Table of contents 目次

16×10155-13

c129

name 名前Robert Backstrom
date 日付May 9, 2007 05:40:52 UTC 2007 年 5 月 9 日 (水) 14 時 40 分 52 秒 (日本時間)
composite number 合成数
404378154175334737009800640537312448779192500233832940020546894325311977216650147743526077094343949934288407943962237103864084519<129>
prime factors 素因数
90029914555725552917405713267859877539437849056631020317<56>
4491597666962551358812885925456249780291015698726653486747753928606021907<73>
factorization results 素因数分解の結果
Number: n
N=404378154175334737009800640537312448779192500233832940020546894325311977216650147743526077094343949934288407943962237103864084519
  ( 129 digits)
SNFS difficulty: 156 digits.
Divisors found:
 r1=90029914555725552917405713267859877539437849056631020317 (pp56)
 r2=4491597666962551358812885925456249780291015698726653486747753928606021907 (pp73)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 22.14 hours.
Scaled time: 16.09 units (timescale=0.727).
Factorization parameters were as follows:
name: KA_5_3_155
n: 404378154175334737009800640537312448779192500233832940020546894325311977216650147743526077094343949934288407943962237103864084519
skew: 1.15
deg: 5
c5: 1
c0: -2
m: 20000000000000000000000000000000
type: snfs
rlim: 3000000
alim: 3000000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 1000001)
Primes: RFBsize:216816, AFBsize:216491, largePrimes:6892018 encountered
Relations: rels:6481806, finalFF:584788
Max relations in full relation-set: 28
Initial matrix: 433371 x 584788 with sparse part having weight 34883238.
Pruned matrix : 301211 x 303441 with weight 16933179.
Total sieving time: 18.50 hours.
Total relation processing time: 0.17 hours.
Matrix solve time: 3.30 hours.
Total square root time: 0.17 hours, sqrts: 2.
Prototype def-par.txt line would be:
snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000
total time: 22.14 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3400+

16×10157-13

c155

name 名前Robert Backstrom
date 日付April 15, 2007 14:18:45 UTC 2007 年 4 月 15 日 (日) 23 時 18 分 45 秒 (日本時間)
composite number 合成数
24543641662831722656849210001533977603926982666053075625095873600245436416628317226568492100015339776039269826660530756250958736002454364166283172265684921<155>
prime factors 素因数
129797383107911921189114592848736731761<39>
189091960678640538527657346264288860676014584874491438046542017422669365733841635944493393437125375006515513942447561<117>
factorization results 素因数分解の結果
Number: n
N=24543641662831722656849210001533977603926982666053075625095873600245436416628317226568492100015339776039269826660530756250958736002454364166283172265684921
  ( 155 digits)
SNFS difficulty: 158 digits.
Divisors found:
 r1=129797383107911921189114592848736731761 (pp39)
 r2=189091960678640538527657346264288860676014584874491438046542017422669365733841635944493393437125375006515513942447561 (pp117)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 25.92 hours.
Scaled time: 33.95 units (timescale=1.310).
Factorization parameters were as follows:
name: KA_5_3_157
n: 24543641662831722656849210001533977603926982666053075625095873600245436416628317226568492100015339776039269826660530756250958736002454364166283172265684921
skew: 0.46
deg: 5
c5: 50
c0: -1
m: 20000000000000000000000000000000
type: snfs
rlim: 3000000
alim: 3000000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 1100001)
Primes: RFBsize:216816, AFBsize:216926, largePrimes:6830845 encountered
Relations: rels:6343658, finalFF:527782
Max relations in full relation-set: 48
Initial matrix: 433807 x 527782 with sparse part having weight 36099796.
Pruned matrix : 353105 x 355338 with weight 19042809.
Total sieving time: 22.85 hours.
Total relation processing time: 0.19 hours.
Matrix solve time: 2.82 hours.
Total square root time: 0.06 hours, sqrts: 1.
Prototype def-par.txt line would be:
snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000
total time: 25.92 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

16×10161-13

c151

name 名前Robert Backstrom
date 日付June 14, 2007 05:06:32 UTC 2007 年 6 月 14 日 (木) 14 時 6 分 32 秒 (日本時間)
composite number 合成数
1435756999967724720152252411207919472795542416216408834314647200422664077480544169773101373842224239920853631269279030738644813825332397365358703566043<151>
prime factors 素因数
21296628673706037218941669897405375529<38>
18789442466366541078334745181943959375398817645988163<53>
3588031028791720530702891116571104480395193265875079747911009<61>
factorization results 素因数分解の結果
GMP-ECM 5.0 [powered by GMP 4.1.2] [ECM]
Input number is 1435756999967724720152252411207919472795542416216408834314647200422664077480544169773101373842224239920853631269279030738644813825332397365358703566043 (151 digits)
Using B1=148000, B2=55183786, polynomial x^2, sigma=1780913447
Step 1 took 2930ms
Step 2 took 1970ms
********** Factor found in step 2: 21296628673706037218941669897405375529
Found probable prime factor of 38 digits: 21296628673706037218941669897405375529
Composite cofactor 67417102583019983171184801555027292869246270062017192633036181651915613927135668150787776143695353707888791386467 has 113 digits


Number: n
N=67417102583019983171184801555027292869246270062017192633036181651915613927135668150787776143695353707888791386467
  ( 113 digits)
SNFS difficulty: 162 digits.
Divisors found:
 r1=18789442466366541078334745181943959375398817645988163 (pp53)
 r2=3588031028791720530702891116571104480395193265875079747911009 (pp61)
Version: GGNFS-0.77.1-20060513-athlon-xp
Total time: 35.56 hours.
Scaled time: 48.54 units (timescale=1.365).
Factorization parameters were as follows:
name: KA_5_3_161

n: 67417102583019983171184801555027292869246270062017192633036181651915613927135668150787776143695353707888791386467

# n: 1435756999967724720152252411207919472795542416216408834314647200422664077480544169773101373842224239920853631269279030738644813825332397365358703566043

skew: 0.72
deg: 5
c5: 5
c0: -1
m: 200000000000000000000000000000000
type: snfs
rlim: 3500000
alim: 3500000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 3500000/3500000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 1500001)
Primes: RFBsize:250150, AFBsize:249616, largePrimes:7109746 encountered
Relations: rels:6650928, finalFF:579476
Max relations in full relation-set: 28
Initial matrix: 499831 x 579476 with sparse part having weight 35607840.
Pruned matrix : 430167 x 432730 with weight 21710821.
Total sieving time: 31.47 hours.
Total relation processing time: 0.37 hours.
Matrix solve time: 3.37 hours.
Total square root time: 0.34 hours, sqrts: 3.
Prototype def-par.txt line would be:
snfs,162,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000
total time: 35.56 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

16×10163-13

c131

name 名前Robert Backstrom
date 日付April 9, 2008 12:20:14 UTC 2008 年 4 月 9 日 (水) 21 時 20 分 14 秒 (日本時間)
composite number 合成数
38272829910055922554986494307292612701700316471903274256011625905419437445035817954191202482574294773808756113465281446661881046973<131>
prime factors 素因数
5241938648266082638689856097053647927227<40>
1203492293151321834268051001544618500679611569<46>
6066739234889810264566998524928554913682222871<46>
factorization results 素因数分解の結果
Number: n
N=38272829910055922554986494307292612701700316471903274256011625905419437445035817954191202482574294773808756113465281446661881046973
  ( 131 digits)
SNFS difficulty: 164 digits.
Divisors found:

Wed Apr 09 22:10:04 2008  prp40 factor: 5241938648266082638689856097053647927227
Wed Apr 09 22:10:04 2008  prp46 factor: 1203492293151321834268051001544618500679611569
Wed Apr 09 22:10:04 2008  prp46 factor: 6066739234889810264566998524928554913682222871
Wed Apr 09 22:10:04 2008  elapsed time 01:02:53 (Msieve 1.34)

Version: GGNFS-0.77.1-20051202-athlon
Total time: 32.31 hours.
Scaled time: 59.09 units (timescale=1.829).
Factorization parameters were as follows:
name: KA_5_3_163
n: 38272829910055922554986494307292612701700316471903274256011625905419437445035817954191202482574294773808756113465281446661881046973
skew: 0.29
deg: 5
c5: 500
c0: -1
m: 200000000000000000000000000000000
type: snfs
rlim: 3200000
alim: 3200000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 3200000/3200000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved  special-q in [100000, 2299990)
Primes: RFBsize:230209, AFBsize:229657, largePrimes:7314015 encountered
Relations: rels:6796872, finalFF:529923
Max relations in full relation-set: 28
Initial matrix: 459932 x 529922 with sparse part having weight 46577315.
Pruned matrix : 
Total sieving time: 32.13 hours.
Total relation processing time: 0.17 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,164,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000
total time: 32.31 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 X2 6000+

16×10167-13

c163

name 名前Robert Backstrom
date 日付January 25, 2008 05:34:27 UTC 2008 年 1 月 25 日 (金) 14 時 34 分 27 秒 (日本時間)
composite number 合成数
6967396936958121589785796090419393749374022931445168763417682382501382592829677627252973118911692598447141407675458650676490696347777618108264639154158011853284039<163>
prime factors 素因数
40597113862788129876743745080216984123131298311427<50>
90647476731104016968844622707762569866503500594961277609<56>
1893301042298636909272719039593617589762226489198375358373<58>
factorization results 素因数分解の結果
Number: n
N=6967396936958121589785796090419393749374022931445168763417682382501382592829677627252973118911692598447141407675458650676490696347777618108264639154158011853284039
  ( 163 digits)
SNFS difficulty: 168 digits.
Divisors found:

Fri Jan 25 16:25:02 2008  prp50 factor: 40597113862788129876743745080216984123131298311427
Fri Jan 25 16:25:02 2008  prp56 factor: 90647476731104016968844622707762569866503500594961277609
Fri Jan 25 16:25:02 2008  prp58 factor: 1893301042298636909272719039593617589762226489198375358373
Fri Jan 25 16:25:02 2008  elapsed time 01:52:38 (Msieve 1.33)

Version: GGNFS-0.77.1-20060513-athlon-xp
Total time: 65.44 hours.
Scaled time: 85.59 units (timescale=1.308).
Factorization parameters were as follows:
name: KA_5_3_167
n: 6967396936958121589785796090419393749374022931445168763417682382501382592829677627252973118911692598447141407675458650676490696347777618108264639154158011853284039
skew: 0.46
deg: 5
c5: 50
c0: -1
m: 2000000000000000000000000000000000
type: snfs
rlim: 3200000
alim: 3200000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 3200000/3200000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved  special-q in [100000, 3002683)
Primes: RFBsize:230209, AFBsize:230262, largePrimes:7515348 encountered
Relations: rels:6996341, finalFF:506931
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 
Total sieving time: 65.16 hours.
Total relation processing time: 0.27 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,168,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000
total time: 65.44 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD 64 3200+

16×10169-13

c132

name 名前Chris Monico
date 日付September 15, 2008 14:01:08 UTC 2008 年 9 月 15 日 (月) 23 時 1 分 8 秒 (日本時間)
composite number 合成数
439863245043938633275360032107760843619767204363929593692974356134399238277245461761858058337741355248435942840638766855441150400533<132>
prime factors 素因数
2359339499068883240543885710901550432466257806573<49>
186434909099572698920884170268392055319140036876977757831249406175990968275589112521<84>
factorization results 素因数分解の結果
N=439863245043938633275360032107760843619767204363929593692974356134399238277245461761858058337741355248435942840638766855441150400533
r1=2359339499068883240543885710901550432466257806573 (pp49)
r2=186434909099572698920884170268392055319140036876977757831249406175990968275589112521 (pp84)
Version: GGNFS-0.91.4
software ソフトウェア
GGNFS-0.91.4
execution environment 実行環境
AMD Athlon(tm) 64 X2 Dual Core Processor 4200+
Fedora 9

16×10173-13

c172

name 名前Robert Backstrom
date 日付June 21, 2007 10:59:55 UTC 2007 年 6 月 21 日 (木) 19 時 59 分 55 秒 (日本時間)
composite number 合成数
7960199004975124378109452736318407960199004975124378109452736318407960199004975124378109452736318407960199004975124378109452736318407960199004975124378109452736318407960199<172>
prime factors 素因数
96371276020696526133446288272274025697919084102770639532241766004453<68>
82599290303737453966408350950661246292450859283670030355136080034796461939594945728788702602573657900283<104>
factorization results 素因数分解の結果
Number: n
N=7960199004975124378109452736318407960199004975124378109452736318407960199004975124378109452736318407960199004975124378109452736318407960199004975124378109452736318407960199
  ( 172 digits)
SNFS difficulty: 174 digits.
Divisors found:
 r1=96371276020696526133446288272274025697919084102770639532241766004453 (pp68)
 r2=82599290303737453966408350950661246292450859283670030355136080034796461939594945728788702602573657900283 (pp104)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 172.53 hours.
Scaled time: 206.34 units (timescale=1.196).
Factorization parameters were as follows:
name: KA_5_3_173
n: 7960199004975124378109452736318407960199004975124378109452736318407960199004975124378109452736318407960199004975124378109452736318407960199004975124378109452736318407960199
type: snfs
skew: 0.29
deg: 5
c5: 500
c0: -1
m: 20000000000000000000000000000000000
rlim: 5000000
alim: 5000000
lpbr: 28
lpba: 28
mfbr: 48
mfba: 48
qintsize: 100000
Factor base limits: 5000000/5000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 48/48
Sieved algebraic special-q in [100000, 6100001)
Primes: RFBsize:348513, AFBsize:348381, largePrimes:8606327 encountered
Relations: rels:8178018, finalFF:784475
Max relations in full relation-set: 28
Initial matrix: 696960 x 784475 with sparse part having weight 56036078.
Pruned matrix : 632811 x 636359 with weight 42788642.
Total sieving time: 158.37 hours.
Total relation processing time: 0.66 hours.
Matrix solve time: 13.29 hours.
Total square root time: 0.20 hours, sqrts: 1.
Prototype def-par.txt line would be:
snfs,174,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,48,48,2.6,2.6,100000
total time: 172.53 hours.
 --------- CPU info (if available) ----------

Cygwin on AMD XP 2700+

16×10179-13

c172

name 名前Thomas Womack
date 日付September 19, 2008 15:08:20 UTC 2008 年 9 月 20 日 (土) 0 時 8 分 20 秒 (日本時間)
composite number 合成数
8973873414463094191216786621834765515856579128831063641638999233412472240374218149175513321403802536399138281561907827764514860260441661182648493025009214906045704688861759<172>
prime factors 素因数
1226638090264928115723655327333228728490191370449664758311<58>
7315828104216888973836157895081638072697654891738449634905084897704701381178005284947042277396339224057301618595369<115>
factorization results 素因数分解の結果
prp58 factor: 1226638090264928115723655327333228728490191370449664758311
prp115 factor: 7315828104216888973836157895081638072697654891738449634905084897704701381178005284947042277396339224057301618595369
elapsed time 06:07:08

(that's the processing time, sieving was ~101 CPU-hours)
software ソフトウェア
ggnfs lattice siever, msieve
execution environment 実行環境
Core2/2400, up to two cores

16×10181-13

c175

name 名前Ignacio Santos
date 日付April 21, 2010 18:59:56 UTC 2010 年 4 月 22 日 (木) 3 時 59 分 56 秒 (日本時間)
composite number 合成数
1306872209567479125432295970028388776610868859204539067764436055522825213331981700750588168047854981226331472241123542215701038802497965342908851356444731259332037520529839319<175>
prime factors 素因数
33200584780586045156140203713537467365084708747168498511<56>
39362927436497119207568322448883565899125563400218584825520778751575880288415267059450506090258234041817920231589057529<119>
factorization results 素因数分解の結果
Number: 13
N=1306872209567479125432295970028388776610868859204539067764436055522825213331981700750588168047854981226331472241123542215701038802497965342908851356444731259332037520529839319
  ( 175 digits)
SNFS difficulty: 182 digits.
Divisors found:
 r1=33200584780586045156140203713537467365084708747168498511 (pp56)
 r2=39362927436497119207568322448883565899125563400218584825520778751575880288415267059450506090258234041817920231589057529 (pp119)
Version: Msieve-1.40
Total time: 111.89 hours.
Scaled time: 194.13 units (timescale=1.735).
Factorization parameters were as follows:
n: 1306872209567479125432295970028388776610868859204539067764436055522825213331981700750588168047854981226331472241123542215701038802497965342908851356444731259332037520529839319
m: 2000000000000000000000000000000000000
deg: 5
c5: 5
c0: -1
skew: 0.72
type: snfs
lss: 1
rlim: 7600000
alim: 7600000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 7600000/7600000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3800000, 5600001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1326351 x 1326575
Total sieving time: 108.99 hours.
Total relation processing time: 0.19 hours.
Matrix solve time: 2.49 hours.
Time per square root: 0.23 hours.
Prototype def-par.txt line would be:
snfs,182.000,5,0,0,0,0,0,0,0,0,7600000,7600000,28,28,53,53,2.5,2.5,100000
total time: 111.89 hours.
 --------- CPU info (if available) ----------
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Ignacio SantosMarch 29, 2010 11:43:15 UTC 2010 年 3 月 29 日 (月) 20 時 43 分 15 秒 (日本時間)
351e6410Ignacio SantosMarch 29, 2010 11:43:22 UTC 2010 年 3 月 29 日 (月) 20 時 43 分 22 秒 (日本時間)
403e61050150Ignacio SantosMarch 29, 2010 11:43:22 UTC 2010 年 3 月 29 日 (月) 20 時 43 分 22 秒 (日本時間)
900Ignacio SantosApril 11, 2010 10:19:47 UTC 2010 年 4 月 11 日 (日) 19 時 19 分 47 秒 (日本時間)
4511e6300 / 3877Ignacio SantosApril 11, 2010 10:19:20 UTC 2010 年 4 月 11 日 (日) 19 時 19 分 20 秒 (日本時間)
5043e6100 / 7444Ignacio SantosApril 11, 2010 10:18:26 UTC 2010 年 4 月 11 日 (日) 19 時 18 分 26 秒 (日本時間)

16×10183-13

c179

name 名前Dmitry Domanov
date 日付December 9, 2009 22:05:38 UTC 2009 年 12 月 10 日 (木) 7 時 5 分 38 秒 (日本時間)
composite number 合成数
10140978617112774654145093319186668162461012690800928153067931246700220629666038559803569244186525554949209542407354237693130184179186021675074171751416726403368833096604863740107<179>
prime factors 素因数
18627864608408854457971430690578723<35>
544398342498957622062084117964445373269473871781632235659942268003161698603526565536948832419130917001986223882572935713623771914211976408369209<144>
factorization results 素因数分解の結果
 Factor=18627864608408854457971430690578723  Method=ECM  B1=11000000  Sigma=1934621045
software ソフトウェア
ECMNET

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374JPascoaDecember 6, 2009 10:11:38 UTC 2009 年 12 月 6 日 (日) 19 時 11 分 38 秒 (日本時間)
255e4204JPascoaDecember 6, 2009 10:13:49 UTC 2009 年 12 月 6 日 (日) 19 時 13 分 49 秒 (日本時間)

16×10185-13

c145

name 名前Jo Yeong Uk
date 日付September 6, 2010 04:04:30 UTC 2010 年 9 月 6 日 (月) 13 時 4 分 30 秒 (日本時間)
composite number 合成数
1521316009505563477478895298115902617495929907944644837620692515325616735317221182121062315198190370413859028325862007945242243180733187588646467<145>
prime factors 素因数
22690559556781478763658389018569481439<38>
67046209490717078047280059236417654446037426767674501485530349829787712103130787961203228706122705618861853<107>
factorization results 素因数分解の結果
GMP-ECM 6.3 [configured with GMP 5.0.0 and --enable-asm-redc] [ECM]
Input number is 1521316009505563477478895298115902617495929907944644837620692515325616735317221182121062315198190370413859028325862007945242243180733187588646467 (145 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4245060143
Step 1 took 4117ms
Step 2 took 2362ms
********** Factor found in step 2: 22690559556781478763658389018569481439
Found probable prime factor of 38 digits: 22690559556781478763658389018569481439
Probable prime cofactor 67046209490717078047280059236417654446037426767674501485530349829787712103130787961203228706122705618861853 has 107 digits
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Jo Yeong UkSeptember 4, 2010 02:18:25 UTC 2010 年 9 月 4 日 (土) 11 時 18 分 25 秒 (日本時間)
255e4204Jo Yeong UkSeptember 4, 2010 02:18:32 UTC 2010 年 9 月 4 日 (土) 11 時 18 分 32 秒 (日本時間)
3025e4403Jo Yeong UkSeptember 4, 2010 09:37:10 UTC 2010 年 9 月 4 日 (土) 18 時 37 分 10 秒 (日本時間)

16×10187-13

c168

name 名前Jo Yeong Uk
date 日付November 23, 2012 13:30:13 UTC 2012 年 11 月 23 日 (金) 22 時 30 分 13 秒 (日本時間)
composite number 合成数
641559688970508579873351702234342810403902315148342736679974352473169866735482863830555981747463607417493141708309226221474265526599102117023178545404373445583860342517<168>
prime factors 素因数
104049290178833083134939990943240532317203177916479227322041<60>
6165920861813068996331203208392144371106171794667258386796255211564687090679005568717811586154653546373547037<109>
factorization results 素因数分解の結果
Number: 53333_187
N=641559688970508579873351702234342810403902315148342736679974352473169866735482863830555981747463607417493141708309226221474265526599102117023178545404373445583860342517
  ( 168 digits)
SNFS difficulty: 188 digits.
Divisors found:
 r1=104049290178833083134939990943240532317203177916479227322041
 r2=6165920861813068996331203208392144371106171794667258386796255211564687090679005568717811586154653546373547037
Version: 
Total time: 86.67 hours.
Scaled time: 318.15 units (timescale=3.671).
Factorization parameters were as follows:
n: 641559688970508579873351702234342810403902315148342736679974352473169866735482863830555981747463607417493141708309226221474265526599102117023178545404373445583860342517
m: 20000000000000000000000000000000000000
deg: 5
c5: 50
c0: -1
skew: 0.46
# Murphy_E = 6.667e-11
type: snfs
lss: 1
rlim: 8000000
alim: 8000000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
Factor base limits: 8000000/8000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved rational special-q in [4000000, 7000001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 20065876
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1623085 x 1623333
Total sieving time: 79.21 hours.
Total relation processing time: 2.12 hours.
Matrix solve time: 5.09 hours.
Time per square root: 0.25 hours.
Prototype def-par.txt line would be:
snfs,188,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,54,54,2.5,2.5,100000
total time: 86.67 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz stepping 02
Memory: 36991608k/38797312k available (5153k kernel code, 1057684k absent, 748020k reserved, 7165k data, 1260k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6667.30 BogoMIPS (lpj=3333650)
Total of 12 processors activated (80007.60 BogoMIPS).
x86info v1.25.  Dave Jones 2001-2009
Feedback to <davej@redhat.com>.

Found 12 CPUs
--------------------------------------------------------------------------
CPU #1
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)    Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x0 Package: 0  Core: 0   SMT ID 0
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #2
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x2 Package: 0  Core: 0   SMT ID 2
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #3
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x4 Package: 0  Core: 0   SMT ID 4
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #4
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x10        Package: 0  Core: 0   SMT ID 16
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #5
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x12        Package: 0  Core: 0   SMT ID 18
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #6
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x14        Package: 0  Core: 0   SMT ID 20
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #7
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x1 Package: 0  Core: 0   SMT ID 1
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #8
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x3 Package: 0  Core: 0   SMT ID 3
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #9
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x5 Package: 0  Core: 0   SMT ID 5
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #10
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x11        Package: 0  Core: 0   SMT ID 17
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #11
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x13        Package: 0  Core: 0   SMT ID 19
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #12
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x15        Package: 0  Core: 0   SMT ID 21
3.35GHz processor (estimate).

--------------------------------------------------------------------------
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7 980

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Jo Yeong UkSeptember 4, 2010 02:18:39 UTC 2010 年 9 月 4 日 (土) 11 時 18 分 39 秒 (日本時間)
255e4204Jo Yeong UkSeptember 4, 2010 02:18:44 UTC 2010 年 9 月 4 日 (土) 11 時 18 分 44 秒 (日本時間)
3025e4403Jo Yeong UkSeptember 4, 2010 09:37:18 UTC 2010 年 9 月 4 日 (土) 18 時 37 分 18 秒 (日本時間)
351e6300Ignacio SantosSeptember 11, 2010 13:02:56 UTC 2010 年 9 月 11 日 (土) 22 時 2 分 56 秒 (日本時間)
403e62144110Ignacio SantosSeptember 11, 2010 13:02:56 UTC 2010 年 9 月 11 日 (土) 22 時 2 分 56 秒 (日本時間)
700Serge BatalovJuly 29, 2011 18:36:20 UTC 2011 年 7 月 30 日 (土) 3 時 36 分 20 秒 (日本時間)
1334Jo Yeong UkNovember 19, 2012 10:18:46 UTC 2012 年 11 月 19 日 (月) 19 時 18 分 46 秒 (日本時間)
4511e632 / 3991Ignacio SantosSeptember 11, 2010 13:02:56 UTC 2010 年 9 月 11 日 (土) 22 時 2 分 56 秒 (日本時間)

16×10189-13

c169

name 名前Jo Yeong Uk
date 日付November 28, 2012 09:53:02 UTC 2012 年 11 月 28 日 (水) 18 時 53 分 2 秒 (日本時間)
composite number 合成数
5213717008565030348524076054743043655495065168775465669640962189566362073979494325388958471670331833874961277176564437016926295760352610330518756573699560886236760186933<169>
prime factors 素因数
224810475566258303136663922644802670420227179877702583336319733<63>
23191610601919631556646995518254821437876994875551674747845692219828115685174305130287152696639398449678401<107>
factorization results 素因数分解の結果
Number: 53333_189
N=5213717008565030348524076054743043655495065168775465669640962189566362073979494325388958471670331833874961277176564437016926295760352610330518756573699560886236760186933
  ( 169 digits)
SNFS difficulty: 191 digits.
Divisors found:
 r1=224810475566258303136663922644802670420227179877702583336319733
 r2=23191610601919631556646995518254821437876994875551674747845692219828115685174305130287152696639398449678401
Version: 
Total time: 113.87 hours.
Scaled time: 413.47 units (timescale=3.631).
Factorization parameters were as follows:
n: 5213717008565030348524076054743043655495065168775465669640962189566362073979494325388958471670331833874961277176564437016926295760352610330518756573699560886236760186933
m: 200000000000000000000000000000000000000
deg: 5
c5: 1
c0: -20
skew: 1.82
# Murphy_E = 5.156e-11
type: snfs
lss: 1
rlim: 9000000
alim: 9000000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
Factor base limits: 9000000/9000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved rational special-q in [4500000, 8300001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 20461185
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1830915 x 1831163
Total sieving time: 101.63 hours.
Total relation processing time: 2.76 hours.
Matrix solve time: 9.01 hours.
Time per square root: 0.47 hours.
Prototype def-par.txt line would be:
snfs,191,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,54,54,2.5,2.5,100000
total time: 113.87 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz stepping 02
Memory: 36991608k/38797312k available (5153k kernel code, 1057684k absent, 748020k reserved, 7165k data, 1260k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6667.30 BogoMIPS (lpj=3333650)
Total of 12 processors activated (80007.60 BogoMIPS).
x86info v1.25.  Dave Jones 2001-2009
Feedback to <davej@redhat.com>.

