858302956883971306099039046085447347822064989192950965625174508845810538966234795678013719941342056933327992666698591094761055708013559209164052599846159161077<190>
10225-21 = (9)22379<225> = 11 × 47188681 × 166391741453630986793273220578115602993<39> × [11578111016536253048462422754682970773118174841437964605745047596281618553729548960896086722839020813111997249316929646393121544593306593378178592533410990524013057580652994633833<179>] (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=156112489 for P39 / August 2, 2015 2015 年 8 月 2 日) Free to factor
10226-21 = (9)22479<226> = 571 × 127956223517<12> × 3154107116786070869300064173<28> × [43393635786362339753847966796669345738895917493784913143156252797755639706199554239721708229276161694109976354603156048461459997465262650288744686804020512543031914817380349958020216889<185>] Free to factor
10227-21 = (9)22579<227> = 11 × 293 × 17431 × 111641 × 128053 × [124509909134087198400092351205345502990429704223556747349767856298302707175600301488830498888592409183919981681583652827192368537276437278817014363881841451927372708139346836803725552765949816621182204698798471<210>] Free to factor
10228-21 = (9)22679<228> = 17 × 12983 × 2152488433<10> × 132762181609391<15> × 8464276466740704157<19> × 2136071117244628751203<22> × 876910493196141552080242397021306103113160650886620167736405854431130725282626273070046826373393901651257554488747992178918186340036157334911126135596358580853<159>
10229-21 = (9)22779<229> = 11 × 1078372248991<13> × [843021424133936780977286017047444128973053632662302100471663406088961828953641374307557745097220995712756031679470373106777086830478983210911060599806949071727599187074831228889277908477513679124163489302687501106879<216>] Free to factor
10230-21 = (9)22879<230> = 16087 × 197478826691<12> × 31477802050160525613399756211662396558077302051147064123018275807013923492602429499820265359144421777495595246395756995874813061507066013209832482917880807348928536840673329000660810180208720242673804782409065621487<215>
10231-21 = (9)22979<231> = 11 × 12239 × 55569049 × 155169918368477<15> × 861431768600589964966845753297112489405996065799162784963684238357955458911799610700184654437236840356900043618063510631349398201035395616390914147848908896142036444767369834958013904299043005899702355987<204>
10232-21 = (9)23079<232> = 947137612185854571013339791367736304941316715263207403842547<60> × 10558127848942106712504696445707664610921696357145447124323564203053069519395617753860867558821056927783735951449391563606997416437049885313338634188038566485635991601148457<173> (NFS@Home + Rich Dickerson / ggnfs-lasieve4I14e on the NFS@Home grid + msieve for P60 x P173 / February 19, 2015 2015 年 2 月 19 日)
10233-21 = (9)23179<233> = 112 × 19 × 1261899803<10> × 4364112174691<13> × 1386459575898781<16> × 5696827108922949878528582352838773848711004121501117135257964133618074956212077649069804444380750717487249713190842550193313959408368417606769732719345528300720468204398287792975093705430906517<193>
10234-21 = (9)23279<234> = 8311003 × [120322420771596400578847101847995963904717637570338983152815610823386780151565340549149121953150540313846595892216619341853203518275712329787391485720796876141182959505609611740002981589586720158806343831183793339985558903058993<228>] Free to factor
10235-21 = (9)23379<235> = 11 × 8444874717183221<16> × [107650017263267985920565751531273677431368744678353560249788876936441888849861440729997348032546314563287786263139983726533040993452525932487167015388971798666235690843521452965688805843427484231990446235821827332778109<219>] Free to factor
10236-21 = (9)23479<236> = 79 × 127973 × 2239240026171835754083<22> × 782112795317646582475681871834281<33> × 5647867743319477719788284537299666521690514831531719993926003290275885159268879664392791058263971869848488306028253545784476914748737906660551333047472010002953880920709011219<175> (Serge Batalov / GMP-ECM B1=1000000, sigma=2330394314 for P33 / November 18, 2014 2014 年 11 月 18 日)
10237-21 = (9)23579<237> = 11 × 232499 × 2980441 × 131191499639429178261713876382807431823440232820163415524539439190146243400256159698730558770436997037895662375250726518906987079332982484430934626432467577569620109708193191267299776859254282707456152925474430595066030873171<225>
10238-21 = (9)23679<238> = 1297 × 9349 × 11174785247<11> × 2976184065397<13> × 305356655948261279721268241<27> × [81206071349102450981893374607406680978322840799220574842718270573239150511840555463222689618308200125637246064301920111790853997431535961931486762728075239484768146434974464739949997<182>] (Serge Batalov / GMP-ECM B1=1000000, sigma=2709649890 for P27 / November 18, 2014 2014 年 11 月 18 日) Free to factor
10239-21 = (9)23779<239> = 11 × 23 × 67 × 151 × 53089 × 3217549 × 16467181 × 22500377 × 403423544632909<15> × 1530127848680868511817069083221277052705171345624489761320935017805301969816631650941244531298516332189110693981570336754590337826042774910449396045415786779373770129954441513842702577691267783<193>
10240-21 = (9)23879<240> = 47 × 167 × 3083 × 4931 × 452063850024229<15> × [18538618368449418153658516691026172114185058987686320980266295922496239507765553129267419492089774392350140727470588493325646551601645724001736201886460025461375819393943968498398799071540971441558712594730158861463<215>] Free to factor
10241-21 = (9)23979<241> = 11 × 1741 × 5653 × 581593147 × 20549593944277689906192387885630069499<38> × [7728710377181651622760797762831583521141617885412696143694793645577616881947704779973969162042099354589527340069927393373348681364883286831961167766048685331138992231949068098298742186681<187>] (Serge Batalov / GMP-ECM B1=1000000, sigma=3149156428 for P38 / November 17, 2014 2014 年 11 月 17 日) Free to factor
10242-21 = (9)24079<242> = 87151 × [1147433764385950820988858418147812417528198184759784741425801195625982490160755470390471710020539064382508519695700565684845842273754747507200146871521841401705086573877522919989443609367649252446902502553040125758740576700209980378882629<238>] Free to factor
10243-21 = (9)24179<243> = 11 × 29 × 43 × 83 × 4937715526217787347<19> × 8413764617521054954783<22> × 221172222190974248444860974326888689<36> × 139061971217957250550117884828520123953445856689<48> × 623042801706521131088713889532147837683213473098001189<54> × 1103289537646417409898213526767018088333396647662789292668581<61> (Serge Batalov / GMP-ECM B1=1000000, sigma=9751569 for P36 / November 18, 2014 2014 年 11 月 18 日) (Serge Batalov / GMP-ECM B1=11000000, sigma=1624576088, Msieve 1.51 gnfs for P48 x P54 x P61 / November 20, 2014 2014 年 11 月 20 日)
10244-21 = (9)24279<244> = 17 × 709 × 3705433636222384730846352786869018043953<40> × 223906037332234965686031822713180448958460536562735003272281580341226658543099079887242598588283546074077812643716271735824673289267886091832270906705738372355403779450921372048040361820040758451318831<201> (Serge Batalov / GMP-ECM B1=3000000, sigma=2497957896 for P40 / November 19, 2014 2014 年 11 月 19 日)
10245-21 = (9)24379<245> = 11 × 61 × 247073 × 7664933 × 1619539751819953<16> × 4248982415795256774408202116333987821<37> × [11435819243893184803310509056748193584960887310622283006120459823300956369636392426434953817460296908136408452326472718507252396258308618016637034373180785207990225323106038074597<179>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=4294132786 for P37 / December 2, 2014 2014 年 12 月 2 日) Free to factor
10246-21 = (9)24479<246> = 21921716115553599791<20> × 9183334663613647266390284863<28> × 4967353176733811673185534123089576044482369244607892699270678677133113641893266496349294441778717278866995227324237880114398525137878817938529709991968524178731843267716649846007544076709208656856763<199>
10247-21 = (9)24579<247> = 11 × 97 × 16691819 × 56402647618604545649<20> × 9954797338105890264207445301760128264305821092632470216144280453226350887554659479835030681415502870773057186901370101244685327049449723411855403843216812094933599814140821030984049441169168700511249033683078077666227<217>