Found 12 CPUs
--------------------------------------------------------------------------
CPU #1
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)     Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x0 Package: 0  Core: 0   SMT ID 0
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #2
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x2 Package: 0  Core: 0   SMT ID 2
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #3
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x4 Package: 0  Core: 0   SMT ID 4
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #4
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x10        Package: 0  Core: 0   SMT ID 16
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #5
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x12        Package: 0  Core: 0   SMT ID 18
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #6
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x14        Package: 0  Core: 0   SMT ID 20
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #7
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x1 Package: 0  Core: 0   SMT ID 1
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #8
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x3 Package: 0  Core: 0   SMT ID 3
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #9
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x5 Package: 0  Core: 0   SMT ID 5
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #10
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x11        Package: 0  Core: 0   SMT ID 17
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #11
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x13        Package: 0  Core: 0   SMT ID 19
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #12
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x15        Package: 0  Core: 0   SMT ID 21
3.35GHz processor (estimate).

--------------------------------------------------------------------------
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7 980

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Jo Yeong UkSeptember 4, 2010 02:18:54 UTC 2010 年 9 月 4 日 (土) 11 時 18 分 54 秒 (日本時間)
255e4204Jo Yeong UkSeptember 4, 2010 02:18:58 UTC 2010 年 9 月 4 日 (土) 11 時 18 分 58 秒 (日本時間)
3025e4403Jo Yeong UkSeptember 4, 2010 09:37:26 UTC 2010 年 9 月 4 日 (土) 18 時 37 分 26 秒 (日本時間)
351e6300Ignacio SantosSeptember 11, 2010 13:03:30 UTC 2010 年 9 月 11 日 (土) 22 時 3 分 30 秒 (日本時間)
403e62144110Ignacio SantosSeptember 11, 2010 13:03:30 UTC 2010 年 9 月 11 日 (土) 22 時 3 分 30 秒 (日本時間)
700Serge BatalovJuly 29, 2011 18:36:33 UTC 2011 年 7 月 30 日 (土) 3 時 36 分 33 秒 (日本時間)
1334Jo Yeong UkNovember 20, 2012 23:19:20 UTC 2012 年 11 月 21 日 (水) 8 時 19 分 20 秒 (日本時間)
4511e632 / 3991Ignacio SantosSeptember 11, 2010 13:03:30 UTC 2010 年 9 月 11 日 (土) 22 時 3 分 30 秒 (日本時間)

16×10191-13

c172

name 名前Jo Yeong Uk
date 日付November 23, 2012 13:30:50 UTC 2012 年 11 月 23 日 (金) 22 時 30 分 50 秒 (日本時間)
composite number 合成数
4569222740440452119143842493867096943225843989450945204315148649907511840649100197076672377440606543723143456208852712948207382275438987327937756642908469312731557178127373<172>
prime factors 素因数
33931126313232868146324686645620932439167779999<47>
134661687863231694707645650554981144354814133242845086204957944400047297653141307724247577041789552585516769144448791979932627<126>
factorization results 素因数分解の結果
GMP-ECM 6.3 [configured with GMP 5.0.2 and --enable-asm-redc] [ECM]
Input number is 4569222740440452119143842493867096943225843989450945204315148649907511840649100197076672377440606543723143456208852712948207382275438987327937756642908469312731557178127373 (172 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=7676202431
Step 1 took 39443ms
Step 2 took 14879ms
********** Factor found in step 2: 33931126313232868146324686645620932439167779999
Found probable prime factor of 47 digits: 33931126313232868146324686645620932439167779999
Probable prime cofactor 134661687863231694707645650554981144354814133242845086204957944400047297653141307724247577041789552585516769144448791979932627 has 126 digits
execution environment 実行環境
Core i7 980

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Ignacio SantosMarch 29, 2010 13:26:13 UTC 2010 年 3 月 29 日 (月) 22 時 26 分 13 秒 (日本時間)
351e6410Ignacio SantosMarch 29, 2010 13:26:22 UTC 2010 年 3 月 29 日 (月) 22 時 26 分 22 秒 (日本時間)
403e6950150Ignacio SantosMarch 29, 2010 13:26:22 UTC 2010 年 3 月 29 日 (月) 22 時 26 分 22 秒 (日本時間)
800Ignacio SantosApril 27, 2010 14:58:28 UTC 2010 年 4 月 27 日 (火) 23 時 58 分 28 秒 (日本時間)
4511e6400 / 4025230Ignacio SantosApril 27, 2010 14:58:28 UTC 2010 年 4 月 27 日 (火) 23 時 58 分 28 秒 (日本時間)
170Serge BatalovJuly 29, 2011 18:37:06 UTC 2011 年 7 月 30 日 (土) 3 時 37 分 6 秒 (日本時間)
5043e664 / 7425Ignacio SantosApril 27, 2010 14:58:28 UTC 2010 年 4 月 27 日 (火) 23 時 58 分 28 秒 (日本時間)

16×10193-13

c165

name 名前Jo Yeong Uk
date 日付September 4, 2010 02:19:27 UTC 2010 年 9 月 4 日 (土) 11 時 19 分 27 秒 (日本時間)
composite number 合成数
191359011090239733302374126762907605325269696023320652221379625415437956920353909869583307649691550150991919206492977760959133100056869677706824269809523978531731453<165>
prime factors 素因数
44433861393693938322838940868841970201<38>
4306603232043151642515124771957520454068878611891004430904802519716966835224123078205990539320091687145064263899018470601150853<127>
factorization results 素因数分解の結果
GMP-ECM 6.3 [configured with GMP 5.0.0 and --enable-asm-redc] [ECM]
Input number is 191359011090239733302374126762907605325269696023320652221379625415437956920353909869583307649691550150991919206492977760959133100056869677706824269809523978531731453 (165 digits)
Using B1=250000, B2=128992510, polynomial Dickson(3), sigma=7451905509
Step 1 took 1249ms
Step 2 took 626ms
********** Factor found in step 2: 44433861393693938322838940868841970201
Found probable prime factor of 38 digits: 44433861393693938322838940868841970201
Probable prime cofactor 4306603232043151642515124771957520454068878611891004430904802519716966835224123078205990539320091687145064263899018470601150853 has 127 digits
execution environment 実行環境
Core 2 Quad Q6700

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Jo Yeong UkSeptember 4, 2010 02:19:07 UTC 2010 年 9 月 4 日 (土) 11 時 19 分 7 秒 (日本時間)
255e4204Jo Yeong UkSeptember 4, 2010 02:19:12 UTC 2010 年 9 月 4 日 (土) 11 時 19 分 12 秒 (日本時間)

16×10195-13

c170

name 名前Jo Yeong Uk
date 日付November 24, 2012 01:18:58 UTC 2012 年 11 月 24 日 (土) 10 時 18 分 58 秒 (日本時間)
composite number 合成数
54504277361581307518699883871843677960513374856373548722507603214796803063362989450986322073471347803486552333085455576755725958782764768497095389219177016213032071390133<170>
prime factors 素因数
2460302637227275098799193544102137112303684027520921<52>
16375804685419638065956806980543124610598761817860265161<56>
1352818096035713050466673110601749997314548987123393222668995093<64>
factorization results 素因数分解の結果
GMP-ECM 6.3 [configured with GMP 5.0.5 and --enable-asm-redc] [ECM]
Input number is 54504277361581307518699883871843677960513374856373548722507603214796803063362989450986322073471347803486552333085455576755725958782764768497095389219177016213032071390133 (170 digits)
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=7379255885
Step 1 took 39129ms
Step 2 took 14614ms
********** Factor found in step 2: 2460302637227275098799193544102137112303684027520921
Found probable prime factor of 52 digits: 2460302637227275098799193544102137112303684027520921
Composite cofactor 22153484915582103668559583554040772203926738185109394811200866794185359624410681485893952840238404619014415894387854973 has 119 digits