10248-21 = (9)24679<248> = 325517 × 74442833 × [4126705086973264552398640654070142555575856170231730640148501458708347241770471985252804638169934715873802723486502780648454006577870762118533564121001059332088207606222477453826585439615427717176137702214660318194076084057056959891239<235>] Free to factor
10249-21 = (9)24779<249> = 11 × 79 × 2196298051899248383408978387<28> × 45875713338385571630769894056501891713<38> × [11421052210306150602958732568762559463075197741495507301406133772406118426834174954602152216307494365766045934625448460014725348380276877155628523300522012294400563167013975448661461<182>] (Serge Batalov / GMP-ECM B1=1000000, sigma=4073287325 for P28 / November 17, 2014 2014 年 11 月 17 日) Free to factor
10250-21 = (9)24879<250> = 59 × 457 × 265475069 × 42503827573<11> × 3495644816579<13> × 56969923655563710694477<23> × 13943826568488394139658931<26> × [11836548890526617540101375398551464917302281400998545049576827006474276219193525490171016470545818248093601222075895064180964722493460630478166507814561203104650824533<167>] Free to factor
10251-21 = (9)24979<251> = 11 × 19 × 1093 × 337544977331<12> × 1296886298132061151964984775173375010526248311977080084129560524397047499079439453195343452117907445761414238393668309485629575240183195296442938689642423475716651333262237446267712819531243266682881310270134647462762500487760970636357<235>
10252-21 = (9)25079<252> = 1361 × [734753857457751653196179279941219691403379867744305657604702424687729610580455547391623806024981631153563556208670095518001469507714915503306392358559882439382806759735488611315209404849375459221160911094783247612049963262307127112417340191036002939<249>] Free to factor
10253-21 = (9)25179<253> = 11 × 179 × 1619 × 131011 × 993763 × 84114467 × 1484397295884180671281<22> × 5603609152826338048767250037<28> × 233497257570238219364449043053145712151<39> × [147484499452910727018626500305048317627382279003551764682552148007315809472790949835721130804421861144783618446404071324037662434678877370777<141>] (Erik Branger / GMP-ECM B1=3000000, sigma=1:2362139817 for P39 / June 12, 2018 2018 年 6 月 12 日) Free to factor
10254-21 = (9)25279<254> = 211 × [473933649289099526066350710900473933649289099526066350710900473933649289099526066350710900473933649289099526066350710900473933649289099526066350710900473933649289099526066350710900473933649289099526066350710900473933649289099526066350710900473933649289<252>] Free to factor
10255-21 = (9)25379<255> = 113 × 477131 × 45498550751<11> × 499504923111602746721020896500673324503<39> × [69286236799069279649298659728263208078672530995019320469689499111902681047066574024326132454704987913046938018374712878629280256396031339915913580057776981147815923504861955902631239465846796842563<197>] (Erik Branger / GMP-ECM B1=3000000, sigma=1:1648600904 for P39 / June 12, 2018 2018 年 6 月 12 日) Free to factor
10256-21 = (9)25479<256> = 3797 × 1003549 × 582653376229<12> × 4504126226896714205862535333987772183915352043816296548557176944181999405446515290465330547841774200623740852206347753078782989408892682999486109295774352175342412146007164592974941026839973362583039813234392837962322874757435914593967<235>
10257-21 = (9)25579<257> = 11 × 17707 × 38167 × 3806906055347<13> × 9923768748872156927393677<25> × [356061902083348675860477272159289352423328231009491816014171695144421328463299858276482924965496601681187150237592267961452805419027392343494294909608225663165524854851697190665681619517592581854290432959224499<210>] Free to factor
10258-21 = (9)25679<258> = 3680420118949344255701462349137<31> × [271708111487411303497263831671967223234489699378811735763345258944919159641147509105685796821991436383169644212957244134975129554005831631355782525980438691103512245098000190157309211080495139287120583060277405149762226952569467<228>] (Erik Branger / GMP-ECM B1=3000000, sigma=1:1573008683 for P31 / June 12, 2018 2018 年 6 月 12 日) Free to factor
10259-21 = (9)25779<259> = 11 × 3011 × 301923251109567947827662208266658615379970411521391262341112889103589867455692762899670903656290570936867848192989342109235832251441683524048186950877087044473294888439358715014643277678814045469641617100932942845928564958787476223543975121524108571601099<255>
10260-21 = (9)25879<260> = 17 × 993584695455636733<18> × [5920333684768512954839262106020987871005107643821435554416475728024241126245292342447851264679403811916103771326095399283617650413692657329160736549797234490460105667817231659088505640840721925409302958034700907534739044572134075850497286039<241>] Free to factor
10261-21 = (9)25979<261> = 11 × 23 × 313549 × 9433967724814229<16> × 1570575879839772359139345603730727<34> × 850786811802324192117916025037320259438505760092385064891240139127959407041050773677314591441635956519995863904837925791278338473546476567662575868921295741925617074282783464863623350521045492412819339729<204> (Erik Branger / GMP-ECM B1=3000000, sigma=1:895719940 for P34 x P204 / June 12, 2018 2018 年 6 月 12 日)
10262-21 = (9)26079<262> = 79 × 47963 × 3337991 × 17547773409460434466133<23> × [45056700987061122998139267653913855401757708210966127913425171876016417085504042346297241019597247694076959603885064149092739198673311197576343285403576599878947036884551642707786342612230264529230487056320028876151335673801509<227>] Free to factor
10263-21 = (9)26179<263> = 11 × 113 × 181 × 21767 × 1041571 × [19604819119147051181602804162589658444377784915677947535511024068861385288499323394450555751962604134367908394595198687910276250332684560660586009989179843367129628279629807720601555624112952350901546283584177809977515996420935204921679612701284409<248>] Free to factor
10264-21 = (9)26279<264> = 43 × 163 × 7164686637744652358036985163633<31> × 19913460622897076015729435235357371537709049691767397585764361401148822247506706589649147141831744330904388566471481819947507672303571335079498198350020793224306628205913377327318502430426472318688156144824109684774951424213645307<230> (Erik Branger / GMP-ECM B1=3000000, sigma=1:161174346 for P31 x P230 / June 12, 2018 2018 年 6 月 12 日)
10265-21 = (9)26379<265> = 11 × 48161573 × 2254417159<10> × 8372831872325834895251775845009643888784039449965732646730719642542032038066738566250754724158858861929152187537292951614453468527191168378370050698979231442875717561165502929535474651485199414135610768380709761909520192028188081649184840774815627<247>
10266-21 = (9)26479<266> = 265129 × 4171794371<10> × 12393441727<11> × 1702257748397<13> × 5889382601646221<16> × 317034547297735529<18> × 13741827450218740566027519697083053<35> × 167025112795109565439660118428153541967162294243083232041799928506229085977433337273075599895826164075542838313623806873868817380758498815556656570832763822932987<162> (Erik Branger / GMP-ECM B1=3000000, sigma=1:220330188 for P35 x P162 / June 12, 2018 2018 年 6 月 12 日)
10267-21 = (9)26579<267> = 11 × 89 × 99289 × 24334111 × 422766617054929538329720543754717835307319077128428891322088118368894376132104433766249197258567961234606016343195815489312597777399257230800185810287890642841118036493850038632871786564125603075817354107896730287128101981487648957472192010740671993519<252>
10268-21 = (9)26679<268> = 9615412533888713<16> × [1039996980343364448719915109510650683933735399174599117763442141256187124875153827338218835071667280739326897471587720069725360220660037066577781585697302915045942817112075228855485267523066877597041801930777356183631259646338099797254318003048774993683<253>] Free to factor
10269-21 = (9)26779<269> = 11 × 19 × 223 × 56239 × 215767 × 8640553 × 20463725397663543202633081658023223095592971031130462192551437434458861364621336506261328968669626481010892271415293774603487887138900341546081864619406262745403885285105082231476938022689413500323864926492360533740923014596988412988777127301383173<248>
10270-21 = (9)26879<270> = 7817 × 4133593019<10> × [30947970410940182740146455110301760654752132975585300184506080036812579860794611694971897445672266814715289127086080260263445727229499737725342594284514910925219295144584391734211643836881270735914024881277248594891017116159812103223076606586518809800297673<257>] Free to factor