Fri Nov 23 10:22:48 2012  
Fri Nov 23 10:22:48 2012  
Fri Nov 23 10:22:48 2012  Msieve v. 1.39
Fri Nov 23 10:22:48 2012  random seeds: 8938c124 1e4b9e37
Fri Nov 23 10:22:48 2012  factoring 22153484915582103668559583554040772203926738185109394811200866794185359624410681485893952840238404619014415894387854973 (119 digits)
Fri Nov 23 10:22:49 2012  no P-1/P+1/ECM available, skipping
Fri Nov 23 10:22:49 2012  commencing number field sieve (119-digit input)
Fri Nov 23 10:22:49 2012  R0: -72683812502624045859101
Fri Nov 23 10:22:49 2012  R1:  2866552890553
Fri Nov 23 10:22:49 2012  A0:  378856774001821928202859440
Fri Nov 23 10:22:49 2012  A1:  40104575548030136777924
Fri Nov 23 10:22:49 2012  A2: -5928605349076127202
Fri Nov 23 10:22:49 2012  A3: -134830190165760
Fri Nov 23 10:22:49 2012  A4:  19712879611
Fri Nov 23 10:22:49 2012  A5:  10920
Fri Nov 23 10:22:49 2012  skew 22656.69, size 3.494237e-12, alpha -5.363264, combined = 2.088163e-11
Fri Nov 23 10:22:49 2012  generating factor base
Fri Nov 23 10:22:50 2012  factor base complete:
Fri Nov 23 10:22:50 2012  283146 rational roots (max prime = 3999971)
Fri Nov 23 10:22:50 2012  282800 algebraic roots (max prime = 3999949)
Fri Nov 23 10:22:50 2012  a range: [-4000000, 4000000]
Fri Nov 23 10:22:50 2012  b range: [1, 300]
Fri Nov 23 10:22:50 2012  number of hash buckets: 62
Fri Nov 23 10:22:50 2012  sieve block size: 65536
Fri Nov 23 10:22:50 2012  
Fri Nov 23 10:22:50 2012  maximum RFB prime: 3999971
Fri Nov 23 10:22:50 2012  RFB entries: 283146
Fri Nov 23 10:22:50 2012  medium RFB entries: 6542
Fri Nov 23 10:22:50 2012  resieved RFB entries: 6374
Fri Nov 23 10:22:50 2012  small RFB prime powers: 26
Fri Nov 23 10:22:50 2012  projective RFB roots: 5
Fri Nov 23 10:22:50 2012  RFB trial factoring cutoff: 57 or 86 bits
Fri Nov 23 10:22:50 2012  single large prime RFB range: 22 - 27 bits
Fri Nov 23 10:22:50 2012  double large prime RFB range: 44 - 52 bits
Fri Nov 23 10:22:50 2012  triple large prime RFB range: 69 - 79 bits
Fri Nov 23 10:22:50 2012  
Fri Nov 23 10:22:50 2012  maximum AFB prime: 3999949
Fri Nov 23 10:22:50 2012  AFB entries: 282800
Fri Nov 23 10:22:50 2012  medium AFB entries: 6445
Fri Nov 23 10:22:50 2012  resieved AFB entries: 6247
Fri Nov 23 10:22:50 2012  small AFB prime powers: 116
Fri Nov 23 10:22:50 2012  projective AFB roots: 5
Fri Nov 23 10:22:50 2012  AFB trial factoring cutoff: 57 or 86 bits
Fri Nov 23 10:22:50 2012  single large prime AFB range: 22 - 27 bits
Fri Nov 23 10:22:50 2012  double large prime AFB range: 44 - 52 bits
Fri Nov 23 10:22:50 2012  triple large prime AFB range: 69 - 79 bits
Fri Nov 23 10:22:50 2012  
Fri Nov 23 10:22:50 2012  multiplying 1780545 primes from 3999949 to 33554432
Fri Nov 23 10:22:54 2012  multiply complete, product has 42636020 bits
Fri Nov 23 10:24:58 2012  completed b = 300, found 75688 relations
Fri Nov 23 10:24:58 2012  elapsed time 00:02:10
-> makeJobFile(): Adjusted to q0=2000000, q1=2100000.
->               client 1 q0: 2000000
        LatticeSieveTime: 3212
Fri Nov 23 11:18:31 2012  
Fri Nov 23 11:18:31 2012  
Fri Nov 23 11:18:31 2012  Msieve v. 1.39
Fri Nov 23 11:18:31 2012  random seeds: e4d550a7 7b88c314
Fri Nov 23 11:18:31 2012  factoring 22153484915582103668559583554040772203926738185109394811200866794185359624410681485893952840238404619014415894387854973 (119 digits)
Fri Nov 23 11:18:31 2012  no P-1/P+1/ECM available, skipping
Fri Nov 23 11:18:31 2012  commencing number field sieve (119-digit input)
Fri Nov 23 11:18:31 2012  R0: -72683812502624045859101
Fri Nov 23 11:18:31 2012  R1:  2866552890553
Fri Nov 23 11:18:31 2012  A0:  378856774001821928202859440
Fri Nov 23 11:18:31 2012  A1:  40104575548030136777924
Fri Nov 23 11:18:31 2012  A2: -5928605349076127202
Fri Nov 23 11:18:31 2012  A3: -134830190165760
Fri Nov 23 11:18:31 2012  A4:  19712879611
Fri Nov 23 11:18:31 2012  A5:  10920
Fri Nov 23 11:18:31 2012  skew 22656.69, size 3.494237e-12, alpha -5.363264, combined = 2.088163e-11
Fri Nov 23 11:18:31 2012  
Fri Nov 23 11:18:31 2012  commencing relation filtering
Fri Nov 23 11:18:31 2012  commencing duplicate removal, pass 1
Fri Nov 23 11:18:34 2012  found 5752 hash collisions in 606715 relations
Fri Nov 23 11:18:37 2012  added 24685 free relations
Fri Nov 23 11:18:37 2012  commencing duplicate removal, pass 2
Fri Nov 23 11:18:37 2012  found 5141 duplicates and 626259 unique relations
Fri Nov 23 11:18:37 2012  memory use: 36.1 MB
Fri Nov 23 11:18:37 2012  reading rational ideals above 2031616
Fri Nov 23 11:18:37 2012  reading algebraic ideals above 2031616
Fri Nov 23 11:18:37 2012  commencing singleton removal, pass 1
Fri Nov 23 11:18:40 2012  relations with 0 large ideals: 2519
Fri Nov 23 11:18:40 2012  relations with 1 large ideals: 14259
Fri Nov 23 11:18:40 2012  relations with 2 large ideals: 67228
Fri Nov 23 11:18:40 2012  relations with 3 large ideals: 164990
Fri Nov 23 11:18:40 2012  relations with 4 large ideals: 213805
Fri Nov 23 11:18:40 2012  relations with 5 large ideals: 124923
Fri Nov 23 11:18:40 2012  relations with 6 large ideals: 38319
Fri Nov 23 11:18:40 2012  relations with 7+ large ideals: 216
Fri Nov 23 11:18:40 2012  626259 relations and about 1666451 large ideals
Fri Nov 23 11:18:40 2012  commencing singleton removal, pass 2
Fri Nov 23 11:18:43 2012  found 609713 singletons
Fri Nov 23 11:18:43 2012  current dataset: 16546 relations and about 24669 large ideals
Fri Nov 23 11:18:43 2012  commencing singleton removal, final pass
Fri Nov 23 11:18:43 2012  memory use: 8.5 MB
Fri Nov 23 11:18:43 2012  commencing in-memory singleton removal
Fri Nov 23 11:18:43 2012  begin with 16546 relations and 24716 unique ideals
Fri Nov 23 11:18:43 2012  reduce to 3035 relations and 258 ideals in 5 passes
Fri Nov 23 11:18:43 2012  max relations containing the same ideal: 5
Fri Nov 23 11:18:44 2012  reading rational ideals above 720000
Fri Nov 23 11:18:44 2012  reading algebraic ideals above 720000
Fri Nov 23 11:18:44 2012  commencing singleton removal, final pass
Fri Nov 23 11:18:44 2012  keeping 149141 ideals with weight <= 20, new excess is 115707
Fri Nov 23 11:18:44 2012  memory use: 9.8 MB
Fri Nov 23 11:18:44 2012  commencing in-memory singleton removal
Fri Nov 23 11:18:44 2012  begin with 26470 relations and 149141 unique ideals
Fri Nov 23 11:18:44 2012  reduce to 608 relations and 2 ideals in 4 passes
Fri Nov 23 11:18:44 2012  max relations containing the same ideal: 2
Fri Nov 23 11:18:44 2012  filtering wants 400842 more relations
Fri Nov 23 11:18:44 2012  elapsed time 00:00:13
        RelProcTime: 13
-> makeJobFile(): Adjusted to q0=2100001, q1=2200000.
->               client 1 q0: 2100001
        LatticeSieveTime: 3158
Fri Nov 23 12:11:22 2012  
Fri Nov 23 12:11:22 2012  
Fri Nov 23 12:11:22 2012  Msieve v. 1.39
Fri Nov 23 12:11:22 2012  random seeds: 9dd8392a 5ae0287b
Fri Nov 23 12:11:22 2012  factoring 22153484915582103668559583554040772203926738185109394811200866794185359624410681485893952840238404619014415894387854973 (119 digits)
Fri Nov 23 12:11:23 2012  no P-1/P+1/ECM available, skipping
Fri Nov 23 12:11:23 2012  commencing number field sieve (119-digit input)
Fri Nov 23 12:11:23 2012  R0: -72683812502624045859101
Fri Nov 23 12:11:23 2012  R1:  2866552890553
Fri Nov 23 12:11:23 2012  A0:  378856774001821928202859440
Fri Nov 23 12:11:23 2012  A1:  40104575548030136777924
Fri Nov 23 12:11:23 2012  A2: -5928605349076127202
Fri Nov 23 12:11:23 2012  A3: -134830190165760
Fri Nov 23 12:11:23 2012  A4:  19712879611
Fri Nov 23 12:11:23 2012  A5:  10920
Fri Nov 23 12:11:23 2012  skew 22656.69, size 3.494237e-12, alpha -5.363264, combined = 2.088163e-11
Fri Nov 23 12:11:23 2012  
Fri Nov 23 12:11:23 2012  commencing relation filtering
Fri Nov 23 12:11:23 2012  commencing duplicate removal, pass 1
Fri Nov 23 12:11:28 2012  found 18056 hash collisions in 1155675 relations
Fri Nov 23 12:11:32 2012  added 10205 free relations
Fri Nov 23 12:11:32 2012  commencing duplicate removal, pass 2
Fri Nov 23 12:11:33 2012  found 15824 duplicates and 1150056 unique relations
Fri Nov 23 12:11:33 2012  memory use: 36.5 MB
Fri Nov 23 12:11:33 2012  reading rational ideals above 2162688
Fri Nov 23 12:11:33 2012  reading algebraic ideals above 2162688
Fri Nov 23 12:11:33 2012  commencing singleton removal, pass 1
Fri Nov 23 12:11:38 2012  relations with 0 large ideals: 5875
Fri Nov 23 12:11:38 2012  relations with 1 large ideals: 47874
Fri Nov 23 12:11:38 2012  relations with 2 large ideals: 204062
Fri Nov 23 12:11:38 2012  relations with 3 large ideals: 405340
Fri Nov 23 12:11:38 2012  relations with 4 large ideals: 353008
Fri Nov 23 12:11:38 2012  relations with 5 large ideals: 92717
Fri Nov 23 12:11:38 2012  relations with 6 large ideals: 41080
Fri Nov 23 12:11:38 2012  relations with 7+ large ideals: 100
Fri Nov 23 12:11:38 2012  1150056 relations and about 2726297 large ideals
Fri Nov 23 12:11:38 2012  commencing singleton removal, pass 2
Fri Nov 23 12:11:44 2012  found 1092700 singletons
Fri Nov 23 12:11:44 2012  current dataset: 57356 relations and about 97420 large ideals
Fri Nov 23 12:11:44 2012  commencing singleton removal, final pass
Fri Nov 23 12:11:45 2012  memory use: 9.8 MB
Fri Nov 23 12:11:45 2012  commencing in-memory singleton removal
Fri Nov 23 12:11:45 2012  begin with 57356 relations and 97815 unique ideals
Fri Nov 23 12:11:45 2012  reduce to 6647 relations and 395 ideals in 5 passes
Fri Nov 23 12:11:45 2012  max relations containing the same ideal: 5
Fri Nov 23 12:11:45 2012  reading rational ideals above 720000
Fri Nov 23 12:11:45 2012  reading algebraic ideals above 720000
Fri Nov 23 12:11:45 2012  commencing singleton removal, final pass
Fri Nov 23 12:11:45 2012  keeping 93619 ideals with weight <= 20, new excess is 115751
Fri Nov 23 12:11:45 2012  memory use: 9.8 MB
Fri Nov 23 12:11:45 2012  commencing in-memory singleton removal
Fri Nov 23 12:11:45 2012  begin with 20202 relations and 93619 unique ideals
Fri Nov 23 12:11:45 2012  reduce to 614 relations and 7 ideals in 4 passes
Fri Nov 23 12:11:45 2012  max relations containing the same ideal: 2
Fri Nov 23 12:11:45 2012  filtering wants 400992 more relations
Fri Nov 23 12:11:45 2012  elapsed time 00:00:23
        RelProcTime: 23
-> makeJobFile(): Adjusted to q0=2200001, q1=2300000.
->               client 1 q0: 2200001
        LatticeSieveTime: 3143
Fri Nov 23 13:04:08 2012  
Fri Nov 23 13:04:08 2012  
Fri Nov 23 13:04:08 2012  Msieve v. 1.39
Fri Nov 23 13:04:08 2012  random seeds: 705f00ee fd4eb747
Fri Nov 23 13:04:08 2012  factoring 22153484915582103668559583554040772203926738185109394811200866794185359624410681485893952840238404619014415894387854973 (119 digits)
Fri Nov 23 13:04:09 2012  no P-1/P+1/ECM available, skipping
Fri Nov 23 13:04:09 2012  commencing number field sieve (119-digit input)
Fri Nov 23 13:04:09 2012  R0: -72683812502624045859101
Fri Nov 23 13:04:09 2012  R1:  2866552890553
Fri Nov 23 13:04:09 2012  A0:  378856774001821928202859440
Fri Nov 23 13:04:09 2012  A1:  40104575548030136777924
Fri Nov 23 13:04:09 2012  A2: -5928605349076127202
Fri Nov 23 13:04:09 2012  A3: -134830190165760
Fri Nov 23 13:04:09 2012  A4:  19712879611
Fri Nov 23 13:04:09 2012  A5:  10920
Fri Nov 23 13:04:09 2012  skew 22656.69, size 3.494237e-12, alpha -5.363264, combined = 2.088163e-11
Fri Nov 23 13:04:09 2012  
Fri Nov 23 13:04:09 2012  commencing relation filtering
Fri Nov 23 13:04:09 2012  commencing duplicate removal, pass 1
Fri Nov 23 13:04:17 2012  found 36158 hash collisions in 1685406 relations
Fri Nov 23 13:04:22 2012  added 6764 free relations
Fri Nov 23 13:04:22 2012  commencing duplicate removal, pass 2
Fri Nov 23 13:04:23 2012  found 31465 duplicates and 1660705 unique relations
Fri Nov 23 13:04:23 2012  memory use: 36.9 MB
Fri Nov 23 13:04:23 2012  reading rational ideals above 2293760
Fri Nov 23 13:04:23 2012  reading algebraic ideals above 2293760
Fri Nov 23 13:04:23 2012  commencing singleton removal, pass 1
Fri Nov 23 13:04:31 2012  relations with 0 large ideals: 9638
Fri Nov 23 13:04:31 2012  relations with 1 large ideals: 83645
Fri Nov 23 13:04:31 2012  relations with 2 large ideals: 344683
Fri Nov 23 13:04:31 2012  relations with 3 large ideals: 639616
Fri Nov 23 13:04:31 2012  relations with 4 large ideals: 481074
Fri Nov 23 13:04:31 2012  relations with 5 large ideals: 59965
Fri Nov 23 13:04:31 2012  relations with 6 large ideals: 42054
Fri Nov 23 13:04:31 2012  relations with 7+ large ideals: 30
Fri Nov 23 13:04:31 2012  1660705 relations and about 3588975 large ideals
Fri Nov 23 13:04:31 2012  commencing singleton removal, pass 2
Fri Nov 23 13:04:40 2012  found 1529996 singletons
Fri Nov 23 13:04:40 2012  current dataset: 130709 relations and about 231550 large ideals
Fri Nov 23 13:04:40 2012  commencing singleton removal, final pass
Fri Nov 23 13:04:40 2012  memory use: 11.7 MB
Fri Nov 23 13:04:40 2012  commencing in-memory singleton removal
Fri Nov 23 13:04:40 2012  begin with 130709 relations and 233173 unique ideals
Fri Nov 23 13:04:40 2012  reduce to 11114 relations and 771 ideals in 5 passes
Fri Nov 23 13:04:40 2012  max relations containing the same ideal: 3
Fri Nov 23 13:04:41 2012  reading rational ideals above 720000
Fri Nov 23 13:04:41 2012  reading algebraic ideals above 720000
Fri Nov 23 13:04:41 2012  commencing singleton removal, final pass
Fri Nov 23 13:04:41 2012  keeping 76682 ideals with weight <= 20, new excess is 115723
Fri Nov 23 13:04:41 2012  memory use: 8.9 MB
Fri Nov 23 13:04:41 2012  commencing in-memory singleton removal
Fri Nov 23 13:04:41 2012  begin with 19070 relations and 76682 unique ideals
Fri Nov 23 13:04:41 2012  reduce to 621 relations and 9 ideals in 4 passes
Fri Nov 23 13:04:41 2012  max relations containing the same ideal: 2
Fri Nov 23 13:04:41 2012  filtering wants 400878 more relations
Fri Nov 23 13:04:41 2012  elapsed time 00:00:33
        RelProcTime: 33
-> makeJobFile(): Adjusted to q0=2300001, q1=2400000.
->               client 1 q0: 2300001
        LatticeSieveTime: 3231
Fri Nov 23 13:58:32 2012  
Fri Nov 23 13:58:32 2012  
Fri Nov 23 13:58:32 2012  Msieve v. 1.39
Fri Nov 23 13:58:32 2012  random seeds: da8af9d6 9af67fad
Fri Nov 23 13:58:32 2012  factoring 22153484915582103668559583554040772203926738185109394811200866794185359624410681485893952840238404619014415894387854973 (119 digits)
Fri Nov 23 13:58:33 2012  no P-1/P+1/ECM available, skipping
Fri Nov 23 13:58:33 2012  commencing number field sieve (119-digit input)
Fri Nov 23 13:58:33 2012  R0: -72683812502624045859101
Fri Nov 23 13:58:33 2012  R1:  2866552890553
Fri Nov 23 13:58:33 2012  A0:  378856774001821928202859440
Fri Nov 23 13:58:33 2012  A1:  40104575548030136777924
Fri Nov 23 13:58:33 2012  A2: -5928605349076127202
Fri Nov 23 13:58:33 2012  A3: -134830190165760
Fri Nov 23 13:58:33 2012  A4:  19712879611
Fri Nov 23 13:58:33 2012  A5:  10920
Fri Nov 23 13:58:33 2012  skew 22656.69, size 3.494237e-12, alpha -5.363264, combined = 2.088163e-11
Fri Nov 23 13:58:33 2012  
Fri Nov 23 13:58:33 2012  commencing relation filtering
Fri Nov 23 13:58:33 2012  commencing duplicate removal, pass 1
Fri Nov 23 13:58:43 2012  found 60756 hash collisions in 2231528 relations
Fri Nov 23 13:58:50 2012  added 5061 free relations
Fri Nov 23 13:58:50 2012  commencing duplicate removal, pass 2
Fri Nov 23 13:58:50 2012  found 52805 duplicates and 2183784 unique relations
Fri Nov 23 13:58:50 2012  memory use: 36.9 MB
Fri Nov 23 13:58:50 2012  reading rational ideals above 2293760
Fri Nov 23 13:58:50 2012  reading algebraic ideals above 2293760
Fri Nov 23 13:58:50 2012  commencing singleton removal, pass 1
Fri Nov 23 13:59:01 2012  relations with 0 large ideals: 9638
Fri Nov 23 13:59:01 2012  relations with 1 large ideals: 85937
Fri Nov 23 13:59:01 2012  relations with 2 large ideals: 369233
Fri Nov 23 13:59:01 2012  relations with 3 large ideals: 745558
Fri Nov 23 13:59:01 2012  relations with 4 large ideals: 689133
Fri Nov 23 13:59:01 2012  relations with 5 large ideals: 219972
Fri Nov 23 13:59:01 2012  relations with 6 large ideals: 64106
Fri Nov 23 13:59:01 2012  relations with 7+ large ideals: 207
Fri Nov 23 13:59:01 2012  2183784 relations and about 4367984 large ideals
Fri Nov 23 13:59:01 2012  commencing singleton removal, pass 2
Fri Nov 23 13:59:13 2012  found 1939195 singletons
Fri Nov 23 13:59:13 2012  current dataset: 244589 relations and about 441002 large ideals
Fri Nov 23 13:59:13 2012  commencing singleton removal, pass 3
Fri Nov 23 13:59:14 2012  found 214771 singletons
Fri Nov 23 13:59:14 2012  current dataset: 29818 relations and about 24397 large ideals
Fri Nov 23 13:59:14 2012  commencing singleton removal, final pass
Fri Nov 23 13:59:15 2012  memory use: 8.5 MB
Fri Nov 23 13:59:15 2012  commencing in-memory singleton removal
Fri Nov 23 13:59:15 2012  begin with 29818 relations and 24584 unique ideals
Fri Nov 23 13:59:15 2012  reduce to 12569 relations and 1567 ideals in 6 passes
Fri Nov 23 13:59:15 2012  max relations containing the same ideal: 5
Fri Nov 23 13:59:15 2012  reading rational ideals above 720000
Fri Nov 23 13:59:15 2012  reading algebraic ideals above 720000
Fri Nov 23 13:59:15 2012  commencing singleton removal, final pass
Fri Nov 23 13:59:15 2012  keeping 68106 ideals with weight <= 20, new excess is 115717
Fri Nov 23 13:59:15 2012  memory use: 8.9 MB
Fri Nov 23 13:59:15 2012  commencing in-memory singleton removal
Fri Nov 23 13:59:15 2012  begin with 18376 relations and 68106 unique ideals
Fri Nov 23 13:59:15 2012  reduce to 631 relations and 15 ideals in 4 passes
Fri Nov 23 13:59:15 2012  max relations containing the same ideal: 2
Fri Nov 23 13:59:15 2012  filtering wants 400845 more relations
Fri Nov 23 13:59:15 2012  elapsed time 00:00:43
        RelProcTime: 43
-> makeJobFile(): Adjusted to q0=2400001, q1=2500000.
->               client 1 q0: 2400001
        LatticeSieveTime: 3246
Fri Nov 23 14:53:22 2012  
Fri Nov 23 14:53:22 2012  
Fri Nov 23 14:53:22 2012  Msieve v. 1.39
Fri Nov 23 14:53:22 2012  random seeds: 3a21b7e4 52fdc0ca
Fri Nov 23 14:53:22 2012  factoring 22153484915582103668559583554040772203926738185109394811200866794185359624410681485893952840238404619014415894387854973 (119 digits)
Fri Nov 23 14:53:23 2012  no P-1/P+1/ECM available, skipping
Fri Nov 23 14:53:23 2012  commencing number field sieve (119-digit input)
Fri Nov 23 14:53:23 2012  R0: -72683812502624045859101
Fri Nov 23 14:53:23 2012  R1:  2866552890553
Fri Nov 23 14:53:23 2012  A0:  378856774001821928202859440
Fri Nov 23 14:53:23 2012  A1:  40104575548030136777924
Fri Nov 23 14:53:23 2012  A2: -5928605349076127202
Fri Nov 23 14:53:23 2012  A3: -134830190165760
Fri Nov 23 14:53:23 2012  A4:  19712879611
Fri Nov 23 14:53:23 2012  A5:  10920
Fri Nov 23 14:53:23 2012  skew 22656.69, size 3.494237e-12, alpha -5.363264, combined = 2.088163e-11
Fri Nov 23 14:53:23 2012  
Fri Nov 23 14:53:23 2012  commencing relation filtering
Fri Nov 23 14:53:23 2012  commencing duplicate removal, pass 1
Fri Nov 23 14:53:36 2012  found 90396 hash collisions in 2776591 relations
Fri Nov 23 14:53:43 2012  added 3801 free relations
Fri Nov 23 14:53:43 2012  commencing duplicate removal, pass 2
Fri Nov 23 14:53:44 2012  found 78574 duplicates and 2701818 unique relations
Fri Nov 23 14:53:44 2012  memory use: 37.8 MB
Fri Nov 23 14:53:44 2012  reading rational ideals above 2424832
Fri Nov 23 14:53:44 2012  reading algebraic ideals above 2424832
Fri Nov 23 14:53:44 2012  commencing singleton removal, pass 1
Fri Nov 23 14:53:57 2012  relations with 0 large ideals: 13884
Fri Nov 23 14:53:57 2012  relations with 1 large ideals: 126207
Fri Nov 23 14:53:57 2012  relations with 2 large ideals: 519504
Fri Nov 23 14:53:57 2012  relations with 3 large ideals: 988225
Fri Nov 23 14:53:57 2012  relations with 4 large ideals: 810314
Fri Nov 23 14:53:57 2012  relations with 5 large ideals: 182424
Fri Nov 23 14:53:57 2012  relations with 6 large ideals: 61155
Fri Nov 23 14:53:57 2012  relations with 7+ large ideals: 105
Fri Nov 23 14:53:57 2012  2701818 relations and about 5029966 large ideals
Fri Nov 23 14:53:57 2012  commencing singleton removal, pass 2
Fri Nov 23 14:54:11 2012  found 2301399 singletons
Fri Nov 23 14:54:11 2012  current dataset: 400419 relations and about 687877 large ideals
Fri Nov 23 14:54:11 2012  commencing singleton removal, pass 3
Fri Nov 23 14:54:13 2012  found 341994 singletons
Fri Nov 23 14:54:13 2012  current dataset: 58425 relations and about 58249 large ideals
Fri Nov 23 14:54:13 2012  commencing singleton removal, final pass
Fri Nov 23 14:54:14 2012  memory use: 8.9 MB
Fri Nov 23 14:54:14 2012  commencing in-memory singleton removal
Fri Nov 23 14:54:14 2012  begin with 58425 relations and 58861 unique ideals
Fri Nov 23 14:54:14 2012  reduce to 18751 relations and 2675 ideals in 7 passes
Fri Nov 23 14:54:14 2012  max relations containing the same ideal: 6
Fri Nov 23 14:54:14 2012  reading rational ideals above 720000
Fri Nov 23 14:54:14 2012  reading algebraic ideals above 720000
Fri Nov 23 14:54:14 2012  commencing singleton removal, final pass
Fri Nov 23 14:54:15 2012  keeping 74410 ideals with weight <= 20, new excess is 115708
Fri Nov 23 14:54:15 2012  memory use: 8.9 MB
Fri Nov 23 14:54:15 2012  commencing in-memory singleton removal
Fri Nov 23 14:54:15 2012  begin with 22634 relations and 74410 unique ideals
Fri Nov 23 14:54:15 2012  reduce to 647 relations and 23 ideals in 5 passes
Fri Nov 23 14:54:15 2012  max relations containing the same ideal: 2
Fri Nov 23 14:54:15 2012  filtering wants 400791 more relations
Fri Nov 23 14:54:15 2012  elapsed time 00:00:53
        RelProcTime: 53
-> makeJobFile(): Adjusted to q0=2500001, q1=2600000.
->               client 1 q0: 2500001
        LatticeSieveTime: 3252
Fri Nov 23 15:48:27 2012  
Fri Nov 23 15:48:27 2012  
Fri Nov 23 15:48:27 2012  Msieve v. 1.39
Fri Nov 23 15:48:27 2012  random seeds: c5a70071 52c4fb71
Fri Nov 23 15:48:27 2012  factoring 22153484915582103668559583554040772203926738185109394811200866794185359624410681485893952840238404619014415894387854973 (119 digits)
Fri Nov 23 15:48:28 2012  no P-1/P+1/ECM available, skipping
Fri Nov 23 15:48:28 2012  commencing number field sieve (119-digit input)
Fri Nov 23 15:48:28 2012  R0: -72683812502624045859101
Fri Nov 23 15:48:28 2012  R1:  2866552890553
Fri Nov 23 15:48:28 2012  A0:  378856774001821928202859440
Fri Nov 23 15:48:28 2012  A1:  40104575548030136777924
Fri Nov 23 15:48:28 2012  A2: -5928605349076127202
Fri Nov 23 15:48:28 2012  A3: -134830190165760
Fri Nov 23 15:48:28 2012  A4:  19712879611
Fri Nov 23 15:48:28 2012  A5:  10920
Fri Nov 23 15:48:28 2012  skew 22656.69, size 3.494237e-12, alpha -5.363264, combined = 2.088163e-11
Fri Nov 23 15:48:28 2012  
Fri Nov 23 15:48:28 2012  commencing relation filtering
Fri Nov 23 15:48:28 2012  commencing duplicate removal, pass 1
Fri Nov 23 15:48:44 2012  found 125063 hash collisions in 3323619 relations
Fri Nov 23 15:48:52 2012  added 2856 free relations
Fri Nov 23 15:48:52 2012  commencing duplicate removal, pass 2
Fri Nov 23 15:48:53 2012  found 108782 duplicates and 3217693 unique relations
Fri Nov 23 15:48:53 2012  memory use: 37.8 MB
Fri Nov 23 15:48:53 2012  reading rational ideals above 2555904
Fri Nov 23 15:48:53 2012  reading algebraic ideals above 2555904
Fri Nov 23 15:48:53 2012  commencing singleton removal, pass 1
Fri Nov 23 15:49:09 2012  relations with 0 large ideals: 18678
Fri Nov 23 15:49:09 2012  relations with 1 large ideals: 170407
Fri Nov 23 15:49:09 2012  relations with 2 large ideals: 677790
Fri Nov 23 15:49:09 2012  relations with 3 large ideals: 1230699
Fri Nov 23 15:49:09 2012  relations with 4 large ideals: 922097
Fri Nov 23 15:49:09 2012  relations with 5 large ideals: 139649
Fri Nov 23 15:49:09 2012  relations with 6 large ideals: 58318
Fri Nov 23 15:49:09 2012  relations with 7+ large ideals: 55
Fri Nov 23 15:49:09 2012  3217693 relations and about 5617753 large ideals
Fri Nov 23 15:49:09 2012  commencing singleton removal, pass 2
Fri Nov 23 15:49:25 2012  found 2620146 singletons
Fri Nov 23 15:49:25 2012  current dataset: 597547 relations and about 969152 large ideals
Fri Nov 23 15:49:25 2012  commencing singleton removal, pass 3
Fri Nov 23 15:49:28 2012  found 488511 singletons
Fri Nov 23 15:49:28 2012  current dataset: 109036 relations and about 123018 large ideals
Fri Nov 23 15:49:28 2012  commencing singleton removal, final pass
Fri Nov 23 15:49:29 2012  memory use: 9.8 MB
Fri Nov 23 15:49:29 2012  commencing in-memory singleton removal
Fri Nov 23 15:49:29 2012  begin with 109036 relations and 124662 unique ideals
Fri Nov 23 15:49:29 2012  reduce to 26718 relations and 4571 ideals in 7 passes
Fri Nov 23 15:49:29 2012  max relations containing the same ideal: 6
Fri Nov 23 15:49:29 2012  reading rational ideals above 720000
Fri Nov 23 15:49:29 2012  reading algebraic ideals above 720000
Fri Nov 23 15:49:29 2012  commencing singleton removal, final pass
Fri Nov 23 15:49:30 2012  keeping 93313 ideals with weight <= 20, new excess is 115722
Fri Nov 23 15:49:30 2012  memory use: 9.8 MB
Fri Nov 23 15:49:30 2012  commencing in-memory singleton removal
Fri Nov 23 15:49:30 2012  begin with 30649 relations and 93313 unique ideals
Fri Nov 23 15:49:30 2012  reduce to 654 relations and 27 ideals in 5 passes
Fri Nov 23 15:49:30 2012  max relations containing the same ideal: 2
Fri Nov 23 15:49:30 2012  filtering wants 400830 more relations
Fri Nov 23 15:49:30 2012  elapsed time 00:01:03
        RelProcTime: 63
-> makeJobFile(): Adjusted to q0=2600001, q1=2700000.
->               client 1 q0: 2600001
        LatticeSieveTime: 3281
Fri Nov 23 16:44:12 2012  
Fri Nov 23 16:44:12 2012  
Fri Nov 23 16:44:12 2012  Msieve v. 1.39
Fri Nov 23 16:44:12 2012  random seeds: 257c9149 2eb45339
Fri Nov 23 16:44:12 2012  factoring 22153484915582103668559583554040772203926738185109394811200866794185359624410681485893952840238404619014415894387854973 (119 digits)
Fri Nov 23 16:44:12 2012  no P-1/P+1/ECM available, skipping
Fri Nov 23 16:44:12 2012  commencing number field sieve (119-digit input)
Fri Nov 23 16:44:12 2012  R0: -72683812502624045859101
Fri Nov 23 16:44:12 2012  R1:  2866552890553
Fri Nov 23 16:44:12 2012  A0:  378856774001821928202859440
Fri Nov 23 16:44:12 2012  A1:  40104575548030136777924
Fri Nov 23 16:44:12 2012  A2: -5928605349076127202
Fri Nov 23 16:44:12 2012  A3: -134830190165760
Fri Nov 23 16:44:12 2012  A4:  19712879611
Fri Nov 23 16:44:12 2012  A5:  10920
Fri Nov 23 16:44:12 2012  skew 22656.69, size 3.494237e-12, alpha -5.363264, combined = 2.088163e-11
Fri Nov 23 16:44:12 2012  
Fri Nov 23 16:44:12 2012  commencing relation filtering
Fri Nov 23 16:44:12 2012  commencing duplicate removal, pass 1
Fri Nov 23 16:44:31 2012  found 164968 hash collisions in 3874031 relations
Fri Nov 23 16:44:40 2012  added 2134 free relations
Fri Nov 23 16:44:40 2012  commencing duplicate removal, pass 2
Fri Nov 23 16:44:41 2012  found 143416 duplicates and 3732749 unique relations
Fri Nov 23 16:44:41 2012  memory use: 39.7 MB
Fri Nov 23 16:44:41 2012  reading rational ideals above 2686976
Fri Nov 23 16:44:41 2012  reading algebraic ideals above 2686976
Fri Nov 23 16:44:41 2012  commencing singleton removal, pass 1
Fri Nov 23 16:44:59 2012  relations with 0 large ideals: 23937
Fri Nov 23 16:44:59 2012  relations with 1 large ideals: 217398
Fri Nov 23 16:44:59 2012  relations with 2 large ideals: 842963
Fri Nov 23 16:44:59 2012  relations with 3 large ideals: 1470901
Fri Nov 23 16:44:59 2012  relations with 4 large ideals: 1025426
Fri Nov 23 16:44:59 2012  relations with 5 large ideals: 96065
Fri Nov 23 16:44:59 2012  relations with 6 large ideals: 56046
Fri Nov 23 16:44:59 2012  relations with 7+ large ideals: 13
Fri Nov 23 16:44:59 2012  3732749 relations and about 6145021 large ideals
Fri Nov 23 16:44:59 2012  commencing singleton removal, pass 2
Fri Nov 23 16:45:18 2012  found 2897610 singletons
Fri Nov 23 16:45:18 2012  current dataset: 835139 relations and about 1275144 large ideals
Fri Nov 23 16:45:18 2012  commencing singleton removal, pass 3
Fri Nov 23 16:45:22 2012  found 643133 singletons
Fri Nov 23 16:45:22 2012  current dataset: 192006 relations and about 230412 large ideals
Fri Nov 23 16:45:22 2012  commencing singleton removal, final pass
Fri Nov 23 16:45:24 2012  memory use: 11.7 MB
Fri Nov 23 16:45:24 2012  commencing in-memory singleton removal
Fri Nov 23 16:45:24 2012  begin with 192006 relations and 234365 unique ideals
Fri Nov 23 16:45:24 2012  reduce to 36844 relations and 7500 ideals in 8 passes
Fri Nov 23 16:45:24 2012  max relations containing the same ideal: 5
Fri Nov 23 16:45:24 2012  reading rational ideals above 720000
Fri Nov 23 16:45:24 2012  reading algebraic ideals above 720000
Fri Nov 23 16:45:24 2012  commencing singleton removal, final pass
Fri Nov 23 16:45:25 2012  keeping 112244 ideals with weight <= 20, new excess is 115715
Fri Nov 23 16:45:25 2012  memory use: 9.8 MB
Fri Nov 23 16:45:25 2012  commencing in-memory singleton removal
Fri Nov 23 16:45:25 2012  begin with 39625 relations and 112244 unique ideals
Fri Nov 23 16:45:25 2012  reduce to 660 relations and 31 ideals in 5 passes
Fri Nov 23 16:45:25 2012  max relations containing the same ideal: 2
Fri Nov 23 16:45:25 2012  filtering wants 400800 more relations
Fri Nov 23 16:45:25 2012  elapsed time 00:01:13
        RelProcTime: 73
-> makeJobFile(): Adjusted to q0=2700001, q1=2800000.
->               client 1 q0: 2700001
        LatticeSieveTime: 3271
Fri Nov 23 17:39:57 2012  
Fri Nov 23 17:39:57 2012  
Fri Nov 23 17:39:57 2012  Msieve v. 1.39
Fri Nov 23 17:39:57 2012  random seeds: 7cf63ac1 4fe51157
Fri Nov 23 17:39:57 2012  factoring 22153484915582103668559583554040772203926738185109394811200866794185359624410681485893952840238404619014415894387854973 (119 digits)
Fri Nov 23 17:39:58 2012  no P-1/P+1/ECM available, skipping
Fri Nov 23 17:39:58 2012  commencing number field sieve (119-digit input)
Fri Nov 23 17:39:58 2012  R0: -72683812502624045859101
Fri Nov 23 17:39:58 2012  R1:  2866552890553
Fri Nov 23 17:39:58 2012  A0:  378856774001821928202859440
Fri Nov 23 17:39:58 2012  A1:  40104575548030136777924
Fri Nov 23 17:39:58 2012  A2: -5928605349076127202
Fri Nov 23 17:39:58 2012  A3: -134830190165760
Fri Nov 23 17:39:58 2012  A4:  19712879611
Fri Nov 23 17:39:58 2012  A5:  10920
Fri Nov 23 17:39:58 2012  skew 22656.69, size 3.494237e-12, alpha -5.363264, combined = 2.088163e-11
Fri Nov 23 17:39:58 2012  
Fri Nov 23 17:39:58 2012  commencing relation filtering
Fri Nov 23 17:39:58 2012  commencing duplicate removal, pass 1
Fri Nov 23 17:40:19 2012  found 209379 hash collisions in 4423036 relations
Fri Nov 23 17:40:28 2012  added 1649 free relations
Fri Nov 23 17:40:28 2012  commencing duplicate removal, pass 2
Fri Nov 23 17:40:30 2012  found 182092 duplicates and 4242593 unique relations
Fri Nov 23 17:40:30 2012  memory use: 39.7 MB
Fri Nov 23 17:40:30 2012  reading rational ideals above 2818048
Fri Nov 23 17:40:30 2012  reading algebraic ideals above 2818048
Fri Nov 23 17:40:30 2012  commencing singleton removal, pass 1
Fri Nov 23 17:40:50 2012  relations with 0 large ideals: 29209
Fri Nov 23 17:40:50 2012  relations with 1 large ideals: 263206
Fri Nov 23 17:40:50 2012  relations with 2 large ideals: 997084
Fri Nov 23 17:40:50 2012  relations with 3 large ideals: 1690260
Fri Nov 23 17:40:50 2012  relations with 4 large ideals: 1130723
Fri Nov 23 17:40:50 2012  relations with 5 large ideals: 76140
Fri Nov 23 17:40:50 2012  relations with 6 large ideals: 55966
Fri Nov 23 17:40:50 2012  relations with 7+ large ideals: 5
Fri Nov 23 17:40:50 2012  4242593 relations and about 6618557 large ideals
Fri Nov 23 17:40:50 2012  commencing singleton removal, pass 2
Fri Nov 23 17:41:12 2012  found 3134846 singletons
Fri Nov 23 17:41:12 2012  current dataset: 1107747 relations and about 1592964 large ideals
Fri Nov 23 17:41:12 2012  commencing singleton removal, pass 3
Fri Nov 23 17:41:18 2012  found 790879 singletons
Fri Nov 23 17:41:18 2012  current dataset: 316868 relations and about 387036 large ideals
Fri Nov 23 17:41:18 2012  commencing singleton removal, pass 4
Fri Nov 23 17:41:20 2012  found 209149 singletons
Fri Nov 23 17:41:20 2012  current dataset: 107719 relations and about 81486 large ideals
Fri Nov 23 17:41:20 2012  commencing singleton removal, final pass
Fri Nov 23 17:41:21 2012  memory use: 9.8 MB
Fri Nov 23 17:41:21 2012  commencing in-memory singleton removal
Fri Nov 23 17:41:21 2012  begin with 107719 relations and 83345 unique ideals
Fri Nov 23 17:41:21 2012  reduce to 49301 relations and 12061 ideals in 8 passes
Fri Nov 23 17:41:21 2012  max relations containing the same ideal: 4
Fri Nov 23 17:41:21 2012  reading rational ideals above 720000
Fri Nov 23 17:41:21 2012  reading algebraic ideals above 720000
Fri Nov 23 17:41:21 2012  commencing singleton removal, final pass
Fri Nov 23 17:41:22 2012  keeping 136340 ideals with weight <= 20, new excess is 115709
Fri Nov 23 17:41:22 2012  memory use: 9.8 MB
Fri Nov 23 17:41:22 2012  commencing in-memory singleton removal
Fri Nov 23 17:41:22 2012  begin with 51071 relations and 136340 unique ideals
Fri Nov 23 17:41:22 2012  reduce to 666 relations and 33 ideals in 6 passes
Fri Nov 23 17:41:22 2012  max relations containing the same ideal: 2
Fri Nov 23 17:41:22 2012  filtering wants 400767 more relations
Fri Nov 23 17:41:22 2012  elapsed time 00:01:25
        RelProcTime: 85
-> makeJobFile(): Adjusted to q0=2800001, q1=2900000.
->               client 1 q0: 2800001
        LatticeSieveTime: 3301
Fri Nov 23 18:36:24 2012  
Fri Nov 23 18:36:24 2012  
Fri Nov 23 18:36:24 2012  Msieve v. 1.39
Fri Nov 23 18:36:24 2012  random seeds: 15ee14c4 d5e62e61
Fri Nov 23 18:36:24 2012  factoring 22153484915582103668559583554040772203926738185109394811200866794185359624410681485893952840238404619014415894387854973 (119 digits)
Fri Nov 23 18:36:24 2012  no P-1/P+1/ECM available, skipping
Fri Nov 23 18:36:24 2012  commencing number field sieve (119-digit input)
Fri Nov 23 18:36:24 2012  R0: -72683812502624045859101
Fri Nov 23 18:36:24 2012  R1:  2866552890553
Fri Nov 23 18:36:24 2012  A0:  378856774001821928202859440
Fri Nov 23 18:36:24 2012  A1:  40104575548030136777924
Fri Nov 23 18:36:24 2012  A2: -5928605349076127202
Fri Nov 23 18:36:24 2012  A3: -134830190165760
Fri Nov 23 18:36:24 2012  A4:  19712879611
Fri Nov 23 18:36:24 2012  A5:  10920
Fri Nov 23 18:36:24 2012  skew 22656.69, size 3.494237e-12, alpha -5.363264, combined = 2.088163e-11
Fri Nov 23 18:36:24 2012  
Fri Nov 23 18:36:24 2012  commencing relation filtering
Fri Nov 23 18:36:24 2012  commencing duplicate removal, pass 1
Fri Nov 23 18:36:48 2012  found 258320 hash collisions in 4974494 relations
Fri Nov 23 18:36:58 2012  added 1401 free relations
Fri Nov 23 18:36:58 2012  commencing duplicate removal, pass 2
Fri Nov 23 18:36:59 2012  found 224641 duplicates and 4751254 unique relations
Fri Nov 23 18:36:59 2012  memory use: 39.7 MB
Fri Nov 23 18:36:59 2012  reading rational ideals above 2818048
Fri Nov 23 18:36:59 2012  reading algebraic ideals above 2818048
Fri Nov 23 18:36:59 2012  commencing singleton removal, pass 1
Fri Nov 23 18:37:23 2012  relations with 0 large ideals: 29732
Fri Nov 23 18:37:23 2012  relations with 1 large ideals: 269963
Fri Nov 23 18:37:23 2012  relations with 2 large ideals: 1039448
Fri Nov 23 18:37:23 2012  relations with 3 large ideals: 1819383
Fri Nov 23 18:37:23 2012  relations with 4 large ideals: 1327087
Fri Nov 23 18:37:23 2012  relations with 5 large ideals: 199893
Fri Nov 23 18:37:23 2012  relations with 6 large ideals: 65698
Fri Nov 23 18:37:23 2012  relations with 7+ large ideals: 50
Fri Nov 23 18:37:23 2012  4751254 relations and about 7065972 large ideals
Fri Nov 23 18:37:23 2012  commencing singleton removal, pass 2
Fri Nov 23 18:37:46 2012  found 3334482 singletons
Fri Nov 23 18:37:46 2012  current dataset: 1416772 relations and about 1937751 large ideals
Fri Nov 23 18:37:46 2012  commencing singleton removal, pass 3
Fri Nov 23 18:37:54 2012  found 926161 singletons
Fri Nov 23 18:37:54 2012  current dataset: 490611 relations and about 605535 large ideals
Fri Nov 23 18:37:54 2012  commencing singleton removal, pass 4
Fri Nov 23 18:37:57 2012  found 306899 singletons
Fri Nov 23 18:37:57 2012  current dataset: 183712 relations and about 172343 large ideals
Fri Nov 23 18:37:57 2012  commencing singleton removal, final pass
Fri Nov 23 18:37:59 2012  memory use: 11.7 MB
Fri Nov 23 18:37:59 2012  commencing in-memory singleton removal
Fri Nov 23 18:37:59 2012  begin with 183712 relations and 176517 unique ideals
Fri Nov 23 18:37:59 2012  reduce to 56960 relations and 16989 ideals in 10 passes
Fri Nov 23 18:37:59 2012  max relations containing the same ideal: 8
Fri Nov 23 18:37:59 2012  reading rational ideals above 720000
Fri Nov 23 18:37:59 2012  reading algebraic ideals above 720000
Fri Nov 23 18:37:59 2012  commencing singleton removal, final pass
Fri Nov 23 18:38:00 2012  keeping 152198 ideals with weight <= 20, new excess is 115715
Fri Nov 23 18:38:00 2012  memory use: 9.8 MB
Fri Nov 23 18:38:00 2012  commencing in-memory singleton removal
Fri Nov 23 18:38:00 2012  begin with 59002 relations and 152198 unique ideals
Fri Nov 23 18:38:00 2012  reduce to 676 relations and 44 ideals in 6 passes
Fri Nov 23 18:38:00 2012  max relations containing the same ideal: 2
Fri Nov 23 18:38:00 2012  filtering wants 400791 more relations
Fri Nov 23 18:38:00 2012  elapsed time 00:01:36
        RelProcTime: 96
-> makeJobFile(): Adjusted to q0=2900001, q1=3000000.
->               client 1 q0: 2900001
        LatticeSieveTime: 3289
Fri Nov 23 19:32:50 2012  
Fri Nov 23 19:32:50 2012  
Fri Nov 23 19:32:50 2012  Msieve v. 1.39
Fri Nov 23 19:32:50 2012  random seeds: d37122a9 296259ba
Fri Nov 23 19:32:50 2012  factoring 22153484915582103668559583554040772203926738185109394811200866794185359624410681485893952840238404619014415894387854973 (119 digits)
Fri Nov 23 19:32:51 2012  no P-1/P+1/ECM available, skipping
Fri Nov 23 19:32:51 2012  commencing number field sieve (119-digit input)
Fri Nov 23 19:32:51 2012  R0: -72683812502624045859101
Fri Nov 23 19:32:51 2012  R1:  2866552890553
Fri Nov 23 19:32:51 2012  A0:  378856774001821928202859440
Fri Nov 23 19:32:51 2012  A1:  40104575548030136777924
Fri Nov 23 19:32:51 2012  A2: -5928605349076127202
Fri Nov 23 19:32:51 2012  A3: -134830190165760
Fri Nov 23 19:32:51 2012  A4:  19712879611
Fri Nov 23 19:32:51 2012  A5:  10920
Fri Nov 23 19:32:51 2012  skew 22656.69, size 3.494237e-12, alpha -5.363264, combined = 2.088163e-11
Fri Nov 23 19:32:51 2012  
Fri Nov 23 19:32:51 2012  commencing relation filtering
Fri Nov 23 19:32:51 2012  commencing duplicate removal, pass 1
Fri Nov 23 19:33:17 2012  found 310100 hash collisions in 5519284 relations
Fri Nov 23 19:33:28 2012  added 1006 free relations
Fri Nov 23 19:33:28 2012  commencing duplicate removal, pass 2
Fri Nov 23 19:33:30 2012  found 269867 duplicates and 5250423 unique relations
Fri Nov 23 19:33:30 2012  memory use: 43.3 MB
Fri Nov 23 19:33:30 2012  reading rational ideals above 2949120
Fri Nov 23 19:33:30 2012  reading algebraic ideals above 2949120
Fri Nov 23 19:33:30 2012  commencing singleton removal, pass 1
Fri Nov 23 19:33:56 2012  relations with 0 large ideals: 35877
Fri Nov 23 19:33:56 2012  relations with 1 large ideals: 323448
Fri Nov 23 19:33:56 2012  relations with 2 large ideals: 1213185
Fri Nov 23 19:33:56 2012  relations with 3 large ideals: 2053247
Fri Nov 23 19:33:56 2012  relations with 4 large ideals: 1411824
Fri Nov 23 19:33:56 2012  relations with 5 large ideals: 150261
Fri Nov 23 19:33:56 2012  relations with 6 large ideals: 62560
Fri Nov 23 19:33:56 2012  relations with 7+ large ideals: 21
Fri Nov 23 19:33:56 2012  5250423 relations and about 7453014 large ideals
Fri Nov 23 19:33:56 2012  commencing singleton removal, pass 2
Fri Nov 23 19:34:22 2012  found 3498839 singletons
Fri Nov 23 19:34:22 2012  current dataset: 1751584 relations and about 2262570 large ideals
Fri Nov 23 19:34:22 2012  commencing singleton removal, pass 3
Fri Nov 23 19:34:31 2012  found 1034443 singletons
Fri Nov 23 19:34:31 2012  current dataset: 717141 relations and about 852119 large ideals
Fri Nov 23 19:34:31 2012  commencing singleton removal, pass 4
Fri Nov 23 19:34:36 2012  found 399985 singletons
Fri Nov 23 19:34:36 2012  current dataset: 317156 relations and about 318099 large ideals
Fri Nov 23 19:34:36 2012  commencing singleton removal, final pass
Fri Nov 23 19:34:38 2012  memory use: 15.3 MB
Fri Nov 23 19:34:38 2012  commencing in-memory singleton removal
Fri Nov 23 19:34:38 2012  begin with 317156 relations and 327359 unique ideals
Fri Nov 23 19:34:38 2012  reduce to 76820 relations and 26300 ideals in 10 passes
Fri Nov 23 19:34:38 2012  max relations containing the same ideal: 6
Fri Nov 23 19:34:38 2012  reading rational ideals above 720000
Fri Nov 23 19:34:38 2012  reading algebraic ideals above 720000
Fri Nov 23 19:34:38 2012  commencing singleton removal, final pass
Fri Nov 23 19:34:39 2012  keeping 188592 ideals with weight <= 20, new excess is 115709
Fri Nov 23 19:34:39 2012  memory use: 11.7 MB
Fri Nov 23 19:34:39 2012  commencing in-memory singleton removal
Fri Nov 23 19:34:39 2012  begin with 77919 relations and 188592 unique ideals
Fri Nov 23 19:34:39 2012  reduce to 683 relations and 41 ideals in 6 passes
Fri Nov 23 19:34:39 2012  max relations containing the same ideal: 2
Fri Nov 23 19:34:39 2012  filtering wants 400740 more relations
Fri Nov 23 19:34:39 2012  elapsed time 00:01:49
        RelProcTime: 109
-> makeJobFile(): Adjusted to q0=3000001, q1=3100000.
->               client 1 q0: 3000001
        LatticeSieveTime: 3225
Fri Nov 23 20:28:25 2012  
Fri Nov 23 20:28:25 2012  
Fri Nov 23 20:28:25 2012  Msieve v. 1.39
Fri Nov 23 20:28:25 2012  random seeds: 4cc152c6 9bc2ab5d
Fri Nov 23 20:28:25 2012  factoring 22153484915582103668559583554040772203926738185109394811200866794185359624410681485893952840238404619014415894387854973 (119 digits)
Fri Nov 23 20:28:25 2012  no P-1/P+1/ECM available, skipping
Fri Nov 23 20:28:25 2012  commencing number field sieve (119-digit input)
Fri Nov 23 20:28:25 2012  R0: -72683812502624045859101
Fri Nov 23 20:28:25 2012  R1:  2866552890553
Fri Nov 23 20:28:25 2012  A0:  378856774001821928202859440
Fri Nov 23 20:28:25 2012  A1:  40104575548030136777924
Fri Nov 23 20:28:25 2012  A2: -5928605349076127202
Fri Nov 23 20:28:25 2012  A3: -134830190165760
Fri Nov 23 20:28:25 2012  A4:  19712879611
Fri Nov 23 20:28:25 2012  A5:  10920
Fri Nov 23 20:28:25 2012  skew 22656.69, size 3.494237e-12, alpha -5.363264, combined = 2.088163e-11
Fri Nov 23 20:28:25 2012  
Fri Nov 23 20:28:25 2012  commencing relation filtering
Fri Nov 23 20:28:25 2012  commencing duplicate removal, pass 1
Fri Nov 23 20:28:54 2012  found 364961 hash collisions in 6054737 relations
Fri Nov 23 20:29:05 2012  added 802 free relations
Fri Nov 23 20:29:05 2012  commencing duplicate removal, pass 2
Fri Nov 23 20:29:07 2012  found 317858 duplicates and 5737681 unique relations
Fri Nov 23 20:29:07 2012  memory use: 43.3 MB
Fri Nov 23 20:29:07 2012  reading rational ideals above 3080192
Fri Nov 23 20:29:07 2012  reading algebraic ideals above 3080192
Fri Nov 23 20:29:07 2012  commencing singleton removal, pass 1
Fri Nov 23 20:29:35 2012  relations with 0 large ideals: 42709
Fri Nov 23 20:29:35 2012  relations with 1 large ideals: 378989
Fri Nov 23 20:29:35 2012  relations with 2 large ideals: 1389837
Fri Nov 23 20:29:35 2012  relations with 3 large ideals: 2280129
Fri Nov 23 20:29:35 2012  relations with 4 large ideals: 1485322
Fri Nov 23 20:29:35 2012  relations with 5 large ideals: 100414
Fri Nov 23 20:29:35 2012  relations with 6 large ideals: 60275
Fri Nov 23 20:29:35 2012  relations with 7+ large ideals: 6
Fri Nov 23 20:29:35 2012  5737681 relations and about 7801181 large ideals
Fri Nov 23 20:29:35 2012  commencing singleton removal, pass 2
Fri Nov 23 20:30:04 2012  found 3631225 singletons
Fri Nov 23 20:30:04 2012  current dataset: 2106456 relations and about 2580543 large ideals
Fri Nov 23 20:30:04 2012  commencing singleton removal, pass 3
Fri Nov 23 20:30:15 2012  found 1115194 singletons
Fri Nov 23 20:30:15 2012  current dataset: 991262 relations and about 1127040 large ideals
Fri Nov 23 20:30:15 2012  commencing singleton removal, pass 4
Fri Nov 23 20:30:21 2012  found 475192 singletons
Fri Nov 23 20:30:21 2012  current dataset: 516070 relations and about 526692 large ideals
Fri Nov 23 20:30:21 2012  commencing singleton removal, final pass
Fri Nov 23 20:30:24 2012  memory use: 15.3 MB
Fri Nov 23 20:30:24 2012  commencing in-memory singleton removal
Fri Nov 23 20:30:24 2012  begin with 516070 relations and 544716 unique ideals
Fri Nov 23 20:30:24 2012  reduce to 103652 relations and 40455 ideals in 13 passes
Fri Nov 23 20:30:24 2012  max relations containing the same ideal: 6
Fri Nov 23 20:30:24 2012  reading rational ideals above 720000
Fri Nov 23 20:30:24 2012  reading algebraic ideals above 720000
Fri Nov 23 20:30:24 2012  commencing singleton removal, final pass
Fri Nov 23 20:30:25 2012  keeping 236991 ideals with weight <= 20, new excess is 115710
Fri Nov 23 20:30:25 2012  memory use: 11.7 MB
Fri Nov 23 20:30:25 2012  commencing in-memory singleton removal
Fri Nov 23 20:30:25 2012  begin with 104699 relations and 236991 unique ideals
Fri Nov 23 20:30:25 2012  reduce to 691 relations and 51 ideals in 6 passes
Fri Nov 23 20:30:25 2012  max relations containing the same ideal: 2
Fri Nov 23 20:30:25 2012  filtering wants 400749 more relations
Fri Nov 23 20:30:25 2012  elapsed time 00:02:00
        RelProcTime: 120
-> makeJobFile(): Adjusted to q0=3100001, q1=3200000.
->               client 1 q0: 3100001
        LatticeSieveTime: 3374
Fri Nov 23 21:26:40 2012  
Fri Nov 23 21:26:40 2012  
Fri Nov 23 21:26:40 2012  Msieve v. 1.39
Fri Nov 23 21:26:40 2012  random seeds: 2b3e5af1 2b0592f4
Fri Nov 23 21:26:40 2012  factoring 22153484915582103668559583554040772203926738185109394811200866794185359624410681485893952840238404619014415894387854973 (119 digits)
Fri Nov 23 21:26:41 2012  no P-1/P+1/ECM available, skipping
Fri Nov 23 21:26:41 2012  commencing number field sieve (119-digit input)
Fri Nov 23 21:26:41 2012  R0: -72683812502624045859101
Fri Nov 23 21:26:41 2012  R1:  2866552890553
Fri Nov 23 21:26:41 2012  A0:  378856774001821928202859440
Fri Nov 23 21:26:41 2012  A1:  40104575548030136777924
Fri Nov 23 21:26:41 2012  A2: -5928605349076127202
Fri Nov 23 21:26:41 2012  A3: -134830190165760
Fri Nov 23 21:26:41 2012  A4:  19712879611
Fri Nov 23 21:26:41 2012  A5:  10920
Fri Nov 23 21:26:41 2012  skew 22656.69, size 3.494237e-12, alpha -5.363264, combined = 2.088163e-11
Fri Nov 23 21:26:41 2012  
Fri Nov 23 21:26:41 2012  commencing relation filtering
Fri Nov 23 21:26:41 2012  commencing duplicate removal, pass 1
Fri Nov 23 21:27:12 2012  found 425686 hash collisions in 6613920 relations
Fri Nov 23 21:27:23 2012  added 645 free relations
Fri Nov 23 21:27:23 2012  commencing duplicate removal, pass 2
Fri Nov 23 21:27:25 2012  found 370860 duplicates and 6243705 unique relations
Fri Nov 23 21:27:25 2012  memory use: 43.3 MB
Fri Nov 23 21:27:25 2012  reading rational ideals above 3211264
Fri Nov 23 21:27:25 2012  reading algebraic ideals above 3211264
Fri Nov 23 21:27:25 2012  commencing singleton removal, pass 1
Fri Nov 23 21:27:56 2012  relations with 0 large ideals: 50057
Fri Nov 23 21:27:56 2012  relations with 1 large ideals: 435620
Fri Nov 23 21:27:56 2012  relations with 2 large ideals: 1564936
Fri Nov 23 21:27:56 2012  relations with 3 large ideals: 2501019
Fri Nov 23 21:27:56 2012  relations with 4 large ideals: 1565777
Fri Nov 23 21:27:56 2012  relations with 5 large ideals: 66924
Fri Nov 23 21:27:56 2012  relations with 6 large ideals: 59372
Fri Nov 23 21:27:56 2012  relations with 7+ large ideals: 0
Fri Nov 23 21:27:56 2012  6243705 relations and about 8136199 large ideals
Fri Nov 23 21:27:56 2012  commencing singleton removal, pass 2
Fri Nov 23 21:28:27 2012  found 3742041 singletons
Fri Nov 23 21:28:27 2012  current dataset: 2501664 relations and about 2910973 large ideals
Fri Nov 23 21:28:27 2012  commencing singleton removal, pass 3
Fri Nov 23 21:28:40 2012  found 1174698 singletons
Fri Nov 23 21:28:40 2012  current dataset: 1326966 relations and about 1439428 large ideals
Fri Nov 23 21:28:40 2012  commencing singleton removal, pass 4
Fri Nov 23 21:28:47 2012  found 525463 singletons
Fri Nov 23 21:28:47 2012  current dataset: 801503 relations and about 808186 large ideals
Fri Nov 23 21:28:47 2012  commencing singleton removal, pass 5
Fri Nov 23 21:28:52 2012  found 281382 singletons
Fri Nov 23 21:28:52 2012  current dataset: 520121 relations and about 478129 large ideals
Fri Nov 23 21:28:52 2012  commencing singleton removal, final pass
Fri Nov 23 21:28:55 2012  memory use: 15.3 MB
Fri Nov 23 21:28:55 2012  commencing in-memory singleton removal
Fri Nov 23 21:28:55 2012  begin with 520121 relations and 497064 unique ideals
Fri Nov 23 21:28:55 2012  reduce to 143691 relations and 64857 ideals in 16 passes
Fri Nov 23 21:28:55 2012  max relations containing the same ideal: 6
Fri Nov 23 21:28:56 2012  reading rational ideals above 720000
Fri Nov 23 21:28:56 2012  reading algebraic ideals above 720000
Fri Nov 23 21:28:56 2012  commencing singleton removal, final pass
Fri Nov 23 21:28:57 2012  keeping 300195 ideals with weight <= 20, new excess is 115707
Fri Nov 23 21:28:57 2012  memory use: 11.7 MB
Fri Nov 23 21:28:57 2012  commencing in-memory singleton removal
Fri Nov 23 21:28:57 2012  begin with 144353 relations and 300195 unique ideals
Fri Nov 23 21:28:57 2012  reduce to 696 relations and 52 ideals in 6 passes
Fri Nov 23 21:28:57 2012  max relations containing the same ideal: 3
Fri Nov 23 21:28:57 2012  filtering wants 400728 more relations
Fri Nov 23 21:28:57 2012  elapsed time 00:02:17
        RelProcTime: 137
-> makeJobFile(): Adjusted to q0=3200001, q1=3300000.
->               client 1 q0: 3200001
        LatticeSieveTime: 3409
Fri Nov 23 22:25:47 2012  
Fri Nov 23 22:25:47 2012  
Fri Nov 23 22:25:47 2012  Msieve v. 1.39
Fri Nov 23 22:25:47 2012  random seeds: b07d2623 16c6eb3d
Fri Nov 23 22:25:47 2012  factoring 22153484915582103668559583554040772203926738185109394811200866794185359624410681485893952840238404619014415894387854973 (119 digits)
Fri Nov 23 22:25:48 2012  no P-1/P+1/ECM available, skipping
Fri Nov 23 22:25:48 2012  commencing number field sieve (119-digit input)
Fri Nov 23 22:25:48 2012  R0: -72683812502624045859101
Fri Nov 23 22:25:48 2012  R1:  2866552890553
Fri Nov 23 22:25:48 2012  A0:  378856774001821928202859440
Fri Nov 23 22:25:48 2012  A1:  40104575548030136777924
Fri Nov 23 22:25:48 2012  A2: -5928605349076127202
Fri Nov 23 22:25:48 2012  A3: -134830190165760
Fri Nov 23 22:25:48 2012  A4:  19712879611
Fri Nov 23 22:25:48 2012  A5:  10920
Fri Nov 23 22:25:48 2012  skew 22656.69, size 3.494237e-12, alpha -5.363264, combined = 2.088163e-11
Fri Nov 23 22:25:48 2012  
Fri Nov 23 22:25:48 2012  commencing relation filtering
Fri Nov 23 22:25:48 2012  commencing duplicate removal, pass 1
Fri Nov 23 22:26:22 2012  found 489592 hash collisions in 7172992 relations
Fri Nov 23 22:26:34 2012  added 505 free relations
Fri Nov 23 22:26:34 2012  commencing duplicate removal, pass 2
Fri Nov 23 22:26:36 2012  found 426839 duplicates and 6746658 unique relations
Fri Nov 23 22:26:36 2012  memory use: 43.3 MB
Fri Nov 23 22:26:36 2012  reading rational ideals above 3342336
Fri Nov 23 22:26:36 2012  reading algebraic ideals above 3342336
Fri Nov 23 22:26:36 2012  commencing singleton removal, pass 1
Fri Nov 23 22:27:10 2012  relations with 0 large ideals: 57202
Fri Nov 23 22:27:10 2012  relations with 1 large ideals: 489973
Fri Nov 23 22:27:10 2012  relations with 2 large ideals: 1725621
Fri Nov 23 22:27:10 2012  relations with 3 large ideals: 2703957
Fri Nov 23 22:27:10 2012  relations with 4 large ideals: 1652156
Fri Nov 23 22:27:10 2012  relations with 5 large ideals: 58018
Fri Nov 23 22:27:10 2012  relations with 6 large ideals: 59731
Fri Nov 23 22:27:10 2012  relations with 7+ large ideals: 0
Fri Nov 23 22:27:10 2012  6746658 relations and about 8444022 large ideals
Fri Nov 23 22:27:10 2012  commencing singleton removal, pass 2
Fri Nov 23 22:27:43 2012  found 3828968 singletons
Fri Nov 23 22:27:43 2012  current dataset: 2917690 relations and about 3234316 large ideals
Fri Nov 23 22:27:43 2012  commencing singleton removal, pass 3
Fri Nov 23 22:27:58 2012  found 1209964 singletons
Fri Nov 23 22:27:58 2012  current dataset: 1707726 relations and about 1768509 large ideals
Fri Nov 23 22:27:58 2012  commencing singleton removal, pass 4
Fri Nov 23 22:28:08 2012  found 547116 singletons
Fri Nov 23 22:28:08 2012  current dataset: 1160610 relations and about 1138210 large ideals
Fri Nov 23 22:28:08 2012  commencing singleton removal, pass 5
Fri Nov 23 22:28:14 2012  found 306785 singletons
Fri Nov 23 22:28:14 2012  current dataset: 853825 relations and about 794269 large ideals
Fri Nov 23 22:28:14 2012  commencing singleton removal, final pass
Fri Nov 23 22:28:20 2012  memory use: 22.6 MB
Fri Nov 23 22:28:20 2012  commencing in-memory singleton removal
Fri Nov 23 22:28:20 2012  begin with 853825 relations and 829912 unique ideals
Fri Nov 23 22:28:20 2012  reduce to 206855 relations and 109128 ideals in 22 passes
Fri Nov 23 22:28:20 2012  max relations containing the same ideal: 7
Fri Nov 23 22:28:20 2012  reading rational ideals above 720000
Fri Nov 23 22:28:20 2012  reading algebraic ideals above 720000
Fri Nov 23 22:28:20 2012  commencing singleton removal, final pass
Fri Nov 23 22:28:22 2012  keeping 388255 ideals with weight <= 20, new excess is 115707
Fri Nov 23 22:28:22 2012  memory use: 15.3 MB
Fri Nov 23 22:28:22 2012  commencing in-memory singleton removal
Fri Nov 23 22:28:22 2012  begin with 207371 relations and 388255 unique ideals
Fri Nov 23 22:28:22 2012  reduce to 695 relations and 48 ideals in 6 passes
Fri Nov 23 22:28:22 2012  max relations containing the same ideal: 2
Fri Nov 23 22:28:22 2012  filtering wants 400719 more relations
Fri Nov 23 22:28:22 2012  elapsed time 00:02:35
        RelProcTime: 155
-> makeJobFile(): Adjusted to q0=3300001, q1=3400000.
->               client 1 q0: 3300001
        LatticeSieveTime: 3320
Fri Nov 23 23:23:43 2012  
Fri Nov 23 23:23:43 2012  
Fri Nov 23 23:23:43 2012  Msieve v. 1.39
Fri Nov 23 23:23:43 2012  random seeds: a23d89e6 ca2b9429
Fri Nov 23 23:23:43 2012  factoring 22153484915582103668559583554040772203926738185109394811200866794185359624410681485893952840238404619014415894387854973 (119 digits)
Fri Nov 23 23:23:44 2012  no P-1/P+1/ECM available, skipping
Fri Nov 23 23:23:44 2012  commencing number field sieve (119-digit input)
Fri Nov 23 23:23:44 2012  R0: -72683812502624045859101
Fri Nov 23 23:23:44 2012  R1:  2866552890553
Fri Nov 23 23:23:44 2012  A0:  378856774001821928202859440
Fri Nov 23 23:23:44 2012  A1:  40104575548030136777924
Fri Nov 23 23:23:44 2012  A2: -5928605349076127202
Fri Nov 23 23:23:44 2012  A3: -134830190165760
Fri Nov 23 23:23:44 2012  A4:  19712879611
Fri Nov 23 23:23:44 2012  A5:  10920
Fri Nov 23 23:23:44 2012  skew 22656.69, size 3.494237e-12, alpha -5.363264, combined = 2.088163e-11
Fri Nov 23 23:23:44 2012  
Fri Nov 23 23:23:44 2012  commencing relation filtering
Fri Nov 23 23:23:44 2012  commencing duplicate removal, pass 1
Fri Nov 23 23:24:20 2012  found 555027 hash collisions in 7718579 relations
Fri Nov 23 23:24:33 2012  added 382 free relations
Fri Nov 23 23:24:33 2012  commencing duplicate removal, pass 2
Fri Nov 23 23:24:35 2012  found 484145 duplicates and 7234816 unique relations
Fri Nov 23 23:24:35 2012  memory use: 50.6 MB
Fri Nov 23 23:24:35 2012  reading rational ideals above 3342336
Fri Nov 23 23:24:35 2012  reading algebraic ideals above 3342336
Fri Nov 23 23:24:35 2012  commencing singleton removal, pass 1
Fri Nov 23 23:25:10 2012  relations with 0 large ideals: 58481
Fri Nov 23 23:25:10 2012  relations with 1 large ideals: 503527
Fri Nov 23 23:25:10 2012  relations with 2 large ideals: 1790223
Fri Nov 23 23:25:10 2012  relations with 3 large ideals: 2855180
Fri Nov 23 23:25:10 2012  relations with 4 large ideals: 1826339
Fri Nov 23 23:25:10 2012  relations with 5 large ideals: 138225
Fri Nov 23 23:25:10 2012  relations with 6 large ideals: 62835
Fri Nov 23 23:25:10 2012  relations with 7+ large ideals: 6
Fri Nov 23 23:25:10 2012  7234816 relations and about 8736769 large ideals
Fri Nov 23 23:25:10 2012  commencing singleton removal, pass 2
Fri Nov 23 23:25:46 2012  found 3891628 singletons
Fri Nov 23 23:25:46 2012  current dataset: 3343188 relations and about 3561270 large ideals
Fri Nov 23 23:25:46 2012  commencing singleton removal, pass 3
Fri Nov 23 23:26:04 2012  found 1226031 singletons
Fri Nov 23 23:26:04 2012  current dataset: 2117157 relations and about 2115237 large ideals
Fri Nov 23 23:26:04 2012  commencing singleton removal, pass 4
Fri Nov 23 23:26:15 2012  found 545455 singletons
Fri Nov 23 23:26:15 2012  current dataset: 1571702 relations and about 1506197 large ideals
Fri Nov 23 23:26:15 2012  commencing singleton removal, pass 5
Fri Nov 23 23:26:24 2012  found 301376 singletons
Fri Nov 23 23:26:24 2012  current dataset: 1270326 relations and about 1179646 large ideals
Fri Nov 23 23:26:24 2012  commencing singleton removal, final pass
Fri Nov 23 23:26:31 2012  memory use: 22.6 MB
Fri Nov 23 23:26:31 2012  commencing in-memory singleton removal
Fri Nov 23 23:26:31 2012  begin with 1270326 relations and 1237737 unique ideals
Fri Nov 23 23:26:32 2012  reduce to 294031 relations and 183213 ideals in 30 passes
Fri Nov 23 23:26:32 2012  max relations containing the same ideal: 14
Fri Nov 23 23:26:32 2012  reading rational ideals above 720000
Fri Nov 23 23:26:32 2012  reading algebraic ideals above 720000
Fri Nov 23 23:26:32 2012  commencing singleton removal, final pass
Fri Nov 23 23:26:34 2012  keeping 491339 ideals with weight <= 20, new excess is 115708
Fri Nov 23 23:26:34 2012  memory use: 15.3 MB
Fri Nov 23 23:26:34 2012  commencing in-memory singleton removal
Fri Nov 23 23:26:34 2012  begin with 294508 relations and 491339 unique ideals
Fri Nov 23 23:26:34 2012  reduce to 706 relations and 54 ideals in 7 passes
Fri Nov 23 23:26:34 2012  max relations containing the same ideal: 2
Fri Nov 23 23:26:34 2012  filtering wants 400707 more relations
Fri Nov 23 23:26:34 2012  elapsed time 00:02:51
        RelProcTime: 171
-> makeJobFile(): Adjusted to q0=3400001, q1=3500000.
->               client 1 q0: 3400001
        LatticeSieveTime: 3356
Sat Nov 24 00:22:32 2012  
Sat Nov 24 00:22:32 2012  
Sat Nov 24 00:22:32 2012  Msieve v. 1.39
Sat Nov 24 00:22:32 2012  random seeds: 81965d6a c53a860f
Sat Nov 24 00:22:32 2012  factoring 22153484915582103668559583554040772203926738185109394811200866794185359624410681485893952840238404619014415894387854973 (119 digits)
Sat Nov 24 00:22:32 2012  no P-1/P+1/ECM available, skipping
Sat Nov 24 00:22:32 2012  commencing number field sieve (119-digit input)
Sat Nov 24 00:22:32 2012  R0: -72683812502624045859101
Sat Nov 24 00:22:32 2012  R1:  2866552890553
Sat Nov 24 00:22:32 2012  A0:  378856774001821928202859440
Sat Nov 24 00:22:32 2012  A1:  40104575548030136777924
Sat Nov 24 00:22:32 2012  A2: -5928605349076127202
Sat Nov 24 00:22:32 2012  A3: -134830190165760
Sat Nov 24 00:22:32 2012  A4:  19712879611
Sat Nov 24 00:22:32 2012  A5:  10920
Sat Nov 24 00:22:32 2012  skew 22656.69, size 3.494237e-12, alpha -5.363264, combined = 2.088163e-11
Sat Nov 24 00:22:32 2012  
Sat Nov 24 00:22:32 2012  commencing relation filtering
Sat Nov 24 00:22:32 2012  commencing duplicate removal, pass 1
Sat Nov 24 00:23:11 2012  found 623970 hash collisions in 8266813 relations
Sat Nov 24 00:23:24 2012  added 339 free relations
Sat Nov 24 00:23:24 2012  commencing duplicate removal, pass 2
Sat Nov 24 00:23:27 2012  found 544519 duplicates and 7722633 unique relations
Sat Nov 24 00:23:27 2012  memory use: 50.6 MB
Sat Nov 24 00:23:27 2012  reading rational ideals above 3473408
Sat Nov 24 00:23:27 2012  reading algebraic ideals above 3473408
Sat Nov 24 00:23:27 2012  commencing singleton removal, pass 1
Sat Nov 24 00:24:05 2012  relations with 0 large ideals: 67097
Sat Nov 24 00:24:05 2012  relations with 1 large ideals: 568435
Sat Nov 24 00:24:05 2012  relations with 2 large ideals: 1981417
Sat Nov 24 00:24:05 2012  relations with 3 large ideals: 3078784
Sat Nov 24 00:24:05 2012  relations with 4 large ideals: 1881036
Sat Nov 24 00:24:05 2012  relations with 5 large ideals: 84591
Sat Nov 24 00:24:05 2012  relations with 6 large ideals: 61273
Sat Nov 24 00:24:05 2012  relations with 7+ large ideals: 0
Sat Nov 24 00:24:05 2012  7722633 relations and about 8993636 large ideals
Sat Nov 24 00:24:05 2012  commencing singleton removal, pass 2
Sat Nov 24 00:24:43 2012  found 3936184 singletons
Sat Nov 24 00:24:43 2012  current dataset: 3786449 relations and about 3865428 large ideals
Sat Nov 24 00:24:43 2012  commencing singleton removal, pass 3
Sat Nov 24 00:25:02 2012  found 1225681 singletons
Sat Nov 24 00:25:02 2012  current dataset: 2560768 relations and about 2452268 large ideals
Sat Nov 24 00:25:02 2012  commencing singleton removal, pass 4
Sat Nov 24 00:25:16 2012  found 526200 singletons
Sat Nov 24 00:25:16 2012  current dataset: 2034568 relations and about 1879027 large ideals
Sat Nov 24 00:25:16 2012  commencing singleton removal, pass 5
Sat Nov 24 00:25:27 2012  found 276193 singletons
Sat Nov 24 00:25:27 2012  current dataset: 1758375 relations and about 1587411 large ideals
Sat Nov 24 00:25:27 2012  commencing singleton removal, final pass
Sat Nov 24 00:25:37 2012  memory use: 37.3 MB
Sat Nov 24 00:25:37 2012  commencing in-memory singleton removal
Sat Nov 24 00:25:37 2012  begin with 1758375 relations and 1671386 unique ideals
Sat Nov 24 00:25:38 2012  reduce to 577952 relations and 431920 ideals in 48 passes
Sat Nov 24 00:25:38 2012  max relations containing the same ideal: 17
Sat Nov 24 00:25:38 2012  reading rational ideals above 720000
Sat Nov 24 00:25:38 2012  reading algebraic ideals above 720000
Sat Nov 24 00:25:38 2012  commencing singleton removal, final pass
Sat Nov 24 00:25:42 2012  keeping 791856 ideals with weight <= 20, new excess is 115716
Sat Nov 24 00:25:42 2012  memory use: 22.6 MB
Sat Nov 24 00:25:42 2012  commencing in-memory singleton removal
Sat Nov 24 00:25:42 2012  begin with 578354 relations and 791856 unique ideals
Sat Nov 24 00:25:42 2012  reduce to 711 relations and 59 ideals in 10 passes
Sat Nov 24 00:25:42 2012  max relations containing the same ideal: 2
Sat Nov 24 00:25:42 2012  filtering wants 400734 more relations
Sat Nov 24 00:25:42 2012  elapsed time 00:03:10
        RelProcTime: 190
-> makeJobFile(): Adjusted to q0=3500001, q1=3600000.
->               client 1 q0: 3500001
        LatticeSieveTime: 3398
Sat Nov 24 01:22:22 2012  
Sat Nov 24 01:22:22 2012  
Sat Nov 24 01:22:22 2012  Msieve v. 1.39
Sat Nov 24 01:22:22 2012  random seeds: 05baad12 681cf0df
Sat Nov 24 01:22:22 2012  factoring 22153484915582103668559583554040772203926738185109394811200866794185359624410681485893952840238404619014415894387854973 (119 digits)
Sat Nov 24 01:22:23 2012  no P-1/P+1/ECM available, skipping
Sat Nov 24 01:22:23 2012  commencing number field sieve (119-digit input)
Sat Nov 24 01:22:23 2012  R0: -72683812502624045859101
Sat Nov 24 01:22:23 2012  R1:  2866552890553
Sat Nov 24 01:22:23 2012  A0:  378856774001821928202859440
Sat Nov 24 01:22:23 2012  A1:  40104575548030136777924
Sat Nov 24 01:22:23 2012  A2: -5928605349076127202
Sat Nov 24 01:22:23 2012  A3: -134830190165760
Sat Nov 24 01:22:23 2012  A4:  19712879611
Sat Nov 24 01:22:23 2012  A5:  10920
Sat Nov 24 01:22:23 2012  skew 22656.69, size 3.494237e-12, alpha -5.363264, combined = 2.088163e-11
Sat Nov 24 01:22:23 2012  
Sat Nov 24 01:22:23 2012  commencing relation filtering
Sat Nov 24 01:22:23 2012  commencing duplicate removal, pass 1
Sat Nov 24 01:23:04 2012  found 696670 hash collisions in 8821357 relations
Sat Nov 24 01:23:17 2012  added 261 free relations
Sat Nov 24 01:23:17 2012  commencing duplicate removal, pass 2
Sat Nov 24 01:23:20 2012  found 608177 duplicates and 8213441 unique relations
Sat Nov 24 01:23:20 2012  memory use: 50.6 MB
Sat Nov 24 01:23:20 2012  reading rational ideals above 3604480
Sat Nov 24 01:23:20 2012  reading algebraic ideals above 3604480
Sat Nov 24 01:23:20 2012  commencing singleton removal, pass 1
Sat Nov 24 01:24:01 2012  relations with 0 large ideals: 76059
Sat Nov 24 01:24:01 2012  relations with 1 large ideals: 634077
Sat Nov 24 01:24:01 2012  relations with 2 large ideals: 2171787
Sat Nov 24 01:24:01 2012  relations with 3 large ideals: 3294120
Sat Nov 24 01:24:01 2012  relations with 4 large ideals: 1937230
Sat Nov 24 01:24:01 2012  relations with 5 large ideals: 39732
Sat Nov 24 01:24:01 2012  relations with 6 large ideals: 60436
Sat Nov 24 01:24:01 2012  relations with 7+ large ideals: 0
Sat Nov 24 01:24:01 2012  8213441 relations and about 9234647 large ideals
Sat Nov 24 01:24:01 2012  commencing singleton removal, pass 2
Sat Nov 24 01:24:42 2012  found 3964548 singletons
Sat Nov 24 01:24:42 2012  current dataset: 4248893 relations and about 4166121 large ideals
Sat Nov 24 01:24:42 2012  commencing singleton removal, pass 3
Sat Nov 24 01:25:04 2012  found 1212107 singletons
Sat Nov 24 01:25:04 2012  current dataset: 3036786 relations and about 2795147 large ideals
Sat Nov 24 01:25:04 2012  commencing singleton removal, pass 4
Sat Nov 24 01:25:20 2012  found 496562 singletons
Sat Nov 24 01:25:20 2012  current dataset: 2540224 relations and about 2263867 large ideals
Sat Nov 24 01:25:20 2012  commencing singleton removal, final pass
Sat Nov 24 01:25:34 2012  memory use: 42.5 MB
Sat Nov 24 01:25:34 2012  commencing in-memory singleton removal
Sat Nov 24 01:25:34 2012  begin with 2540224 relations and 2387174 unique ideals
Sat Nov 24 01:25:36 2012  reduce to 1288693 relations and 1077054 ideals in 41 passes
Sat Nov 24 01:25:36 2012  max relations containing the same ideal: 11
Sat Nov 24 01:25:36 2012  reading rational ideals above 720000
Sat Nov 24 01:25:36 2012  reading algebraic ideals above 720000
Sat Nov 24 01:25:36 2012  commencing singleton removal, final pass
Sat Nov 24 01:25:45 2012  keeping 1456589 ideals with weight <= 20, new excess is 131662
Sat Nov 24 01:25:45 2012  memory use: 46.6 MB
Sat Nov 24 01:25:45 2012  commencing in-memory singleton removal
Sat Nov 24 01:25:45 2012  begin with 1288957 relations and 1456589 unique ideals
Sat Nov 24 01:25:49 2012  reduce to 1078758 relations and 1244187 ideals in 105 passes
Sat Nov 24 01:25:49 2012  max relations containing the same ideal: 20
Sat Nov 24 01:25:49 2012  filtering wants 1000000 more relations
Sat Nov 24 01:25:49 2012  elapsed time 00:03:27
        RelProcTime: 207
-> makeJobFile(): Adjusted to q0=3600001, q1=3700000.
->               client 1 q0: 3600001
        LatticeSieveTime: 3422
Sat Nov 24 02:22:53 2012  
Sat Nov 24 02:22:53 2012  
Sat Nov 24 02:22:53 2012  Msieve v. 1.39
Sat Nov 24 02:22:53 2012  random seeds: cf030f55 0744624b
Sat Nov 24 02:22:53 2012  factoring 22153484915582103668559583554040772203926738185109394811200866794185359624410681485893952840238404619014415894387854973 (119 digits)
Sat Nov 24 02:22:54 2012  no P-1/P+1/ECM available, skipping
Sat Nov 24 02:22:54 2012  commencing number field sieve (119-digit input)
Sat Nov 24 02:22:54 2012  R0: -72683812502624045859101
Sat Nov 24 02:22:54 2012  R1:  2866552890553
Sat Nov 24 02:22:54 2012  A0:  378856774001821928202859440
Sat Nov 24 02:22:54 2012  A1:  40104575548030136777924
Sat Nov 24 02:22:54 2012  A2: -5928605349076127202
Sat Nov 24 02:22:54 2012  A3: -134830190165760
Sat Nov 24 02:22:54 2012  A4:  19712879611
Sat Nov 24 02:22:54 2012  A5:  10920
Sat Nov 24 02:22:54 2012  skew 22656.69, size 3.494237e-12, alpha -5.363264, combined = 2.088163e-11
Sat Nov 24 02:22:54 2012  
Sat Nov 24 02:22:54 2012  commencing relation filtering
Sat Nov 24 02:22:54 2012  commencing duplicate removal, pass 1
Sat Nov 24 02:23:38 2012  found 772994 hash collisions in 9380660 relations
Sat Nov 24 02:23:51 2012  added 239 free relations
Sat Nov 24 02:23:51 2012  commencing duplicate removal, pass 2
Sat Nov 24 02:23:54 2012  found 675222 duplicates and 8705677 unique relations
Sat Nov 24 02:23:54 2012  memory use: 50.6 MB
Sat Nov 24 02:23:54 2012  reading rational ideals above 3735552
Sat Nov 24 02:23:54 2012  reading algebraic ideals above 3735552
Sat Nov 24 02:23:54 2012  commencing singleton removal, pass 1
Sat Nov 24 02:24:37 2012  relations with 0 large ideals: 84788
Sat Nov 24 02:24:37 2012  relations with 1 large ideals: 696891
Sat Nov 24 02:24:37 2012  relations with 2 large ideals: 2343018
Sat Nov 24 02:24:37 2012  relations with 3 large ideals: 3487363
Sat Nov 24 02:24:37 2012  relations with 4 large ideals: 2005913
Sat Nov 24 02:24:37 2012  relations with 5 large ideals: 27134
Sat Nov 24 02:24:37 2012  relations with 6 large ideals: 60570
Sat Nov 24 02:24:37 2012  relations with 7+ large ideals: 0
Sat Nov 24 02:24:37 2012  8705677 relations and about 9459863 large ideals
Sat Nov 24 02:24:37 2012  commencing singleton removal, pass 2
Sat Nov 24 02:25:20 2012  found 3977658 singletons
Sat Nov 24 02:25:20 2012  current dataset: 4728019 relations and about 4461254 large ideals
Sat Nov 24 02:25:20 2012  commencing singleton removal, pass 3
Sat Nov 24 02:25:44 2012  found 1189475 singletons
Sat Nov 24 02:25:44 2012  current dataset: 3538544 relations and about 3137821 large ideals
Sat Nov 24 02:25:44 2012  commencing singleton removal, pass 4
Sat Nov 24 02:26:02 2012  found 461948 singletons
Sat Nov 24 02:26:02 2012  current dataset: 3076596 relations and about 2650180 large ideals
Sat Nov 24 02:26:02 2012  commencing singleton removal, final pass
Sat Nov 24 02:26:19 2012  memory use: 66.6 MB
Sat Nov 24 02:26:19 2012  commencing in-memory singleton removal
Sat Nov 24 02:26:20 2012  begin with 3076596 relations and 2800196 unique ideals
Sat Nov 24 02:26:21 2012  reduce to 2018475 relations and 1700310 ideals in 26 passes
Sat Nov 24 02:26:21 2012  max relations containing the same ideal: 15
Sat Nov 24 02:26:22 2012  reading rational ideals above 720000
Sat Nov 24 02:26:22 2012  reading algebraic ideals above 720000
Sat Nov 24 02:26:22 2012  commencing singleton removal, final pass
Sat Nov 24 02:26:35 2012  keeping 2015774 ideals with weight <= 20, new excess is 216092
Sat Nov 24 02:26:35 2012  memory use: 65.5 MB
Sat Nov 24 02:26:35 2012  commencing in-memory singleton removal
Sat Nov 24 02:26:35 2012  begin with 2018715 relations and 2015774 unique ideals
Sat Nov 24 02:26:37 2012  reduce to 1990825 relations and 1986662 ideals in 22 passes
Sat Nov 24 02:26:37 2012  max relations containing the same ideal: 20
Sat Nov 24 02:26:37 2012  filtering wants 739509 more relations
Sat Nov 24 02:26:37 2012  elapsed time 00:03:44
        RelProcTime: 224
-> makeJobFile(): Adjusted to q0=3700001, q1=3800000.
->               client 1 q0: 3700001
        LatticeSieveTime: 3411
Sat Nov 24 03:23:31 2012  
Sat Nov 24 03:23:31 2012  
Sat Nov 24 03:23:31 2012  Msieve v. 1.39
Sat Nov 24 03:23:31 2012  random seeds: 0c0c0ef1 f0282d83
Sat Nov 24 03:23:31 2012  factoring 22153484915582103668559583554040772203926738185109394811200866794185359624410681485893952840238404619014415894387854973 (119 digits)
Sat Nov 24 03:23:31 2012  no P-1/P+1/ECM available, skipping
Sat Nov 24 03:23:31 2012  commencing number field sieve (119-digit input)
Sat Nov 24 03:23:31 2012  R0: -72683812502624045859101
Sat Nov 24 03:23:31 2012  R1:  2866552890553
Sat Nov 24 03:23:31 2012  A0:  378856774001821928202859440
Sat Nov 24 03:23:31 2012  A1:  40104575548030136777924
Sat Nov 24 03:23:31 2012  A2: -5928605349076127202
Sat Nov 24 03:23:31 2012  A3: -134830190165760
Sat Nov 24 03:23:31 2012  A4:  19712879611
Sat Nov 24 03:23:31 2012  A5:  10920
Sat Nov 24 03:23:31 2012  skew 22656.69, size 3.494237e-12, alpha -5.363264, combined = 2.088163e-11
Sat Nov 24 03:23:31 2012  
Sat Nov 24 03:23:31 2012  commencing relation filtering
Sat Nov 24 03:23:31 2012  commencing duplicate removal, pass 1
Sat Nov 24 03:24:18 2012  found 850797 hash collisions in 9935234 relations
Sat Nov 24 03:24:32 2012  added 158 free relations
Sat Nov 24 03:24:32 2012  commencing duplicate removal, pass 2
Sat Nov 24 03:24:35 2012  found 743809 duplicates and 9191583 unique relations
Sat Nov 24 03:24:35 2012  memory use: 50.6 MB
Sat Nov 24 03:24:35 2012  reading rational ideals above 3735552
Sat Nov 24 03:24:35 2012  reading algebraic ideals above 3735552
Sat Nov 24 03:24:35 2012  commencing singleton removal, pass 1
Sat Nov 24 03:25:20 2012  relations with 0 large ideals: 85997
Sat Nov 24 03:25:20 2012  relations with 1 large ideals: 709772
Sat Nov 24 03:25:20 2012  relations with 2 large ideals: 2404790
Sat Nov 24 03:25:20 2012  relations with 3 large ideals: 3636342
Sat Nov 24 03:25:20 2012  relations with 4 large ideals: 2181951
Sat Nov 24 03:25:20 2012  relations with 5 large ideals: 110844
Sat Nov 24 03:25:20 2012  relations with 6 large ideals: 61886
Sat Nov 24 03:25:20 2012  relations with 7+ large ideals: 1
Sat Nov 24 03:25:20 2012  9191583 relations and about 9683432 large ideals
Sat Nov 24 03:25:20 2012  commencing singleton removal, pass 2
Sat Nov 24 03:26:05 2012  found 3976780 singletons
Sat Nov 24 03:26:05 2012  current dataset: 5214803 relations and about 4762110 large ideals
Sat Nov 24 03:26:05 2012  commencing singleton removal, pass 3
Sat Nov 24 03:26:32 2012  found 1156986 singletons
Sat Nov 24 03:26:32 2012  current dataset: 4057817 relations and about 3491838 large ideals
Sat Nov 24 03:26:32 2012  commencing singleton removal, pass 4
Sat Nov 24 03:26:53 2012  found 424133 singletons
Sat Nov 24 03:26:53 2012  current dataset: 3633684 relations and about 3048885 large ideals
Sat Nov 24 03:26:53 2012  commencing singleton removal, final pass
Sat Nov 24 03:27:13 2012  memory use: 66.6 MB
Sat Nov 24 03:27:13 2012  commencing in-memory singleton removal
Sat Nov 24 03:27:13 2012  begin with 3633684 relations and 3226338 unique ideals
Sat Nov 24 03:27:15 2012  reduce to 2695832 relations and 2256549 ideals in 20 passes
Sat Nov 24 03:27:15 2012  max relations containing the same ideal: 46
Sat Nov 24 03:27:15 2012  reading rational ideals above 720000
Sat Nov 24 03:27:15 2012  reading algebraic ideals above 720000
Sat Nov 24 03:27:15 2012  commencing singleton removal, final pass
Sat Nov 24 03:27:32 2012  keeping 2505093 ideals with weight <= 20, new excess is 283318
Sat Nov 24 03:27:33 2012  memory use: 67.6 MB
Sat Nov 24 03:27:33 2012  commencing in-memory singleton removal
Sat Nov 24 03:27:33 2012  begin with 2695990 relations and 2505093 unique ideals
Sat Nov 24 03:27:35 2012  reduce to 2689031 relations and 2497343 ideals in 14 passes
Sat Nov 24 03:27:35 2012  max relations containing the same ideal: 20
Sat Nov 24 03:27:35 2012  filtering wants 410880 more relations
Sat Nov 24 03:27:35 2012  elapsed time 00:04:04
        RelProcTime: 244
-> makeJobFile(): Adjusted to q0=3800001, q1=3900000.
->               client 1 q0: 3800001
        LatticeSieveTime: 3398
Sat Nov 24 04:24:15 2012  
Sat Nov 24 04:24:15 2012  
Sat Nov 24 04:24:15 2012  Msieve v. 1.39
Sat Nov 24 04:24:15 2012  random seeds: a51f4397 65b1e10e
Sat Nov 24 04:24:15 2012  factoring 22153484915582103668559583554040772203926738185109394811200866794185359624410681485893952840238404619014415894387854973 (119 digits)
Sat Nov 24 04:24:15 2012  no P-1/P+1/ECM available, skipping
Sat Nov 24 04:24:15 2012  commencing number field sieve (119-digit input)
Sat Nov 24 04:24:15 2012  R0: -72683812502624045859101
Sat Nov 24 04:24:15 2012  R1:  2866552890553
Sat Nov 24 04:24:15 2012  A0:  378856774001821928202859440
Sat Nov 24 04:24:15 2012  A1:  40104575548030136777924
Sat Nov 24 04:24:15 2012  A2: -5928605349076127202
Sat Nov 24 04:24:15 2012  A3: -134830190165760
Sat Nov 24 04:24:15 2012  A4:  19712879611
Sat Nov 24 04:24:15 2012  A5:  10920
Sat Nov 24 04:24:15 2012  skew 22656.69, size 3.494237e-12, alpha -5.363264, combined = 2.088163e-11
Sat Nov 24 04:24:15 2012  
Sat Nov 24 04:24:15 2012  commencing relation filtering
Sat Nov 24 04:24:15 2012  commencing duplicate removal, pass 1
Sat Nov 24 04:25:05 2012  found 931159 hash collisions in 10486554 relations
Sat Nov 24 04:25:18 2012  added 135 free relations
Sat Nov 24 04:25:18 2012  commencing duplicate removal, pass 2
Sat Nov 24 04:25:22 2012  found 814206 duplicates and 9672483 unique relations
Sat Nov 24 04:25:22 2012  memory use: 50.6 MB
Sat Nov 24 04:25:22 2012  reading rational ideals above 3866624
Sat Nov 24 04:25:22 2012  reading algebraic ideals above 3866624
Sat Nov 24 04:25:22 2012  commencing singleton removal, pass 1
Sat Nov 24 04:26:09 2012  relations with 0 large ideals: 96211
Sat Nov 24 04:26:09 2012  relations with 1 large ideals: 782829
Sat Nov 24 04:26:09 2012  relations with 2 large ideals: 2604745
Sat Nov 24 04:26:09 2012  relations with 3 large ideals: 3849249
Sat Nov 24 04:26:09 2012  relations with 4 large ideals: 2221084
Sat Nov 24 04:26:09 2012  relations with 5 large ideals: 57293
Sat Nov 24 04:26:09 2012  relations with 6 large ideals: 61072
Sat Nov 24 04:26:09 2012  relations with 7+ large ideals: 0
Sat Nov 24 04:26:09 2012  9672483 relations and about 9876323 large ideals
Sat Nov 24 04:26:09 2012  commencing singleton removal, pass 2
Sat Nov 24 04:26:57 2012  found 3966729 singletons
Sat Nov 24 04:26:57 2012  current dataset: 5705754 relations and about 5035830 large ideals
Sat Nov 24 04:26:57 2012  commencing singleton removal, pass 3
Sat Nov 24 04:27:26 2012  found 1121227 singletons
Sat Nov 24 04:27:26 2012  current dataset: 4584527 relations and about 3818440 large ideals
Sat Nov 24 04:27:26 2012  commencing singleton removal, pass 4
Sat Nov 24 04:27:49 2012  found 388146 singletons
Sat Nov 24 04:27:49 2012  current dataset: 4196381 relations and about 3416526 large ideals
Sat Nov 24 04:27:49 2012  commencing singleton removal, final pass
Sat Nov 24 04:28:13 2012  memory use: 71.9 MB
Sat Nov 24 04:28:13 2012  commencing in-memory singleton removal
Sat Nov 24 04:28:13 2012  begin with 4196381 relations and 3619536 unique ideals
Sat Nov 24 04:28:15 2012  reduce to 3341119 relations and 2739021 ideals in 19 passes
Sat Nov 24 04:28:15 2012  max relations containing the same ideal: 51
Sat Nov 24 04:28:15 2012  reading rational ideals above 720000
Sat Nov 24 04:28:15 2012  reading algebraic ideals above 720000
Sat Nov 24 04:28:15 2012  commencing singleton removal, final pass
Sat Nov 24 04:28:37 2012  keeping 2959665 ideals with weight <= 20, new excess is 328498
Sat Nov 24 04:28:38 2012  memory use: 92.5 MB
Sat Nov 24 04:28:38 2012  commencing in-memory singleton removal
Sat Nov 24 04:28:38 2012  begin with 3341258 relations and 2959665 unique ideals
Sat Nov 24 04:28:40 2012  reduce to 3338545 relations and 2956282 ideals in 13 passes
Sat Nov 24 04:28:40 2012  max relations containing the same ideal: 20
Sat Nov 24 04:28:41 2012  relations with 0 large ideals: 28257
Sat Nov 24 04:28:41 2012  relations with 1 large ideals: 221278
Sat Nov 24 04:28:41 2012  relations with 2 large ideals: 715395
Sat Nov 24 04:28:41 2012  relations with 3 large ideals: 1162576
Sat Nov 24 04:28:41 2012  relations with 4 large ideals: 902960
Sat Nov 24 04:28:41 2012  relations with 5 large ideals: 269202
Sat Nov 24 04:28:41 2012  relations with 6 large ideals: 37152
Sat Nov 24 04:28:41 2012  relations with 7+ large ideals: 1725
Sat Nov 24 04:28:41 2012  commencing 2-way merge
Sat Nov 24 04:28:42 2012  reduce to 1816926 relation sets and 1435297 unique ideals
Sat Nov 24 04:28:42 2012  ignored 634 oversize relation sets
Sat Nov 24 04:28:42 2012  commencing full merge
Sat Nov 24 04:28:53 2012  memory use: 118.3 MB
Sat Nov 24 04:28:53 2012  found 809445 cycles, need 775497
Sat Nov 24 04:28:53 2012  weight of 775497 cycles is about 54296171 (70.01/cycle)
Sat Nov 24 04:28:53 2012  distribution of cycle lengths:
Sat Nov 24 04:28:53 2012  1 relations: 94127
Sat Nov 24 04:28:53 2012  2 relations: 91931
Sat Nov 24 04:28:53 2012  3 relations: 91191
Sat Nov 24 04:28:53 2012  4 relations: 79905
Sat Nov 24 04:28:53 2012  5 relations: 71355
Sat Nov 24 04:28:53 2012  6 relations: 59012
Sat Nov 24 04:28:53 2012  7 relations: 50944
Sat Nov 24 04:28:53 2012  8 relations: 43773
Sat Nov 24 04:28:53 2012  9 relations: 36506
Sat Nov 24 04:28:53 2012  10+ relations: 156753
Sat Nov 24 04:28:53 2012  heaviest cycle: 21 relations
Sat Nov 24 04:28:53 2012  commencing cycle optimization
Sat Nov 24 04:28:54 2012  start with 4675165 relations
Sat Nov 24 04:28:59 2012  pruned 102879 relations
Sat Nov 24 04:28:59 2012  memory use: 161.2 MB
Sat Nov 24 04:28:59 2012  distribution of cycle lengths:
Sat Nov 24 04:28:59 2012  1 relations: 94127
Sat Nov 24 04:28:59 2012  2 relations: 94090
Sat Nov 24 04:28:59 2012  3 relations: 94299
Sat Nov 24 04:28:59 2012  4 relations: 81596
Sat Nov 24 04:28:59 2012  5 relations: 72653
Sat Nov 24 04:28:59 2012  6 relations: 59469
Sat Nov 24 04:28:59 2012  7 relations: 51190
Sat Nov 24 04:28:59 2012  8 relations: 43494
Sat Nov 24 04:28:59 2012  9 relations: 36016
Sat Nov 24 04:28:59 2012  10+ relations: 148563
Sat Nov 24 04:28:59 2012  heaviest cycle: 21 relations
Sat Nov 24 04:29:00 2012  elapsed time 00:04:45
        RelProcTime: 285
Sat Nov 24 04:29:00 2012  
Sat Nov 24 04:29:00 2012  
Sat Nov 24 04:29:00 2012  Msieve v. 1.39
Sat Nov 24 04:29:00 2012  random seeds: 505ddad8 2992a651
Sat Nov 24 04:29:00 2012  factoring 22153484915582103668559583554040772203926738185109394811200866794185359624410681485893952840238404619014415894387854973 (119 digits)
Sat Nov 24 04:29:00 2012  no P-1/P+1/ECM available, skipping
Sat Nov 24 04:29:00 2012  commencing number field sieve (119-digit input)
Sat Nov 24 04:29:00 2012  R0: -72683812502624045859101
Sat Nov 24 04:29:00 2012  R1:  2866552890553
Sat Nov 24 04:29:00 2012  A0:  378856774001821928202859440
Sat Nov 24 04:29:00 2012  A1:  40104575548030136777924
Sat Nov 24 04:29:00 2012  A2: -5928605349076127202
Sat Nov 24 04:29:00 2012  A3: -134830190165760
Sat Nov 24 04:29:00 2012  A4:  19712879611
Sat Nov 24 04:29:00 2012  A5:  10920
Sat Nov 24 04:29:00 2012  skew 22656.69, size 3.494237e-12, alpha -5.363264, combined = 2.088163e-11
Sat Nov 24 04:29:00 2012  
Sat Nov 24 04:29:00 2012  commencing linear algebra
Sat Nov 24 04:29:00 2012  read 775497 cycles
Sat Nov 24 04:29:02 2012  cycles contain 2755704 unique relations
Sat Nov 24 04:29:15 2012  read 2755704 relations
Sat Nov 24 04:29:17 2012  using 20 quadratic characters above 134217440
Sat Nov 24 04:29:28 2012  building initial matrix
Sat Nov 24 04:29:45 2012  memory use: 346.7 MB
Sat Nov 24 04:29:45 2012  read 775497 cycles
Sat Nov 24 04:29:46 2012  matrix is 774649 x 775497 (231.9 MB) with weight 73158789 (94.34/col)
Sat Nov 24 04:29:46 2012  sparse part has weight 52256287 (67.38/col)
Sat Nov 24 04:29:54 2012  filtering completed in 3 passes
Sat Nov 24 04:29:54 2012  matrix is 761754 x 761954 (228.9 MB) with weight 72096759 (94.62/col)
Sat Nov 24 04:29:54 2012  sparse part has weight 51612475 (67.74/col)
Sat Nov 24 04:29:56 2012  read 761954 cycles
Sat Nov 24 04:29:56 2012  matrix is 761754 x 761954 (228.9 MB) with weight 72096759 (94.62/col)
Sat Nov 24 04:29:56 2012  sparse part has weight 51612475 (67.74/col)
Sat Nov 24 04:29:57 2012  saving the first 48 matrix rows for later
Sat Nov 24 04:29:57 2012  matrix is 761706 x 761954 (220.9 MB) with weight 57173005 (75.03/col)
Sat Nov 24 04:29:57 2012  sparse part has weight 50285186 (66.00/col)
Sat Nov 24 04:29:57 2012  matrix includes 64 packed rows
Sat Nov 24 04:29:57 2012  using block size 10922 for processor cache size 256 kB
Sat Nov 24 04:29:59 2012  commencing Lanczos iteration
Sat Nov 24 04:29:59 2012  memory use: 207.7 MB
Sat Nov 24 05:18:47 2012  lanczos halted after 12047 iterations (dim = 761706)
Sat Nov 24 05:18:48 2012  recovered 32 nontrivial dependencies
Sat Nov 24 05:18:48 2012  elapsed time 00:49:48
        BLanczosTime: 2988
Sat Nov 24 05:18:48 2012  
Sat Nov 24 05:18:48 2012  
Sat Nov 24 05:18:48 2012  Msieve v. 1.39
Sat Nov 24 05:18:48 2012  random seeds: e0269840 b6a833ef
Sat Nov 24 05:18:48 2012  factoring 22153484915582103668559583554040772203926738185109394811200866794185359624410681485893952840238404619014415894387854973 (119 digits)
Sat Nov 24 05:18:49 2012  no P-1/P+1/ECM available, skipping
Sat Nov 24 05:18:49 2012  commencing number field sieve (119-digit input)
Sat Nov 24 05:18:49 2012  R0: -72683812502624045859101
Sat Nov 24 05:18:49 2012  R1:  2866552890553
Sat Nov 24 05:18:49 2012  A0:  378856774001821928202859440
Sat Nov 24 05:18:49 2012  A1:  40104575548030136777924
Sat Nov 24 05:18:49 2012  A2: -5928605349076127202
Sat Nov 24 05:18:49 2012  A3: -134830190165760
Sat Nov 24 05:18:49 2012  A4:  19712879611
Sat Nov 24 05:18:49 2012  A5:  10920
Sat Nov 24 05:18:49 2012  skew 22656.69, size 3.494237e-12, alpha -5.363264, combined = 2.088163e-11
Sat Nov 24 05:18:49 2012  
Sat Nov 24 05:18:49 2012  commencing square root phase
Sat Nov 24 05:18:49 2012  reading relations for dependency 1
Sat Nov 24 05:18:49 2012  read 380501 cycles
Sat Nov 24 05:18:50 2012  cycles contain 1650369 unique relations
Sat Nov 24 05:18:58 2012  read 1650369 relations
Sat Nov 24 05:19:03 2012  multiplying 1364456 relations
Sat Nov 24 05:21:15 2012  multiply complete, coefficients have about 64.45 million bits
Sat Nov 24 05:21:17 2012  initial square root is modulo 1790902469
Sat Nov 24 05:25:03 2012  prp56 factor: 16375804685419638065956806980543124610598761817860265161
Sat Nov 24 05:25:03 2012  prp64 factor: 1352818096035713050466673110601749997314548987123393222668995093
Sat Nov 24 05:25:03 2012  elapsed time 00:06:15
        sqrtTime: 375
software ソフトウェア
GMP-ECM 6.3/GGNFS/Msieve v1.39
execution environment 実行環境
Core i7 980

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Ignacio SantosMarch 29, 2010 15:46:16 UTC 2010 年 3 月 30 日 (火) 0 時 46 分 16 秒 (日本時間)
351e6410Ignacio SantosMarch 29, 2010 15:46:25 UTC 2010 年 3 月 30 日 (火) 0 時 46 分 25 秒 (日本時間)
403e62224150Ignacio SantosMarch 29, 2010 15:46:25 UTC 2010 年 3 月 30 日 (火) 0 時 46 分 25 秒 (日本時間)
700Serge BatalovJuly 29, 2011 18:38:41 UTC 2011 年 7 月 30 日 (土) 3 時 38 分 41 秒 (日本時間)
1374Jo Yeong UkNovember 20, 2012 23:19:32 UTC 2012 年 11 月 21 日 (水) 8 時 19 分 32 秒 (日本時間)

16×10197-13

c181

name 名前Jo Yeong Uk
date 日付December 6, 2012 13:41:19 UTC 2012 年 12 月 6 日 (木) 22 時 41 分 19 秒 (日本時間)
composite number 合成数
3132295502705242697621697874027270703050793634757794929838028579754598672400401528902574193312792062473009386510817576830747942196026641840227275935441486456070279630825434765214031<181>
prime factors 素因数
38147616802726145454246190037127093753454663585351207707159778299253<68>
82109860726120098649370877563591147871459285827857183147892367825519655994245525730036077593820550681088309061427<113>
factorization results 素因数分解の結果
Number: 53333_197
N=3132295502705242697621697874027270703050793634757794929838028579754598672400401528902574193312792062473009386510817576830747942196026641840227275935441486456070279630825434765214031
  ( 181 digits)
SNFS difficulty: 198 digits.
Divisors found:
 r1=38147616802726145454246190037127093753454663585351207707159778299253
 r2=82109860726120098649370877563591147871459285827857183147892367825519655994245525730036077593820550681088309061427
Version: 
Total time: 186.66 hours.
Scaled time: 683.37 units (timescale=3.661).
Factorization parameters were as follows:
n: 3132295502705242697621697874027270703050793634757794929838028579754598672400401528902574193312792062473009386510817576830747942196026641840227275935441486456070279630825434765214031
m: 2000000000000000000000000000000000000000
deg: 5
c5: 50
c0: -1
skew: 0.46
# Murphy_E = 2.575e-11
type: snfs
lss: 1
rlim: 14000000
alim: 14000000
lpbr: 29
lpba: 29
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
Factor base limits: 14000000/14000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 55/55
Sieved rational special-q in [7000000, 12700001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 33845947
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2515899 x 2516146
Total sieving time: 164.87 hours.
Total relation processing time: 6.69 hours.
Matrix solve time: 14.41 hours.
Time per square root: 0.69 hours.
Prototype def-par.txt line would be:
snfs,198,5,0,0,0,0,0,0,0,0,14000000,14000000,29,29,55,55,2.5,2.5,100000
total time: 186.66 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz stepping 02
Memory: 36991608k/38797312k available (5154k kernel code, 1057684k absent, 748020k reserved, 7164k data, 1260k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6666.81 BogoMIPS (lpj=3333405)
Total of 12 processors activated (80001.72 BogoMIPS).
x86info v1.25.  Dave Jones 2001-2009
Feedback to <davej@redhat.com>.

Found 12 CPUs
--------------------------------------------------------------------------
CPU #1
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x0 Package: 0  Core: 0   SMT ID 0
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #2
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x2 Package: 0  Core: 0   SMT ID 2
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #3
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x4 Package: 0  Core: 0   SMT ID 4
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #4
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x10        Package: 0  Core: 0   SMT ID 16
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #5
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x12        Package: 0  Core: 0   SMT ID 18
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #6
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x14        Package: 0  Core: 0   SMT ID 20
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #7
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x1 Package: 0  Core: 0   SMT ID 1
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #8
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x3 Package: 0  Core: 0   SMT ID 3
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #9
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x5 Package: 0  Core: 0   SMT ID 5
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #10
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x11        Package: 0  Core: 0   SMT ID 17
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #11
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x13        Package: 0  Core: 0   SMT ID 19
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #12
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x15        Package: 0  Core: 0   SMT ID 21
3.35GHz processor (estimate).

--------------------------------------------------------------------------
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7 980

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Ignacio SantosMarch 29, 2010 18:05:53 UTC 2010 年 3 月 30 日 (火) 3 時 5 分 53 秒 (日本時間)
351e6410Ignacio SantosMarch 29, 2010 18:06:02 UTC 2010 年 3 月 30 日 (火) 3 時 6 分 2 秒 (日本時間)
403e6950150Ignacio SantosMarch 29, 2010 18:06:02 UTC 2010 年 3 月 30 日 (火) 3 時 6 分 2 秒 (日本時間)
800Ignacio SantosApril 19, 2010 16:26:05 UTC 2010 年 4 月 20 日 (火) 1 時 26 分 5 秒 (日本時間)
4511e6400 / 4025230Ignacio SantosApril 19, 2010 16:26:05 UTC 2010 年 4 月 20 日 (火) 1 時 26 分 5 秒 (日本時間)
170Serge BatalovJuly 29, 2011 18:38:59 UTC 2011 年 7 月 30 日 (土) 3 時 38 分 59 秒 (日本時間)
5043e664 / 7425Ignacio SantosApril 19, 2010 16:26:05 UTC 2010 年 4 月 20 日 (火) 1 時 26 分 5 秒 (日本時間)

16×10199-13

c188

name 名前Ignacio Santos
date 日付March 29, 2010 19:57:10 UTC 2010 年 3 月 30 日 (火) 4 時 57 分 10 秒 (日本時間)
composite number 合成数
58594926548079868853283563383340521457652774741782353459928430190349008318625810559160465641835815999107539264538212036174792124638641148338949531358680434586229368492048176405360216422683<188>
prime factors 素因数
8026205984332830295563922214413877<34>
composite cofactor 合成数の残り
7300451379201739841990305533035438613051099551675416953744724605888857761749220023502240773384254427459636965197628677058491088935975649088412836529163279<154>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1461645661
Step 1 took 10171ms
Step 2 took 8752ms
********** Factor found in step 2: 8026205984332830295563922214413877
Found probable prime factor of 34 digits: 8026205984332830295563922214413877
Composite cofactor 7300451379201739841990305533035438613051099551675416953744724605888857761749220023502240773384254427459636965197628677058491088935975649088412836529163279 has 154 digits
software ソフトウェア
GMP-ECM 6.2.3

c154

name 名前Jo Yeong Uk
date 日付December 16, 2012 14:07:32 UTC 2012 年 12 月 16 日 (日) 23 時 7 分 32 秒 (日本時間)
composite number 合成数
7300451379201739841990305533035438613051099551675416953744724605888857761749220023502240773384254427459636965197628677058491088935975649088412836529163279<154>
prime factors 素因数
11096128351357836313422338633995607890516976021704381066723883617136443<71>
657927805810607947379265969891534137093552337023850209761767639141560172194837262653<84>
factorization results 素因数分解の結果
Number: 53333_199
N=7300451379201739841990305533035438613051099551675416953744724605888857761749220023502240773384254427459636965197628677058491088935975649088412836529163279
  ( 154 digits)
SNFS difficulty: 201 digits.
Divisors found:
 r1=11096128351357836313422338633995607890516976021704381066723883617136443
 r2=657927805810607947379265969891534137093552337023850209761767639141560172194837262653
Version: 
Total time: 232.79 hours.
Scaled time: 845.72 units (timescale=3.633).
Factorization parameters were as follows:
n: 7300451379201739841990305533035438613051099551675416953744724605888857761749220023502240773384254427459636965197628677058491088935975649088412836529163279
m: 20000000000000000000000000000000000000000
deg: 5
c5: 1
c0: -20
skew: 1.82
# Murphy_E = 1.982e-11
type: snfs
lss: 1
rlim: 16000000
alim: 16000000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6

Factor base limits: 16000000/16000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved rational special-q in [8000000, 14800001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 37502795
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2931119 x 2931366
Total sieving time: 204.59 hours.
Total relation processing time: 8.93 hours.
Matrix solve time: 19.05 hours.
Time per square root: 0.22 hours.
Prototype def-par.txt line would be:
snfs,201,5,0,0,0,0,0,0,0,0,16000000,16000000,29,29,56,56,2.6,2.6,100000
total time: 232.79 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz stepping 02
Memory: 36991608k/38797312k available (5154k kernel code, 1057684k absent, 748020k reserved, 7164k data, 1260k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 6666.81 BogoMIPS (lpj=3333405)
Total of 12 processors activated (80001.72 BogoMIPS).
x86info v1.25.  Dave Jones 2001-2009
Feedback to <davej@redhat.com>.

Found 12 CPUs
--------------------------------------------------------------------------
CPU #1
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)       Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x0 Package: 0  Core: 0   SMT ID 0
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #2
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x2 Package: 0  Core: 0   SMT ID 2
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #3
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x4 Package: 0  Core: 0   SMT ID 4
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #4
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x10        Package: 0  Core: 0   SMT ID 16
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #5
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x12        Package: 0  Core: 0   SMT ID 18
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #6
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x14        Package: 0  Core: 0   SMT ID 20
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #7
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x1 Package: 0  Core: 0   SMT ID 1
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #8
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x3 Package: 0  Core: 0   SMT ID 3
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #9
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM)  Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x5 Package: 0  Core: 0   SMT ID 5
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #10
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x11        Package: 0  Core: 0   SMT ID 17
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #11
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x13        Package: 0  Core: 0   SMT ID 19
3.35GHz processor (estimate).

--------------------------------------------------------------------------
CPU #12
EFamily: 0 EModel: 2 Family: 6 Model: 44 Stepping: 2
CPU Model: Unknown model. 
Processor name string: Intel(R) Core(TM) i7 CPU         980  @ 3.33GHz
Type: 0 (Original OEM) Brand: 0 (Unsupported)
Number of cores per physical package=16
Number of logical processors per socket=32
Number of logical processors per core=2
APIC ID: 0x15        Package: 0  Core: 0   SMT ID 21
3.35GHz processor (estimate).

--------------------------------------------------------------------------
software ソフトウェア
GGNFS / Msieve v1.39
execution environment 実行環境
Core i7 980

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
2011e374Jo Yeong UkSeptember 4, 2010 02:19:51 UTC 2010 年 9 月 4 日 (土) 11 時 19 分 51 秒 (日本時間)
255e4204Jo Yeong UkSeptember 4, 2010 02:19:58 UTC 2010 年 9 月 4 日 (土) 11 時 19 分 58 秒 (日本時間)
3025e4403Jo Yeong UkSeptember 4, 2010 09:37:50 UTC 2010 年 9 月 4 日 (土) 18 時 37 分 50 秒 (日本時間)
351e6300Ignacio SantosSeptember 11, 2010 13:04:08 UTC 2010 年 9 月 11 日 (土) 22 時 4 分 8 秒 (日本時間)
403e62144110Ignacio SantosSeptember 11, 2010 13:04:08 UTC 2010 年 9 月 11 日 (土) 22 時 4 分 8 秒 (日本時間)
700Serge BatalovJuly 29, 2011 18:39:30 UTC 2011 年 7 月 30 日 (土) 3 時 39 分 30 秒 (日本時間)
1334Jo Yeong UkNovember 17, 2012 10:42:01 UTC 2012 年 11 月 17 日 (土) 19 時 42 分 1 秒 (日本時間)
4511e632 / 3991Ignacio SantosSeptember 11, 2010 13:04:08 UTC 2010 年 9 月 11 日 (土) 22 時 4 分 8 秒 (日本時間)

16×10205-13

c206

name 名前Robert Backstrom
date 日付November 10, 2008 11:52:10 UTC 2008 年 11 月 10 日 (月) 20 時 52 分 10 秒 (日本時間)
composite number 合成数
53333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333<206>
prime factors 素因数
7253816360547696746337226052876346580763518857600573480425639193467<67>
7352451548595092851587671278219896892562021515468240661156973439665968776976024454455251948173889966313752479891086480528562516539317420399<139>
factorization results 素因数分解の結果
Number: n
N=53333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333
  ( 206 digits)
SNFS difficulty: 206 digits.
Divisors found:

Mon Nov 10 22:35:48 2008  prp67 factor: 7253816360547696746337226052876346580763518857600573480425639193467
Mon Nov 10 22:35:48 2008  prp139 factor: 7352451548595092851587671278219896892562021515468240661156973439665968776976024454455251948173889966313752479891086480528562516539317420399
Mon Nov 10 22:35:48 2008  elapsed time 35:33:32 (Msieve 1.38)

Version: GGNFS-0.77.1-20051202-athlon
Total time: 120.07 hours.
Scaled time: 243.98 units (timescale=2.032).
Factorization parameters were as follows:
name: KA_5_3_205
n: 53333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333
type: snfs
skew: 1.15
deg: 5
c5: 1
c0: -2
m: 200000000000000000000000000000000000000000
rlim: 10000000
alim: 10000000
lpbr: 29
lpba: 29
mfbr: 58
mfba: 58
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 10000000/10000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 58/58
Sieved  special-q in [100000, 18900001)
Primes: RFBsize:664579, AFBsize:664630, largePrimes:35868282 encountered
Relations: rels:27817726, finalFF:172962
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 
Total sieving time: 117.89 hours.
Total relation processing time: 2.18 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,206,5,0,0,0,0,0,0,0,0,10000000,10000000,29,29,58,58,2.5,2.5,100000
total time: 120.07 hours.
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 31, 2008 04:00:00 UTC 2008 年 10 月 31 日 (金) 13 時 0 分 0 秒 (日本時間)

16×10213-13

c207

name 名前Beyond
date 日付September 30, 2010 02:30:24 UTC 2010 年 9 月 30 日 (木) 11 時 30 分 24 秒 (日本時間)
composite number 合成数
225024157398097423562001053760001075615472362905684626365036972805141441957894689172514024876730008576092558736614244617038910769440993722430761016089269445993477927949993219037656906707951848824495600967587<207>
prime factors 素因数
220958087214013825543687786516582356800245655284643<51>
1018401997570450164698500395678439689917444756111641355687039645258758428130407897704537100041914781718167492606078531344295382053809477360377090748278340609<157>
factorization results 素因数分解の結果
GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM]
Input number is 225024157398097423562001053760001075615472362905684626365036972805141441957894689172514024876730008576092558736614244617038910769440993722430761016089269445993477927949993219037656906707951848824495600967587 (207 digits)
[Wed Sep 29 17:00:33 2010]
Using MODMULN
Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=312436054
dF=131072, k=4, d=1345890, d2=11, i0=71
Expected number of curves to find a factor of n digits:
20     25      30      35      40      45      50      55      60      65
2       4       10      34      135     613     3133    17769   111196  751771
Step 1 took 459078ms
Using 25 small primes for NTT
Estimated memory usage: 566M
Initializing tables of differences for F took 281ms
Computing roots of F took 21454ms
Building F from its roots took 14532ms
Computing 1/F took 6969ms
Initializing table of differences for G took 265ms
Computing roots of G took 18032ms
Building G from its roots took 13406ms
Computing roots of G took 18016ms
Building G from its roots took 13359ms
Computing G * H took 3735ms
Reducing  G * H mod F took 3750ms
Computing roots of G took 18000ms
Building G from its roots took 13375ms
Computing G * H took 3766ms
Reducing  G * H mod F took 3750ms
Computing roots of G took 17812ms
Building G from its roots took 13157ms
Computing G * H took 3844ms
Reducing  G * H mod F took 3813ms
Computing polyeval(F,G) took 27000ms
Computing product of all F(g_i) took 235ms
Step 2 took 219359ms
********** Factor found in step 2: 220958087214013825543687786516582356800245655284643
Found probable prime factor of 51 digits: 220958087214013825543687786516582356800245655284643
Probable prime cofactor 1018401997570450164698500395678439689917444756111641355687039645258758428130407897704537100041914781718167492606078531344295382053809477360377090748278340609 has 157 digits
software ソフトウェア
GMP-ECM

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 31, 2008 04:00:00 UTC 2008 年 10 月 31 日 (金) 13 時 0 分 0 秒 (日本時間)
351e60--
403e60--
4511e6680Dmitry DomanovDecember 18, 2009 08:04:43 UTC 2009 年 12 月 18 日 (金) 17 時 4 分 43 秒 (日本時間)
5043e61095 / 2085yoyo@homeJanuary 29, 2010 12:01:03 UTC 2010 年 1 月 29 日 (金) 21 時 1 分 3 秒 (日本時間)
5511e72205 / 17336yoyo@homeSeptember 28, 2010 16:55:09 UTC 2010 年 9 月 29 日 (水) 1 時 55 分 9 秒 (日本時間)

16×10215-13

c206

name 名前Ignacio Santos
date 日付June 22, 2010 06:36:24 UTC 2010 年 6 月 22 日 (火) 15 時 36 分 24 秒 (日本時間)
composite number 合成数
60699084139050254220532047321838027499414221686512035143590333305275447248550461664754609286520738163099419295963023578362454970677968422772594837070298492054750645670090323733845522463443858877939146018551<206>
prime factors 素因数
46342415312696101896472956298861831<35>
composite cofactor 合成数の残り
1309795437494621862804914123612671011423625720129384748911419397437653165022313015671581526491936381985100792464447471877242050532516292299742093695911215660954590715327121<172>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2286044702
Step 1 took 8081ms
Step 2 took 6349ms
********** Factor found in step 2: 46342415312696101896472956298861831
Found probable prime factor of 35 digits: 46342415312696101896472956298861831
Composite cofactor 1309795437494621862804914123612671011423625720129384748911419397437653165022313015671581526491936381985100792464447471877242050532516292299742093695911215660954590715327121 has 172 digits
software ソフトウェア
GMP-ECM 6.2.3

c172

name 名前Ignacio Santos
date 日付June 22, 2010 14:31:27 UTC 2010 年 6 月 22 日 (火) 23 時 31 分 27 秒 (日本時間)
composite number 合成数
1309795437494621862804914123612671011423625720129384748911419397437653165022313015671581526491936381985100792464447471877242050532516292299742093695911215660954590715327121<172>
prime factors 素因数
136636281322475570935271425497850247963<39>
composite cofactor 合成数の残り
9586000327419413107669697637650136160700056368575741518868628554845045490757640401253488351754963975716889927632579764845364311267267<133>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1188942859
Step 1 took 89389ms
Step 2 took 49109ms
********** Factor found in step 2: 136636281322475570935271425497850247963
Found probable prime factor of 39 digits: 136636281322475570935271425497850247963
software ソフトウェア
GMP-ECM 6.2.3

c133

name 名前Wataru Sakai
date 日付August 22, 2010 06:18:15 UTC 2010 年 8 月 22 日 (日) 15 時 18 分 15 秒 (日本時間)
composite number 合成数
9586000327419413107669697637650136160700056368575741518868628554845045490757640401253488351754963975716889927632579764845364311267267<133>
prime factors 素因数
12149001796956951785041967318113708518769<41>
789036044905391966906828244911575528631368092084009297458573982043650628710807388420976905843<93>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1921570546
Step 1 took 42515ms
Step 2 took 17077ms
********** Factor found in step 2: 12149001796956951785041967318113708518769
Found probable prime factor of 41 digits: 12149001796956951785041967318113708518769
Probable prime cofactor 789036044905391966906828244911575528631368092084009297458573982043650628710807388420976905843 has 93 digits
software ソフトウェア
GMP-ECM 6.2.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 31, 2008 04:00:00 UTC 2008 年 10 月 31 日 (金) 13 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosJune 24, 2010 13:52:01 UTC 2010 年 6 月 24 日 (木) 22 時 52 分 1 秒 (日本時間)
403e6110Ignacio SantosJune 24, 2010 13:52:01 UTC 2010 年 6 月 24 日 (木) 22 時 52 分 1 秒 (日本時間)
4511e6652 / 444132Ignacio SantosJune 24, 2010 13:52:01 UTC 2010 年 6 月 24 日 (木) 22 時 52 分 1 秒 (日本時間)
620Ignacio SantosJuly 1, 2010 11:33:20 UTC 2010 年 7 月 1 日 (木) 20 時 33 分 20 秒 (日本時間)

16×10217-13

c198

name 名前matsui
date 日付October 18, 2011 09:00:59 UTC 2011 年 10 月 18 日 (火) 18 時 0 分 59 秒 (日本時間)
composite number 合成数
151276500460538151546811772846622674786877633897764654409891441929902989666847630282157951039138748472807492966559375715075369516384889152453080480855234936269113348311595747707539653056864532054523<198>
prime factors 素因数
217665523570039989619324962641387344310923286687386551216320662183536287775114464064307503233897849<99>
694995229282880404816881608691559283698646053964689121920326750121538605181517970540406039821777427<99>
factorization results 素因数分解の結果
N=151276500460538151546811772846622674786877633897764654409891441929902989666847630282157951039138748472807492966559375715075369516384889152453080480855234936269113348311595747707539653056864532054523
  ( 198 digits)
SNFS difficulty: 218 digits.
Divisors found:
 r1=217665523570039989619324962641387344310923286687386551216320662183536287775114464064307503233897849 (pp99)
 r2=694995229282880404816881608691559283698646053964689121920326750121538605181517970540406039821777427 (pp99)
Version: Msieve v. 1.50
Total time:
Scaled time: 614.51 units (timescale=1.544).
Factorization parameters were as follows:
n: 151276500460538151546811772846622674786877633897764654409891441929902989666847630282157951039138748472807492966559375715075369516384889152453080480855234936269113348311595747707539653056864532054523
m: 1000000000000000000000000000000000000
deg: 6
c6: 160
c0: -1
skew: 0.43
type: snfs
lss: 1
rlim: 30000000
alim: 30000000
lpbr: 29
lpba: 29
mfbr: 58
mfba: 58
rlambda: 2.6
alambda: 2.6
qintsize: 1600000
Factor base limits: 30000000/30000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 58/58
Sieved rational special-q in [15000000, 61400001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 5965637 x 5965863
Total sieving time:
Total relation processing time:
Matrix solve time:
Time per square root:
Prototype def-par.txt line would be:
snfs,218.000,6,0,0,0,0,0,0,0,0,30000000,30000000,29,29,58,58,2.6,2.6,100000
total time:
 --------- CPU info (if available) ----------

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 31, 2008 04:00:00 UTC 2008 年 10 月 31 日 (金) 13 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosSeptember 12, 2010 20:21:18 UTC 2010 年 9 月 13 日 (月) 5 時 21 分 18 秒 (日本時間)
403e6810 / 2144110Ignacio SantosSeptember 12, 2010 20:21:18 UTC 2010 年 9 月 13 日 (月) 5 時 21 分 18 秒 (日本時間)
700Serge BatalovJuly 29, 2011 18:39:48 UTC 2011 年 7 月 30 日 (土) 3 時 39 分 48 秒 (日本時間)
4511e632 / 4286Ignacio SantosSeptember 12, 2010 20:21:18 UTC 2010 年 9 月 13 日 (月) 5 時 21 分 18 秒 (日本時間)

16×10219-13

c176

name 名前Dmitry Domanov
date 日付November 14, 2013 04:52:53 UTC 2013 年 11 月 14 日 (木) 13 時 52 分 53 秒 (日本時間)
composite number 合成数
12472798517031097926056897410824934473147152297963973482627166123223939154325360349526870636849202001778708512046628598382037799016040540028400951194152653341470413898937197643<176>
prime factors 素因数
622635728592515611895498481374391801751<39>
composite cofactor 合成数の残り
20032256332649245768096615203331315057893338582955842112262387109717364718319424673739115510035163217232115881793204806764520269323734893<137>
factorization results 素因数分解の結果
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=556943206
Step 1 took 23307ms
Step 2 took 8924ms
********** Factor found in step 2: 622635728592515611895498481374391801751
Found probable prime factor of 39 digits: 622635728592515611895498481374391801751

c137

name 名前Erik Branger
date 日付June 14, 2014 08:29:18 UTC 2014 年 6 月 14 日 (土) 17 時 29 分 18 秒 (日本時間)
composite number 合成数
20032256332649245768096615203331315057893338582955842112262387109717364718319424673739115510035163217232115881793204806764520269323734893<137>
prime factors 素因数
166165363171159982278814682286781634253416020100216187<54>
120556149310219707993881210366366390259788171932802613293430461024804051015487542839<84>
factorization results 素因数分解の結果
Number: 53333_219
N = 20032256332649245768096615203331315057893338582955842112262387109717364718319424673739115510035163217232115881793204806764520269323734893 (137 digits)
Divisors found:
r1=166165363171159982278814682286781634253416020100216187 (pp54)
r2=120556149310219707993881210366366390259788171932802613293430461024804051015487542839 (pp84)
Version: Msieve v. 1.51 (SVN Official Release)
Total time: 126.80 hours.
Factorization parameters were as follows:
# Murphy_E = 3.286e-11, selected by Erik Branger
# expecting poly E from 3.44e-011 to > 3.96e-011
n: 20032256332649245768096615203331315057893338582955842112262387109717364718319424673739115510035163217232115881793204806764520269323734893
Y0: -409483403702456789987926202
Y1: 95584287463651
c0: -58023614673981552715607101267005075
c1: 48287863271537418373897648245
c2: 63016949249610463550917
c3: -24248260620164777
c4: -15487252394
c5: 1740
skew: 2239620.65
type: gnfs
# selected mechanically
rlim: 14500000
alim: 14500000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.6
alambda: 2.6
Factor base limits: 14500000/14500000
Large primes per side: 3
Large prime bits: 28/28
Sieved algebraic special-q in [0, 0)
Total raw relations: 22588406
Relations: 3687234 relations
Pruned matrix : 2205882 x 2206108
Polynomial selection time: 0.00 hours.
Total sieving time: 123.42 hours.
Total relation processing time: 0.13 hours.
Matrix solve time: 3.16 hours.
time per square root: 0.09 hours.
Prototype def-par.txt line would be: gnfs,136,5,65,2000,1e-05,0.28,250,20,50000,3600,14500000,14500000,28,28,55,55,2.6,2.6,100000
total time: 126.80 hours.
Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 8, speed: 3.50GHz
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 31, 2008 04:00:00 UTC 2008 年 10 月 31 日 (金) 13 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosSeptember 12, 2010 21:08:43 UTC 2010 年 9 月 13 日 (月) 6 時 8 分 43 秒 (日本時間)
403e62310110Ignacio SantosSeptember 12, 2010 21:08:43 UTC 2010 年 9 月 13 日 (月) 6 時 8 分 43 秒 (日本時間)
700Serge BatalovJuly 29, 2011 18:39:59 UTC 2011 年 7 月 30 日 (土) 3 時 39 分 59 秒 (日本時間)
1500Dmitry DomanovNovember 13, 2013 11:14:53 UTC 2013 年 11 月 13 日 (水) 20 時 14 分 53 秒 (日本時間)
4511e62532 / 395432Ignacio SantosSeptember 12, 2010 21:08:43 UTC 2010 年 9 月 13 日 (月) 6 時 8 分 43 秒 (日本時間)
400Serge BatalovJanuary 6, 2014 02:23:07 UTC 2014 年 1 月 6 日 (月) 11 時 23 分 7 秒 (日本時間)
1800Serge BatalovMay 24, 2014 17:35:11 UTC 2014 年 5 月 25 日 (日) 2 時 35 分 11 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:32:58 UTC 2014 年 5 月 27 日 (火) 9 時 32 分 58 秒 (日本時間)

16×10221-13

c186

composite cofactor 合成数の残り
218802929598074473050923215115110401913026003089141443804860897801036472962687635770789197286831599394327398532783298288748182337361383972731753177388314971248010526461172702777076777631<186>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 31, 2008 04:00:00 UTC 2008 年 10 月 31 日 (金) 13 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosSeptember 12, 2010 22:31:03 UTC 2010 年 9 月 13 日 (月) 7 時 31 分 3 秒 (日本時間)
403e62310110Ignacio SantosSeptember 12, 2010 22:31:03 UTC 2010 年 9 月 13 日 (月) 7 時 31 分 3 秒 (日本時間)
700Serge BatalovJuly 29, 2011 18:40:07 UTC 2011 年 7 月 30 日 (土) 3 時 40 分 7 秒 (日本時間)
1500Dmitry DomanovNovember 13, 2013 11:15:05 UTC 2013 年 11 月 13 日 (水) 20 時 15 分 5 秒 (日本時間)
4511e6332 / 395432Ignacio SantosSeptember 12, 2010 22:31:03 UTC 2010 年 9 月 13 日 (月) 7 時 31 分 3 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:32:59 UTC 2014 年 5 月 27 日 (火) 9 時 32 分 59 秒 (日本時間)

16×10223-13

c175

name 名前Ignacio Santos
date 日付September 13, 2010 14:20:57 UTC 2010 年 9 月 13 日 (月) 23 時 20 分 57 秒 (日本時間)
composite number 合成数
1439061717748382649005287872012193105146741247215249615258759600836114834368382013790148433666715798163328446027602060403047107153474735819412103034776561086499720919073748039<175>
prime factors 素因数
132355577177296648937078193438839<33>
composite cofactor 合成数の残り
10872694210843041396776553883549248575255416327641412083545438747559466691107515450617766829553451001120304885451035589654762847135787182042801<143>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3679136297
Step 1 took 9172ms
********** Factor found in step 1: 132355577177296648937078193438839
Found probable prime factor of 33 digits: 132355577177296648937078193438839
Composite cofactor 10872694210843041396776553883549248575255416327641412083545438747559466691107515450617766829553451001120304885451035589654762847135787182042801 has 143 digits
software ソフトウェア
GMP-ECM 6.3

c143

name 名前Wataru Sakai
date 日付September 19, 2010 06:57:35 UTC 2010 年 9 月 19 日 (日) 15 時 57 分 35 秒 (日本時間)
composite number 合成数
10872694210843041396776553883549248575255416327641412083545438747559466691107515450617766829553451001120304885451035589654762847135787182042801<143>
prime factors 素因数
2353464948024473615069023802945070316808044511<46>
4619866643847706270943280790593550665381619134352561786338284632273551297976509668993906259649391<97>
factorization results 素因数分解の結果
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3110119313
Step 1 took 48876ms
Step 2 took 18332ms
********** Factor found in step 2: 2353464948024473615069023802945070316808044511
Found probable prime factor of 46 digits: 2353464948024473615069023802945070316808044511
Probable prime cofactor 4619866643847706270943280790593550665381619134352561786338284632273551297976509668993906259649391 has 97 digits
software ソフトウェア
GMP-ECM 6.2.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 31, 2008 04:00:00 UTC 2008 年 10 月 31 日 (金) 13 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosSeptember 16, 2010 20:03:05 UTC 2010 年 9 月 17 日 (金) 5 時 3 分 5 秒 (日本時間)
403e62144110Ignacio SantosSeptember 16, 2010 20:03:05 UTC 2010 年 9 月 17 日 (金) 5 時 3 分 5 秒 (日本時間)
2034Wataru SakaiSeptember 18, 2010 02:44:54 UTC 2010 年 9 月 18 日 (土) 11 時 44 分 54 秒 (日本時間)
4511e632 / 3991Ignacio SantosSeptember 16, 2010 20:03:05 UTC 2010 年 9 月 17 日 (金) 5 時 3 分 5 秒 (日本時間)

16×10225-13

c214

name 名前Ignacio Santos
date 日付September 13, 2010 15:41:52 UTC 2010 年 9 月 14 日 (火) 0 時 41 分 52 秒 (日本時間)
composite number 合成数
6725871299702442038912364051878132799716624614477011125192204431582246581365269932860623006659087777499713764449939491088048973407041047524745544467727927675258163776508505224031424879907184683863717363808579686517<214>
prime factors 素因数
17055017420774739401359115736107<32>
composite cofactor 合成数の残り
394363203142182034018228906213569228785178926154661076066982126407840544182420322687319592923038934961827877914334859011792081716876118407245819915597797347060527404693719715153329631<183>
factorization results 素因数分解の結果
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2500126088
Step 1 took 11154ms
Step 2 took 7363ms
********** Factor found in step 2: 17055017420774739401359115736107
Found probable prime factor of 32 digits: 17055017420774739401359115736107
Composite cofactor 394363203142182034018228906213569228785178926154661076066982126407840544182420322687319592923038934961827877914334859011792081716876118407245819915597797347060527404693719715153329631 has 183 digits
software ソフトウェア
GMP-ECM 6.3

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 31, 2008 04:00:00 UTC 2008 年 10 月 31 日 (金) 13 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosSeptember 13, 2010 22:39:13 UTC 2010 年 9 月 14 日 (火) 7 時 39 分 13 秒 (日本時間)
403e62310110Ignacio SantosSeptember 13, 2010 22:39:13 UTC 2010 年 9 月 14 日 (火) 7 時 39 分 13 秒 (日本時間)
700Serge BatalovJuly 29, 2011 18:40:23 UTC 2011 年 7 月 30 日 (土) 3 時 40 分 23 秒 (日本時間)
1500Dmitry DomanovNovember 13, 2013 11:15:16 UTC 2013 年 11 月 13 日 (水) 20 時 15 分 16 秒 (日本時間)
4511e6332 / 395432Ignacio SantosSeptember 13, 2010 22:39:13 UTC 2010 年 9 月 14 日 (火) 7 時 39 分 13 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:32:59 UTC 2014 年 5 月 27 日 (火) 9 時 32 分 59 秒 (日本時間)

16×10227-13

c185

name 名前Serge Batalov
date 日付October 31, 2008 19:02:43 UTC 2008 年 11 月 1 日 (土) 4 時 2 分 43 秒 (日本時間)
composite number 合成数
14094488033901012813402532561801970722500490932841608243746905351674702497002217952946274550228087962894188489326251860393990796023338618518410013532407092735106512732146429133880827841<185>
prime factors 素因数
50951806998599951488548848592191<32>
composite cofactor 合成数の残り
276623909222459955262062365246498315145753233845762190081926880984539629653558336897979021461117054738370602081856376552137256435890922353288561621777151<153>
factorization results 素因数分解の結果
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2751728905
Step 1 took 22017ms
Step 2 took 14817ms
********** Factor found in step 2: 50951806998599951488548848592191
Found probable prime factor of 32 digits: 50951806998599951488548848592191
Composite cofactor 276623909222459955262062365246498315145753233845762190081926880984539629653558336897979021461117054738370602081856376552137256435890922353288561621777151 has 153 digits
software ソフトウェア
GMP-ECM 6.2.1

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 31, 2008 04:00:00 UTC 2008 年 10 月 31 日 (金) 13 時 0 分 0 秒 (日本時間)
351e60--
403e6410Serge BatalovNovember 19, 2008 21:40:49 UTC 2008 年 11 月 20 日 (木) 6 時 40 分 49 秒 (日本時間)
4511e643881500Serge BatalovJanuary 5, 2009 04:26:08 UTC 2009 年 1 月 5 日 (月) 13 時 26 分 8 秒 (日本時間)
2888Wataru SakaiJanuary 5, 2010 13:15:49 UTC 2010 年 1 月 5 日 (火) 22 時 15 分 49 秒 (日本時間)
5043e636972687Wataru SakaiJanuary 11, 2010 06:58:01 UTC 2010 年 1 月 11 日 (月) 15 時 58 分 1 秒 (日本時間)
1010yoyo@homeJanuary 29, 2010 12:50:12 UTC 2010 年 1 月 29 日 (金) 21 時 50 分 12 秒 (日本時間)
5511e71195 / 16172yoyo@homeOctober 5, 2010 00:30:58 UTC 2010 年 10 月 5 日 (火) 9 時 30 分 58 秒 (日本時間)

16×10229-13

c230

name 名前Serge Batalov
date 日付October 31, 2008 18:47:25 UTC 2008 年 11 月 1 日 (土) 3 時 47 分 25 秒 (日本時間)
composite number 合成数
53333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333<230>
prime factors 素因数
138587157716002611881874212016797719<36>
composite cofactor 合成数の残り
384836042619661515037583365602420853804947706362741067724480589885195095790677520451016462477007474961684527089033394907416313251084718861869219905548092763513236834002103979070093897973877134707<195>
factorization results 素因数分解の結果
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2575188952
Step 1 took 13664ms
Step 2 took 7337ms
********** Factor found in step 2: 138587157716002611881874212016797719
Found probable prime factor of 36 digits: 138587157716002611881874212016797719
Composite cofactor 384836042619661515037583365602420853804947706362741067724480589885195095790677520451016462477007474961684527089033394907416313251084718861869219905548092763513236834002103979070093897973877134707 has 195 digits
software ソフトウェア
GMP-ECM 6.2.1

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 31, 2008 04:00:00 UTC 2008 年 10 月 31 日 (金) 13 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosSeptember 13, 2010 17:13:28 UTC 2010 年 9 月 14 日 (火) 2 時 13 分 28 秒 (日本時間)
403e62310110Ignacio SantosSeptember 13, 2010 17:13:28 UTC 2010 年 9 月 14 日 (火) 2 時 13 分 28 秒 (日本時間)
700Serge BatalovJuly 29, 2011 18:41:06 UTC 2011 年 7 月 30 日 (土) 3 時 41 分 6 秒 (日本時間)
1500Dmitry DomanovNovember 13, 2013 11:15:35 UTC 2013 年 11 月 13 日 (水) 20 時 15 分 35 秒 (日本時間)
4511e6332 / 395432Ignacio SantosSeptember 13, 2010 17:13:28 UTC 2010 年 9 月 14 日 (火) 2 時 13 分 28 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:32:59 UTC 2014 年 5 月 27 日 (火) 9 時 32 分 59 秒 (日本時間)

16×10231-13

c200

composite cofactor 合成数の残り
18854731986613325965774130431915756435920897280369930080313080486123312847334040260710073874364087875322530539548956267699728925232946911944258007027196992960307185603033870902249922450177353428022991<200>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 31, 2008 04:00:00 UTC 2008 年 10 月 31 日 (金) 13 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosSeptember 13, 2010 18:41:29 UTC 2010 年 9 月 14 日 (火) 3 時 41 分 29 秒 (日本時間)
403e62310110Ignacio SantosSeptember 13, 2010 18:41:29 UTC 2010 年 9 月 14 日 (火) 3 時 41 分 29 秒 (日本時間)
700Serge BatalovJuly 29, 2011 18:41:14 UTC 2011 年 7 月 30 日 (土) 3 時 41 分 14 秒 (日本時間)
1500Dmitry DomanovNovember 13, 2013 11:15:46 UTC 2013 年 11 月 13 日 (水) 20 時 15 分 46 秒 (日本時間)
4511e6332 / 395432Ignacio SantosSeptember 13, 2010 18:41:29 UTC 2010 年 9 月 14 日 (火) 3 時 41 分 29 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:33:00 UTC 2014 年 5 月 27 日 (火) 9 時 33 分 0 秒 (日本時間)

16×10235-13

c224

name 名前Serge Batalov
date 日付July 28, 2011 23:47:34 UTC 2011 年 7 月 29 日 (金) 8 時 47 分 34 秒 (日本時間)
composite number 合成数
50333547694789695338292054403531738789028686077628457172074286157422287964536500711417844154857658257505933631567610296978761501986813655678195474090836567805598421733697998223739170447918648005354633696197684615375678646283<224>
prime factors 素因数
1895186834680491727354212105534157<34>
composite cofactor 合成数の残り
26558620381760616367052594470390800721081065741607488941640193527559867421087538993291091806037750841915505023792578296395474887627482544907713107801879702074802850298666057895725122913508919<191>
factorization results 素因数分解の結果
Input number is 50333547694789695338292054403531738789028686077628457172074286157422287964536500711417844154857658257505933631567610296978761501986813655678195474090836567805598421733697998223739170447918648005354633696197684615375678646283 (224 digits)
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2380723667
Step 1 took 12089ms
Step 2 took 9543ms
********** Factor found in step 2: 1895186834680491727354212105534157
Found probable prime factor of 34 digits: 1895186834680491727354212105534157
Composite cofactor has 191 digits

c191

name 名前Serge Batalov
date 日付July 29, 2011 18:00:37 UTC 2011 年 7 月 30 日 (土) 3 時 0 分 37 秒 (日本時間)
composite number 合成数
26558620381760616367052594470390800721081065741607488941640193527559867421087538993291091806037750841915505023792578296395474887627482544907713107801879702074802850298666057895725122913508919<191>
prime factors 素因数
694958432899909541657258188143367004233848839<45>
composite cofactor 合成数の残り
38216127935792220436629908968366114925041958171303675529478160647341196239626232900730407530521211934721384749742989282072106929733391141185264721<146>
factorization results 素因数分解の結果
Input number is 26558620381760616367052594470390800721081065741607488941640193527559867421087538993291091806037750841915505023792578296395474887627482544907713107801879702074802850298666057895725122913508919 (191 digits)
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3303444293
Step 1 took 9129ms
Step 2 took 8047ms
********** Factor found in step 2: 694958432899909541657258188143367004233848839
Found probable prime factor of 45 digits: 694958432899909541657258188143367004233848839
Composite cofactor 382161279357... has 146 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 31, 2008 04:00:00 UTC 2008 年 10 月 31 日 (金) 13 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosSeptember 13, 2010 20:36:18 UTC 2010 年 9 月 14 日 (火) 5 時 36 分 18 秒 (日本時間)
403e61000110Ignacio SantosSeptember 13, 2010 20:36:18 UTC 2010 年 9 月 14 日 (火) 5 時 36 分 18 秒 (日本時間)
890Serge BatalovJuly 31, 2011 02:10:52 UTC 2011 年 7 月 31 日 (日) 11 時 10 分 52 秒 (日本時間)
4511e6103232Ignacio SantosSeptember 13, 2010 20:36:18 UTC 2010 年 9 月 14 日 (火) 5 時 36 分 18 秒 (日本時間)
1000Erik BrangerAugust 9, 2011 18:44:58 UTC 2011 年 8 月 10 日 (水) 3 時 44 分 58 秒 (日本時間)
5043e6920 / 7282Dmitry DomanovAugust 21, 2011 08:47:04 UTC 2011 年 8 月 21 日 (日) 17 時 47 分 4 秒 (日本時間)

16×10237-13

c197

composite cofactor 合成数の残り
49228409945014451582078571603601207431885178000257836419796157942293806981703913688420430727714519132118778080449532800862622876428807127695683403073333260005113627804924496330281659235968971290683<197>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 31, 2008 04:00:00 UTC 2008 年 10 月 31 日 (金) 13 時 0 分 0 秒 (日本時間)
351e6300Ignacio SantosSeptember 13, 2010 21:32:12 UTC 2010 年 9 月 14 日 (火) 6 時 32 分 12 秒 (日本時間)
403e62310110Ignacio SantosSeptember 13, 2010 21:32:12 UTC 2010 年 9 月 14 日 (火) 6 時 32 分 12 秒 (日本時間)
700Serge BatalovJuly 29, 2011 18:41:25 UTC 2011 年 7 月 30 日 (土) 3 時 41 分 25 秒 (日本時間)
1500Dmitry DomanovNovember 13, 2013 11:16:10 UTC 2013 年 11 月 13 日 (水) 20 時 16 分 10 秒 (日本時間)
4511e6332 / 395432Ignacio SantosSeptember 13, 2010 21:32:12 UTC 2010 年 9 月 14 日 (火) 6 時 32 分 12 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:33:00 UTC 2014 年 5 月 27 日 (火) 9 時 33 分 0 秒 (日本時間)

16×10243-13

c239

name 名前Serge Batalov
date 日付January 1, 2009 11:04:52 UTC 2009 年 1 月 1 日 (木) 20 時 4 分 52 秒 (日本時間)
composite number 合成数
28697132259701872667237022170328241385928002482301940464211985716002417733392879882772214719117850154336764434209133938484109859796573203694038350130123559090085678875502872403582119534317286255687861292411222730998462909853339718445261117<239>
prime factors 素因数
142418441176840492033032134216942205277<39>
201498710578279266127850534345602794151552427229210220839574119308833713179199126509670068269959423304410557453149770591553404877715402614939279778740096562086248467773700074883514599656144871992813921<201>
factorization results 素因数分解の結果
Run 1107 out of 4410:
Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=969687583
Step 1 took 88244ms
Step 2 took 49818ms
********** Factor found in step 2: 142418441176840492033032134216942205277
Found probable prime factor of 39 digits: 142418441176840492033032134216942205277
Probable prime cofactor 201498710578279266127850534345602794151552427229210220839574119308833713179199126509670068269959423304410557453149770591553404877715402614939279778740096562086248467773700074883514599656144871992813921 has 201 digits
software ソフトウェア
GMP-ECM 6.2.1

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
3025e4430Makoto KamadaOctober 31, 2008 04:00:00 UTC 2008 年 10 月 31 日 (金) 13 時 0 分 0 秒 (日本時間)
351e60--
403e6313 / 2336Serge BatalovNovember 13, 2008 20:29:18 UTC 2008 年 11 月 14 日 (金) 5 時 29 分 18 秒 (日本時間)

16×10251-13

c169

name 名前KTakahashi
date 日付February 27, 2014 10:35:05 UTC 2014 年 2 月 27 日 (木) 19 時 35 分 5 秒 (日本時間)
composite number 合成数
3552753220110467613280307080564871918195749907974036779855366535666999509484479720436964377038268478562982560369393693514025489982411385985530014415655691026348494404053<169>
prime factors 素因数
27740146521517059331208939825587<32>
composite cofactor 合成数の残り
128072619131795914225547771165754510069477604090567470703938880972415068792897001786110562927371563021531787024114858192534337487677061719<138>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with GMP 5.1.2] [ECM]
Input number is 3552753220110467613280307080564871918195749907974036779855366535666999509484479720436964377038268478562982560369393693514025489982411385985530014415655691026348494404053 (169 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=736454768
Step 1 took 4368ms
Step 2 took 2449ms
********** Factor found in step 2: 27740146521517059331208939825587
Found probable prime factor of 32 digits: 27740146521517059331208939825587
Composite cofactor 128072619131795914225547771165754510069477604090567470703938880972415068792897001786110562927371563021531787024114858192534337487677061719 has 138 digits

c138

name 名前Erik Branger
date 日付May 25, 2014 08:48:31 UTC 2014 年 5 月 25 日 (日) 17 時 48 分 31 秒 (日本時間)
composite number 合成数
128072619131795914225547771165754510069477604090567470703938880972415068792897001786110562927371563021531787024114858192534337487677061719<138>
prime factors 素因数
170252817254193948891253509298867389618870402069591241422982769<63>
752249632031513520903827185749073634773961859047764016992474824494015924551<75>
factorization results 素因数分解の結果
Number: 53333_251
N = 128072619131795914225547771165754510069477604090567470703938880972415068792897001786110562927371563021531787024114858192534337487677061719 (138 digits)
Divisors found:
r1=170252817254193948891253509298867389618870402069591241422982769 (pp63)
r2=752249632031513520903827185749073634773961859047764016992474824494015924551 (pp75)
Version: Msieve v. 1.51 (SVN Official Release)
Total time: 120.01 hours.
Factorization parameters were as follows:
# Murphy_E = 3.365e-11, selected by Erik Branger
# expecting poly E from 3.08e-011 to > 3.54e-011
n: 128072619131795914225547771165754510069477604090567470703938880972415068792897001786110562927371563021531787024114858192534337487677061719
Y0: -448213003456650449930314916
Y1: 538666968088711
c0: 1954645159250636263424907248732325
c1: -1428214562422255909475102119
c2: -16775314008513175086759
c3: -45064805809279569
c4: 10488607186
c5: 7080
skew: 1232493.98
type: gnfs
# selected mechanically
rlim: 15200000
alim: 15200000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.6
alambda: 2.6
Factor base limits: 15200000/15200000
Large primes per side: 3
Large prime bits: 28/28
Sieved algebraic special-q in [0, 0)
Total raw relations: 23044337
Relations: 3216228 relations
Pruned matrix : 2011965 x 2012191
Polynomial selection time: 0.00 hours.
Total sieving time: 117.08 hours.
Total relation processing time: 0.12 hours.
Matrix solve time: 2.64 hours.
time per square root: 0.17 hours.
Prototype def-par.txt line would be: gnfs,137,5,65,2000,1e-05,0.28,250,20,50000,3600,15200000,15200000,28,28,55,55,2.6,2.6,100000
total time: 120.01 hours.
Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
Windows-7-6.1.7601-SP1
processors: 8, speed: 3.50GHz
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaFebruary 26, 2014 14:00:00 UTC 2014 年 2 月 26 日 (水) 23 時 0 分 0 秒 (日本時間)
786KTakahashiFebruary 27, 2014 10:33:18 UTC 2014 年 2 月 27 日 (木) 19 時 33 分 18 秒 (日本時間)
403e62104KTakahashiFebruary 27, 2014 10:33:18 UTC 2014 年 2 月 27 日 (木) 19 時 33 分 18 秒 (日本時間)
4511e652 / 3974KTakahashiFebruary 27, 2014 10:33:18 UTC 2014 年 2 月 27 日 (木) 19 時 33 分 18 秒 (日本時間)

16×10255-13

c247

composite cofactor 合成数の残り
9017448228602128087460780433553985050095444532646547793963772344255358493070059757045721601154586857231633598616008358087905402626180641604437862300886239940580697165895995244328557234552377530452580659914817362888937427934068406518940338715633453<247>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaFebruary 26, 2014 14:00:00 UTC 2014 年 2 月 26 日 (水) 23 時 0 分 0 秒 (日本時間)
786KTakahashiFebruary 27, 2014 10:36:45 UTC 2014 年 2 月 27 日 (木) 19 時 36 分 45 秒 (日本時間)
403e61300Serge BatalovMay 26, 2014 18:01:04 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 4 秒 (日本時間)
4511e6529 / 4151KTakahashiSeptember 26, 2014 14:14:08 UTC 2014 年 9 月 26 日 (金) 23 時 14 分 8 秒 (日本時間)

16×10259-13

c176

name 名前KTakahashi
date 日付February 27, 2014 12:28:40 UTC 2014 年 2 月 27 日 (木) 21 時 28 分 40 秒 (日本時間)
composite number 合成数
19503182180349485418449027962111460930557969020513736065388062856293248002840773655557177682049290334424227293385747408742071995287563772312815645405041959550324155357305177597<176>
prime factors 素因数
569490362512200829801088730581627<33>
composite cofactor 合成数の残り
34246729118144904348990721385738156576161927015714006303306709198590387440067325951992218084290679344491213548680460638356640857865490401371111<143>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with GMP 5.1.2] [ECM]
Input number is 19503182180349485418449027962111460930557969020513736065388062856293248002840773655557177682049290334424227293385747408742071995287563772312815645405041959550324155357305177597 (176 digits)
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4102216276
Step 1 took 14788ms
Step 2 took 6131ms
********** Factor found in step 2: 569490362512200829801088730581627
Found probable prime factor of 33 digits: 569490362512200829801088730581627
Composite cofactor 34246729118144904348990721385738156576161927015714006303306709198590387440067325951992218084290679344491213548680460638356640857865490401371111 has 143 digits

c143

name 名前Erik Branger
date 日付September 10, 2017 11:41:36 UTC 2017 年 9 月 10 日 (日) 20 時 41 分 36 秒 (日本時間)
composite number 合成数
34246729118144904348990721385738156576161927015714006303306709198590387440067325951992218084290679344491213548680460638356640857865490401371111<143>
prime factors 素因数
499707882040761598813456994359175848646844319268354918768077<60>
68533497967421233110667297250111582556034972971860157325366350725715718674067469443<83>
factorization results 素因数分解の結果
Number: 53333_259
N = 34246729118144904348990721385738156576161927015714006303306709198590387440067325951992218084290679344491213548680460638356640857865490401371111 (143 digits)
Divisors found:
r1=499707882040761598813456994359175848646844319268354918768077 (pp60)
r2=68533497967421233110667297250111582556034972971860157325366350725715718674067469443 (pp83)
Version: Msieve v. 1.51 (SVN 845)
Total time: 491.76 hours.
Factorization parameters were as follows:
# Murphy_E = 1.44441988e-11, selected by Maksym Voznyy
# selected by CADO-NFS
n: 34246729118144904348990721385738156576161927015714006303306709198590387440067325951992218084290679344491213548680460638356640857865490401371111
Y0: -2458534350570253548529162204
Y1: 91783349259640087187
c0: 333564455232333370190527499921580
c1: -15634693000699424718909775732
c2: -28797545088659117939471
c3: 468388747178144847
c4: 4058473066956
c5: 10523520
skew: 185183.82333
type: gnfs
# selected mechanically
rlim: 21000000
alim: 21000000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 21000000/21000000
Large primes per side: 3
Large prime bits: 28/28
Sieved algebraic special-q in [0, 0)
Total raw relations: 23394361
Relations: 4347324 relations
Pruned matrix : 2690246 x 2690471
Polynomial selection time: 0.00 hours.
Total sieving time: 483.92 hours.
Total relation processing time: 0.21 hours.
Matrix solve time: 7.12 hours.
time per square root: 0.51 hours.
Prototype def-par.txt line would be: gnfs,142,5,65,2000,1e-05,0.28,250,20,50000,3600,21000000,21000000,28,28,56,56,2.6,2.6,100000
total time: 491.76 hours.
Intel64 Family 6 Model 58 Stepping 9, GenuineIntel
Windows-post2008Server-6.2.9200
processors: 8, speed: 2.29GHz
software ソフトウェア
GGNFS, Msieve

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaFebruary 26, 2014 14:00:00 UTC 2014 年 2 月 26 日 (水) 23 時 0 分 0 秒 (日本時間)
786KTakahashiFebruary 27, 2014 12:27:56 UTC 2014 年 2 月 27 日 (木) 21 時 27 分 56 秒 (日本時間)
403e62104KTakahashiFebruary 27, 2014 12:27:56 UTC 2014 年 2 月 27 日 (木) 21 時 27 分 56 秒 (日本時間)
4511e6397452KTakahashiFebruary 27, 2014 12:27:56 UTC 2014 年 2 月 27 日 (木) 21 時 27 分 56 秒 (日本時間)
1800Serge BatalovMay 24, 2014 17:35:42 UTC 2014 年 5 月 25 日 (日) 2 時 35 分 42 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:33:01 UTC 2014 年 5 月 27 日 (火) 9 時 33 分 1 秒 (日本時間)
1822KTakahashiAugust 22, 2014 04:38:42 UTC 2014 年 8 月 22 日 (金) 13 時 38 分 42 秒 (日本時間)
5043e6215 / 6577KTakahashiSeptember 19, 2014 01:13:04 UTC 2014 年 9 月 19 日 (金) 10 時 13 分 4 秒 (日本時間)

16×10261-13

c229

name 名前Serge Batalov
date 日付May 19, 2014 00:45:02 UTC 2014 年 5 月 19 日 (月) 9 時 45 分 2 秒 (日本時間)
composite number 合成数
4387941564600689224748282337182804579281036689868458960149779190907486476747369981946608435932163591072628677571600855028714210630314167669407994774380391426506148785860956181754420858486075212487948191401097890461588084465301921<229>
prime factors 素因数
16313241542487161195324659407948809<35>
268980358880390347842325567228305426680176176274430234801718470757476353166059354643308824803941266956976444396997240944974331687534703146889761221051307727095858422049027426561491223709002634969<195>
factorization results 素因数分解の結果
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4282918542
Step 1 took 21446ms
Step 2 took 14309ms
********** Factor found in step 2: 16313241542487161195324659407948809
Found probable prime factor of 35 digits: 16313241542487161195324659407948809
Probable prime cofactor

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaFebruary 26, 2014 14:00:00 UTC 2014 年 2 月 26 日 (水) 23 時 0 分 0 秒 (日本時間)
786KTakahashiFebruary 27, 2014 10:37:46 UTC 2014 年 2 月 27 日 (木) 19 時 37 分 46 秒 (日本時間)

16×10263-13

c251

composite cofactor 合成数の残り
34567614047596322511875083685362616161018323832049401317494479725178161954234971946314344290805998272851831435875798947189977488388868589937605686048386455746502714740026628096794300114148745110619058758184325346677505209656464500945159970611844722933<251>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaFebruary 26, 2014 14:00:00 UTC 2014 年 2 月 26 日 (水) 23 時 0 分 0 秒 (日本時間)
786KTakahashiFebruary 27, 2014 10:38:02 UTC 2014 年 2 月 27 日 (木) 19 時 38 分 2 秒 (日本時間)
403e61300Serge BatalovMay 26, 2014 18:01:04 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 4 秒 (日本時間)
4511e6529 / 4151KTakahashiSeptember 30, 2014 09:32:38 UTC 2014 年 9 月 30 日 (火) 18 時 32 分 38 秒 (日本時間)

16×10265-13

c222

composite cofactor 合成数の残り
151283688618129211868897938121897153040284387390371594727014064077965095498444747160177886029080850569077677823645099709574434739264670374239065516488713240265687363048249226151072139858728512570203117365769502092154860083<222>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaFebruary 26, 2014 14:00:00 UTC 2014 年 2 月 26 日 (水) 23 時 0 分 0 秒 (日本時間)
786KTakahashiFebruary 27, 2014 10:38:21 UTC 2014 年 2 月 27 日 (木) 19 時 38 分 21 秒 (日本時間)
403e61300Serge BatalovMay 26, 2014 18:01:05 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 5 秒 (日本時間)
4511e6529 / 4151KTakahashiSeptember 21, 2014 00:04:53 UTC 2014 年 9 月 21 日 (日) 9 時 4 分 53 秒 (日本時間)

16×10273-13

c239

composite cofactor 合成数の残り
93848190441492961693066501972917058329985800041955333862000217423857063585688073677380322689153188770125780753386337184192913854878663212763624168774885639043080789014711211133593912607016214120445211431242047514302175359523183918923112609<239>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaFebruary 26, 2014 14:00:00 UTC 2014 年 2 月 26 日 (水) 23 時 0 分 0 秒 (日本時間)
786KTakahashiFebruary 27, 2014 10:39:30 UTC 2014 年 2 月 27 日 (木) 19 時 39 分 30 秒 (日本時間)
403e61300Serge BatalovMay 26, 2014 18:01:05 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 5 秒 (日本時間)
4511e6529 / 4151KTakahashiSeptember 23, 2014 22:13:40 UTC 2014 年 9 月 24 日 (水) 7 時 13 分 40 秒 (日本時間)

16×10275-13

c249

composite cofactor 合成数の残り
427836661266335708588817480374326515820951655407500706203691246575967142168459666302558785163247523843736034186953105793415178420410865394154236893001977214379192690864425075288105917428800266616865378647496997816628656377877178683256074445003878609<249>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaFebruary 26, 2014 14:00:00 UTC 2014 年 2 月 26 日 (水) 23 時 0 分 0 秒 (日本時間)
786KTakahashiFebruary 27, 2014 10:39:43 UTC 2014 年 2 月 27 日 (木) 19 時 39 分 43 秒 (日本時間)
403e61300Serge BatalovMay 26, 2014 18:01:05 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 5 秒 (日本時間)
4511e6529 / 4151KTakahashiSeptember 27, 2014 07:03:12 UTC 2014 年 9 月 27 日 (土) 16 時 3 分 12 秒 (日本時間)

16×10277-13

c225

name 名前KTakahashi
date 日付February 27, 2014 10:42:31 UTC 2014 年 2 月 27 日 (木) 19 時 42 分 31 秒 (日本時間)
composite number 合成数
526384625903287543782905643980865210480259959608446405909646234252923797908238845436688411855808867754131733294439259550142638337487552721423522398032217370871928850445022905465907904448721399359546384984086706791493343001643<225>
prime factors 素因数
199464092926847786247543527142959<33>
composite cofactor 合成数の残り
2638994408363693944829779409503355212609974375287428036878248514826477683307964517330551579466782017224739868544303828034095697261421424083499481028048181785465016226357225651485837323610478277<193>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with GMP 5.1.2] [ECM]
Input number is 526384625903287543782905643980865210480259959608446405909646234252923797908238845436688411855808867754131733294439259550142638337487552721423522398032217370871928850445022905465907904448721399359546384984086706791493343001643 (225 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4125614920
Step 1 took 5601ms
Step 2 took 3011ms
********** Factor found in step 2: 199464092926847786247543527142959
Found probable prime factor of 33 digits: 199464092926847786247543527142959
Composite cofactor 2638994408363693944829779409503355212609974375287428036878248514826477683307964517330551579466782017224739868544303828034095697261421424083499481028048181785465016226357225651485837323610478277 has 193 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaFebruary 26, 2014 14:00:00 UTC 2014 年 2 月 26 日 (水) 23 時 0 分 0 秒 (日本時間)
786KTakahashiFebruary 27, 2014 10:40:27 UTC 2014 年 2 月 27 日 (木) 19 時 40 分 27 秒 (日本時間)
403e62104KTakahashiFebruary 27, 2014 10:40:27 UTC 2014 年 2 月 27 日 (木) 19 時 40 分 27 秒 (日本時間)
4511e6352 / 397452KTakahashiFebruary 27, 2014 10:40:27 UTC 2014 年 2 月 27 日 (木) 19 時 40 分 27 秒 (日本時間)
300Serge BatalovMay 27, 2014 00:33:01 UTC 2014 年 5 月 27 日 (火) 9 時 33 分 1 秒 (日本時間)

16×10279-13

c240

name 名前KTakahashi
date 日付February 27, 2014 10:46:01 UTC 2014 年 2 月 27 日 (木) 19 時 46 分 1 秒 (日本時間)
composite number 合成数
282394415603554416177569825248074192644685559353054097435689364247264304810252187159275849117103997470343117364118074666555447342007702109833819032106886927281386313887600057282540813219038903350719174018552506909554869596226636091290335843<240>
prime factors 素因数
1931156244374060455403135849<28>
composite cofactor 合成数の残り
146230744625785585709919807472792880895850219407172242408827188718605542281064326574365425530450249339319751739323450785885100423271617917626471382326697681297414076551315799369461246556259395815668748664265200107<213>
factorization results 素因数分解の結果
GMP-ECM 6.4.4 [configured with GMP 5.1.2] [ECM]
Input number is 282394415603554416177569825248074192644685559353054097435689364247264304810252187159275849117103997470343117364118074666555447342007702109833819032106886927281386313887600057282540813219038903350719174018552506909554869596226636091290335843 (240 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2997535641
Step 1 took 7222ms
Step 2 took 3604ms
********** Factor found in step 2: 1931156244374060455403135849
Found probable prime factor of 28 digits: 1931156244374060455403135849
Composite cofactor 146230744625785585709919807472792880895850219407172242408827188718605542281064326574365425530450249339319751739323450785885100423271617917626471382326697681297414076551315799369461246556259395815668748664265200107 has 213 digits

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaFebruary 26, 2014 14:00:00 UTC 2014 年 2 月 26 日 (水) 23 時 0 分 0 秒 (日本時間)
786KTakahashiFebruary 27, 2014 10:43:54 UTC 2014 年 2 月 27 日 (木) 19 時 43 分 54 秒 (日本時間)
403e61300Serge BatalovMay 26, 2014 18:01:06 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 6 秒 (日本時間)
4511e6529 / 4151KTakahashiSeptember 21, 2014 00:23:05 UTC 2014 年 9 月 21 日 (日) 9 時 23 分 5 秒 (日本時間)

16×10281-13

c243

composite cofactor 合成数の残り
730374697270999766214226234829400091298431621244644641286138002243071085373626872713610408359433820577003105029590862603870182803047584302278338595542502023035123117518181962552381935858445222060444845440707974337983204553919321984982286592787<243>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaFebruary 26, 2014 14:00:00 UTC 2014 年 2 月 26 日 (水) 23 時 0 分 0 秒 (日本時間)
786KTakahashiFebruary 27, 2014 10:47:14 UTC 2014 年 2 月 27 日 (木) 19 時 47 分 14 秒 (日本時間)
403e61300Serge BatalovMay 26, 2014 18:01:06 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 6 秒 (日本時間)
4511e6529 / 4151KTakahashiSeptember 25, 2014 22:26:22 UTC 2014 年 9 月 26 日 (金) 7 時 26 分 22 秒 (日本時間)

16×10283-13

c242

composite cofactor 合成数の残り
18947087570777316669295311185999238444795182278984303538741352239258224004077850507938344793053460488688687703725343514589944717443729596245040527477297492901808796372778243243428963664553224057805978308542926893543439780596788292789883261321<242>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaFebruary 26, 2014 14:00:00 UTC 2014 年 2 月 26 日 (水) 23 時 0 分 0 秒 (日本時間)
786KTakahashiFebruary 27, 2014 10:47:36 UTC 2014 年 2 月 27 日 (木) 19 時 47 分 36 秒 (日本時間)
403e61300Serge BatalovMay 26, 2014 18:01:07 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 7 秒 (日本時間)
4511e6529 / 4151KTakahashiSeptember 25, 2014 11:29:33 UTC 2014 年 9 月 25 日 (木) 20 時 29 分 33 秒 (日本時間)

16×10287-13

c224

composite cofactor 合成数の残り
71242650227985507482461773871435559726268378150821117029034530380195036412674893487173213714207730322894090822454308065822783145756344100330837580263404059603609374830949896883334298090955277357627193620895029915789719508929<224>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaFebruary 26, 2014 14:00:00 UTC 2014 年 2 月 26 日 (水) 23 時 0 分 0 秒 (日本時間)
786KTakahashiFebruary 27, 2014 10:47:54 UTC 2014 年 2 月 27 日 (木) 19 時 47 分 54 秒 (日本時間)
403e61300Serge BatalovMay 26, 2014 18:01:07 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 7 秒 (日本時間)
4511e6529 / 4151KTakahashiSeptember 23, 2014 04:24:16 UTC 2014 年 9 月 23 日 (火) 13 時 24 分 16 秒 (日本時間)

16×10289-13

c250

composite cofactor 合成数の残り
1021321851560854297939118573083709686269247862768492399500905511123205137739791394745972196981389928447521040057824248705000957216590478448935472597617595582467585060443151359237948339698906342524298976391229986161673391890754648056800956006119572591<250>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaFebruary 26, 2014 14:00:00 UTC 2014 年 2 月 26 日 (水) 23 時 0 分 0 秒 (日本時間)
786KTakahashiFebruary 27, 2014 10:48:12 UTC 2014 年 2 月 27 日 (木) 19 時 48 分 12 秒 (日本時間)
403e61300Serge BatalovMay 26, 2014 18:01:08 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 8 秒 (日本時間)
4511e6529 / 4151KTakahashiSeptember 28, 2014 00:05:40 UTC 2014 年 9 月 28 日 (日) 9 時 5 分 40 秒 (日本時間)

16×10291-13

c268

composite cofactor 合成数の残り
1314203335158097267889621805040320575759840274709695994517083640136240902936732270904395314460567656924090896100767747881500030679557735415338196325144352216961729533848822832843659471620235656852154717322128164995291612042420110309423350778560506929395638108232696803<268>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaFebruary 26, 2014 14:00:00 UTC 2014 年 2 月 26 日 (水) 23 時 0 分 0 秒 (日本時間)
786KTakahashiFebruary 27, 2014 10:48:26 UTC 2014 年 2 月 27 日 (木) 19 時 48 分 26 秒 (日本時間)
403e61300Serge BatalovMay 26, 2014 18:01:08 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 8 秒 (日本時間)
4511e6529 / 4151KTakahashiOctober 1, 2014 20:58:09 UTC 2014 年 10 月 2 日 (木) 5 時 58 分 9 秒 (日本時間)

16×10293-13

c289

composite cofactor 合成数の残り
3247102468406707701924111156435249732621406117135162669686471962284904829456090042151448918004574355602367949475085591591628158060830405867514160410920817376868859678496266846880853663238944123454835848823026827154706167668194834265860573478884701479664006072081615920543402598087862533917<289>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaFebruary 26, 2014 14:00:00 UTC 2014 年 2 月 26 日 (水) 23 時 0 分 0 秒 (日本時間)
786KTakahashiFebruary 27, 2014 10:48:47 UTC 2014 年 2 月 27 日 (木) 19 時 48 分 47 秒 (日本時間)
403e60--
4511e630001000Serge BatalovMarch 2, 2014 03:23:15 UTC 2014 年 3 月 2 日 (日) 12 時 23 分 15 秒 (日本時間)
2000Serge BatalovMay 18, 2014 20:06:13 UTC 2014 年 5 月 19 日 (月) 5 時 6 分 13 秒 (日本時間)
5043e62100 / 68751000Serge BatalovMay 18, 2014 20:15:26 UTC 2014 年 5 月 19 日 (月) 5 時 15 分 26 秒 (日本時間)
1100Serge BatalovJanuary 6, 2015 01:40:00 UTC 2015 年 1 月 6 日 (火) 10 時 40 分 0 秒 (日本時間)

16×10295-13

c240

composite cofactor 合成数の残り
306685359838223804076690416804176774125533456195009700386828244993990629849101356226871281128534993608901545096809995405711328374135672125769926013574227591604122223164067611795820835809011224596525791128332101784043798063060164760327313281<240>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaFebruary 26, 2014 14:00:00 UTC 2014 年 2 月 26 日 (水) 23 時 0 分 0 秒 (日本時間)
786KTakahashiFebruary 27, 2014 10:49:14 UTC 2014 年 2 月 27 日 (木) 19 時 49 分 14 秒 (日本時間)
403e61300Serge BatalovMay 26, 2014 18:01:08 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 8 秒 (日本時間)
4511e6529 / 4151KTakahashiSeptember 24, 2014 13:03:50 UTC 2014 年 9 月 24 日 (水) 22 時 3 分 50 秒 (日本時間)

16×10297-13

c255

composite cofactor 合成数の残り
959798396818468775343473168069601137670552585961079782857620256410689846299578393329886194025590680630183110494956875390205370609028107641606994316963846849749809226495984252413582218868129196695180393237226113137523497821288647220838369827935625272797879<255>

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaFebruary 26, 2014 14:00:00 UTC 2014 年 2 月 26 日 (水) 23 時 0 分 0 秒 (日本時間)
786KTakahashiFebruary 27, 2014 10:49:36 UTC 2014 年 2 月 27 日 (木) 19 時 49 分 36 秒 (日本時間)
403e61300Serge BatalovMay 26, 2014 18:01:09 UTC 2014 年 5 月 27 日 (火) 3 時 1 分 9 秒 (日本時間)
4511e6529 / 4151KTakahashiOctober 1, 2014 09:30:52 UTC 2014 年 10 月 1 日 (水) 18 時 30 分 52 秒 (日本時間)

16×10299-13

c281

name 名前Serge Batalov
date 日付May 18, 2014 22:11:30 UTC 2014 年 5 月 19 日 (月) 7 時 11 分 30 秒 (日本時間)
composite number 合成数
25205865684862460965071795863665839523006627915263722332426833036431892133451990732214296089141869454042859586999312948905511324399321858174782942760225224321766878919296537496943376922213769901988922292284613754388908571889748064533901875332625912421727748613506964437685809786449<281>
prime factors 素因数
578430357773976174055392746991886573<36>
43576318818853811378086630859116764523703108523011847706863458329026730348782793170161430362030165643219812510486792090437530555942730794691761435115262230742409058738714420533887977757937867414923873691719961190581959598493033268903888042257013<245>
factorization results 素因数分解の結果
Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=2651910017
Step 1 took 97661ms
Step 2 took 40403ms
********** Factor found in step 2: 578430357773976174055392746991886573
Found probable prime factor of 36 digits: 578430357773976174055392746991886573
Probable prime cofactor

ECM

level レベルB1reported runs 報告された回数name 名前date 日付
351e6904118Makoto KamadaFebruary 26, 2014 14:00:00 UTC 2014 年 2 月 26 日 (水) 23 時 0 分 0 秒 (日本時間)
786KTakahashiFebruary 27, 2014 10:49:49 UTC 2014 年 2 月 27 日 (木) 19 時 49 分 49 秒 (日本時間)