10271-21 = (9)26979<271> = 11 × 292 × 1040015309<10> × 35781127288344078793<20> × 879721389546927312535418870923699241<36> × [33019646265166441496765853160882524817470687112489890980398376128836151647887045680038572637355244422322399462845632893514245797716231490496908099229044533972344391722369851778450472566035953754910295437<203>] (Erik Branger / GMP-ECM B1=3000000, sigma=1:1322518358 for P36 / June 12, 2018 2018 年 6 月 12 日) Free to factor
10272-21 = (9)27079<272> = 67 × 7991066999<10> × 2712918392540707781<19> × 52948892754329415103352113524343<32> × 1300249851121829913878643700002703691908605099759229711597495177280908749272770644378228520213765609844734635055776536661200920736126371155431850111300808674157532886549245483500432501305054376966314690210802261<211> (Erik Branger / GMP-ECM B1=3000000, sigma=1:419749784 for P32 x P211 / June 12, 2018 2018 年 6 月 12 日)
10273-21 = (9)27179<273> = 11 × 311 × 13249583 × 1187636581<10> × 956794872070830769<18> × [19415219758273904569984596155462205133894817737592903652898124967394601381787158195028630796285875629829299787420539854086062708707172271492553873119098926163804204016260183371960781327078284536710143234180540923733950604233825866026277<236>] Free to factor
10274-21 = (9)27279<274> = 1646207901514011421525905204921083<34> × [6074566882350058190887677211312329951718375656828790762206812903235244039650854647553889205111630762142785909021806268536255277044603186778766614284594898549332671162918195427722631510517936597448502334972563194456640930342103621771493647313<241>] (Erik Branger / GMP-ECM B1=3000000, sigma=1:2878134511 for P34 / June 12, 2018 2018 年 6 月 12 日) Free to factor
10275-21 = (9)27379<275> = 11 × 79 × 479 × [240239663087896485533968687162313123572075502521315264107473615679001371768476231888932398961203696807935596551119396710158053674345527097832797999284085803998068473108773312256306891755215002486480512959728625276575912129940828970981451095612983512351922277664197803729<270>] Free to factor
10276-21 = (9)27479<276> = 17 × 15187 × 30071 × 18790372405589945829369696294941<32> × 6854816407614893368712361844191645152785392103037348381197583866848881875464235641032510137619418198510528965594982673750491856308551437149009678081965254564886488839948256450482273018196598282636907424402984118930182357005452711886491<235> (Erik Branger / GMP-ECM B1=3000000, sigma=1:4190269099 for P32 x P235 / June 12, 2018 2018 年 6 月 12 日)
10277-21 = (9)27579<277> = 112 × 563 × 1451 × 510725578837334488431456584910532210785239<42> × [198084828173401749966203053973052188321556922857356343813578204032196783137651264649480351836810600959017349467275573382903822234492357324385120824611443314755552775270144977155499137345193292144100509959403781042791284378793957<228>] (Erik Branger / GMP-ECM B1=3000000, sigma=1:1658678547 for P42 / June 12, 2018 2018 年 6 月 12 日) Free to factor
10278-21 = (9)27679<278> = 404267 × 23922636316704329140265213026745357<35> × 10340050751053803015749947322204323406484443823148383169894269338219032987568658935084572179068968070318152032725432058806469983714052923290329816795116126009842510683207552834734748938472427466982814109440513746141125414948303295156763141<239> (Erik Branger / GMP-ECM B1=3000000, sigma=1:44220368 for P35 x P239 / June 12, 2018 2018 年 6 月 12 日)
10279-21 = (9)27779<279> = 11 × 5900161 × 35762650247<11> × 54949541096453<14> × 14060103313795837<17> × 2650598326695550076803577<25> × 17320133560612049992422613380979<32> × [12146915743512543756944724624780607405802023278090146564527990411306153739274167237005392667707408313908944319372210136854233876462120474985481061625349200910250926027685299909<176>] (Erik Branger / GMP-ECM B1=3000000, sigma=1:2305099431 for P32 / June 12, 2018 2018 年 6 月 12 日) Free to factor
10280-21 = (9)27879<280> = 487 × 3878729112191<13> × 1149020973737849983499617313949443<34> × 8350860327517433688677296238776836055218275927<46> × [551724681748385061781620099414238101586267018612501897743124218490289272758105266534003897482573587275911416818480584616393929330211038120577649744009808078674811413715076831253277135367<186>] (Erik Branger / GMP-ECM B1=3000000, sigma=1:1623312485 for P34, B1=3000000, sigma=1:2075738 for P46 / June 12, 2018 2018 年 6 月 12 日) Free to factor
10281-21 = (9)27979<281> = 11 × 602459183 × 3481297746901843185520244807193515411<37> × 4334495109761258501093437029799529663403260342304953885130866130808066315870840478853266906296484563544528754654331506248786318130938768722292317444158045847031620050419927443709269373967811483636605442956121708541288942268570749601653<235> (Erik Branger / GMP-ECM B1=3000000, sigma=1:3831637968 for P37 x P235 / June 12, 2018 2018 年 6 月 12 日)
10282-21 = (9)28079<282> = 256813 × 61285981 × 2134400311<10> × [29767747837541231922839716711007752424462674199318502372563930458859784597522718626326060854943280627886255282951256933596554871741972632180458519195740291718630343964555079813984115392974623800988023842992292924581216838932893923917901030017500465928579839413<260>] Free to factor
10283-21 = (9)28179<283> = 11 × 23 × 6701 × 4808137 × 22701269875035829262927766319<29> × [54039693301725989233816830370283398214028258844429244532510533011429184056085583827984084184058944146778559800404908127676851397768132358258370878703423648584116064159763259990477341575286071199338902840413902426188338644633497258672081470981<242>] Free to factor
10284-21 = (9)28279<284> = 83 × 211 × 269 × 593 × 1373250648173400713<19> × 763803547271912601677<21> × 2488488780414161347069665497923881413<37> × 13714036728708368647375860198513653868544933520525906749274071345368138725466310681267092244052336670997037484185730619491990228265536999949076246295811020757174295491157545505708784895466786732700823<200> (Erik Branger / GMP-ECM B1=3000000, sigma=1:1226672123 for P37 x P200 / June 12, 2018 2018 年 6 月 12 日)
10285-21 = (9)28379<285> = 11 × 43 × 343411 × 119296861 × 2781703451<10> × 2585413126781<13> × 37838813069492035817727707110139<32> × 204860581296874576091465957582609<33> × [925675898201567794669687971599365832423128526320176746863850222164333439829853911445530193514450061690911564604187619662308478253819077252748802620434203530317155196152781872100096673<183>] (Erik Branger / GMP-ECM B1=3000000, sigma=1:579381172 for P33, B1=3000000, sigma=1:1457569287 for P32 / June 12, 2018 2018 年 6 月 12 日) Free to factor
10286-21 = (9)28479<286> = 47 × 3270465086149<13> × 65056789123941453096078273140479527876226399002052780909392342832162657171399724666851497073822235725426292468084296542054476203750190169696857489143663876054566740238943216658846508089311082784442084005463654938167552297087080540648732849341117813061757348250759914780993<272>
10287-21 = (9)28579<287> = 11 × 19 × 3671 × 21803 × 1111996360507<13> × 2863434085529<13> × 140224460534647<15> × 73039352115028497761<20> × [183308172750106937447330856347986467000968500038223718661572802237762809392698245769945857777444975509512052854522411735876093877136314320804472589029703107574938433929374636304489434341390122720284180997079306933146187<219>] Free to factor
10288-21 = (9)28679<288> = 79 × 52919 × 2632287150025452067<19> × 49009712137267997444431789<26> × 474734850855000646970857003483<30> × [3905662838997073395389914841356158929091516445433539390364336699798056465291343163467847986430438940793328697545081228799849188003662656063120285665600460204664568817801595858051611600962697079079351564406751<208>] (Erik Branger / GMP-ECM for P30 / June 12, 2018 2018 年 6 月 12 日) Free to factor
10289-21 = (9)28779<289> = 11 × 5843 × 29879 × 25190597 × 53449049779017078532094218782397<32> × [3867469714101644839002848196796638451314511816776073191297901486827108482717908176569871938767038506376985175404538561807247714125043480751512448217388146045973931781212642534149431160521227999704150685693267447514738297892559684076200685293<241>] (Erik Branger / GMP-ECM B1=3000000, sigma=1:3748493850 for P32 / June 12, 2018 2018 年 6 月 12 日) Free to factor
10290-21 = (9)28879<290> = 3049 × 2723701 × 2210816513<10> × [5446662253866268295524729726165723140598398903538490959095954334326525679316109734282128071982301494151806563890068486682555711899824947430653368704631876568633267011332573715218310359514201962619921874186156737504168680264539208911123765074643815438831759653740328722567<271>] Free to factor
10291-21 = (9)28979<291> = 11 × 1019233596389<13> × 2532660665008031<16> × [35217342326457985718216731858259154084403379066008455105630332320315793179518750284952716215164953569661424865913548306757375174663770671479888354960151848091761220724793492173861719555119499282911542348459850332814259648505917246473138241560424668652638020361171<263>] Free to factor
10292-21 = (9)29079<292> = 17 × 8689 × 745231 × 2910499 × 6475165537<10> × 723446656632680654747<21> × [6662934211850486027403115626382286027703794448171909419925476200922441831350687386685027549765934650294966559683764792836212619010910072085150293615813249413889071022408143352823412754834132785159451555984846887680237269728166703328927488766613<244>] Free to factor
10293-21 = (9)29179<293> = 11 × 9533 × [953625206221450845388745315316174437122722027788638509293077634628038488313323097756119889760926160800282273061041549450235068613333587633388325720225436998750750979849899392540743636935811487369234143596883552826068298637269580309546741939482944413186729351630222290035570220192060116533<288>] Free to factor
10294-21 = (9)29279<294> = 131 × 4099 × 248257 × 351559639 × 761904064241581<15> × 28005928968552767344814701845807432849692323510284140516350567980901093778732204583067375904927558968891869665229200533863463345446449693725472123411581725221995204805432367928468201294474590218156261130240517836979652210952911515609972069674615846082483498457<260>
10295-21 = (9)29379<295> = 11 × 535213697 × 873647537807041825507<21> × 55546883667069704161038497<26> × 3849737172301764635055094619926466767<37> × [9091866684264612499271202837020391517825443441420535417941245605286215831989789369692171038918364222832405865109621224690617677245224100884440004120613926359561492039689532823703118468497082915196986309<202>] (Erik Branger / GMP-ECM B1=3000000, sigma=1:1798515812 for P37 / June 12, 2018 2018 年 6 月 12 日) Free to factor
10296-21 = (9)29479<296> = 337 × 606019243 × [489647661311161345014710296688551659867878523045395743948000868195893901055733901248275896655954103246170568487704308070246761021886329673285339870136636649118233407812271835887817657325187153243806316751431067639296185214727926853128955184635757911661037941749668934040782380628467569<285>] Free to factor
10297-21 = (9)29579<297> = 11 × 587 × 58831279667549085883<20> × 2632454773291927972368086968390075253356127186295582833451361398928349647904673135017828945998586895754984068929246387684180439850495860199934761507334867453161874469054828396827217221859617786853832020944353243364589833059946714592931662494193121582647072163558244114525209<274>
10298-21 = (9)29679<298> = 19452127220241659<17> × 1486228012604855593377639529814723<34> × [345897526221799716601036143824044638745835586636789934580914780075037533742160995797163589935757213578420214611671479764172666746591624234924712636859256568746384590509552787818009361011789509477681918200379786826642374099075688579253491127061955547<249>] (Erik Branger / GMP-ECM B1=3000000, sigma=1:2021031358 for P34 / June 12, 2018 2018 年 6 月 12 日) Free to factor
10299-21 = (9)29779<299> = 112 × 29 × 36808273 × 961044349 × 508433023404732609571<21> × 3281412608316434300235413<25> × 482873272872483317299382164728642815359773062418769776787987896352360224345411020536608529608165413073036213408873885145302563545142979640540357977720721564296018073236579632207335982803791918119956340214971362712957604684953464662661<234>
10300-21 = (9)29879<300> = 31236314597<11> × 164678748739<12> × 90758840955487213009<20> × 34827262121461768042131278069<29> × 571026747082515628680284841623611080973<39> × [107705511236059726910910478858742670746455042994765366281742586408482332017980445446662079198980830068256950026806830922941847767638804892421501989010398255736125103917236878262045018322973061<192>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3:3021871018 for P39 / July 8, 2018 2018 年 7 月 8 日) Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク