Table of contents

  1. December 2009
  2. November 2009
  3. October 2009
  4. September 2009
  5. August 2009
  6. July 2009
  7. June 2009
  8. May 2009
  9. April 2009
  10. March 2009
  11. February 2009
  12. January 2009

December 2009

December 31, 2009

Contributions page is available. 7871 contributions since September, 2006 were classified by the date and the label.

Factorizations of 822...221 and Factorizations of 822...223 have been extended up to n=150. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.

Factorizations of 688...889 have been extended up to n=200. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.

December 29, 2009

I'm organizing about 8,000 contributions now. New contributions will stay on the CGI server for several days.

Lazarusuk and yoyo@home found the largest known ECM-factor from the near-repdigit number (64·10341-1)/9. Congratulations!

Dec 28, 2009

To provide equal opportunity for making reservations, I limit the maximum number of reservations per person to ten.

Factorizations of 811...117 and Factorizations of 811...119 have been extended up to n=150. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.

Factorizations of 688...887 have been extended up to n=200. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.

Dec 27, 2009 (3rd)

By Dmitry Domanov / ECMNET, GMP-ECM, GGNFS/msieve / Dec 27, 2009

2·10238+9 = 2(0)2379<239> = 11 · 41 · 449 · 5945281 · 205709886542393<15> · C212

C212 = P33 · C179

P33 = 934803133267021438680222877011857<33>

C179 = [86389190127266350770385031495384179967873028613332220537337837050627344935518971489006603171048516781100773290444922675961442798454864564423577019533963800409624412975235359485611<179>]

Factor=934803133267021438680222877011857  Method=ECM  B1=11000000  Sigma=3043688549

2·10236+9 = 2(0)2359<237> = 11 · 19 · 138107 · 4159291 · 8773419562122098610424962990443<31> · C192

C192 = P34 · C159

P34 = 1621538670024234287528298561381857<34>

C159 = [117098815752117581980530614048280187555582803440778045542092028045520633300570987039138508825936717768032379425461484880728406097864186809255527187439657366723<159>]

Factor=1621538670024234287528298561381857  Method=ECM  B1=11000000  Sigma=632518576

2·10230+9 = 2(0)2299<231> = 11 · 6067 · 75913 · 6084433096051<13> · C208

C208 = P34 · C174

P34 = 7073788323327073327258989897992617<34>

C174 = [917223094434762491286013571173061287620094347946329312148732779955057197042337509159978376511017279572890823924278440190462392904036852604802751256146369522413326232732297267<174>]

Factor=7073788323327073327258989897992617  Method=ECM  B1=11000000  Sigma=3376074941

(73·10147+17)/9 = 8(1)1463<148> = 7 · 19 · 271 · 3607 · 1058306453509113059<19> · C122

C122 = P41 · P82

P41 = 20886560597602026806323136874983100754199<41>

P82 = 2822506181531805700235175141346358488148133171290045158430063248803979898962951993<82>

N=58952446397670366423086907740884604848531269883950816758660393478899455749858136033331454447681313330213403804277730168607
  ( 122 digits)
SNFS difficulty: 148 digits.
Divisors found:
 r1=20886560597602026806323136874983100754199 (pp41)
 r2=2822506181531805700235175141346358488148133171290045158430063248803979898962951993 (pp82)
Version: Msieve-1.40
Total time: 11.58 hours.
Scaled time: 21.05 units (timescale=1.818).
Factorization parameters were as follows:
n: 58952446397670366423086907740884604848531269883950816758660393478899455749858136033331454447681313330213403804277730168607
m: 100000000000000000000000000000
deg: 5
c5: 7300
c0: 17
skew: 0.30
type: snfs
lss: 1
rlim: 2100000
alim: 2100000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.3
alambda: 2.3Factor base limits: 2100000/2100000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved rational special-q in [1050000, 3150001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 340178 x 340406
Total sieving time: 11.35 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.15 hours.
Time per square root: 0.03 hours.
Prototype def-par.txt line would be:
snfs,148.000,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000
total time: 11.58 hours.
 --------- CPU info (if available) ----------

(73·10145+17)/9 = 8(1)1443<146> = 34487617 · 6700001606333501<16> · C123

C123 = P33 · P91

P33 = 324397557949150882736842313530027<33>

P91 = 1082093232200827485232398232958400591728533542755009125044382690865675948375507134070094007<91>

N=351028401999251916134821853431037226688119725436192589359670396617620377086980693969736688732001770672798265995087907248189
  ( 123 digits)
SNFS difficulty: 146 digits.
Divisors found:
 r1=324397557949150882736842313530027 (pp33)
 r2=1082093232200827485232398232958400591728533542755009125044382690865675948375507134070094007 (pp91)
Version: Msieve-1.40
Total time: 8.47 hours.
Scaled time: 15.43 units (timescale=1.823).
Factorization parameters were as follows:
n: 351028401999251916134821853431037226688119725436192589359670396617620377086980693969736688732001770672798265995087907248189
m: 100000000000000000000000000000
deg: 5
c5: 73
c0: 17
skew: 0.75
type: snfs
lss: 1
rlim: 1960000
alim: 1960000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.3
alambda: 2.3Factor base limits: 1960000/1960000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved rational special-q in [980000, 2480001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 264058 x 264283
Total sieving time: 8.32 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.09 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,146.000,5,0,0,0,0,0,0,0,0,1960000,1960000,26,26,49,49,2.3,2.3,100000
total time: 8.47 hours.
 --------- CPU info (if available) ----------

(62·10153-53)/9 = 6(8)1523<154> = 83 · 4562669 · 3487114261<10> · C136

C136 = P53 · P84

P53 = 47815697752352098457986363218128078130226492291799893<53>

P84 = 109097663147591498526380294134197245187003896362469052701235847091686578792333022573<84>

N=5216580886553157179266336194939601662516617965583607797830691218065927043923999858324138677299551882803062017504735600577449123167984689
  ( 136 digits)
SNFS difficulty: 154 digits.
Divisors found:
 r1=47815697752352098457986363218128078130226492291799893 (pp53)
 r2=109097663147591498526380294134197245187003896362469052701235847091686578792333022573 (pp84)
Version: Msieve-1.40
Total time: 20.98 hours.
Scaled time: 38.93 units (timescale=1.855).
Factorization parameters were as follows:
n: 5216580886553157179266336194939601662516617965583607797830691218065927043923999858324138677299551882803062017504735600577449123167984689
m: 1000000000000000000000000000000
deg: 5
c5: 62000
c0: -53
skew: 0.24
type: snfs
lss: 1
rlim: 2700000
alim: 2700000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4Factor base limits: 2700000/2700000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1350000, 2650001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 543748 x 543975
Total sieving time: 20.36 hours.
Total relation processing time: 0.07 hours.
Matrix solve time: 0.36 hours.
Time per square root: 0.20 hours.
Prototype def-par.txt line would be:
snfs,154.000,5,0,0,0,0,0,0,0,0,2700000,2700000,27,27,50,50,2.4,2.4,100000
total time: 20.98 hours.
 --------- CPU info (if available) ----------

(62·10156-53)/9 = 6(8)1553<157> = 20149 · 2889493 · C147

C147 = P45 · P50 · P53

P45 = 296092480355417714661032125185595033281118861<45>

P50 = 20758746508962225695125662243311466530433706035881<50>

P53 = 19250655970989913827479711758654941345071207658101759<53>

N=118324325232403481461848194651933546395362047639327777783779588329505585659637347051183152187156073511947777164282926783552707472321495695098960619
  ( 147 digits)
SNFS difficulty: 157 digits.
Divisors found:
 r1=296092480355417714661032125185595033281118861 (pp45)
 r2=20758746508962225695125662243311466530433706035881 (pp50)
 r3=19250655970989913827479711758654941345071207658101759 (pp53)
Version: Msieve-1.40
Total time: 19.06 hours.
Scaled time: 35.45 units (timescale=1.860).
Factorization parameters were as follows:
n: 118324325232403481461848194651933546395362047639327777783779588329505585659637347051183152187156073511947777164282926783552707472321495695098960619
m: 10000000000000000000000000000000
deg: 5
c5: 620
c0: -53
skew: 0.61
type: snfs
lss: 1
rlim: 3000000
alim: 3000000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1500000, 2600001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 543425 x 543651
Total sieving time: 18.43 hours.
Total relation processing time: 0.07 hours.
Matrix solve time: 0.37 hours.
Time per square root: 0.19 hours.
Prototype def-par.txt line would be:
snfs,157.000,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000
total time: 19.06 hours.
 --------- CPU info (if available) ----------

(62·10160-53)/9 = 6(8)1593<161> = 3 · 313 · 391516847 · C150

C150 = P37 · P113

P37 = 2929674531395509720008490951855848061<37>

P113 = 63960780933066026225889687195304074812081561846826503281813538817936673009349384729463814205722125431075503229891<113>

N=187384270907771063333728440077318565961035336376917852099045312850421888141782541628479746273647356028707209272617957631716937170730104800242449591351
  ( 150 digits)
SNFS difficulty: 161 digits.
Divisors found:
 r1=2929674531395509720008490951855848061 (pp37)
 r2=63960780933066026225889687195304074812081561846826503281813538817936673009349384729463814205722125431075503229891 (pp113)
Version: Msieve-1.40
Total time: 41.96 hours.
Scaled time: 39.10 units (timescale=0.932).
Factorization parameters were as follows:
n: 187384270907771063333728440077318565961035336376917852099045312850421888141782541628479746273647356028707209272617957631716937170730104800242449591351
m: 100000000000000000000000000000000
deg: 5
c5: 62
c0: -53
skew: 0.97
type: snfs
lss: 1
rlim: 3500000
alim: 3500000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4Factor base limits: 3500000/3500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [1750000, 3450001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 768947 x 769180
Total sieving time: 40.53 hours.
Total relation processing time: 0.12 hours.
Matrix solve time: 1.19 hours.
Time per square root: 0.11 hours.
Prototype def-par.txt line would be:
snfs,161.000,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000
total time: 41.96 hours.
 --------- CPU info (if available) ----------

(62·10169-53)/9 = 6(8)1683<170> = 3 · 7 · 71 · 173 · 1072793 · C159

C159 = P29 · P37 · P94

P29 = 33706548729056745629121167503<29>

P37 = 1526568046346414834239657673989825139<37>

P94 = 4838146872015767768001030987421981831864644663863774917922618347544565075277396770748172624401<94>

N=248948493442257142683928751621912829309459505384922441830057514377894366183213675105899542351187849850875664732974936041147563855368202345946081094604866632717
  ( 159 digits)
SNFS difficulty: 170 digits.
Divisors found:
 r1=33706548729056745629121167503 (pp29)
 r2=1526568046346414834239657673989825139 (pp37)
 r3=4838146872015767768001030987421981831864644663863774917922618347544565075277396770748172624401 (pp94)
Version: Msieve-1.40
Total time: 69.31 hours.
Scaled time: 129.34 units (timescale=1.866).
Factorization parameters were as follows:
n: 248948493442257142683928751621912829309459505384922441830057514377894366183213675105899542351187849850875664732974936041147563855368202345946081094604866632717
m: 2000000000000000000000000000000000
deg: 5
c5: 19375
c0: -53
skew: 0.31
type: snfs
lss: 1
rlim: 4900000
alim: 4900000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4Factor base limits: 4900000/4900000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2450000, 6250001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1070817 x 1071042
Total sieving time: 67.45 hours.
Total relation processing time: 0.11 hours.
Matrix solve time: 1.45 hours.
Time per square root: 0.31 hours.
Prototype def-par.txt line would be:
snfs,170.000,5,0,0,0,0,0,0,0,0,4900000,4900000,27,27,52,52,2.4,2.4,100000
total time: 69.31 hours.
 --------- CPU info (if available) ----------

Dec 27, 2009 (2nd)

By Sinkiti Sibata / Msieve / Dec 27, 2009

(62·10161-53)/9 = 6(8)1603<162> = 13 · 149 · 77641013 · 127707233 · 102322578465517031591779<24> · C120

C120 = P56 · P65

P56 = 11960866514737977396638783337798921138905588800243622081<56>

P65 = 29307498526691833945064051908979105022980074012255518963162561629<65>

Number: 68883_161
N=350543077758640963295488151903925902635545192222483092013586934585860075590002114231556808952263151226072780805347729949
  ( 120 digits)
SNFS difficulty: 162 digits.
Divisors found:
 r1=11960866514737977396638783337798921138905588800243622081 (pp56)
 r2=29307498526691833945064051908979105022980074012255518963162561629 (pp65)
Version: Msieve v. 1.42
Total time: 1.58 hours.
Scaled time: 1.25 units (timescale=0.795).
Factorization parameters were as follows:
name: 68883_161
n: 350543077758640963295488151903925902635545192222483092013586934585860075590002114231556808952263151226072780805347729949
m: 100000000000000000000000000000000
deg: 5
c5: 620
c0: -53
skew: 0.61
type: snfs
lss: 1
rlim: 3600000
alim: 3600000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 3600000/3600000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [1800000, 3300001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 690612 x 690837
Total sieving time: 0.00 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 1.38 hours.
Time per square root: 0.10 hours.
Prototype def-par.txt line would be:
snfs,162.000,5,0,0,0,0,0,0,0,0,3600000,3600000,27,27,51,51,2.4,2.4,100000
total time: 1.58 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
CPU1: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.30 BogoMIPS (lpj=1860651)
Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860572)
Total of 2 processors activated (7442.44 BogoMIPS).

Total time: 24 hours 46 min.

Dec 27, 2009

By Robert Backstrom / GGNFS / Dec 27, 2009

(62·10154-53)/9 = 6(8)1533<155> = 32 · 13903 · 274848383 · 27177024634853961229302371<26> · C116

C116 = P57 · P60

P57 = 720951878610382542862347981801121436850590767518884611777<57>

P60 = 102234334845267243275213765013617623444440744591194671442489<60>

Number: n
N=73706035765178311721843203682271976549090303768877381733915205101899361643335375393433365408866574563129973347592953
  ( 116 digits)
Divisors found:
 r1=720951878610382542862347981801121436850590767518884611777 (pp57)
 r2=102234334845267243275213765013617623444440744591194671442489 (pp60)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 25.02 hours.
Scaled time: 45.76 units (timescale=1.829).
Factorization parameters were as follows:
name: KA_6_8_153_3
n: 73706035765178311721843203682271976549090303768877381733915205101899361643335375393433365408866574563129973347592953
Y0: -36882076435815646343086
Y1:  1177126619933
c0:  722179055622719498049770419635
c1:  12974758915145902336777681
c2:  3315676937663850719
c3: -388879982959281
c4:  193270566
c5:  1080
skew: 300296.60
type: gnfs
rlim: 4500000
alim: 4500000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.4
alambda: 2.4
qintsize: 50000
Factor base limits: 4500000/4500000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 56/56
Sieved algebraic special-q in [2250000, 3200001)
Primes: RFBsize:315948, AFBsize:316070, largePrimes:9281020 encountered
Relations: rels:9124074, finalFF:821552
Max relations in full relation-set: 48
Initial matrix: 632099 x 821552 with sparse part having weight 81612006.
Pruned matrix : 469228 x 472452 with weight 39927825.
Total sieving time: 21.93 hours.
Total relation processing time: 0.43 hours.
Matrix solve time: 2.46 hours.
Total square root time: 0.21 hours, sqrts: 1.
Prototype def-par.txt line would be:
gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,28,28,56,56,2.4,2.4,60000
total time: 25.02 hours.
 --------- CPU info (if available) ----------

Dec 26, 2009 (4th)

By juno1369 / GGNFS+Msieve v1.43, GGNFS, Msieve / Dec 26, 2009

(71·10137-53)/9 = 7(8)1363<138> = 34 · 73 · 761 · 2819 · 213289 · 1785968911<10> · C114

C114 = P45 · P69

P45 = 497338274574517430075176129186594377221125453<45>

P69 = 328272113722656687403829731159683520949633917603574352244659948723827<69>

Number: 78883_137
N=163262286629755842749264899133973489972910643771041742794018259519611687324709943115531731693939442113292017268631
  ( 114 digits)
SNFS difficulty: 138 digits.
Divisors found:
 r1=497338274574517430075176129186594377221125453 (pp45)
 r2=328272113722656687403829731159683520949633917603574352244659948723827 (pp69)
Version: Msieve v. 1.43
Total time: 10.80 hours.
Scaled time: 23.30 units (timescale=2.158).
Factorization parameters were as follows:
n: 163262286629755842749264899133973489972910643771041742794018259519611687324709943115531731693939442113292017268631 
m: 1000000000000000000000000000
deg: 5
c5: 7100
c0: -53
skew: 0.38 
type: snfs 
lss: 1 
rlim: 1440000 
alim: 1440000 
lpbr: 26 
lpba: 26 
mfbr: 48 
mfba: 48 
rlambda: 2.3 
alambda: 2.3 
qintsize: 100000Factor base limits: 1440000/1440000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved rational special-q in [720000, 1220001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 221440 x 221665
Total sieving time: 10.59 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.13 hours.
Time per square root: 0.05 hours.
Prototype def-par.txt line would be:
snfs ,138.000,5,0,0,0,0,0,0,0,0,1440000,1440000,26,26,48,48,2.3,2.3,
total time: 10.80 hours.
 --------- CPU info (if available) ----------

(71·10138-53)/9 = 7(8)1373<139> = 27248575999<11> · 395925893367391<15> · C114

C114 = P42 · P73

P42 = 419162038746174165070948225788357647335121<42>

P73 = 1744520907848239545736800443327766019464664837271375568832178853070200547<73>

Number: 78883_138
N=731236940368994714565704238447233851060682074228769030364565102172640486050475266877178494695869713470771586511187
  ( 114 digits)
SNFS difficulty: 139 digits.
Divisors found:
 r1=419162038746174165070948225788357647335121 (pp42)
 r2=1744520907848239545736800443327766019464664837271375568832178853070200547 (pp73)
Version: Msieve v. 1.43
Total time: 12.73 hours.
Scaled time: 27.29 units (timescale=2.144).
Factorization parameters were as follows:
n: 731236940368994714565704238447233851060682074228769030364565102172640486050475266877178494695869713470771586511187
m: 1000000000000000000000000000
deg: 5
c5: 71000
c0: -53
skew: 0.24 
type: snfs 
lss: 1 
rlim: 1500000 
alim: 1500000 
lpbr: 26 
lpba: 26 
mfbr: 48 
mfba: 48 
rlambda: 2.3 
alambda: 2.3 
qintsize: 100000Factor base limits: 1500000/1500000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved rational special-q in [750000, 1350001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 210289 x 210514
Total sieving time: 12.46 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.12 hours.
Time per square root: 0.12 hours.
Prototype def-par.txt line would be:
snfs ,139.000,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,48,48,2.3,2.3,
total time: 12.73 hours.
 --------- CPU info (if available) ----------

Dec 26, 2009 (3rd)

By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Dec 26, 2009

2·10200-1 = 1(9)200<201> = 47 · 199 · 8832847 · 26986789362889673<17> · 22887618087703883422612434497873<32> · C142

C142 = P63 · P79

P63 = 446230848885739862951514158743047799808097303689909318714879633<63>

P79 = 8783486649009658366262878191277303628728254895476682026895585605704238396823777<79>

Number: 19999_200
N=3919462703564142473698047873878421629698357069094950750629640809045036371942703314337013367544634521328393484746001349161465007919976067433841
  ( 142 digits)
SNFS difficulty: 200 digits.
Divisors found:
 r1=446230848885739862951514158743047799808097303689909318714879633
 r2=8783486649009658366262878191277303628728254895476682026895585605704238396823777
Version: 
Total time: 292.58 hours.
Scaled time: 698.68 units (timescale=2.388).
Factorization parameters were as follows:
n: 3919462703564142473698047873878421629698357069094950750629640809045036371942703314337013367544634521328393484746001349161465007919976067433841
m: 10000000000000000000000000000000000000000
deg: 5
c5: 2
c0: -1
skew: 0.87
type: snfs
lss: 1
rlim: 15000000
alim: 15000000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 15000000/15000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved rational special-q in [7500000, 13900001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 37340287
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2846374 x 2846621
Total sieving time: 255.33 hours.
Total relation processing time: 12.54 hours.
Matrix solve time: 23.55 hours.
Time per square root: 1.16 hours.
Prototype def-par.txt line would be:
snfs,200,5,0,0,0,0,0,0,0,0,15000000,15000000,29,29,56,56,2.6,2.6,100000
total time: 292.58 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673795)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672307)
Calibrating delay using timer specific routine.. 5237.88 BogoMIPS (lpj=2618943)

(5·10183+1)/3 = 1(6)1827<184> = 5234609 · C177

C177 = P41 · P136

P41 = 54006465837377625552336265338881733819761<41>

P136 = 5895474211042055406296762574818982802357058721360340818720086118739001638924818762801489852596577981672047174850728107083024670512804683<136>

GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM]
Input number is 318393726573783575175656226982123529506533662144902640611107088737032062311944725320776903617188345235846013841084724124890066606057236876081225296228747298349631589802918740763 (177 digits)
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=7499907357
Step 1 took 17155ms
Step 2 took 7042ms
********** Factor found in step 2: 54006465837377625552336265338881733819761
Found probable prime factor of 41 digits: 54006465837377625552336265338881733819761
Probable prime cofactor 5895474211042055406296762574818982802357058721360340818720086118739001638924818762801489852596577981672047174850728107083024670512804683 has 136 digits

Dec 26, 2009 (2nd)

By Sinkiti Sibata / Msieve / Dec 26, 2009

(73·10131+17)/9 = 8(1)1303<132> = 3 · C132

C132 = P54 · P78

P54 = 901115896568616616303029954905224423463773024413969713<54>

P78 = 300039508125337654128915079093446004442270863338652763310722672562208472089267<78>

Number: 81113_131
N=270370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370371
  ( 132 digits)
SNFS difficulty: 132 digits.
Divisors found:
 r1=901115896568616616303029954905224423463773024413969713 (pp54)
 r2=300039508125337654128915079093446004442270863338652763310722672562208472089267 (pp78)
Version: Msieve-1.40
Total time: 3.78 hours.
Scaled time: 7.93 units (timescale=2.099).
Factorization parameters were as follows:
name: 81113_131
n: 270370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370371
m: 100000000000000000000000000
deg: 5
c5: 730
c0: 17
skew: 0.47
type: snfs
lss: 1
rlim: 1150000
alim: 1150000
lpbr: 26
lpba: 26
mfbr: 47
mfba: 47
rlambda: 2.3
alambda: 2.3
Factor base limits: 1150000/1150000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved rational special-q in [575000, 1075001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 166370 x 166606
Total sieving time: 3.61 hours.
Total relation processing time: 0.05 hours.
Matrix solve time: 0.09 hours.
Time per square root: 0.03 hours.
Prototype def-par.txt line would be:
snfs,132.000,5,0,0,0,0,0,0,0,0,1150000,1150000,26,26,47,47,2.3,2.3,50000
total time: 3.78 hours.
 --------- CPU info (if available) ----------

2·10234+9 = 2(0)2339<235> = 11 · 131 · 271489 · 823651 · 319703161 · 1078869731<10> · 140239420405201921<18> · 31537930735794751543553<23> · 87211834129437057201132899<26> · 11429780024455220807441469459289<32> · C106

C106 = P52 · P54

P52 = 4421646001155731662524341299889414727107084802590443<52>

P54 = 923111247852638260463789169912288203586464742324595249<54>

Number: 20009_234
N=4081671157689495451002320427478185479062625058013970660200302602803251158698157130376845326821666690605307
  ( 106 digits)
Divisors found:
 r1=4421646001155731662524341299889414727107084802590443 (pp52)
 r2=923111247852638260463789169912288203586464742324595249 (pp54)
Version: Msieve-1.40
Total time: 9.09 hours.
Scaled time: 30.30 units (timescale=3.333).
Factorization parameters were as follows:
name: 20009_234
n: 4081671157689495451002320427478185479062625058013970660200302602803251158698157130376845326821666690605307
skew: 5227.48
# norm 2.82e+14
c5: 447180
c4: 4762122818
c3: -12903767621588
c2: -188566052319945831
c1: 258817026744121798005
c0: 489303287558624884234365
# alpha -5.68
Y1: 228435784339
Y0: -98190388035999720407
# Murphy_E 1.67e-09
# M 912139391631407218912303459389075224416911338056911672306885508693816487338766124197096291587759584551275
type: gnfs
rlim: 2500000
alim: 2500000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.6
alambda: 2.6
qintsize: 150000
Factor base limits: 2500000/2500000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved algebraic special-q in [1250000, 2300001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 275751 x 275999
Polynomial selection time: 0.97 hours.
Total sieving time: 7.91 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.14 hours.
Time per square root: 0.03 hours.
Prototype def-par.txt line would be:
gnfs,105,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000
total time: 9.09 hours.
 --------- CPU info (if available) ----------

(73·10149+17)/9 = 8(1)1483<150> = 3 · 59009 · 145691963372458235831977<24> · 124135506707574799618920655151513<33> · C90

C90 = P45 · P46

P45 = 152895783386268092363880036050242160838011941<45>

P46 = 1656966451277186284241276583314458613058031559<46>

Sat Dec 26 08:14:37 2009  Msieve v. 1.42
Sat Dec 26 08:14:37 2009  random seeds: d11307ec a5c8cf28
Sat Dec 26 08:14:37 2009  factoring 253343183612790017211717265292660824382436949602662535789530283629893510565256412396846019 (90 digits)
Sat Dec 26 08:14:38 2009  searching for 15-digit factors
Sat Dec 26 08:14:38 2009  commencing quadratic sieve (90-digit input)
Sat Dec 26 08:14:38 2009  using multiplier of 3
Sat Dec 26 08:14:38 2009  using 32kb Intel Core sieve core
Sat Dec 26 08:14:38 2009  sieve interval: 35 blocks of size 32768
Sat Dec 26 08:14:38 2009  processing polynomials in batches of 6
Sat Dec 26 08:14:38 2009  using a sieve bound of 1573699 (59667 primes)
Sat Dec 26 08:14:38 2009  using large prime bound of 125895920 (26 bits)
Sat Dec 26 08:14:38 2009  using double large prime bound of 380207692734720 (42-49 bits)
Sat Dec 26 08:14:38 2009  using trial factoring cutoff of 49 bits
Sat Dec 26 08:14:38 2009  polynomial 'A' values have 11 factors
Sat Dec 26 09:37:36 2009  59859 relations (15315 full + 44544 combined from 640664 partial), need 59763
Sat Dec 26 09:37:37 2009  begin with 655979 relations
Sat Dec 26 09:37:37 2009  reduce to 147934 relations in 10 passes
Sat Dec 26 09:37:37 2009  attempting to read 147934 relations
Sat Dec 26 09:37:39 2009  recovered 147934 relations
Sat Dec 26 09:37:39 2009  recovered 129529 polynomials
Sat Dec 26 09:37:40 2009  attempting to build 59859 cycles
Sat Dec 26 09:37:40 2009  found 59859 cycles in 6 passes
Sat Dec 26 09:37:40 2009  distribution of cycle lengths:
Sat Dec 26 09:37:40 2009     length 1 : 15315
Sat Dec 26 09:37:40 2009     length 2 : 11329
Sat Dec 26 09:37:40 2009     length 3 : 10572
Sat Dec 26 09:37:40 2009     length 4 : 8147
Sat Dec 26 09:37:40 2009     length 5 : 5744
Sat Dec 26 09:37:40 2009     length 6 : 3734
Sat Dec 26 09:37:40 2009     length 7 : 2259
Sat Dec 26 09:37:40 2009     length 9+: 2759
Sat Dec 26 09:37:40 2009  largest cycle: 18 relations
Sat Dec 26 09:37:40 2009  matrix is 59667 x 59859 (15.1 MB) with weight 3707861 (61.94/col)
Sat Dec 26 09:37:40 2009  sparse part has weight 3707861 (61.94/col)
Sat Dec 26 09:37:41 2009  filtering completed in 3 passes
Sat Dec 26 09:37:41 2009  matrix is 56143 x 56207 (14.2 MB) with weight 3508721 (62.42/col)
Sat Dec 26 09:37:41 2009  sparse part has weight 3508721 (62.42/col)
Sat Dec 26 09:37:41 2009  saving the first 48 matrix rows for later
Sat Dec 26 09:37:41 2009  matrix is 56095 x 56207 (10.8 MB) with weight 2963212 (52.72/col)
Sat Dec 26 09:37:41 2009  sparse part has weight 2486996 (44.25/col)
Sat Dec 26 09:37:41 2009  matrix includes 64 packed rows
Sat Dec 26 09:37:41 2009  using block size 22482 for processor cache size 1024 kB
Sat Dec 26 09:37:42 2009  commencing Lanczos iteration
Sat Dec 26 09:37:42 2009  memory use: 10.0 MB
Sat Dec 26 09:38:04 2009  lanczos halted after 889 iterations (dim = 56091)
Sat Dec 26 09:38:04 2009  recovered 15 nontrivial dependencies
Sat Dec 26 09:38:04 2009  prp45 factor: 152895783386268092363880036050242160838011941
Sat Dec 26 09:38:04 2009  prp46 factor: 1656966451277186284241276583314458613058031559
Sat Dec 26 09:38:04 2009  elapsed time 01:23:27

Dec 26, 2009

By Markus Tervooren / Msieve / Dec 26, 2009

(7·10182-61)/9 = (7)1811<182> = 89 · 997 · 30467369 · 17618593319<11> · 196795518289527012783177637059304087<36> · C124

C124 = P46 · P79

P46 = 1822983903915540903242968668361589445511954993<46>

P79 = 4551621541782307730013990392915456127532722433651555998138128258792296417129087<79>

N=8297532807384384619591502124535182691958946812580208156234462702919765706096384805864725674578023949954423362371961815181391
  ( 124 digits)
Divisors found:
 r1=1822983903915540903242968668361589445511954993 (pp46)
 r2=4551621541782307730013990392915456127532722433651555998138128258792296417129087 (pp79)
Version: Msieve-1.39
Total time: 42.29 hours.
Scaled time: 0.00 units (timescale=0.000).
Factorization parameters were as follows:
# Murphy_E = 1.855e-10, selected by Markus Tervooren
n: 8297532807384384619591502124535182691958946812580208156234462702919765706096384805864725674578023949954423362371961815181391
Y0: -1225653561529813741731415
Y1: 22064329640861
c0: -26207728649600251358721533684
c1: -77212770881249363965820
c2: 41665440464405440487
c3: 476421430964662
c4: -4195615430
c5: 3000
skew: 102794.61
type: gnfs
# selected mechanically
rlim: 6700000
alim: 6700000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
qintsite: 500000
Factor base limits: 6700000/6700000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 56/56
Sieved algebraic special-q in [3350000, 1910001)
Primes: , ,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 737257 x 737496
Total sieving time: 40.76 hours.
Total relation processing time: 0.73 hours.
Matrix solve time: 0.73 hours.
Time per square root: 0.07 hours.
Prototype def-par.txt line would be:
gnfs,123,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,6700000,6700000,28,28,56,56,2.6,2.6,180000
total time: 42.29 hours.
 --------- CPU info (if available) ----------
[    0.144009] CPU0: Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
[    0.236014] CPU1: Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
[    0.332940] CPU2: Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
[    0.432541] CPU3: Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
[    0.004000] Memory: 8197988k/10485760k available (2226k kernel code, 189848k reserved, 1082k data, 392k init)
[    0.083990] Calibrating delay using timer specific routine.. 5337.16 BogoMIPS (lpj=10674326)
[    0.156009] Calibrating delay using timer specific routine.. 5333.34 BogoMIPS (lpj=10666681)
[    0.256016] Calibrating delay using timer specific routine.. 5333.37 BogoMIPS (lpj=10666743)
[    0.352020] Calibrating delay using timer specific routine.. 5333.36 BogoMIPS (lpj=10666726)
[    0.440025] Total of 4 processors activated (21337.23 BogoMIPS).

Dec 25, 2009 (5th)

By Robert Backstrom / GGNFS, Msieve / Dec 25, 2009

(5·10191+13)/9 = (5)1907<191> = 3 · 1087 · C188

C188 = P67 · P121

P67 = 8263197315557210185325930076431111786216503129518233759467018348421<67>

P121 = 2061714725211655682692980576776961371384554185324182600243072178639205766966196819025797458956364109859801326886670622197<121>

Number: n
N=17036355582813724488057514736447579133871682169750247027155950799005076833963678489897441139391461378581893761286585573614092473338103512896521176189989437459538655490817404340863402500937
  ( 188 digits)
SNFS difficulty: 191 digits.
Divisors found:

Fri Dec 25 05:20:04 2009  prp67 factor: 8263197315557210185325930076431111786216503129518233759467018348421
Fri Dec 25 05:20:04 2009  prp121 factor: 2061714725211655682692980576776961371384554185324182600243072178639205766966196819025797458956364109859801326886670622197
Fri Dec 25 05:20:04 2009  elapsed time 09:13:45 (Msieve 1.42 - dependency 1)

Version: GGNFS-0.77.1-20050930-k8
Total time: ~ 24.00 hours.
Scaled time: 0.00 units (timescale=0.842).
Factorization parameters were as follows:
name: KA_5_190_7
n: 17036355582813724488057514736447579133871682169750247027155950799005076833963678489897441139391461378581893761286585573614092473338103512896521176189989437459538655490817404340863402500937
m: 100000000000000000000000000000000000000
deg: 5
c5: 50
c0: 13
skew: 0.76
type: snfs
lss: 1
rlim: 11000000
alim: 11000000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 11000000/11000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 56/56
Sieved  special-q in [100000, 100000)
Primes: RFBsize:726517, AFBsize:726768, 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 2552794 hash collisions in 24691333 relations
Msieve: matrix is 1871363 x 1871588 (506.0 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,191,5,0,0,0,0,0,0,0,0,11000000,11000000,28,28,56,56,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

(73·10110+17)/9 = 8(1)1093<111> = 3 · 237151 · C106

C106 = P35 · P71

P35 = 17288961375083169232608048029605549<35>

P71 = 65942473216422422125262858007207153303242664770758593943399626307735729<71>

Number: n
N=1140076872416183656701301577351014207700454016092575491439506349837742073068932327379477085782351203960221
  ( 106 digits)
SNFS difficulty: 111 digits.
Divisors found:
 r1=17288961375083169232608048029605549 (pp35)
 r2=65942473216422422125262858007207153303242664770758593943399626307735729 (pp71)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 0.58 hours.
Scaled time: 1.06 units (timescale=1.823).
Factorization parameters were as follows:
name: KA_8_1_109_3
n: 1140076872416183656701301577351014207700454016092575491439506349837742073068932327379477085782351203960221
m: 10000000000000000000000
deg: 5
c5: 73
c0: 17
skew: 0.75
type: snfs
lss: 1
rlim: 510000
alim: 510000
lpbr: 25
lpba: 25
mfbr: 44
mfba: 44
rlambda: 2.2
alambda: 2.2
qintsize: 20000
Factor base limits: 510000/510000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 44/44
Sieved rational special-q in [255000, 375001)
Primes: RFBsize:42291, AFBsize:42236, largePrimes:1115199 encountered
Relations: rels:1060215, finalFF:113391
Max relations in full relation-set: 48
Initial matrix: 84592 x 113391 with sparse part having weight 4903067.
Pruned matrix : 70920 x 71406 with weight 2269024.
Total sieving time: 0.55 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.01 hours.
Total square root time: 0.01 hours, sqrts: 1.
Prototype def-par.txt line would be:
snfs,111,5,0,0,0,0,0,0,0,0,510000,510000,25,25,44,44,2.2,2.2,50000
total time: 0.58 hours.
 --------- CPU info (if available) ----------

(73·10144+17)/9 = 8(1)1433<145> = 23 · 29 · 34883 · 7724676628270769389<19> · 11144636683362884724877<23> · C97

C97 = P43 · P55

P43 = 1643004455893277707598416968329253428023223<43>

P55 = 2464652666595249043946775012950632313839966108011752407<55>

Number: n
N=4049435313445243145081571668959828155766049931757007601017678699980977351454635253218358122147761
  ( 97 digits)
Divisors found:

Sat Dec 26 00:13:50 2009  prp43 factor: 1643004455893277707598416968329253428023223
Sat Dec 26 00:13:50 2009  prp55 factor: 2464652666595249043946775012950632313839966108011752407
Sat Dec 26 00:13:50 2009  elapsed time 00:07:56 (Msieve 1.43 - dependency 1)

Version: GGNFS-0.77.1-20051202-athlon
Total time: 2.18 hours.
Scaled time: 3.99 units (timescale=1.834).
Factorization parameters were as follows:
name: KA_8_1_143_3
n: 4049435313445243145081571668959828155766049931757007601017678699980977351454635253218358122147761
Y0: -230281139953553709142197
Y1:  10717884922201
c0:  1605908082544278887090075744
c1: -6967643114888019667902
c2: -6574508700636113
c3: -107188944
c4:  1440
skew: 1751097.82
type: gnfs
rlim: 1200000
alim: 1200000
lpbr: 25
lpba: 25
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
qintsize: 20000
Factor base limits: 1200000/1200000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 50/50
Sieved  special-q in [600000, 918469)
Primes: RFBsize:92938, AFBsize:93099, largePrimes:2465023 encountered
Relations: rels:2425587, finalFF:203641
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 276018 hash collisions in 2772746 relations
Msieve: matrix is 164646 x 164877 (45.3 MB)

Total sieving time: 2.13 hours.
Total relation processing time: 0.05 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
gnfs,96,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,50,50,2.4,2.4,60000
total time: 2.18 hours.
 --------- CPU info (if available) ----------

Dec 25, 2009 (4th)

By Sinkiti Sibata / Msieve / Dec 25, 2009

(61·10164+11)/9 = 6(7)1639<165> = 7 · 172 · 44711 · 167411401 · 149334670797750991643<21> · C129

C129 = P60 · P70

P60 = 120914647031434162711029575123136458526463272062610139034489<60>

P70 = 2478862669511374046524623309725596551727978452206500258616198344907609<70>

Number: 67779_164
N=299730804723366427812204067615768836287014813862082169550356765685497896283053155240966553527690369103612485282297406365169526801
  ( 129 digits)
SNFS difficulty: 165 digits.
Divisors found:
 r1=120914647031434162711029575123136458526463272062610139034489 (pp60)
 r2=2478862669511374046524623309725596551727978452206500258616198344907609 (pp70)
Version: Msieve-1.40
Total time: 48.01 hours.
Scaled time: 161.12 units (timescale=3.356).
Factorization parameters were as follows:
name: 67779_164
n: 299730804723366427812204067615768836287014813862082169550356765685497896283053155240966553527690369103612485282297406365169526801
m: 100000000000000000000000000000000
deg: 5
c5: 610000
c0: 11
skew: 0.11
type: snfs
lss: 1
rlim: 4100000
alim: 4100000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 4100000/4100000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [2050000, 4650001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 801796 x 802044
Total sieving time: 46.61 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 1.22 hours.
Time per square root: 0.09 hours.
Prototype def-par.txt line would be:
snfs,165.000,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000
total time: 48.01 hours.
 --------- CPU info (if available) ----------

(73·10112+17)/9 = 8(1)1113<113> = 271 · 953 · 1061 · 427877789 · 7623957549581<13> · C83

C83 = P33 · P51

P33 = 571785873333381219056107281470633<33>

P51 = 158697155111456401907712179353505517156780184656403<51>

Fri Dec 25 16:39:59 2009  Msieve v. 1.39
Fri Dec 25 16:39:59 2009  random seeds: 28e46ee7 78aecebb
Fri Dec 25 16:39:59 2009  factoring 90740791430927162098033555988150928454479341098957224962459877227052620215639913099 (83 digits)
Fri Dec 25 16:40:00 2009  searching for 15-digit factors
Fri Dec 25 16:40:02 2009  commencing quadratic sieve (83-digit input)
Fri Dec 25 16:40:02 2009  using multiplier of 11
Fri Dec 25 16:40:02 2009  using 64kb Pentium 4 sieve core
Fri Dec 25 16:40:02 2009  sieve interval: 6 blocks of size 65536
Fri Dec 25 16:40:02 2009  processing polynomials in batches of 17
Fri Dec 25 16:40:02 2009  using a sieve bound of 1380721 (52941 primes)
Fri Dec 25 16:40:02 2009  using large prime bound of 121503448 (26 bits)
Fri Dec 25 16:40:02 2009  using trial factoring cutoff of 27 bits
Fri Dec 25 16:40:02 2009  polynomial 'A' values have 11 factors
Fri Dec 25 17:18:18 2009  53124 relations (27397 full + 25727 combined from 277486 partial), need 53037
Fri Dec 25 17:18:19 2009  begin with 304883 relations
Fri Dec 25 17:18:20 2009  reduce to 75578 relations in 2 passes
Fri Dec 25 17:18:20 2009  attempting to read 75578 relations
Fri Dec 25 17:18:22 2009  recovered 75578 relations
Fri Dec 25 17:18:22 2009  recovered 68355 polynomials
Fri Dec 25 17:18:22 2009  attempting to build 53124 cycles
Fri Dec 25 17:18:22 2009  found 53124 cycles in 1 passes
Fri Dec 25 17:18:22 2009  distribution of cycle lengths:
Fri Dec 25 17:18:22 2009     length 1 : 27397
Fri Dec 25 17:18:22 2009     length 2 : 25727
Fri Dec 25 17:18:22 2009  largest cycle: 2 relations
Fri Dec 25 17:18:22 2009  matrix is 52941 x 53124 (7.3 MB) with weight 1706774 (32.13/col)
Fri Dec 25 17:18:22 2009  sparse part has weight 1706774 (32.13/col)
Fri Dec 25 17:18:23 2009  filtering completed in 4 passes
Fri Dec 25 17:18:23 2009  matrix is 38259 x 38323 (5.8 MB) with weight 1368218 (35.70/col)
Fri Dec 25 17:18:23 2009  sparse part has weight 1368218 (35.70/col)
Fri Dec 25 17:18:23 2009  saving the first 48 matrix rows for later
Fri Dec 25 17:18:23 2009  matrix is 38211 x 38323 (3.7 MB) with weight 1020504 (26.63/col)
Fri Dec 25 17:18:23 2009  sparse part has weight 728962 (19.02/col)
Fri Dec 25 17:18:23 2009  matrix includes 64 packed rows
Fri Dec 25 17:18:23 2009  using block size 15329 for processor cache size 512 kB
Fri Dec 25 17:18:23 2009  commencing Lanczos iteration
Fri Dec 25 17:18:23 2009  memory use: 4.2 MB
Fri Dec 25 17:18:35 2009  lanczos halted after 606 iterations (dim = 38205)
Fri Dec 25 17:18:35 2009  recovered 14 nontrivial dependencies
Fri Dec 25 17:18:35 2009  prp33 factor: 571785873333381219056107281470633
Fri Dec 25 17:18:35 2009  prp51 factor: 158697155111456401907712179353505517156780184656403
Fri Dec 25 17:18:35 2009  elapsed time 00:38:36

(73·10115+17)/9 = 8(1)1143<116> = 274403 · 1673293444661515580711<22> · C90

C90 = P35 · P55

P35 = 28808302077391310472306578254891243<35>

P55 = 6131994033354338944152150549622399890480568691762354927<55>

Fri Dec 25 17:44:14 2009  Msieve v. 1.39
Fri Dec 25 17:44:14 2009  random seeds: 8d3e7221 e242d567
Fri Dec 25 17:44:14 2009  factoring 176652336449632923363153391827937121757134931223406692705517673513355035983000313950204261 (90 digits)
Fri Dec 25 17:44:16 2009  searching for 15-digit factors
Fri Dec 25 17:44:18 2009  commencing quadratic sieve (90-digit input)
Fri Dec 25 17:44:18 2009  using multiplier of 5
Fri Dec 25 17:44:18 2009  using 64kb Pentium 4 sieve core
Fri Dec 25 17:44:18 2009  sieve interval: 18 blocks of size 65536
Fri Dec 25 17:44:18 2009  processing polynomials in batches of 6
Fri Dec 25 17:44:18 2009  using a sieve bound of 1575269 (59635 primes)
Fri Dec 25 17:44:18 2009  using large prime bound of 126021520 (26 bits)
Fri Dec 25 17:44:18 2009  using double large prime bound of 380890718607520 (42-49 bits)
Fri Dec 25 17:44:18 2009  using trial factoring cutoff of 49 bits
Fri Dec 25 17:44:18 2009  polynomial 'A' values have 11 factors
Fri Dec 25 19:47:24 2009  59756 relations (16412 full + 43344 combined from 629864 partial), need 59731
Fri Dec 25 19:47:27 2009  begin with 646276 relations
Fri Dec 25 19:47:27 2009  reduce to 144537 relations in 11 passes
Fri Dec 25 19:47:27 2009  attempting to read 144537 relations
Fri Dec 25 19:47:31 2009  recovered 144537 relations
Fri Dec 25 19:47:31 2009  recovered 121227 polynomials
Fri Dec 25 19:47:32 2009  attempting to build 59756 cycles
Fri Dec 25 19:47:32 2009  found 59756 cycles in 6 passes
Fri Dec 25 19:47:32 2009  distribution of cycle lengths:
Fri Dec 25 19:47:32 2009     length 1 : 16412
Fri Dec 25 19:47:32 2009     length 2 : 11517
Fri Dec 25 19:47:32 2009     length 3 : 10312
Fri Dec 25 19:47:32 2009     length 4 : 7860
Fri Dec 25 19:47:32 2009     length 5 : 5568
Fri Dec 25 19:47:32 2009     length 6 : 3577
Fri Dec 25 19:47:32 2009     length 7 : 2093
Fri Dec 25 19:47:32 2009     length 9+: 2417
Fri Dec 25 19:47:32 2009  largest cycle: 18 relations
Fri Dec 25 19:47:32 2009  matrix is 59635 x 59756 (14.7 MB) with weight 3624148 (60.65/col)
Fri Dec 25 19:47:32 2009  sparse part has weight 3624148 (60.65/col)
Fri Dec 25 19:47:33 2009  filtering completed in 3 passes
Fri Dec 25 19:47:33 2009  matrix is 55478 x 55542 (13.8 MB) with weight 3407636 (61.35/col)
Fri Dec 25 19:47:33 2009  sparse part has weight 3407636 (61.35/col)
Fri Dec 25 19:47:34 2009  saving the first 48 matrix rows for later
Fri Dec 25 19:47:34 2009  matrix is 55430 x 55542 (10.5 MB) with weight 2861767 (51.52/col)
Fri Dec 25 19:47:34 2009  sparse part has weight 2417834 (43.53/col)
Fri Dec 25 19:47:34 2009  matrix includes 64 packed rows
Fri Dec 25 19:47:34 2009  using block size 21845 for processor cache size 512 kB
Fri Dec 25 19:47:35 2009  commencing Lanczos iteration
Fri Dec 25 19:47:35 2009  memory use: 9.3 MB
Fri Dec 25 19:48:08 2009  lanczos halted after 877 iterations (dim = 55430)
Fri Dec 25 19:48:08 2009  recovered 18 nontrivial dependencies
Fri Dec 25 19:48:09 2009  prp35 factor: 28808302077391310472306578254891243
Fri Dec 25 19:48:09 2009  prp55 factor: 6131994033354338944152150549622399890480568691762354927
Fri Dec 25 19:48:09 2009  elapsed time 02:03:55

(73·10123+17)/9 = 8(1)1223<124> = 7 · 61 · 479 · 1213 · 4957 · 16427 · 3549179 · C102

C102 = P31 · P71

P31 = 3193529529869076315969156217591<31>

P71 = 35422576410829697301610949465338800906401213092713734855093957967741107<71>

Number: 81113_123
N=113123043792028395932085995982383600135916831346114549233543698978046601074915653928514213454447213237
  ( 102 digits)
SNFS difficulty: 124 digits.
Divisors found:
 r1=3193529529869076315969156217591 (pp31)
 r2=35422576410829697301610949465338800906401213092713734855093957967741107 (pp71)
Version: Msieve-1.40
Total time: 1.87 hours.
Scaled time: 6.30 units (timescale=3.367).
Factorization parameters were as follows:
name: 81113_123
n: 113123043792028395932085995982383600135916831346114549233543698978046601074915653928514213454447213237
m: 1000000000000000000000000
deg: 5
c5: 73000
c0: 17
skew: 0.19
type: snfs
lss: 1
rlim: 840000
alim: 840000
lpbr: 25
lpba: 25
mfbr: 46
mfba: 46
rlambda: 2.2
alambda: 2.2
Factor base limits: 840000/840000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved rational special-q in [420000, 820001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 98706 x 98954
Total sieving time: 1.83 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.02 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,124.000,5,0,0,0,0,0,0,0,0,840000,840000,25,25,46,46,2.2,2.2,50000
total time: 1.87 hours.
 --------- CPU info (if available) ----------

(61·10155+11)/9 = 6(7)1549<156> = 23 · 163 · 659 · C150

C150 = P63 · P87

P63 = 287586298285800146257914734984871284131275628557401661706046609<63>

P87 = 953933893847574957429258954829395060019674797190928406852259555726105076178805065202941<87>

Number: 67779_155
N=274338317340983504666607211706744571553032362611932844318536648833326834663356977248673607965777329302089167238841952301201525375012609443561389877069
  ( 150 digits)
SNFS difficulty: 156 digits.
Divisors found:
 r1=287586298285800146257914734984871284131275628557401661706046609 (pp63)
 r2=953933893847574957429258954829395060019674797190928406852259555726105076178805065202941 (pp87)
Version: Msieve-1.40
Total time: 21.05 hours.
Scaled time: 43.74 units (timescale=2.078).
Factorization parameters were as follows:
name: 67779_155
n: 274338317340983504666607211706744571553032362611932844318536648833326834663356977248673607965777329302089167238841952301201525375012609443561389877069
m: 10000000000000000000000000000000
deg: 5
c5: 61
c0: 11
skew: 0.71
type: snfs
lss: 1
rlim: 2900000
alim: 2900000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 2900000/2900000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1450000, 2250001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 505234 x 505482
Total sieving time: 19.89 hours.
Total relation processing time: 0.14 hours.
Matrix solve time: 0.90 hours.
Time per square root: 0.11 hours.
Prototype def-par.txt line would be:
snfs,156.000,5,0,0,0,0,0,0,0,0,2900000,2900000,27,27,50,50,2.4,2.4,100000
total time: 21.05 hours.
 --------- CPU info (if available) ----------

(73·10120+17)/9 = 8(1)1193<121> = 10589 · 36209 · 18764467 · 1567176671341<13> · 4390730828021<13> · C81

C81 = P39 · P42

P39 = 360048390588018911510814299879560340171<39>

P42 = 455047772435609644108134553747154826524269<42>

Fri Dec 25 19:56:23 2009  Msieve v. 1.39
Fri Dec 25 19:56:23 2009  random seeds: 1569a2e8 b5b575d0
Fri Dec 25 19:56:23 2009  factoring 163839218106104326862614741818043845416922147853654362408606857663521535227109999 (81 digits)
Fri Dec 25 19:56:24 2009  searching for 15-digit factors
Fri Dec 25 19:56:26 2009  commencing quadratic sieve (81-digit input)
Fri Dec 25 19:56:26 2009  using multiplier of 71
Fri Dec 25 19:56:26 2009  using 64kb Pentium 4 sieve core
Fri Dec 25 19:56:26 2009  sieve interval: 6 blocks of size 65536
Fri Dec 25 19:56:26 2009  processing polynomials in batches of 17
Fri Dec 25 19:56:26 2009  using a sieve bound of 1309421 (50080 primes)
Fri Dec 25 19:56:26 2009  using large prime bound of 129632679 (26 bits)
Fri Dec 25 19:56:26 2009  using trial factoring cutoff of 27 bits
Fri Dec 25 19:56:26 2009  polynomial 'A' values have 10 factors
Fri Dec 25 20:21:09 2009  50248 relations (25817 full + 24431 combined from 269212 partial), need 50176
Fri Dec 25 20:21:10 2009  begin with 295029 relations
Fri Dec 25 20:21:10 2009  reduce to 71658 relations in 2 passes
Fri Dec 25 20:21:10 2009  attempting to read 71658 relations
Fri Dec 25 20:21:12 2009  recovered 71658 relations
Fri Dec 25 20:21:12 2009  recovered 61972 polynomials
Fri Dec 25 20:21:12 2009  attempting to build 50248 cycles
Fri Dec 25 20:21:12 2009  found 50248 cycles in 1 passes
Fri Dec 25 20:21:12 2009  distribution of cycle lengths:
Fri Dec 25 20:21:12 2009     length 1 : 25817
Fri Dec 25 20:21:12 2009     length 2 : 24431
Fri Dec 25 20:21:12 2009  largest cycle: 2 relations
Fri Dec 25 20:21:12 2009  matrix is 50080 x 50248 (6.7 MB) with weight 1555105 (30.95/col)
Fri Dec 25 20:21:12 2009  sparse part has weight 1555105 (30.95/col)
Fri Dec 25 20:21:13 2009  filtering completed in 3 passes
Fri Dec 25 20:21:13 2009  matrix is 35746 x 35810 (5.3 MB) with weight 1246641 (34.81/col)
Fri Dec 25 20:21:13 2009  sparse part has weight 1246641 (34.81/col)
Fri Dec 25 20:21:13 2009  saving the first 48 matrix rows for later
Fri Dec 25 20:21:13 2009  matrix is 35698 x 35810 (4.0 MB) with weight 1001957 (27.98/col)
Fri Dec 25 20:21:13 2009  sparse part has weight 841452 (23.50/col)
Fri Dec 25 20:21:13 2009  matrix includes 64 packed rows
Fri Dec 25 20:21:13 2009  using block size 14324 for processor cache size 512 kB
Fri Dec 25 20:21:13 2009  commencing Lanczos iteration
Fri Dec 25 20:21:13 2009  memory use: 4.2 MB
Fri Dec 25 20:21:25 2009  lanczos halted after 566 iterations (dim = 35692)
Fri Dec 25 20:21:25 2009  recovered 15 nontrivial dependencies
Fri Dec 25 20:21:26 2009  prp39 factor: 360048390588018911510814299879560340171
Fri Dec 25 20:21:26 2009  prp42 factor: 455047772435609644108134553747154826524269
Fri Dec 25 20:21:26 2009  elapsed time 00:25:03

(73·10125+17)/9 = 8(1)1243<126> = 32 · 181 · 22403867450161<14> · C110

C110 = P34 · P76

P34 = 4516668276671408372535932075721397<34>

P76 = 4920600161360611078855281402744796833170083005776431740107754894291722737241<76>

Number: 81113_125
N=22224718651001685202078956554482624604027299135041508119387553597492430813525656454710046261023614812552445677
  ( 110 digits)
SNFS difficulty: 126 digits.
Divisors found:
 r1=4516668276671408372535932075721397 (pp34)
 r2=4920600161360611078855281402744796833170083005776431740107754894291722737241 (pp76)
Version: Msieve-1.40
Total time: 1.64 hours.
Scaled time: 5.46 units (timescale=3.333).
Factorization parameters were as follows:
name: 81113_125
n: 22224718651001685202078956554482624604027299135041508119387553597492430813525656454710046261023614812552445677
m: 10000000000000000000000000
deg: 5
c5: 73
c0: 17
skew: 0.75
type: snfs
lss: 1
rlim: 910000
alim: 910000
lpbr: 26
lpba: 26
mfbr: 46
mfba: 46
rlambda: 2.3
alambda: 2.3
Factor base limits: 910000/910000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 46/46
Sieved rational special-q in [455000, 755001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 113154 x 113400
Total sieving time: 1.59 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.02 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,126.000,5,0,0,0,0,0,0,0,0,910000,910000,26,26,46,46,2.3,2.3,50000
total time: 1.64 hours.
 --------- CPU info (if available) ----------

(73·10130+17)/9 = 8(1)1293<131> = 389 · 1092391 · 43074381051448309<17> · 66226550654595469<17> · C89

C89 = P40 · P49

P40 = 8807863511118081438403447564327236999049<40>

P49 = 7596803243687871089056339899052422078693151715803<49>

Fri Dec 25 21:03:55 2009  Msieve v. 1.39
Fri Dec 25 21:03:55 2009  random seeds: cbfa3e39 c71df5d4
Fri Dec 25 21:03:55 2009  factoring 66911606091221882292853807626770775644445001777494391969489392127703598145079039029271347 (89 digits)
Fri Dec 25 21:03:56 2009  searching for 15-digit factors
Fri Dec 25 21:03:58 2009  commencing quadratic sieve (89-digit input)
Fri Dec 25 21:03:58 2009  using multiplier of 3
Fri Dec 25 21:03:58 2009  using 64kb Pentium 4 sieve core
Fri Dec 25 21:03:58 2009  sieve interval: 17 blocks of size 65536
Fri Dec 25 21:03:58 2009  processing polynomials in batches of 6
Fri Dec 25 21:03:58 2009  using a sieve bound of 1564393 (59333 primes)
Fri Dec 25 21:03:58 2009  using large prime bound of 125151440 (26 bits)
Fri Dec 25 21:03:58 2009  using double large prime bound of 376170311388240 (42-49 bits)
Fri Dec 25 21:03:58 2009  using trial factoring cutoff of 49 bits
Fri Dec 25 21:03:58 2009  polynomial 'A' values have 11 factors
Fri Dec 25 22:51:44 2009  59844 relations (16470 full + 43374 combined from 627408 partial), need 59429
Fri Dec 25 22:51:46 2009  begin with 643878 relations
Fri Dec 25 22:51:47 2009  reduce to 143646 relations in 12 passes
Fri Dec 25 22:51:47 2009  attempting to read 143646 relations
Fri Dec 25 22:51:51 2009  recovered 143646 relations
Fri Dec 25 22:51:51 2009  recovered 117928 polynomials
Fri Dec 25 22:51:51 2009  attempting to build 59844 cycles
Fri Dec 25 22:51:51 2009  found 59844 cycles in 5 passes
Fri Dec 25 22:51:51 2009  distribution of cycle lengths:
Fri Dec 25 22:51:51 2009     length 1 : 16470
Fri Dec 25 22:51:51 2009     length 2 : 11794
Fri Dec 25 22:51:51 2009     length 3 : 10691
Fri Dec 25 22:51:51 2009     length 4 : 7819
Fri Dec 25 22:51:51 2009     length 5 : 5432
Fri Dec 25 22:51:51 2009     length 6 : 3362
Fri Dec 25 22:51:51 2009     length 7 : 1970
Fri Dec 25 22:51:51 2009     length 9+: 2306
Fri Dec 25 22:51:51 2009  largest cycle: 16 relations
Fri Dec 25 22:51:52 2009  matrix is 59333 x 59844 (14.5 MB) with weight 3561626 (59.52/col)
Fri Dec 25 22:51:52 2009  sparse part has weight 3561626 (59.52/col)
Fri Dec 25 22:51:53 2009  filtering completed in 3 passes
Fri Dec 25 22:51:53 2009  matrix is 54879 x 54943 (13.3 MB) with weight 3277217 (59.65/col)
Fri Dec 25 22:51:53 2009  sparse part has weight 3277217 (59.65/col)
Fri Dec 25 22:51:53 2009  saving the first 48 matrix rows for later
Fri Dec 25 22:51:53 2009  matrix is 54831 x 54943 (9.8 MB) with weight 2710493 (49.33/col)
Fri Dec 25 22:51:53 2009  sparse part has weight 2233703 (40.65/col)
Fri Dec 25 22:51:53 2009  matrix includes 64 packed rows
Fri Dec 25 22:51:53 2009  using block size 21845 for processor cache size 512 kB
Fri Dec 25 22:51:54 2009  commencing Lanczos iteration
Fri Dec 25 22:51:54 2009  memory use: 8.9 MB
Fri Dec 25 22:52:25 2009  lanczos halted after 869 iterations (dim = 54824)
Fri Dec 25 22:52:26 2009  recovered 13 nontrivial dependencies
Fri Dec 25 22:52:26 2009  prp40 factor: 8807863511118081438403447564327236999049
Fri Dec 25 22:52:26 2009  prp49 factor: 7596803243687871089056339899052422078693151715803
Fri Dec 25 22:52:26 2009  elapsed time 01:48:31

Dec 25, 2009 (3rd)

By Dmitry Domanov / GGNFS/msieve / Dec 25, 2009

(55·10177+53)/9 = 6(1)1767<178> = 34 · 997 · C173

C173 = P48 · P126

P48 = 121267649127676182373047910614477486882780677773<48>

P126 = 624015021606932925999715651797548114366055875459187905620591759468551484260290666283449260213316132801468484092282493219437597<126>

N=75672834690628813738884692486237863109217914374123742971025559531819051117687768380587578923326908021733238123148595305807683682047514284967385008248338981278540697538431481
  ( 173 digits)
SNFS difficulty: 178 digits.
Divisors found:
 r1=121267649127676182373047910614477486882780677773 (pp48)
 r2=624015021606932925999715651797548114366055875459187905620591759468551484260290666283449260213316132801468484092282493219437597 (pp126)
Version: Msieve-1.40
Total time: 147.29 hours.
Scaled time: 137.28 units (timescale=0.932).
Factorization parameters were as follows:
n: 75672834690628813738884692486237863109217914374123742971025559531819051117687768380587578923326908021733238123148595305807683682047514284967385008248338981278540697538431481
m: 100000000000000000000000000000000000
deg: 5
c5: 5500
c0: 53
skew: 0.40
type: snfs
lss: 1
rlim: 6700000
alim: 6700000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5Factor base limits: 6700000/6700000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3350000, 8450001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1468416 x 1468643
Total sieving time: 142.34 hours.
Total relation processing time: 0.25 hours.
Matrix solve time: 4.36 hours.
Time per square root: 0.34 hours.
Prototype def-par.txt line would be:
snfs,178.000,5,0,0,0,0,0,0,0,0,6700000,6700000,28,28,53,53,2.5,2.5,100000
total time: 147.29 hours.
 --------- CPU info (if available) ----------

(52·10177-43)/9 = 5(7)1763<178> = 1413829 · C172

C172 = P81 · P92

P81 = 271121766413527308744259064278710042949573284426474347177776678588863597246745619<81>

P92 = 15072995285706770627247105190000837027452280994595682721723013910859090500939619886537534323<92>

N=4086617107003589385829387979577288185330600643909396240830947574125143689779865724764294534754753069697804881479852073891381332380208481915265408884509921481153504262380937
  ( 172 digits)
SNFS difficulty: 178 digits.
Divisors found:
 r1=271121766413527308744259064278710042949573284426474347177776678588863597246745619 (pp81)
 r2=15072995285706770627247105190000837027452280994595682721723013910859090500939619886537534323 (pp92)
Version: Msieve-1.40
Total time: 105.99 hours.
Scaled time: 193.23 units (timescale=1.823).
Factorization parameters were as follows:
n: 4086617107003589385829387979577288185330600643909396240830947574125143689779865724764294534754753069697804881479852073891381332380208481915265408884509921481153504262380937
m: 100000000000000000000000000000000000
deg: 5
c5: 5200
c0: -43
skew: 0.38
type: snfs
lss: 1
rlim: 6700000
alim: 6700000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5Factor base limits: 6700000/6700000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3350000, 8650001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1459175 x 1459403
Total sieving time: 102.82 hours.
Total relation processing time: 0.17 hours.
Matrix solve time: 2.80 hours.
Time per square root: 0.20 hours.
Prototype def-par.txt line would be:
snfs,178.000,5,0,0,0,0,0,0,0,0,6700000,6700000,28,28,53,53,2.5,2.5,100000
total time: 105.99 hours.
 --------- CPU info (if available) ----------

2·10217+9 = 2(0)2169<218> = 17324807 · 7919188963783<13> · 107411105875493866921<21> · 5173938809178624041155896767<28> · 102699093136418169307668176696792069<36> · C115

C115 = P57 · P58

P57 = 467066681050485435798497334956180095244989456946079206083<57>

P58 = 5468458395983536988518042915683384244729834087373257219201<58>

N=2554134713474691857135037986459326191117445872689622770299892736169738699608043094133510769381527789483430383599683
  ( 115 digits)
Divisors found:
 r1=467066681050485435798497334956180095244989456946079206083 (pp57)
 r2=5468458395983536988518042915683384244729834087373257219201 (pp58)
Version: Msieve-1.40
Total time: 22.32 hours.
Scaled time: 43.68 units (timescale=1.957).
Factorization parameters were as follows:
name: g115
n: 2554134713474691857135037986459326191117445872689622770299892736169738699608043094133510769381527789483430383599683
skew: 60651.13
# norm 2.66e+015
c5: 6900
c4: -682319433
c3: -117961116338270
c2: 2224219007371410074
c1: 119713655432085105195716
c0: -887417118007395530941272320
# alpha -5.12
Y1: 1998997353529
Y0: -12992127184589368498929
# Murphy_E 5.54e-010
# M 67608055054870856438233574117739099823167547769002258983372983365697756513358289959208203033225734867962755866536
type: gnfs
rlim: 3500000
alim: 3500000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 3500000/3500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved algebraic special-q in [1750000, 2950001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 455680 x 455911
Total sieving time: 21.73 hours.
Total relation processing time: 0.07 hours.
Matrix solve time: 0.26 hours.
Time per square root: 0.27 hours.
Prototype def-par.txt line would be:
gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000
total time: 22.32 hours.
 --------- CPU info (if available) ----------

(73·10134+17)/9 = 8(1)1333<135> = 34 · 1789 · 9296754845646857307863<22> · C108

C108 = P51 · P57

P51 = 702123156757712519031453798485544502938488592323083<51>

P57 = 857512216009165830019053825024336782383782476909346058033<57>

N=602079184062656978792886796353667221061735953627208317903017723089717045559245411279120372197442712003475739
  ( 108 digits)
SNFS difficulty: 135 digits.
Divisors found:
 r1=702123156757712519031453798485544502938488592323083 (pp51)
 r2=857512216009165830019053825024336782383782476909346058033 (pp57)
Version: Msieve-1.40
Total time: 4.77 hours.
Scaled time: 8.73 units (timescale=1.829).
Factorization parameters were as follows:
n: 602079184062656978792886796353667221061735953627208317903017723089717045559245411279120372197442712003475739
m: 100000000000000000000000000
deg: 5
c5: 730000
c0: 17
skew: 0.12
type: snfs
lss: 1
rlim: 1290000
alim: 1290000
lpbr: 26
lpba: 26
mfbr: 47
mfba: 47
rlambda: 2.3
alambda: 2.3Factor base limits: 1290000/1290000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved rational special-q in [645000, 1620001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 207813 x 208040
Total sieving time: 4.55 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.06 hours.
Time per square root: 0.14 hours.
Prototype def-par.txt line would be:
snfs,135.000,5,0,0,0,0,0,0,0,0,1290000,1290000,26,26,47,47,2.3,2.3,75000
total time: 4.77 hours.
 --------- CPU info (if available) ----------

(73·10146+17)/9 = 8(1)1453<147> = 3 · 92119 · 42752273 · 574403817618745025267<21> · C114

C114 = P42 · P72

P42 = 537815482522942323727899388886316826443949<42>

P72 = 222228652714126808627854028677300737955480939500280191440675614780670851<72>

N=119518010089871485840556901782793184277006355051084040481066496229121998790947123624282808570238561315302969630599
  ( 114 digits)
SNFS difficulty: 147 digits.
Divisors found:
 r1=537815482522942323727899388886316826443949 (pp42)
 r2=222228652714126808627854028677300737955480939500280191440675614780670851 (pp72)
Version: Msieve-1.40
Total time: 9.01 hours.
Scaled time: 17.26 units (timescale=1.916).
Factorization parameters were as follows:
n: 119518010089871485840556901782793184277006355051084040481066496229121998790947123624282808570238561315302969630599
m: 100000000000000000000000000000
deg: 5
c5: 730
c0: 17
skew: 0.47
type: snfs
lss: 1
rlim: 2000000
alim: 2000000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.3
alambda: 2.3Factor base limits: 2000000/2000000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved rational special-q in [1000000, 2600001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 319844 x 320071
Total sieving time: 8.75 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.13 hours.
Time per square root: 0.09 hours.
Prototype def-par.txt line would be:
snfs,147.000,5,0,0,0,0,0,0,0,0,2000000,2000000,26,26,49,49,2.3,2.3,100000
total time: 9.01 hours.
 --------- CPU info (if available) ----------

Dec 25, 2009 (2nd)

By Wataru Sakai / GMP-ECM 6.2.1 / Dec 25, 2009

2·10215+9 = 2(0)2149<216> = 218794321 · C207

C207 = P32 · C176

P32 = 10826531273093526781328991763529<32>

C176 = [84431521515330295235327680873213130349430459871381881520420584924480627631102287648956120680337807274004266843502840550795215945616015601670178617482078519562517437776926226801<176>]

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3239976602
Step 1 took 82088ms
Step 2 took 23591ms
********** Factor found in step 2: 10826531273093526781328991763529
Found probable prime factor of 32 digits: 10826531273093526781328991763529
Composite cofactor 84431521515330295235327680873213130349430459871381881520420584924480627631102287648956120680337807274004266843502840550795215945616015601670178617482078519562517437776926226801 has 176 digits

Dec 25, 2009

Factorizations of 811...113 have been extended up to n=150. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.

Factorizations of 688...883 have been extended up to n=200. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.

Dec 24, 2009 (5th)

By Sinkiti Sibata / Msieve / Dec 24, 2009

(61·10162+11)/9 = 6(7)1619<163> = 3566273 · 462804838788405557<18> · C139

C139 = P39 · P101

P39 = 113990293046369827455829809216336468347<39>

P101 = 36025247970230741843823484703167564104166807793409098338045741430171486725099060883837298016220812837<101>

Number: 67779_162
N=4106528573194742072817881820216336322356298983908951601481939266256212139543924891157991054137712590592643943196774682498617901874261770439
  ( 139 digits)
SNFS difficulty: 163 digits.
Divisors found:
 r1=113990293046369827455829809216336468347 (pp39)
 r2=36025247970230741843823484703167564104166807793409098338045741430171486725099060883837298016220812837 (pp101)
Version: Msieve-1.40
Total time: 51.17 hours.
Scaled time: 105.97 units (timescale=2.071).
Factorization parameters were as follows:
name: 67779_162
n: 4106528573194742072817881820216336322356298983908951601481939266256212139543924891157991054137712590592643943196774682498617901874261770439
m: 100000000000000000000000000000000
deg: 5
c5: 6100
c0: 11
skew: 0.28
type: snfs
lss: 1
rlim: 3800000
alim: 3800000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 3800000/3800000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [1900000, 3900001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 751394 x 751640
Total sieving time: 48.65 hours.
Total relation processing time: 0.19 hours.
Matrix solve time: 2.11 hours.
Time per square root: 0.23 hours.
Prototype def-par.txt line would be:
snfs,163.000,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,51,51,2.4,2.4,100000
total time: 51.17 hours.
 --------- CPU info (if available) ----------

Dec 24, 2009 (4th)

By Lionel Debroux / ggnfs + msieve / Dec 24, 2009

(26·10167-11)/3 = 8(6)1663<168> = 7 · 17 · 691 · 229656809 · 1622000506706154937986411401046767<34> · C122

C122 = P55 · P67

P55 = 6538852158315471876807191983737005179049140997548308893<55>

P67 = 4327083287726406607500646865729506028074771488004120304654473098593<67>

Number: 86663_167
N=28294157895160621844921147954393461978100031316274893426210418177756993778953017327769043546792385145405456209408807687549
  ( 122 digits)
SNFS difficulty: 168 digits.
Divisors found:
 r1=6538852158315471876807191983737005179049140997548308893 (pp55)
 r2=4327083287726406607500646865729506028074771488004120304654473098593 (pp67)
Version: Msieve v. 1.44
Total time: 143.51 hours.
Scaled time: 214.83 units (timescale=1.497).
Factorization parameters were as follows:
n: 28294157895160621844921147954393461978100031316274893426210418177756993778953017327769043546792385145405456209408807687549
m: 1000000000000000000000000000000000
deg: 5
c5: 2600
c0: -11
skew: 0.34
type: snfs
lss: 1
rlim: 4500000
alim: 4500000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4
Factor base limits: 4500000/4500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2250000, 4450001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 851629 x 851854
Total sieving time: 140.47 hours.
Total relation processing time: 0.14 hours.
Matrix solve time: 1.88 hours.
Time per square root: 1.02 hours.
Prototype def-par.txt line would be:
snfs,168.000,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,52,52,2.4,2.4,100000
total time: 143.51 hours.
 --------- CPU info (if available) ----------

Dec 24, 2009 (3rd)

By matsui / Msieve / Dec 24, 2009

4·10179+3 = 4(0)1783<180> = 9679838127597185553923930374350132743<37> · C143

C143 = P51 · P93

P51 = 191036532994880646588869280641375529254981954340701<51>

P93 = 216309437884752288522244329757285002058432970681423732981110681293149999573768732312881302121<93>

N=41323005067574566304410175051619336014247547874804676702862982021554231126531999977945569827460087540832516415965598056089191661607896947926821
  ( 143 digits)
SNFS difficulty: 179 digits.
Divisors found:
 r1=191036532994880646588869280641375529254981954340701 (pp51)
 r2=216309437884752288522244329757285002058432970681423732981110681293149999573768732312881302121 (pp93)
Version: Msieve v. 1.43
Total time: 10.99 hours.
Scaled time: 20.72 units (timescale=1.886).
Factorization parameters were as follows:
n: 41323005067574566304410175051619336014247547874804676702862982021554231126531999977945569827460087540832516415965598056089191661607896947926821
m: 200000000000000000000000000000000000
deg: 5
c5: 1250
c0: 3
skew: 0.30
type: snfs
lss: 1
rlim: 6900000
alim: 6900000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5

Factor base limits: 6900000/6900000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3450000, 9050001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1522746 x 1522973
Total sieving time:
Total relation processing time:
Matrix solve time:
Time per square root:
Prototype def-par.txt line would be:
snfs,179.000,5,0,0,0,0,0,0,0,0,6900000,6900000,28,28,53,53,2.5,2.5,100000
total time:

Dec 24, 2009 (2nd)

By Wataru Sakai / GMP-ECM 6.2.1 / Dec 24, 2009

2·10217+9 = 2(0)2169<218> = 17324807 · 7919188963783<13> · 107411105875493866921<21> · 5173938809178624041155896767<28> · C150

C150 = P36 · C115

P36 = 102699093136418169307668176696792069<36>

C115 = [2554134713474691857135037986459326191117445872689622770299892736169738699608043094133510769381527789483430383599683<115>]

Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=34838519
Step 1 took 15671ms
Step 2 took 6740ms
********** Factor found in step 2: 102699093136418169307668176696792069
Found probable prime factor of 36 digits: 102699093136418169307668176696792069
Composite cofactor 2554134713474691857135037986459326191117445872689622770299892736169738699608043094133510769381527789483430383599683 has 115 digits

Dec 24, 2009

By Dmitry Domanov / ECMNET, GMP-ECM / Dec 24, 2009

2·10248+9 = 2(0)2479<249> = 112 · 41 · 11107489204958914007580419<26> · C220

C220 = P38 · C182

P38 = 63380532867978197628346597706813686961<38>

C182 = [57264962758655073499640385596911912843405767555810142578271507896184241753434450997205171439568565855573766028794311486964572257868682891212249064270760929321618096156966261093582291<182>]

Factor=63380532867978197628346597706813686961  Method=ECM  B1=11000000  Sigma=2228662224

Dec 23, 2009 (5th)

By Dmitry Domanov / GGNFS/msieve / Dec 23, 2009

(67·10168-13)/9 = 7(4)1673<169> = 3 · 165813763 · 3342031677563<13> · C148

C148 = P48 · P101

P48 = 134458719408023859753384075009085595975442745241<48>

P101 = 33303580730790575224290199066707126131966069352843461148291487710116357017637216068492699986663689089<101>

N=4477956816763840155316795837966177700076915229952603768994579222454907835059410228107125848550858785511065070923028621198385715228005928586658375449
  ( 148 digits)
SNFS difficulty: 169 digits.
Divisors found:
 r1=134458719408023859753384075009085595975442745241 (pp48)
 r2=33303580730790575224290199066707126131966069352843461148291487710116357017637216068492699986663689089 (pp101)
Version: Msieve-1.40
Total time: 74.13 hours.
Scaled time: 69.09 units (timescale=0.932).
Factorization parameters were as follows:
n: 4477956816763840155316795837966177700076915229952603768994579222454907835059410228107125848550858785511065070923028621198385715228005928586658375449
m: 1000000000000000000000000000000000
deg: 5
c5: 67000
c0: -13
skew: 0.18
type: snfs
lss: 1
rlim: 4700000
alim: 4700000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4Factor base limits: 4700000/4700000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2350000, 5350001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 977381 x 977607
Total sieving time: 72.12 hours.
Total relation processing time: 0.15 hours.
Matrix solve time: 1.63 hours.
Time per square root: 0.22 hours.
Prototype def-par.txt line would be:
snfs,169.000,5,0,0,0,0,0,0,0,0,4700000,4700000,27,27,52,52,2.4,2.4,100000
total time: 74.13 hours.
 --------- CPU info (if available) ----------

Dec 23, 2009 (4th)

By Robert Backstrom / GGNFS, Msieve / Dec 23, 2009

(61·10190+11)/9 = 6(7)1899<191> = 3 · 139 · 1699 · C185

C185 = P70 · P116

P70 = 1246377540553231270517304854428178026702512130082057989845012070878697<70>

P116 = 76755282987069738064818275995174521908382367033378985164674128789540497512724588327483330081841463307730148032229929<116>

Number: n
N=95666060833891254663524428642293149980702116744901116579759539435353816221105909073016258368623915856524119531135930964861228537280044514515913265071678188153812833586377905719371922513
  ( 185 digits)
SNFS difficulty: 191 digits.
Divisors found:

Wed Dec 23 21:52:20 2009  prp70 factor: 1246377540553231270517304854428178026702512130082057989845012070878697
Wed Dec 23 21:52:20 2009  prp116 factor: 76755282987069738064818275995174521908382367033378985164674128789540497512724588327483330081841463307730148032229929
Wed Dec 23 21:52:20 2009  elapsed time 05:36:34 (Msieve 1.42 - dependency 2)

Version: GGNFS-0.77.1-20050930-k8
Total time: ~ 24.00 hours.
Scaled time: 0.00 units (timescale=0.841).
Factorization parameters were as follows:
name: KA_6_7_189_9
n: 95666060833891254663524428642293149980702116744901116579759539435353816221105909073016258368623915856524119531135930964861228537280044514515913265071678188153812833586377905719371922513
m: 100000000000000000000000000000000000000
deg: 5
c5: 61
c0: 11
skew: 0.71
type: snfs
lss: 1
rlim: 11000000
alim: 11000000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 11000000/11000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 56/56
Sieved  special-q in [100000, 100000)
Primes: RFBsize:726517, AFBsize:725315, 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 2883289 hash collisions in 27132787 relations
Msieve: matrix is 1475928 x 1476154 (394.4 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,191,5,0,0,0,0,0,0,0,0,11000000,11000000,28,28,56,56,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

Dec 23, 2009 (3rd)

By Serge Batalov / GMP-ECM / Dec 23, 2009

2·10243+9 = 2(0)2429<244> = 7 · 41 · 227 · 421 · C236

C236 = P30 · C207

P30 = 275090641212239281388428941781<30>

C207 = [265072290148445136560818600872536028741814594689355689084826099010496505157655840038152578998319195828775892660393313465582532270823126127399141068370073694442972122406251271400377317474155401123483513864341<207>]

Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=1128384573
Step 1 took 12352ms
Step 2 took 5633ms
********** Factor found in step 2: 275090641212239281388428941781
Found probable prime factor of 30 digits: 275090641212239281388428941781
Composite cofactor has 207 digits

2·10241+9 = 2(0)2409<242> = 23 · 11827 · 229376321 · 2727862121<10> · 1386106253052049787<19> · C200

C200 = P36 · C165

P36 = 105073858185151552219454459705794081<36>

C165 = [806799021435633334778607190153883588562873305480699334566341552479925686226196132085236650925436195560862698365853607109043802721553143632271788112834805134902749927<165>]

Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=3024908771
Step 1 took 12365ms
Step 2 took 6264ms
********** Factor found in step 2: 105073858185151552219454459705794081
Found probable prime factor of 36 digits: 105073858185151552219454459705794081
Composite cofactor has 165 digits

2·10214+9 = 2(0)2139<215> = 11 · 792769 · C208

C208 = P30 · C179

P30 = 108073286126852074103935205123<30>

C179 = [21221315106860899445933896803600324185433315879614766539100261924328043844792993941275529908813313478966866705232058311046676551390445994002560932483470016746642554197765912727337<179>]

Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=1593094740
Step 1 took 9704ms
********** Factor found in step 1: 108073286126852074103935205123
Found probable prime factor of 30 digits: 108073286126852074103935205123
Composite cofactor has 179 digits

2·10245+9 = 2(0)2449<246> = 54073807 · 17143423889<11> · 52441815947<11> · 37907299299807143021<20> · C198

C198 = P29 · C169

P29 = 48780799114142980351071675283<29>

C169 = [2224825781921510311089625162072229302525980695051171437726573831123721374767914069312979236788707893034386059250449392062243210924920047371675945471981646433600136489923<169>]

Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=2117120045
Step 1 took 12313ms
Step 2 took 6164ms
********** Factor found in step 2: 48780799114142980351071675283
Found probable prime factor of 29 digits: 48780799114142980351071675283
Composite cofactor has 169 digits

2·10202+9 = 2(0)2019<203> = 11 · 8179 · 114752140758891510899<21> · C178

C178 = P29 · P150

P29 = 10154618909493427970970822721<29>

P150 = 190771140703131610829744107752674358172987961363517807716872722844099059240912537213495175536293431424182489626904601379938938663722516836938490051459<150>

Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=1119420523
Step 1 took 8429ms
Step 2 took 4324ms
********** Factor found in step 2: 10154618909493427970970822721
Found probable prime factor of 29 digits: 10154618909493427970970822721
Probable prime (finally!..) cofactor has 150 digits

2·10216+9 = 2(0)2159<217> = 11 · 107 · 37489 · C209

C209 = P29 · C181

P29 = 17914893243474064093353886339<29>

C181 = [2530086983479833387914671916161109783095426465559142662484628525176449853888833345433073938167065639727700285403571069487621676918739169062674186666507709307416989039849336443021227<181>]

Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=3828974228
Step 1 took 12349ms
Step 2 took 6312ms
********** Factor found in step 2: 17914893243474064093353886339
Found probable prime factor of 29 digits: 17914893243474064093353886339
Composite cofactor has 181 digits

2·10212+9 = 2(0)2119<213> = 11 · 17 · 20353 · 1381923056737330482439098571<28> · C179

C179 = P31 · C149

P31 = 2240943540763641964491268576729<31>

C149 = [16968567436598174394441700560052214494982970741460114303653787912012932829033703060581255810085925490346029906192195604150265745128887761473827164841<149>]

Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=1282349060
Step 1 took 8312ms
Step 2 took 4321ms
********** Factor found in step 2: 2240943540763641964491268576729
Found probable prime factor of 31 digits: 2240943540763641964491268576729
Composite cofactor has 149 digits

Dec 23, 2009 (2nd)

By Sinkiti Sibata / Msieve / Dec 23, 2009

(65·10166+61)/9 = 7(2)1659<167> = 17 · 89 · 137 · 224359 · 342267997426477<15> · 3264304339047261683<19> · C124

C124 = P56 · P68

P56 = 21177806111690930656883533457082414880466382692793184597<56>

P68 = 65634163160831350012251236459552088191190938657828797749306617552113<68>

Number: 72229_166
N=1389987581723173895596548377609939173843736140303008202201819784338719027287887136391659956712211103906587187700701876403461
  ( 124 digits)
SNFS difficulty: 167 digits.
Divisors found:
 r1=21177806111690930656883533457082414880466382692793184597 (pp56)
 r2=65634163160831350012251236459552088191190938657828797749306617552113 (pp68)
Version: Msieve-1.40
Total time: 52.43 hours.
Scaled time: 174.18 units (timescale=3.322).
Factorization parameters were as follows:
name:72229_166
n: 1389987581723173895596548377609939173843736140303008202201819784338719027287887136391659956712211103906587187700701876403461
m: 1000000000000000000000000000000000
deg: 5
c5: 650
c0: 61
skew: 0.62
type: snfs
lss: 1
rlim: 4400000
alim: 4400000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 4400000/4400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [2200000, 5000001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 858499 x 858747
Total sieving time: 50.86 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 1.40 hours.
Time per square root: 0.08 hours.
Prototype def-par.txt line would be:
snfs,167.000,5,0,0,0,0,0,0,0,0,4400000,4400000,27,27,51,51,2.4,2.4,100000
total time: 52.43 hours.
 --------- CPU info (if available) ----------

Dec 23, 2009

Factorizations of 200...009 have been extended up to n=250. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.

Dec 22, 2009 (7th)

By Robert Backstrom / GGNFS, Msieve / Dec 22, 2009

(31·10190-13)/9 = 3(4)1893<191> = 3 · 19 · 59 · 359 · C185

C185 = P61 · P124

P61 = 3258043336272548779008002886122874571288404601111566773541731<61>

P124 = 8756710898999513727194865930909654610791856616776070564855670702424349065435730402674191725009366629927668168079773573912709<124>

Number: n
N=28529743592150565629776143667689964147315447760981121316476488316195700420390373401885705613724021482712862027491076862534400198493390256613999839681247298302305396548250744787362759279
  ( 185 digits)
SNFS difficulty: 191 digits.
Divisors found:

Tue Dec 22 19:08:25 2009  prp61 factor: 3258043336272548779008002886122874571288404601111566773541731
Tue Dec 22 19:08:25 2009  prp124 factor: 8756710898999513727194865930909654610791856616776070564855670702424349065435730402674191725009366629927668168079773573912709
Tue Dec 22 19:08:25 2009  elapsed time 07:20:56 (Msieve 1.42 - dependency 1)

Version: GGNFS-0.77.1-20050930-k8
Total time: ~ 24.00 hours.
Scaled time: 0.00 units (timescale=0.841).
Factorization parameters were as follows:
name: KA_3_4_189_3
n: 28529743592150565629776143667689964147315447760981121316476488316195700420390373401885705613724021482712862027491076862534400198493390256613999839681247298302305396548250744787362759279
m: 100000000000000000000000000000000000000
deg: 5
c5: 31
c0: -13
skew: 0.84
type: snfs
lss: 1
rlim: 10900000
alim: 10900000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 10900000/10900000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 56/56
Sieved  special-q in [100000, 100000)
Primes: RFBsize:720341, AFBsize:720005, 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 2227733 hash collisions in 23635251 relations
Msieve: matrix is 1696684 x 1696911 (458.6 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,191,5,0,0,0,0,0,0,0,0,10900000,10900000,28,28,56,56,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

Dec 22, 2009 (6th)

By Jo Yeong Uk / GMP-ECM / Dec 22, 2009

5·10199-1 = 4(9)199<200> = 7 · 233 · 29033 · 110474303778793<15> · C178

C178 = P49 · C130

P49 = 4139828065935440294061146400286899184110194422807<49>

C130 = [2308769366424866095094566070967993074645236095443441497801367460951396604272172809333678904945474562731467084910099433652462194263<130>]

GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM]
Input number is 9557908220897645269387286854345517770093707575325287236420262235191730767688983930835321863692114212272671692252102550740452830644042128960613717269023912901214844723199991756241 (178 digits)
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=6195808489
Step 1 took 17127ms
Step 2 took 6986ms
********** Factor found in step 2: 4139828065935440294061146400286899184110194422807
Found probable prime factor of 49 digits: 4139828065935440294061146400286899184110194422807
Composite cofactor 2308769366424866095094566070967993074645236095443441497801367460951396604272172809333678904945474562731467084910099433652462194263 has 130 digits

Dec 22, 2009 (5th)

By Sinkiti Sibata / Msieve / Dec 22, 2009

(61·10156+11)/9 = 6(7)1559<157> = 1031 · 856255798213763<15> · C139

C139 = P54 · P86

P54 = 661542050937201180007812167768624715936624530911929887<54>

P86 = 11605602178758045128535674160139984140449568658770410887945323629142397528821410828089<86>

Number: 67779_156
N=7677593867696847684957279122264293269278228013253544279472612563182051822662480904492016418127582884422641770308593475797958842809778195943
  ( 139 digits)
SNFS difficulty: 157 digits.
Divisors found:
 r1=661542050937201180007812167768624715936624530911929887 (pp54)
 r2=11605602178758045128535674160139984140449568658770410887945323629142397528821410828089 (pp86)
Version: Msieve v. 1.42
Total time: 1.57 hours.
Scaled time: 1.25 units (timescale=0.796).
Factorization parameters were as follows:
name: 67779_156
n: 7677593867696847684957279122264293269278228013253544279472612563182051822662480904492016418127582884422641770308593475797958842809778195943
m: 10000000000000000000000000000000
deg: 5
c5: 610
c0: 11
skew: 0.45
type: snfs
lss: 1
rlim: 3000000
alim: 3000000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1500000, 2700001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 621877 x 622123
Total sieving time: 0.00 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 1.26 hours.
Time per square root: 0.22 hours.
Prototype def-par.txt line would be:
snfs,157.000,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000
total time: 1.57 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
CPU1: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.30 BogoMIPS (lpj=1860651)
Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860572)
Total of 2 processors activated (7442.44 BogoMIPS).

Total time: 21 hours 36 min.

(61·10160+11)/9 = 6(7)1599<161> = 3 · 37096537 · 318602231 · 306165298424039<15> · C130

C130 = P36 · P95

P36 = 329941288039669879685932268781811517<36>

P95 = 18923055277115022873260438445332513123376717790659675808990381692014965745788428750512725960013<95>

Number: 67779_160
N=6243497231777202897086408485077339585620666600947801130141434691549613209529400593909446684764902280951362671525963210087044869721
  ( 130 digits)
SNFS difficulty: 161 digits.
Divisors found:
 r1=329941288039669879685932268781811517 (pp36)
 r2=18923055277115022873260438445332513123376717790659675808990381692014965745788428750512725960013 (pp95)
Version: Msieve-1.40
Total time: 32.20 hours.
Scaled time: 67.15 units (timescale=2.085).
Factorization parameters were as follows:
name: 67779_160
n: 6243497231777202897086408485077339585620666600947801130141434691549613209529400593909446684764902280951362671525963210087044869721
m: 100000000000000000000000000000000
deg: 5
c5: 61
c0: 11
skew: 0.71
type: snfs
lss: 1
rlim: 3500000
alim: 3500000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 3500000/3500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [1750000, 2950001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 613100 x 613348
Total sieving time: 30.38 hours.
Total relation processing time: 0.17 hours.
Matrix solve time: 1.37 hours.
Time per square root: 0.29 hours.
Prototype def-par.txt line would be:
snfs,161.000,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000
total time: 32.20 hours.
 --------- CPU info (if available) ----------

Dec 22, 2009 (4th)

By Lionel Debroux / ggnfs-lasieve4I14e on the RSALS grid + msieve (Lionel Debroux + Jeff Gilchrist) / Dec 22, 2009

(47·10205+61)/9 = 5(2)2049<206> = 17 · 8761 · C201

C201 = P41 · P43 · P118

P41 = 20194671096761091832186829435988704365487<41>

P43 = 9471896794686022886422445694883334722867319<43>

P118 = 1833069811112554214479030625907879474746219426511471381872548281127265355644588248308625697591882480899120783940961589<118>

Sun Dec 20 15:19:03 2009  Msieve v. 1.43
Sun Dec 20 15:19:03 2009  random seeds: 5540a3c0 8848d85a
Sun Dec 20 15:19:03 2009  factoring
350632967108389602464278333941345818851072750372454274103964912830406294085567872471059724730739992226392516448043281536637787938673548025153066210694603907841719802481735379537806067143975118487831917
(201 digits)
Sun Dec 20 15:19:05 2009  no P-1/P+1/ECM available, skipping
Sun Dec 20 15:19:05 2009  commencing number field sieve (201-digit input)
Sun Dec 20 15:19:05 2009  R0: -100000000000000000000000000000000000000000
Sun Dec 20 15:19:05 2009  R1:  1
Sun Dec 20 15:19:05 2009  A0:  61
Sun Dec 20 15:19:05 2009  A1:  0
Sun Dec 20 15:19:05 2009  A2:  0
Sun Dec 20 15:19:05 2009  A3:  0
Sun Dec 20 15:19:05 2009  A4:  0
Sun Dec 20 15:19:05 2009  A5:  47
Sun Dec 20 15:19:05 2009  skew 1.05, size 2.211741e-14, alpha
0.903629, combined = 7.847376e-12
Sun Dec 20 15:19:05 2009
Sun Dec 20 15:19:05 2009  commencing linear algebra
Sun Dec 20 15:19:06 2009  read 2801241 cycles
Sun Dec 20 15:19:13 2009  cycles contain 7840037 unique relations
Sun Dec 20 15:20:33 2009  read 7840037 relations
Sun Dec 20 15:20:48 2009  using 20 quadratic characters above 536866608
Sun Dec 20 15:21:44 2009  building initial matrix
Sun Dec 20 15:24:22 2009  memory use: 1037.1 MB
Sun Dec 20 15:24:27 2009  read 2801241 cycles
Sun Dec 20 15:24:30 2009  matrix is 2800834 x 2801241 (826.2 MB) with
weight 244934261 (87.44/col)
Sun Dec 20 15:24:30 2009  sparse part has weight 185757819 (66.31/col)
Sun Dec 20 15:25:51 2009  filtering completed in 3 passes
Sun Dec 20 15:25:52 2009  matrix is 2794922 x 2795122 (825.1 MB) with
weight 244600938 (87.51/col)
Sun Dec 20 15:25:52 2009  sparse part has weight 185554338 (66.39/col)
Sun Dec 20 15:26:18 2009  read 2795122 cycles
Sun Dec 20 15:26:21 2009  matrix is 2794922 x 2795122 (825.1 MB) with
weight 244600938 (87.51/col)
Sun Dec 20 15:26:21 2009  sparse part has weight 185554338 (66.39/col)
Sun Dec 20 15:26:22 2009  saving the first 48 matrix rows for later
Sun Dec 20 15:26:24 2009  matrix is 2794874 x 2795122 (786.2 MB) with
weight 193230385 (69.13/col)
Sun Dec 20 15:26:24 2009  sparse part has weight 178134501 (63.73/col)
Sun Dec 20 15:26:24 2009  matrix includes 64 packed rows
Sun Dec 20 15:26:24 2009  using block size 65536 for processor cache
size 6144 kB
Sun Dec 20 15:26:40 2009  commencing Lanczos iteration (5 threads)
Sun Dec 20 15:26:40 2009  memory use: 868.2 MB
Sun Dec 20 15:26:55 2009  linear algebra at 0.0%, ETA 14h22m
Mon Dec 21 04:57:45 2009  lanczos halted after 44202 iterations (dim = 2794871)
Mon Dec 21 04:57:53 2009  recovered 35 nontrivial dependencies
Mon Dec 21 04:57:54 2009  BLanczosTime: 49129
Mon Dec 21 04:57:54 2009  elapsed time 13:38:51
Mon Dec 21 05:37:36 2009
Mon Dec 21 05:37:36 2009
Mon Dec 21 05:37:36 2009  Msieve v. 1.43
Mon Dec 21 05:37:36 2009  random seeds: 0aeca43c 249cbc15
Mon Dec 21 05:37:36 2009  factoring
350632967108389602464278333941345818851072750372454274103964912830406294085567872471059724730739992226392516448043281536637787938673548025153066210694603907841719802481735379537806067143975118487831917
(201 digits)
Mon Dec 21 05:37:38 2009  no P-1/P+1/ECM available, skipping
Mon Dec 21 05:37:38 2009  commencing number field sieve (201-digit input)
Mon Dec 21 05:37:38 2009  R0: -100000000000000000000000000000000000000000
Mon Dec 21 05:37:38 2009  R1:  1
Mon Dec 21 05:37:38 2009  A0:  61
Mon Dec 21 05:37:38 2009  A1:  0
Mon Dec 21 05:37:38 2009  A2:  0
Mon Dec 21 05:37:38 2009  A3:  0
Mon Dec 21 05:37:39 2009  A4:  0
Mon Dec 21 05:37:39 2009  A5:  47
Mon Dec 21 05:37:39 2009  skew 1.05, size 2.211741e-14, alpha
0.903629, combined = 7.847376e-12
Mon Dec 21 05:37:39 2009
Mon Dec 21 05:37:39 2009  commencing square root phase
Mon Dec 21 05:37:39 2009  reading relations for dependency 1
Mon Dec 21 05:37:39 2009  read 1398917 cycles
Mon Dec 21 05:37:43 2009  cycles contain 3920050 unique relations
Mon Dec 21 05:38:29 2009  read 3920050 relations
Mon Dec 21 05:38:59 2009  multiplying 3920050 relations
Mon Dec 21 05:42:51 2009  multiply complete, coefficients have about
115.67 million bits
Mon Dec 21 05:42:52 2009  initial square root is modulo 200748451
Mon Dec 21 05:50:46 2009  reading relations for dependency 2
Mon Dec 21 05:50:46 2009  read 1397154 cycles
Mon Dec 21 05:50:50 2009  cycles contain 3917288 unique relations
Mon Dec 21 05:51:37 2009  read 3917288 relations
Mon Dec 21 05:52:06 2009  multiplying 3917288 relations
Mon Dec 21 05:55:55 2009  multiply complete, coefficients have about
115.60 million bits
Mon Dec 21 05:55:56 2009  initial square root is modulo 198217301
Mon Dec 21 06:03:50 2009  sqrtTime: 1571
Mon Dec 21 06:03:50 2009  prp41 factor:
20194671096761091832186829435988704365487
Mon Dec 21 06:03:50 2009  prp43 factor:
9471896794686022886422445694883334722867319
Mon Dec 21 06:03:50 2009  prp118 factor:
1833069811112554214479030625907879474746219426511471381872548281127265355644588248308625697591882480899120783940961589
Mon Dec 21 06:03:50 2009  elapsed time 00:26:14

(52·10204-61)/9 = 5(7)2031<205> = 7523 · C201

C201 = P91 · P111

P91 = 3211532119533007796194142514339179383220263052671540257631331121185606037989314798053426139<91>

P111 = 239142906066221075904871087733166044872867257339926740249703577575802462447115323671565908100642055353656660443<111>

Mon Dec 21 06:29:10 2009  Msieve v. 1.43
Mon Dec 21 06:29:10 2009  random seeds: 7dbbed41 b0edb4a0
Mon Dec 21 06:29:10 2009  factoring
768015123990133959561049817596408052343184604250668320853087568493656490466273797391702482756583514259973119470660345311415363256384125718167988538851226608770141935102722022833680417091290413103519577
(201 digits)
Mon Dec 21 06:29:13 2009  no P-1/P+1/ECM available, skipping
Mon Dec 21 06:29:13 2009  commencing number field sieve (201-digit input)
Mon Dec 21 06:29:13 2009  R0: -100000000000000000000000000000000000000000
Mon Dec 21 06:29:13 2009  R1:  1
Mon Dec 21 06:29:13 2009  A0: -305
Mon Dec 21 06:29:13 2009  A1:  0
Mon Dec 21 06:29:13 2009  A2:  0
Mon Dec 21 06:29:13 2009  A3:  0
Mon Dec 21 06:29:13 2009  A4:  0
Mon Dec 21 06:29:13 2009  A5:  26
Mon Dec 21 06:29:13 2009  skew 1.64, size 2.306128e-14, alpha
0.489715, combined = 8.078711e-12
Mon Dec 21 06:29:13 2009
Mon Dec 21 06:29:13 2009  commencing linear algebra
Mon Dec 21 06:29:13 2009  read 2813450 cycles
Mon Dec 21 06:29:20 2009  cycles contain 7921881 unique relations
Mon Dec 21 06:30:39 2009  read 7921881 relations
Mon Dec 21 06:30:55 2009  using 20 quadratic characters above 536868812
Mon Dec 21 06:31:51 2009  building initial matrix
Mon Dec 21 06:34:32 2009  memory use: 1056.5 MB
Mon Dec 21 06:34:35 2009  read 2813450 cycles
Mon Dec 21 06:34:39 2009  matrix is 2812972 x 2813450 (831.2 MB) with
weight 247146150 (87.84/col)
Mon Dec 21 06:34:39 2009  sparse part has weight 186954905 (66.45/col)
Mon Dec 21 06:35:59 2009  filtering completed in 3 passes
Mon Dec 21 06:36:01 2009  matrix is 2806020 x 2806220 (829.9 MB) with
weight 246729422 (87.92/col)
Mon Dec 21 06:36:01 2009  sparse part has weight 186695144 (66.53/col)
Mon Dec 21 06:36:26 2009  read 2806220 cycles
Mon Dec 21 06:36:30 2009  matrix is 2806020 x 2806220 (829.9 MB) with
weight 246729422 (87.92/col)
Mon Dec 21 06:36:30 2009  sparse part has weight 186695144 (66.53/col)
Mon Dec 21 06:36:30 2009  saving the first 48 matrix rows for later
Mon Dec 21 06:36:32 2009  matrix is 2805972 x 2806220 (790.2 MB) with
weight 195218319 (69.57/col)
Mon Dec 21 06:36:32 2009  sparse part has weight 179071456 (63.81/col)
Mon Dec 21 06:36:32 2009  matrix includes 64 packed rows
Mon Dec 21 06:36:33 2009  using block size 65536 for processor cache
size 6144 kB
Mon Dec 21 06:36:49 2009  commencing Lanczos iteration (5 threads)
Mon Dec 21 06:36:49 2009  memory use: 870.2 MB
Mon Dec 21 06:37:03 2009  linear algebra at 0.0%, ETA 13h22m
Mon Dec 21 20:02:14 2009  lanczos halted after 44375 iterations (dim = 2805971)
Mon Dec 21 20:02:21 2009  recovered 36 nontrivial dependencies
Mon Dec 21 20:02:21 2009  BLanczosTime: 48788
Mon Dec 21 20:02:21 2009  elapsed time 13:33:11
Mon Dec 21 20:03:02 2009
Mon Dec 21 20:03:02 2009
Mon Dec 21 20:03:02 2009  Msieve v. 1.43
Mon Dec 21 20:03:02 2009  random seeds: 4c5d3413 72c52ec2
Mon Dec 21 20:03:02 2009  factoring
768015123990133959561049817596408052343184604250668320853087568493656490466273797391702482756583514259973119470660345311415363256384125718167988538851226608770141935102722022833680417091290413103519577
(201 digits)
Mon Dec 21 20:03:04 2009  no P-1/P+1/ECM available, skipping
Mon Dec 21 20:03:04 2009  commencing number field sieve (201-digit input)
Mon Dec 21 20:03:04 2009  R0: -100000000000000000000000000000000000000000
Mon Dec 21 20:03:04 2009  R1:  1
Mon Dec 21 20:03:04 2009  A0: -305
Mon Dec 21 20:03:04 2009  A1:  0
Mon Dec 21 20:03:04 2009  A2:  0
Mon Dec 21 20:03:04 2009  A3:  0
Mon Dec 21 20:03:04 2009  A4:  0
Mon Dec 21 20:03:04 2009  A5:  26
Mon Dec 21 20:03:04 2009  skew 1.64, size 2.306128e-14, alpha
0.489715, combined = 8.078711e-12
Mon Dec 21 20:03:04 2009
Mon Dec 21 20:03:04 2009  commencing square root phase
Mon Dec 21 20:03:04 2009  reading relations for dependency 1
Mon Dec 21 20:03:05 2009  read 1402676 cycles
Mon Dec 21 20:03:08 2009  cycles contain 3955496 unique relations
Mon Dec 21 20:03:55 2009  read 3955496 relations
Mon Dec 21 20:04:25 2009  multiplying 3955496 relations
Mon Dec 21 20:08:13 2009  multiply complete, coefficients have about
114.53 million bits
Mon Dec 21 20:08:14 2009  initial square root is modulo 166254931
Mon Dec 21 20:15:59 2009  reading relations for dependency 2
Mon Dec 21 20:15:59 2009  read 1402788 cycles
Mon Dec 21 20:16:03 2009  cycles contain 3959826 unique relations
Mon Dec 21 20:16:49 2009  read 3959826 relations
Mon Dec 21 20:17:19 2009  multiplying 3959826 relations
Mon Dec 21 20:21:07 2009  multiply complete, coefficients have about
114.66 million bits
Mon Dec 21 20:21:08 2009  initial square root is modulo 169698701
Mon Dec 21 20:28:54 2009  reading relations for dependency 3
Mon Dec 21 20:28:55 2009  read 1403085 cycles
Mon Dec 21 20:28:58 2009  cycles contain 3957196 unique relations
Mon Dec 21 20:29:45 2009  read 3957196 relations
Mon Dec 21 20:30:14 2009  multiplying 3957196 relations
Mon Dec 21 20:34:02 2009  multiply complete, coefficients have about
114.58 million bits
Mon Dec 21 20:34:04 2009  initial square root is modulo 167615221
Mon Dec 21 20:41:49 2009  sqrtTime: 2325
Mon Dec 21 20:41:49 2009  prp91 factor:
3211532119533007796194142514339179383220263052671540257631331121185606037989314798053426139
Mon Dec 21 20:41:49 2009  prp111 factor:
239142906066221075904871087733166044872867257339926740249703577575802462447115323671565908100642055353656660443
Mon Dec 21 20:41:49 2009  elapsed time 00:38:47

Dec 22, 2009 (3rd)

By Wataru Sakai / GMP-ECM 6.2.1 / Dec 22, 2009

(61·10169+11)/9 = 6(7)1689<170> = 3 · 44939 · 665221 · 1479879893<10> · 15992251210919<14> · 17093209147337<14> · C124

C124 = P34 · P91

P34 = 1241527496479518969376421541593971<34>

P91 = 1504737326775329431837876707667921530091717850110212903089127410272542747798721969528414183<91>

Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1130343346
Step 1 took 11375ms
Step 2 took 5675ms
********** Factor found in step 2: 1241527496479518969376421541593971
Found probable prime factor of 34 digits: 1241527496479518969376421541593971
Probable prime cofactor 1504737326775329431837876707667921530091717850110212903089127410272542747798721969528414183 has 91 digits

Dec 22, 2009 (2nd)

By Erik Branger / GMP-ECM / Dec 22, 2009

(7·10198-61)/9 = (7)1971<198> = 3 · 55217759 · 16455860360011147359007<23> · C168

C168 = P39 · P129

P39 = 434084681211224686141852439499199000759<39>

P129 = 657295177045586107322565512403951199388892719101664080289634387135256356887900786390289588541880076660837466117973684510067141071<129>

GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM]
Input number is 285321767389508735329154872093616199691336844403413182896276528395142827577131174381103348822433774083626337309145249185346327131003838382411204837961455467643089072889 (168 digits)
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2338097098
Step 1 took 60922ms
Step 2 took 25844ms
********** Factor found in step 2: 434084681211224686141852439499199000759
Found probable prime factor of 39 digits: 434084681211224686141852439499199000759
Probable prime cofactor 657295177045586107322565512403951199388892719101664080289634387135256356887900786390289588541880076660837466117973684510067141071 has 129 digits

Dec 22, 2009

By Dmitry Domanov / GGNFS/msieve / Dec 22, 2009

(16·10194-7)/9 = 1(7)194<195> = 32 · 47 · 658871 · 141500762332327<15> · C172

C172 = P65 · P107

P65 = 50759659653424490277812732539608015788481050765357913219568146221<65>

P107 = 88809460563826870360116122356762381837736186016835833547259653844156804262828325126109903907817049613269507<107>

N=4507937992224076175282785699191828465701998428817043371078391278475687732184850987495627021938332564937967244359115982438252106208394489099068936319590238462061614856583047
  ( 172 digits)
SNFS difficulty: 195 digits.
Divisors found:
 r1=50759659653424490277812732539608015788481050765357913219568146221 (pp65)
 r2=88809460563826870360116122356762381837736186016835833547259653844156804262828325126109903907817049613269507 (pp107)
Version: Msieve-1.40
Total time: 653.14 hours.
Scaled time: 609.38 units (timescale=0.933).
Factorization parameters were as follows:
n: 4507937992224076175282785699191828465701998428817043371078391278475687732184850987495627021938332564937967244359115982438252106208394489099068936319590238462061614856583047
m: 200000000000000000000000000000000000000
deg: 5
c5: 5000
c0: -7
skew: 0.27
type: snfs
lss: 1
rlim: 12500000
alim: 12500000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
qintsize: 240000Factor base limits: 12500000/12500000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved rational special-q in [6250000, 13450001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2046136 x 2046361
Total sieving time: 643.51 hours.
Total relation processing time: 0.41 hours.
Matrix solve time: 8.29 hours.
Time per square root: 0.93 hours.
Prototype def-par.txt line would be:
snfs,195.000,5,0,0,0,0,0,0,0,0,12500000,12500000,28,28,55,55,2.5,2.5,100000
total time: 653.14 hours.
 --------- CPU info (if available) ----------

Dec 21, 2009 (8th)

By Erik Branger / GMP-ECM / Dec 21, 2009

(7·10181-61)/9 = (7)1801<181> = 1543 · 401279 · 418897712018139077<18> · C155

C155 = P36 · P120

P36 = 268433173310371919110756037126438297<36>

P120 = 111711786778438585359052002351568932688057440788273618433487598683804565986777722541166941624891570654575541803729075647<120>

GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM]
Input number is 29987149421107919103277239628662886957675353245492249296599091718376560326703805877339985194027146015977494170980827460525338426184127596850743513190853159 (155 digits)
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3585440498
Step 1 took 86331ms
Step 2 took 16988ms
********** Factor found in step 2: 268433173310371919110756037126438297
Found probable prime factor of 36 digits: 268433173310371919110756037126438297
Probable prime cofactor 111711786778438585359052002351568932688057440788273618433487598683804565986777722541166941624891570654575541803729075647 has 120 digits

(7·10182-61)/9 = (7)1811<182> = 89 · 997 · 30467369 · 17618593319<11> · C160

C160 = P36 · C124

P36 = 196795518289527012783177637059304087<36>

C124 = [8297532807384384619591502124535182691958946812580208156234462702919765706096384805864725674578023949954423362371961815181391<124>]

GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM]
Input number is 1632917269353564083516157160874442162362313033488821728473083869495445441341139923036407878727107841361742487465761237276409809989350912818623879601262132645017 (160 digits)
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=866390266
Step 1 took 54928ms
Step 2 took 17971ms
********** Factor found in step 2: 196795518289527012783177637059304087
Found probable prime factor of 36 digits: 196795518289527012783177637059304087
Composite cofactor 8297532807384384619591502124535182691958946812580208156234462702919765706096384805864725674578023949954423362371961815181391 has 124 digits

(7·10189-61)/9 = (7)1881<189> = 3 · 1291 · 355909522613<12> · 6586408395714765506229052421915313517957<40> · C134

C134 = P36 · P99

P36 = 382640466874904910800421145827775571<36>

P99 = 223886997322957868294489493212024580830634045157977060128729169814295853294679370899387519951925857<99>

GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM]
Input number is 85668225182877184644786666541917164742621853107779269580528230063969136871950475692301384534838463105695144272049997293525583827839347 (134 digits)
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3346361410
Step 1 took 39203ms
Step 2 took 14056ms
********** Factor found in step 2: 382640466874904910800421145827775571
Found probable prime factor of 36 digits: 382640466874904910800421145827775571
Probable prime cofactor 223886997322957868294489493212024580830634045157977060128729169814295853294679370899387519951925857 has 99 digits

Dec 21, 2009 (7th)

By Wataru Sakai / Msieve / Dec 21, 2009

(29·10182+43)/9 = 3(2)1817<183> = 3 · 742607 · C177

C177 = P62 · P115

P62 = 92642261978496379962548769773717521411016408848388445396158257<62>

P115 = 1561226968708799973532631702023503117190130380194927134171352062656951184851221466845822869614201993417026721388591<115>

Number: 32227_182
N=144635597843014417326267335760917157268120832967380333618464958460406927765840353521320708540866713359027597918424425580970025070336540602778330136138505841457739298723830245887
  ( 177 digits)
SNFS difficulty: 183 digits.
Divisors found:
 r1=92642261978496379962548769773717521411016408848388445396158257
 r2=1561226968708799973532631702023503117190130380194927134171352062656951184851221466845822869614201993417026721388591
Version: 
Total time: 343.63 hours.
Scaled time: 691.04 units (timescale=2.011).
Factorization parameters were as follows:
n: 144635597843014417326267335760917157268120832967380333618464958460406927765840353521320708540866713359027597918424425580970025070336540602778330136138505841457739298723830245887
m: 1000000000000000000000000000000000000
deg: 5
c5: 2900
c0: 43
skew: 0.43
type: snfs
lss: 1
rlim: 8000000
alim: 8000000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 8000000/8000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [4000000, 7300001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1547536 x 1547784
Total sieving time: 343.63 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,183,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,53,53,2.5,2.5,100000
total time: 343.63 hours.
 --------- CPU info (if available) ----------

(19·10178+53)/9 = 2(1)1777<179> = 3 · 383489 · C173

C173 = P33 · P50 · P91

P33 = 730783028829272890571582357107873<33>

P50 = 15813081752003936184143208732888457782336476081569<50>

P91 = 1587932203573024046038962979456799562125934051816159402995982719650736127433087927236287023<91>

Number: 21117_178
N=18350036212347777998944003705548365238734454018334390391998302525071219870809950316794059378592442122295651340813001251762207095997634970069642250591378206511887008589651951
  ( 173 digits)
SNFS difficulty: 179 digits.
Divisors found:
 r1=730783028829272890571582357107873
 r2=15813081752003936184143208732888457782336476081569
 r3=1587932203573024046038962979456799562125934051816159402995982719650736127433087927236287023
Version: 
Total time: 199.73 hours.
Scaled time: 402.06 units (timescale=2.013).
Factorization parameters were as follows:
n: 18350036212347777998944003705548365238734454018334390391998302525071219870809950316794059378592442122295651340813001251762207095997634970069642250591378206511887008589651951
m: 100000000000000000000000000000000000
deg: 5
c5: 19000
c0: 53
skew: 0.31
type: snfs
lss: 1
rlim: 6800000
alim: 6800000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5Factor base limits: 6800000/6800000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3400000, 9900001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1341541 x 1341789
Total sieving time: 199.73 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,179,5,0,0,0,0,0,0,0,0,6800000,6800000,28,28,53,53,2.5,2.5,100000
total time: 199.73 hours.
 --------- CPU info (if available) ----------

Dec 21, 2009 (6th)

By Dmitry Domanov / Msieve, ECMNET, GMP-ECM, GGNFS/msieve / Dec 21, 2009

(71·10127+1)/9 = 7(8)1269<128> = 877 · C125

C125 = P42 · P84

P42 = 724119670299098648278589761262529662613773<42>

P84 = 124224111994143947053481632133918283439721570965704847381544868928732662785337506609<84>

Number: pss5
N=89953123020397820853921195996452552894970226783225642974787786646395540352210819713670340808311161788926897250728493601925757
  ( 125 digits)
SNFS difficulty: 128 digits.
Divisors found:
r1=93855586060542351442594594185778692558497789498069 (pp50)
r2=124224111994143947053481632133918283439721570965704847381544868928732662785337506609 (pp84)
Version: Msieve-1.40
Total time: 2.78 hours.
Scaled time: 5.27 units (timescale=1.894).
Factorization parameters were as follows:
n: 89953123020397820853921195996452552894970226783225642974787786646395540352210819713670340808311161788926897250728493601925757
m: 10000000000000000000000000
deg: 5
c5: 7100
c0: 1
skew: 0.17
type: snfs
lss: 1
rlim: 980000
alim: 980000
lpbr: 26
lpba: 26
mfbr: 47
mfba: 47
rlambda: 2.3
alambda: 2.3Factor base limits: 980000/980000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved rational special-q in [490000, 840001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 130951 x 131178
Total sieving time: 2.54 hours.
Total relation processing time: 0.11 hours.
Matrix solve time: 0.07 hours.
Time per square root: 0.07 hours.
Prototype def-par.txt line would be:
snfs,128.000,5,0,0,0,0,0,0,0,0,980000,980000,26,26,47,47,2.3,2.3,50000
total time: 2.78 hours.
 --------- CPU info (if available) ----------

(61·10186+11)/9 = 6(7)1859<187> = 11064356141<11> · C177

C177 = P34 · P143

P34 = 6593937000538782954599208778732781<34>

P143 = 92900143664152041610733982563617930749541509401481860046283875992578438137971694644621795839901683792618731990044520768286581883999169058387899<143>

Factor=6593937000538782954599208778732781  Method=ECM  B1=11000000  Sigma=2002082671

(71·10133+1)/9 = 7(8)1329<134> = 113 · 10338933259<11> · 732116512273<12> · C110

C110 = P33 · P36 · P42

P33 = 721463809668823308576757999477337<33>

P36 = 186615596727761291998883929740028807<36>

P42 = 685044798746716350174109578435853792446181<42>

N=92231965102753226805070876269963837258857967842991246775531878200725154058404849711786393278310308556651813579
  ( 110 digits)
SNFS difficulty: 134 digits.
Divisors found:
 r1=721463809668823308576757999477337 (pp33)
 r2=186615596727761291998883929740028807 (pp36)
 r3=685044798746716350174109578435853792446181 (pp42)
Version: Msieve-1.40
Total time: 3.80 hours.
Scaled time: 7.04 units (timescale=1.855).
Factorization parameters were as follows:
n: 92231965102753226805070876269963837258857967842991246775531878200725154058404849711786393278310308556651813579
m: 100000000000000000000000000
deg: 5
c5: 71000
c0: 1
skew: 0.11
type: snfs
lss: 1
rlim: 1240000
alim: 1240000
lpbr: 26
lpba: 26
mfbr: 47
mfba: 47
rlambda: 2.3
alambda: 2.3Factor base limits: 1240000/1240000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved rational special-q in [620000, 1370001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 169732 x 169958
Total sieving time: 3.60 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.07 hours.
Time per square root: 0.09 hours.
Prototype def-par.txt line would be:
snfs,134.000,5,0,0,0,0,0,0,0,0,1240000,1240000,26,26,47,47,2.3,2.3,75000
total time: 3.80 hours.
 --------- CPU info (if available) ----------

(71·10137+1)/9 = 7(8)1369<138> = 3 · 81203 · 91125075823<11> · 331490003387<12> · C111

C111 = P31 · P80

P31 = 1124786677524254377539152840831<31>

P80 = 95311215416391831577161704682854083086498483281881740792036442945373555652793891<80>

N=107204785319001861480239990708059678466162206746209771789971212092030666843417489070498898114318212014772163421
  ( 111 digits)
SNFS difficulty: 138 digits.
Divisors found:
 r1=1124786677524254377539152840831 (pp31)
 r2=95311215416391831577161704682854083086498483281881740792036442945373555652793891 (pp80)
Version: Msieve-1.40
Total time: 4.38 hours.
Scaled time: 8.31 units (timescale=1.899).
Factorization parameters were as follows:
n: 107204785319001861480239990708059678466162206746209771789971212092030666843417489070498898114318212014772163421
m: 1000000000000000000000000000
deg: 5
c5: 7100
c0: 1
skew: 0.17
type: snfs
lss: 1
rlim: 1440000
alim: 1440000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.3
alambda: 2.3Factor base limits: 1440000/1440000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved rational special-q in [720000, 1545001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 188590 x 188815
Total sieving time: 4.24 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.09 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,138.000,5,0,0,0,0,0,0,0,0,1440000,1440000,26,26,48,48,2.3,2.3,75000
total time: 4.38 hours.
 --------- CPU info (if available) ----------

(71·10146+1)/9 = 7(8)1459<147> = 3 · 143873 · 484733 · 100371170821<12> · C125

C125 = P54 · P72

P54 = 275763158471737845393339532576042411061713280853158923<54>

P72 = 136228339594136412294146908581272692925053002012783776467237808792805929<72>

N=37566757199839558738674053617549413778397450213184321917251642377603230103467738504126931658773651479533067016587356533654467
  ( 125 digits)
SNFS difficulty: 147 digits.
Divisors found:
 r1=275763158471737845393339532576042411061713280853158923 (pp54)
 r2=136228339594136412294146908581272692925053002012783776467237808792805929 (pp72)
Version: Msieve-1.40
Total time: 9.29 hours.
Scaled time: 17.65 units (timescale=1.899).
Factorization parameters were as follows:
n: 37566757199839558738674053617549413778397450213184321917251642377603230103467738504126931658773651479533067016587356533654467
m: 100000000000000000000000000000
deg: 5
c5: 710
c0: 1
skew: 0.27
type: snfs
lss: 1
rlim: 2000000
alim: 2000000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.3
alambda: 2.3Factor base limits: 2000000/2000000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved rational special-q in [1000000, 2600001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 341056 x 341281
Total sieving time: 9.04 hours.
Total relation processing time: 0.08 hours.
Matrix solve time: 0.14 hours.
Time per square root: 0.03 hours.
Prototype def-par.txt line would be:
snfs,147.000,5,0,0,0,0,0,0,0,0,2000000,2000000,26,26,49,49,2.3,2.3,100000
total time: 9.29 hours.
 --------- CPU info (if available) ----------

(61·10185+11)/9 = 6(7)1849<186> = 449 · 4241 · C180

C180 = P38 · P42 · P101

P38 = 93294348110671834780090636675095012293<38>

P42 = 211932646641119217655915149848691440234801<42>

P101 = 18001948543574024260951655439691780805894373278122437636957145375740930619748197779058194059900366167<101>

Factor=93294348110671834780090636675095012293  Method=ECM  B1=11000000  Sigma=96355152
Factor=211932646641119217655915149848691440234801  Method=ECM  B1=11000000  Sigma=583579203

(61·10158+11)/9 = 6(7)1579<159> = 7 · 47947 · C154

C154 = P36 · P118

P36 = 370424065561157043005740122638615381<36>

P118 = 5451658618654229583422200616066216555531534316702994687574391619950836910293242281617785667350933415824446950885802371<118>

N=2019425549573421181655273464980015963393442693503176953653521530552418824886341102162738552919377579940284593339007588074265864325722085331654230646868351
  ( 154 digits)
SNFS difficulty: 159 digits.
Divisors found:
 r1=370424065561157043005740122638615381 (pp36)
 r2=5451658618654229583422200616066216555531534316702994687574391619950836910293242281617785667350933415824446950885802371 (pp118)
Version: Msieve-1.40
Total time: 26.64 hours.
Scaled time: 50.45 units (timescale=1.894).
Factorization parameters were as follows:
n: 2019425549573421181655273464980015963393442693503176953653521530552418824886341102162738552919377579940284593339007588074265864325722085331654230646868351
m: 10000000000000000000000000000000
deg: 5
c5: 61000
c0: 11
skew: 0.18
type: snfs
lss: 1
rlim: 3200000
alim: 3200000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4Factor base limits: 3200000/3200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1600000, 3200001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 571466 x 571692
Total sieving time: 26.07 hours.
Total relation processing time: 0.08 hours.
Matrix solve time: 0.42 hours.
Time per square root: 0.07 hours.
Prototype def-par.txt line would be:
snfs,159.000,5,0,0,0,0,0,0,0,0,3200000,3200000,27,27,50,50,2.4,2.4,100000
total time: 26.64 hours.
 --------- CPU info (if available) ----------

(61·10165+11)/9 = 6(7)1649<166> = 59 · 318756319633<12> · C153

C153 = P58 · P96

P58 = 2752738908947720923391736911537353829351043020914446781171<58>

P96 = 130921655593937280434022421470604766061837566769549361700021420587916908256274349687404863625667<96>

N=360393135377284193093901844159276001250820053284430212998748937525336740416091877204027563021808549174725531214464896270870837855123940777121408807916057
  ( 153 digits)
SNFS difficulty: 166 digits.
Divisors found:
 r1=2752738908947720923391736911537353829351043020914446781171 (pp58)
 r2=130921655593937280434022421470604766061837566769549361700021420587916908256274349687404863625667 (pp96)
Version: Msieve-1.40
Total time: 31.56 hours.
Scaled time: 57.73 units (timescale=1.829).
Factorization parameters were as follows:
n: 360393135377284193093901844159276001250820053284430212998748937525336740416091877204027563021808549174725531214464896270870837855123940777121408807916057
m: 1000000000000000000000000000000000
deg: 5
c5: 61
c0: 11
skew: 0.71
type: snfs
lss: 1
rlim: 4200000
alim: 4200000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4Factor base limits: 4200000/4200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [2100000, 3800001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 789471 x 789696
Total sieving time: 30.57 hours.
Total relation processing time: 0.08 hours.
Matrix solve time: 0.77 hours.
Time per square root: 0.14 hours.
Prototype def-par.txt line would be:
snfs,166.000,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000
total time: 31.56 hours.
 --------- CPU info (if available) ----------

Dec 21, 2009 (5th)

By Robert Backstrom / GGNFS, Msieve / Dec 21, 2009

(61·10167+11)/9 = 6(7)1669<168> = 6151 · 57763746961<11> · 1494794490361357<16> · 15944572173789759241324007<26> · C113

C113 = P51 · P63

P51 = 113794270147369588653878589256850130478318915747067<51>

P63 = 703349993642721287585740997082676211944799701617899993459389933<63>

Number: n
N=80037199184730508977115416119352537885292239945463872142115955448280340669721848637051339150323473728208754076511
  ( 113 digits)
Divisors found:

Mon Dec 21 17:45:03 2009  prp51 factor: 113794270147369588653878589256850130478318915747067
Mon Dec 21 17:45:03 2009  prp63 factor: 703349993642721287585740997082676211944799701617899993459389933
Mon Dec 21 17:45:03 2009  elapsed time 00:45:19 (Msieve 1.43 - dependency 1)

Version: GGNFS-0.77.1-20051202-athlon
Total time: 10.16 hours.
Scaled time: 18.57 units (timescale=1.829).
Factorization parameters were as follows:
name: KA_6_7_166_9
n: 80037199184730508977115416119352537885292239945463872142115955448280340669721848637051339150323473728208754076511
Y0: -8028180428284353607319
Y1:  771316934069
c0: -34736039266361789859349168152
c1:  1204731244369413931166325
c2:  24032766499366145074
c3: -147570282929998
c4: -286500260
c5:  2400
skew: 152736.69
type: gnfs
rlim: 3500000
alim: 3500000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
qintsize: 50000
Factor base limits: 3500000/3500000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 56/56
Sieved  special-q in [1750000, 2264753)
Primes: RFBsize:250150, AFBsize:250087, largePrimes:8195560 encountered
Relations: rels:4505389, finalFF:42038
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 1357077 hash collisions in 16229987 relations
Msieve: matrix is 491541 x 491767 (136.2 MB)

Total sieving time: 10.08 hours.
Total relation processing time: 0.08 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
gnfs,112,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,28,28,56,56,2.6,2.6,100000
total time: 10.16 hours.
 --------- CPU info (if available) ----------

(38·10190+43)/9 = 4(2)1897<191> = 286019 · C186

C186 = P84 · P102

P84 = 188842861071824615765500506301613040939280352144625291368044466035794298278708578687<84>

P102 = 781709935162927917642790206127488798633371159901073266383347626263833358205329671027987439772257663759<102>

Number: n
N=147620340684437824837588489653562253634276821547597265294341362714442824505442723113577147749702719827082194617218514232348977593174657006080792612456592821533612180387394621414039704433
  ( 186 digits)
SNFS difficulty: 191 digits.
Divisors found:

Mon Dec 21 19:00:33 2009  prp84 factor: 188842861071824615765500506301613040939280352144625291368044466035794298278708578687
Mon Dec 21 19:00:33 2009  prp102 factor: 781709935162927917642790206127488798633371159901073266383347626263833358205329671027987439772257663759
Mon Dec 21 19:00:33 2009  elapsed time 07:33:48 (Msieve 1.42 - dependency 1)

Version: GGNFS-0.77.1-20050930-k8
Total time: ~ 24.00 hours.
Scaled time: 0.00 units (timescale=0.842).
Factorization parameters were as follows:
name: KA_4_2_189_7
n: 147620340684437824837588489653562253634276821547597265294341362714442824505442723113577147749702719827082194617218514232348977593174657006080792612456592821533612180387394621414039704433
m: 100000000000000000000000000000000000000
deg: 5
c5: 38
c0: 43
skew: 1.03
type: snfs
lss: 1
rlim: 10900000
alim: 10900000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 10900000/10900000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 56/56
Sieved  special-q in [100000, 100000)
Primes: RFBsize:720341, AFBsize:719599, 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 3456972 hash collisions in 28295349 relations
Msieve: matrix is 1717412 x 1717637 (458.7 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,191,5,0,0,0,0,0,0,0,0,10900000,10900000,28,28,56,56,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

Dec 21, 2009 (4th)

By Sinkiti Sibata / GGNFS, Msieve / Dec 21, 2009

(71·10143+1)/9 = 7(8)1429<144> = 33 · 54004287143754025206083<23> · 320887221940942009472382611<27> · C94

C94 = P45 · P49

P45 = 295063233854536538035258174435435024654526569<45>

P49 = 5714211568086633684135476067653822678501841181531<49>

Number: 78889_143
N=1686053744208644329921490279259958118702718188924695072185385038825047520812339510474391597139
  ( 94 digits)
Divisors found:
 r1=295063233854536538035258174435435024654526569 (pp45)
 r2=5714211568086633684135476067653822678501841181531 (pp49)
Version: GGNFS-0.77.1-20050930-pentium4
Total time: 9.18 hours.
Scaled time: 4.30 units (timescale=0.468).
Factorization parameters were as follows:
name: 78889_143
n:  1686053744208644329921490279259958118702718188924695072185385038825047520812339510474391597139
m:  3784972111785690146622
deg: 4
c4: 8215248
c3: -4984644872
c2: -163098087209936902
c1: 25562022657187109
c0: 152167515497780200289077
skew: 1635.250
type: gnfs
# adj. I(F,S) = 53.638
# E(F1,F2) = 5.547655e-05
# GGNFS version 0.77.1-20050930-pentium4 polyselect.
# Options were: 
# lcd=1, enumLCD=24, maxS1=60.00000000, seed=1261313568.
# maxskew=2000.0
# These parameters should be manually set:
rlim: 1200000
alim: 1200000
lpbr: 25
lpba: 25
mfbr: 45
mfba: 45
rlambda: 2.4
alambda: 2.4
qintsize: 60000

type: gnfs
Factor base limits: 1200000/1200000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 45/45
Sieved algebraic special-q in [600000, 1320001)
Primes: RFBsize:92938, AFBsize:92860, largePrimes:1892544 encountered
Relations: rels:1980884, finalFF:243238
Max relations in full relation-set: 28
Initial matrix: 185873 x 243238 with sparse part having weight 18964805.
Pruned matrix : 160862 x 161855 with weight 10326242.
Polynomial selection time: 0.17 hours.
Total sieving time: 8.38 hours.
Total relation processing time: 0.15 hours.
Matrix solve time: 0.42 hours.
Time per square root: 0.05 hours.
Prototype def-par.txt line would be:
gnfs,93,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000
total time: 9.18 hours.
 --------- CPU info (if available) ----------

(71·10147+1)/9 = 7(8)1469<148> = 7 · 2174741 · 31792409060705638610778619<26> · C116

C116 = P50 · P66

P50 = 35517930811933628614278811967488815401384738320451<50>

P66 = 458922300996904483924595822228849043087866682853051242773033813363<66>

Number: 78889_147
N=16299970534861432777150839936346263087416463359327069772929385905070511275097374886630381406471729284710112419986713
  ( 116 digits)
SNFS difficulty: 148 digits.
Divisors found:
 r1=35517930811933628614278811967488815401384738320451 (pp50)
 r2=458922300996904483924595822228849043087866682853051242773033813363 (pp66)
Version: Msieve v. 1.42
Total time: 0.60 hours.
Scaled time: 0.48 units (timescale=0.796).
Factorization parameters were as follows:
name: 78889_147
n: 16299970534861432777150839936346263087416463359327069772929385905070511275097374886630381406471729284710112419986713
m: 100000000000000000000000000000
deg: 5
c5: 7100
c0: 1
skew: 0.17
type: snfs
lss: 1
rlim: 2100000
alim: 2100000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.3
alambda: 2.3
Factor base limits: 2100000/2100000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved rational special-q in [1050000, 2450001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 369540 x 369788
Total sieving time: 0.00 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.44 hours.
Time per square root: 0.12 hours.
Prototype def-par.txt line would be:
snfs,148.000,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000
total time: 0.60 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
CPU1: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.30 BogoMIPS (lpj=1860651)
Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860572)
Total of 2 processors activated (7442.44 BogoMIPS).

Total time: 9 hours 13 min.

(71·10128+1)/9 = 7(8)1279<129> = 3 · C129

C129 = P31 · P37 · P61

P31 = 7704415077626433601853291814961<31>

P37 = 7241043645876529869856793659292249699<37>

P61 = 4713611088784942439934240499030695683756265201980233925675617<61>

Number: 78889_128
N=262962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962963
  ( 129 digits)
SNFS difficulty: 129 digits.
Divisors found:
 r1=7704415077626433601853291814961 (pp31)
 r2=7241043645876529869856793659292249699 (pp37)
 r3=4713611088784942439934240499030695683756265201980233925675617 (pp61)
Version: Msieve-1.40
Total time: 3.31 hours.
Scaled time: 6.95 units (timescale=2.099).
Factorization parameters were as follows:
name: 78889_128
n: 262962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962963
m: 10000000000000000000000000
deg: 5
c5: 71000
c0: 1
skew: 0.11
type: snfs
lss: 1
rlim: 1020000
alim: 1020000
lpbr: 26
lpba: 26
mfbr: 47
mfba: 47
rlambda: 2.3
alambda: 2.3
Factor base limits: 1020000/1020000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved rational special-q in [510000, 960001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 152161 x 152394
Total sieving time: 3.10 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.08 hours.
Time per square root: 0.09 hours.
Prototype def-par.txt line would be:
snfs,129.000,5,0,0,0,0,0,0,0,0,1020000,1020000,26,26,47,47,2.3,2.3,50000
total time: 3.31 hours.
 --------- CPU info (if available) ----------

Dec 21, 2009 (3rd)

By juno1369 / Msieve v1.43 / Dec 21, 2009

(23·10135+7)/3 = 7(6)1349<136> = 1805893807<10> · 28528225268830327527152392361<29> · C99

C99 = P37 · P62

P37 = 3458833797702092192028014218740192151<37>

P62 = 43023914661672714363772351729455871813057323558894140821120397<62>

Msieve v. 1.43
Sat Dec 19 22:27:52 2009
random seeds: 75b3f540 5533574a
factoring 1488125701412441595485831783466556452645334142990187120517913439002770
74936886619081486558885403947 (99 digits)
searching for 15-digit factors
searching for 20-digit factors
searching for 25-digit factors
200 of 214 curves
completed 214 ECM curves
searching for 30-digit factors
425 of 430 curves
completed 430 ECM curves
commencing quadratic sieve (99-digit input)
using multiplier of 47
using 64kb Opteron sieve core
sieve interval: 18 blocks of size 65536
processing polynomials in batches of 6
using a sieve bound of 2567269 (94118 primes)
using large prime bound of 385090350 (28 bits)
using double large prime bound of 2844544577802900 (43-52 bits)
using trial factoring cutoff of 52 bits
polynomial 'A' values have 13 factors

sieving in progress (press Ctrl-C to pause)
94500 relations (22703 full + 71797 combined from 1416345 partial), need 94214
94500 relations (22703 full + 71797 combined from 1416345 partial), need 94214
sieving complete, commencing postprocessing
begin with 1439048 relations
reduce to 247787 relations in 11 passes
attempting to read 247787 relations
recovered 247787 relations
recovered 237649 polynomials
attempting to build 94500 cycles
found 94500 cycles in 5 passes
distribution of cycle lengths:
   length 1 : 22703
   length 2 : 16212
   length 3 : 16087
   length 4 : 12823
   length 5 : 9707
   length 6 : 6522
   length 7 : 4339
   length 9+: 6107
largest cycle: 19 relations
matrix is 94118 x 94500 (25.6 MB) with weight 6327221 (66.95/col)
sparse part has weight 6327221 (66.95/col)
filtering completed in 3 passes
matrix is 90199 x 90263 (24.5 MB) with weight 6059463 (67.13/col)
sparse part has weight 6059463 (67.13/col)
saving the first 48 matrix rows for later
matrix is 90151 x 90263 (14.4 MB) with weight 4716111 (52.25/col)
sparse part has weight 3236903 (35.86/col)
matrix includes 64 packed rows
using block size 21845 for processor cache size 512 kB
commencing Lanczos iteration
memory use: 15.1 MB
linear algebra at 26.7%, ETA 0h 0m90263 dimensions (26.7%, ETA 0h 0m)
linear algebra completed 88361 of 90263 dimensions (97.9%, ETA 0h 0m)
lanczos halted after 1427 iterations (dim = 90149)
recovered 16 nontrivial dependencies
prp37 factor: 3458833797702092192028014218740192151
prp62 factor: 43023914661672714363772351729455871813057323558894140821120397
elapsed time 17:36:29

Dec 21, 2009 (2nd)

By Jo Yeong Uk / GMP-ECM v6.2.3, YAFU v1.10, Msieve / Dec 21, 2009

(61·10159+11)/9 = 6(7)1589<160> = 167 · 5153 · 127787011978227509711432050637<30> · C125

C125 = P32 · P37 · P57

P32 = 27682035015166481474010757311683<32>

P37 = 5486643505504392984455778494096868727<37>

P57 = 405806725364661937722524130979655905519377159864333334037<57>

GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM]
Input number is 61634516966514961863963271009532422308818742105568058503065608758517820356226982703368854909438046148816322722175542245883017 (125 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3551862618
Step 1 took 4258ms
Step 2 took 734ms
********** Factor found in step 2: 27682035015166481474010757311683
Found probable prime factor of 32 digits: 27682035015166481474010757311683
Composite cofactor 2226516834212027242444909816545471671278027082282232388885126145417248627018316263049829960899 has 94 digits

12/20/09 23:12:45 v1.10 @ 조영욱-PC, starting SIQS on c94: 2226516834212027242444909816545471671278027082282232388885126145417248627018316263049829960899
12/20/09 23:12:45 v1.10 @ 조영욱-PC, random seeds: 3976414213, 2696250688
12/20/09 23:12:45 v1.10 @ 조영욱-PC, ==== sieve params ====
12/20/09 23:12:45 v1.10 @ 조영욱-PC, n = 94 digits, 311 bits
12/20/09 23:12:45 v1.10 @ 조영욱-PC, factor base: 79491 primes (max prime = 2148583)
12/20/09 23:12:45 v1.10 @ 조영욱-PC, single large prime cutoff: 279315790 (130 * pmax)
12/20/09 23:12:45 v1.10 @ 조영욱-PC, double large prime range from 44 to 51 bits
12/20/09 23:12:45 v1.10 @ 조영욱-PC, double large prime cutoff: 1595775810273505
12/20/09 23:12:45 v1.10 @ 조영욱-PC, using 16 large prime slices of factor base
12/20/09 23:12:45 v1.10 @ 조영욱-PC, buckets hold 1024 elements
12/20/09 23:12:45 v1.10 @ 조영욱-PC, sieve interval: 13 blocks of size 65536
12/20/09 23:12:45 v1.10 @ 조영욱-PC, polynomial A has ~ 12 factors
12/20/09 23:12:45 v1.10 @ 조영욱-PC, using multiplier of 1
12/20/09 23:12:45 v1.10 @ 조영욱-PC, using small prime variation correction of 20 bits
12/20/09 23:12:45 v1.10 @ 조영욱-PC, using SSE2 for trial division and x128 sieve scanning
12/20/09 23:12:45 v1.10 @ 조영욱-PC, trial factoring cutoff at 98 bits
12/20/09 23:12:45 v1.10 @ 조영욱-PC, ==== sieving started ====
12/21/09 00:58:14 v1.10 @ 조영욱-PC, sieve time = 3007.8790, relation time = 1158.4010, poly_time = 2159.9650
12/21/09 00:58:14 v1.10 @ 조영욱-PC, 79567 relations found: 20778 full + 58789 from 1066144 partial, using 770025 polys (376 A polys)
12/21/09 00:58:14 v1.10 @ 조영욱-PC, on average, sieving found 1.41 rels/poly and 171.71 rels/sec
12/21/09 00:58:14 v1.10 @ 조영욱-PC, trial division touched 54208468 sieve locations out of 1312073318400
12/21/09 00:58:14 v1.10 @ 조영욱-PC, ==== post processing stage (msieve-1.38) ====
12/21/09 00:58:15 v1.10 @ 조영욱-PC, begin with 1086922 relations
12/21/09 00:58:15 v1.10 @ 조영욱-PC, reduce to 198647 relations in 10 passes
12/21/09 00:58:17 v1.10 @ 조영욱-PC, recovered 198647 relations
12/21/09 00:58:17 v1.10 @ 조영욱-PC, recovered 175214 polynomials
12/21/09 00:58:18 v1.10 @ 조영욱-PC, attempting to build 79567 cycles
12/21/09 00:58:18 v1.10 @ 조영욱-PC, found 79566 cycles in 5 passes
12/21/09 00:58:18 v1.10 @ 조영욱-PC, distribution of cycle lengths:
12/21/09 00:58:18 v1.10 @ 조영욱-PC,    length 1 : 20778
12/21/09 00:58:18 v1.10 @ 조영욱-PC,    length 2 : 15063
12/21/09 00:58:18 v1.10 @ 조영욱-PC,    length 3 : 13884
12/21/09 00:58:18 v1.10 @ 조영욱-PC,    length 4 : 10553
12/21/09 00:58:18 v1.10 @ 조영욱-PC,    length 5 : 7602
12/21/09 00:58:18 v1.10 @ 조영욱-PC,    length 6 : 4939
12/21/09 00:58:18 v1.10 @ 조영욱-PC,    length 7 : 2983
12/21/09 00:58:18 v1.10 @ 조영욱-PC,    length 9+: 3764
12/21/09 00:58:18 v1.10 @ 조영욱-PC, largest cycle: 18 relations
12/21/09 00:58:18 v1.10 @ 조영욱-PC, matrix is 79491 x 79566 (21.7 MB) with weight 5045160 (63.41/col)
12/21/09 00:58:18 v1.10 @ 조영욱-PC, sparse part has weight 5045160 (63.41/col)
12/21/09 00:58:18 v1.10 @ 조영욱-PC, filtering completed in 3 passes
12/21/09 00:58:18 v1.10 @ 조영욱-PC, matrix is 75051 x 75113 (20.7 MB) with weight 4812529 (64.07/col)
12/21/09 00:58:18 v1.10 @ 조영욱-PC, sparse part has weight 4812529 (64.07/col)
12/21/09 00:58:19 v1.10 @ 조영욱-PC, saving the first 48 matrix rows for later
12/21/09 00:58:19 v1.10 @ 조영욱-PC, matrix is 75003 x 75113 (14.7 MB) with weight 3938249 (52.43/col)
12/21/09 00:58:19 v1.10 @ 조영욱-PC, sparse part has weight 3094533 (41.20/col)
12/21/09 00:58:19 v1.10 @ 조영욱-PC, matrix includes 64 packed rows
12/21/09 00:58:19 v1.10 @ 조영욱-PC, using block size 30045 for processor cache size 4096 kB
12/21/09 00:58:19 v1.10 @ 조영욱-PC, commencing Lanczos iteration
12/21/09 00:58:19 v1.10 @ 조영욱-PC, memory use: 12.5 MB
12/21/09 00:58:46 v1.10 @ 조영욱-PC, lanczos halted after 1187 iterations (dim = 75003)
12/21/09 00:58:47 v1.10 @ 조영욱-PC, recovered 18 nontrivial dependencies
12/21/09 00:58:48 v1.10 @ 조영욱-PC, prp57 = 405806725364661937722524130979655905519377159864333334037
12/21/09 00:58:52 v1.10 @ 조영욱-PC, prp37 = 5486643505504392984455778494096868727
12/21/09 00:58:52 v1.10 @ 조영욱-PC, Lanczos elapsed time = 32.2300 seconds.
12/21/09 00:58:52 v1.10 @ 조영욱-PC, Sqrt elapsed time = 5.0380 seconds.
12/21/09 00:58:52 v1.10 @ 조영욱-PC, SIQS elapsed time = 6367.1110 seconds.
12/21/09 00:58:52 v1.10 @ 조영욱-PC, 
12/21/09 00:58:52 v1.10 @ 조영욱-PC,

Dec 21, 2009

R269 was factored!

10,269- factors

Dec 20, 2009 (7th)

By Dmitry Domanov / GGNFS/msieve / Dec 20, 2009

(67·10166-13)/9 = 7(4)1653<167> = 137 · 11527 · 58211147497<11> · C150

C150 = P62 · P89

P62 = 17788336493283764799874776176211295255153824486286341342116449<62>

P89 = 45525417396388831878214850618002065197423668437999160251956317248051096197439673036095869<89>

N=809821443644159015473592889696952371909415095654781991402504051499052333199909815633411495946416476907278319907167916022551376537940892055496525849181
  ( 150 digits)
SNFS difficulty: 167 digits.
Divisors found:
 r1=17788336493283764799874776176211295255153824486286341342116449 (pp62)
 r2=45525417396388831878214850618002065197423668437999160251956317248051096197439673036095869 (pp89)
Version: Msieve-1.40
Total time: 49.67 hours.
Scaled time: 97.21 units (timescale=1.957).
Factorization parameters were as follows:
n: 809821443644159015473592889696952371909415095654781991402504051499052333199909815633411495946416476907278319907167916022551376537940892055496525849181
m: 1000000000000000000000000000000000
deg: 5
c5: 670
c0: -13
skew: 0.45
type: snfs
lss: 1
rlim: 4400000
alim: 4400000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4Factor base limits: 4400000/4400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [2200000, 5000001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 780936 x 781162
Total sieving time: 48.68 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 0.74 hours.
Time per square root: 0.17 hours.
Prototype def-par.txt line would be:
snfs,167.000,5,0,0,0,0,0,0,0,0,4400000,4400000,27,27,51,51,2.4,2.4,100000
total time: 49.67 hours.
 --------- CPU info (if available) ----------

(71·10112+1)/9 = 7(8)1119<113> = 5051 · C110

C110 = P41 · P69

P41 = 98236346472193703857978997992081697635961<41>

P69 = 158988703783081621446358550237337124641120027141738051862791804638899<69>

N=15618469389999780021557887327041949888910886733100156184693899997800215578873270419498889108867331001561846939
  ( 110 digits)
SNFS difficulty: 113 digits.
Divisors found:
 r1=98236346472193703857978997992081697635961 (pp41)
 r2=158988703783081621446358550237337124641120027141738051862791804638899 (pp69)
Version: Msieve-1.40
Total time: 0.63 hours.
Scaled time: 1.15 units (timescale=1.839).
Factorization parameters were as follows:
n: 15618469389999780021557887327041949888910886733100156184693899997800215578873270419498889108867331001561846939
m: 10000000000000000000000
deg: 5
c5: 7100
c0: 1
skew: 0.17
type: snfs
lss: 1
rlim: 550000
alim: 550000
lpbr: 25
lpba: 25
mfbr: 45
mfba: 45
rlambda: 2.2
alambda: 2.2Factor base limits: 550000/550000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 45/45
Sieved rational special-q in [275000, 425001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 58007 x 58232
Total sieving time: 0.60 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.01 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,113.000,5,0,0,0,0,0,0,0,0,550000,550000,25,25,45,45,2.2,2.2,50000
total time: 0.63 hours.
 --------- CPU info (if available) ----------

(71·10116+1)/9 = 7(8)1159<117> = 33 · 229 · C114

C114 = P38 · P76

P38 = 69062373742930933617093979060672902017<38>

P76 = 1847460201071538131005754622201707103824735757708006940124048686203421459999<76>

N=127589986881592898089744280913616187754955343504591442485668589501680234334285765629773392995130015993674411917983
  ( 114 digits)
SNFS difficulty: 117 digits.
Divisors found:
 r1=69062373742930933617093979060672902017 (pp38)
 r2=1847460201071538131005754622201707103824735757708006940124048686203421459999 (pp76)
Version: Msieve-1.40
Total time: 1.01 hours.
Scaled time: 1.74 units (timescale=1.716).
Factorization parameters were as follows:
n: 127589986881592898089744280913616187754955343504591442485668589501680234334285765629773392995130015993674411917983
m: 100000000000000000000000
deg: 5
c5: 710
c0: 1
skew: 0.27
type: snfs
lss: 1
rlim: 640000
alim: 640000
lpbr: 25
lpba: 25
mfbr: 45
mfba: 45
rlambda: 2.2
alambda: 2.2Factor base limits: 640000/640000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 45/45
Sieved rational special-q in [320000, 570001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 68355 x 68580
Total sieving time: 0.99 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.01 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,117.000,5,0,0,0,0,0,0,0,0,640000,640000,25,25,45,45,2.2,2.2,50000
total time: 1.01 hours.
 --------- CPU info (if available) ----------

(71·10119+1)/9 = 7(8)1189<120> = 3 · 97 · 151 · 32503 · 55903 · C106

C106 = P33 · P74

P33 = 260989837407163028509237560550469<33>

P74 = 37858529723818689954388142150403461018862646893677049576191518747847970649<74>

N=9880691517093688526006305501973337174111399990396107651046656181201523968850157329106890129857500995184381
  ( 106 digits)
SNFS difficulty: 120 digits.
Divisors found:
 r1=260989837407163028509237560550469 (pp33)
 r2=37858529723818689954388142150403461018862646893677049576191518747847970649 (pp74)
Version: Msieve-1.40
Total time: 0.87 hours.
Scaled time: 1.63 units (timescale=1.877).
Factorization parameters were as follows:
n: 9880691517093688526006305501973337174111399990396107651046656181201523968850157329106890129857500995184381
m: 100000000000000000000000
deg: 5
c5: 710000
c0: 1
skew: 0.07
type: snfs
lss: 1
rlim: 720000
alim: 720000
lpbr: 25
lpba: 25
mfbr: 46
mfba: 46
rlambda: 2.2
alambda: 2.2Factor base limits: 720000/720000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved rational special-q in [360000, 560001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 83243 x 83476
Total sieving time: 0.83 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.02 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,120.000,5,0,0,0,0,0,0,0,0,720000,720000,25,25,46,46,2.2,2.2,50000
total time: 0.87 hours.
 --------- CPU info (if available) ----------

(71·10125+1)/9 = 7(8)1249<126> = 32 · 172 · 8017 · C119

C119 = P50 · P69

P50 = 93855586060542351442594594185778692558497789498069<50>

P69 = 403091349005361519278707604706130227063580410609001894218505818152893<69>

N=37832374796832820648705549577241062132093143328063816374483772583456660214541642689067013300738664329499778795170263617
  ( 119 digits)
SNFS difficulty: 126 digits.
Divisors found:
 r1=93855586060542351442594594185778692558497789498069 (pp50)
 r2=403091349005361519278707604706130227063580410609001894218505818152893 (pp69)
Version: Msieve-1.40
Total time: 1.16 hours.
Scaled time: 2.17 units (timescale=1.877).
Factorization parameters were as follows:
n: 37832374796832820648705549577241062132093143328063816374483772583456660214541642689067013300738664329499778795170263617
m: 10000000000000000000000000
deg: 5
c5: 71
c0: 1
skew: 0.43
type: snfs
lss: 1
rlim: 910000
alim: 910000
lpbr: 26
lpba: 26
mfbr: 46
mfba: 46
rlambda: 2.3
alambda: 2.3Factor base limits: 910000/910000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 46/46
Sieved rational special-q in [455000, 805001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 105126 x 105351
Total sieving time: 1.06 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.03 hours.
Time per square root: 0.04 hours.
Prototype def-par.txt line would be:
snfs,126.000,5,0,0,0,0,0,0,0,0,910000,910000,26,26,46,46,2.3,2.3,50000
total time: 1.16 hours.
 --------- CPU info (if available) ----------

Dec 20, 2009 (6th)

By Jo Yeong Uk / GGNFS, Msieve v1.39 / Dec 20, 2009

5·10177-1 = 4(9)177<178> = 30973583 · 39989645019285243151<20> · C151

C151 = P46 · P105

P46 = 4068269709359954401976297716690750943446114169<46>

P105 = 992250373611379227883163588164400121551512275167316952271377534693843762018044616947203837967745867950487<105>

Number: 49999_177
N=4036742139064271940352924607719840667525658401516025842099488707237906836850173332467826613777240396308955876191838587875549878107435969243156241150303
  ( 151 digits)
SNFS difficulty: 179 digits.
Divisors found:
 r1=4068269709359954401976297716690750943446114169
 r2=992250373611379227883163588164400121551512275167316952271377534693843762018044616947203837967745867950487
Version: 
Total time: 58.68 hours.
Scaled time: 140.12 units (timescale=2.388).
Factorization parameters were as follows:
n: 4036742139064271940352924607719840667525658401516025842099488707237906836850173332467826613777240396308955876191838587875549878107435969243156241150303
m: 500000000000000000000000000000000000
deg: 5
c5: 4
c0: -25
skew: 1.44
type: snfs
lss: 1
rlim: 8400000
alim: 8400000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 8400000/8400000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [4200000, 7900001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 18197177
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1358940 x 1359188
Total sieving time: 50.53 hours.
Total relation processing time: 3.44 hours.
Matrix solve time: 4.54 hours.
Time per square root: 0.17 hours.
Prototype def-par.txt line would be:
snfs,179,5,0,0,0,0,0,0,0,0,8400000,8400000,28,28,53,53,2.5,2.5,100000
total time: 58.68 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673795)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672307)
Calibrating delay using timer specific routine.. 5237.88 BogoMIPS (lpj=2618943)

Dec 20, 2009 (5th)

By Sinkiti Sibata / Msieve / Dec 20, 2009

(71·10131+1)/9 = 7(8)1309<132> = 3 · 79 · 2284487 · 45931576133<11> · 39603835123065114431682400489<29> · C84

C84 = P31 · P54

P31 = 1532456056702866758290212627089<31>

P54 = 522687579393372373737375787659559334612594552826524567<54>

un Dec 20 17:15:07 2009  Msieve v. 1.42
Sun Dec 20 17:15:07 2009  random seeds: 7d08a9d0 f29a90b1
Sun Dec 20 17:15:07 2009  factoring 800995746804734024923714661924756289455931590264912350707560684056840671070668195463 (84 digits)
Sun Dec 20 17:15:07 2009  searching for 15-digit factors
Sun Dec 20 17:15:08 2009  commencing quadratic sieve (84-digit input)
Sun Dec 20 17:15:08 2009  using multiplier of 3
Sun Dec 20 17:15:08 2009  using 32kb Intel Core sieve core
Sun Dec 20 17:15:08 2009  sieve interval: 12 blocks of size 32768
Sun Dec 20 17:15:08 2009  processing polynomials in batches of 17
Sun Dec 20 17:15:08 2009  using a sieve bound of 1409171 (53780 primes)
Sun Dec 20 17:15:08 2009  using large prime bound of 119779535 (26 bits)
Sun Dec 20 17:15:08 2009  using trial factoring cutoff of 27 bits
Sun Dec 20 17:15:08 2009  polynomial 'A' values have 11 factors
Sun Dec 20 17:49:19 2009  53880 relations (27179 full + 26701 combined from 282088 partial), need 53876
Sun Dec 20 17:49:19 2009  begin with 309267 relations
Sun Dec 20 17:49:19 2009  reduce to 77244 relations in 2 passes
Sun Dec 20 17:49:19 2009  attempting to read 77244 relations
Sun Dec 20 17:49:20 2009  recovered 77244 relations
Sun Dec 20 17:49:20 2009  recovered 72260 polynomials
Sun Dec 20 17:49:21 2009  attempting to build 53880 cycles
Sun Dec 20 17:49:21 2009  found 53880 cycles in 1 passes
Sun Dec 20 17:49:21 2009  distribution of cycle lengths:
Sun Dec 20 17:49:21 2009     length 1 : 27179
Sun Dec 20 17:49:21 2009     length 2 : 26701
Sun Dec 20 17:49:21 2009  largest cycle: 2 relations
Sun Dec 20 17:49:21 2009  matrix is 53780 x 53880 (7.4 MB) with weight 1725223 (32.02/col)
Sun Dec 20 17:49:21 2009  sparse part has weight 1725223 (32.02/col)
Sun Dec 20 17:49:21 2009  filtering completed in 3 passes
Sun Dec 20 17:49:21 2009  matrix is 39816 x 39880 (6.0 MB) with weight 1405910 (35.25/col)
Sun Dec 20 17:49:21 2009  sparse part has weight 1405910 (35.25/col)
Sun Dec 20 17:49:21 2009  saving the first 48 matrix rows for later
Sun Dec 20 17:49:21 2009  matrix is 39768 x 39880 (3.4 MB) with weight 1012656 (25.39/col)
Sun Dec 20 17:49:21 2009  sparse part has weight 661658 (16.59/col)
Sun Dec 20 17:49:21 2009  matrix includes 64 packed rows
Sun Dec 20 17:49:21 2009  using block size 15952 for processor cache size 1024 kB
Sun Dec 20 17:49:21 2009  commencing Lanczos iteration
Sun Dec 20 17:49:21 2009  memory use: 4.5 MB
Sun Dec 20 17:49:28 2009  lanczos halted after 631 iterations (dim = 39768)
Sun Dec 20 17:49:28 2009  recovered 18 nontrivial dependencies
Sun Dec 20 17:49:28 2009  prp31 factor: 1532456056702866758290212627089
Sun Dec 20 17:49:28 2009  prp54 factor: 522687579393372373737375787659559334612594552826524567
Sun Dec 20 17:49:28 2009  elapsed time 00:34:21

(71·10140+1)/9 = 7(8)1399<141> = 3 · 61487 · 493397 · 4051652638609<13> · 2427466305004739511993872503<28> · C90

C90 = P31 · P60

P31 = 6037781829603402624141784211479<31>

P60 = 145966079967011519653813948740251707221351710207307695892649<60>

Sun Dec 20 18:01:33 2009  Msieve v. 1.42
Sun Dec 20 18:01:33 2009  random seeds: 299a7a18 3d24d2a3
Sun Dec 20 18:01:33 2009  factoring 881311345363259388487258500198771493671200333042707513734834036896310666196643565497517871 (90 digits)
Sun Dec 20 18:01:34 2009  searching for 15-digit factors
Sun Dec 20 18:01:34 2009  commencing quadratic sieve (90-digit input)
Sun Dec 20 18:01:35 2009  using multiplier of 1
Sun Dec 20 18:01:35 2009  using 32kb Intel Core sieve core
Sun Dec 20 18:01:35 2009  sieve interval: 36 blocks of size 32768
Sun Dec 20 18:01:35 2009  processing polynomials in batches of 6
Sun Dec 20 18:01:35 2009  using a sieve bound of 1616473 (61176 primes)
Sun Dec 20 18:01:35 2009  using large prime bound of 135783732 (27 bits)
Sun Dec 20 18:01:35 2009  using double large prime bound of 435638070401436 (42-49 bits)
Sun Dec 20 18:01:35 2009  using trial factoring cutoff of 49 bits
Sun Dec 20 18:01:35 2009  polynomial 'A' values have 11 factors
Sun Dec 20 19:27:09 2009  61479 relations (15765 full + 45714 combined from 674996 partial), need 61272
Sun Dec 20 19:27:10 2009  begin with 690761 relations
Sun Dec 20 19:27:11 2009  reduce to 152744 relations in 10 passes
Sun Dec 20 19:27:11 2009  attempting to read 152744 relations
Sun Dec 20 19:27:13 2009  recovered 152744 relations
Sun Dec 20 19:27:13 2009  recovered 133119 polynomials
Sun Dec 20 19:27:13 2009  attempting to build 61479 cycles
Sun Dec 20 19:27:13 2009  found 61479 cycles in 6 passes
Sun Dec 20 19:27:13 2009  distribution of cycle lengths:
Sun Dec 20 19:27:13 2009     length 1 : 15765
Sun Dec 20 19:27:13 2009     length 2 : 11546
Sun Dec 20 19:27:13 2009     length 3 : 10666
Sun Dec 20 19:27:13 2009     length 4 : 8235
Sun Dec 20 19:27:13 2009     length 5 : 5948
Sun Dec 20 19:27:13 2009     length 6 : 3896
Sun Dec 20 19:27:13 2009     length 7 : 2419
Sun Dec 20 19:27:13 2009     length 9+: 3004
Sun Dec 20 19:27:13 2009  largest cycle: 18 relations
Sun Dec 20 19:27:13 2009  matrix is 61176 x 61479 (15.6 MB) with weight 3834534 (62.37/col)
Sun Dec 20 19:27:13 2009  sparse part has weight 3834534 (62.37/col)
Sun Dec 20 19:27:14 2009  filtering completed in 3 passes
Sun Dec 20 19:27:14 2009  matrix is 57752 x 57813 (14.7 MB) with weight 3626853 (62.73/col)
Sun Dec 20 19:27:14 2009  sparse part has weight 3626853 (62.73/col)
Sun Dec 20 19:27:14 2009  saving the first 48 matrix rows for later
Sun Dec 20 19:27:14 2009  matrix is 57704 x 57813 (11.1 MB) with weight 3058489 (52.90/col)
Sun Dec 20 19:27:14 2009  sparse part has weight 2559872 (44.28/col)
Sun Dec 20 19:27:14 2009  matrix includes 64 packed rows
Sun Dec 20 19:27:14 2009  using block size 23125 for processor cache size 1024 kB
Sun Dec 20 19:27:15 2009  commencing Lanczos iteration
Sun Dec 20 19:27:15 2009  memory use: 10.3 MB
Sun Dec 20 19:27:38 2009  lanczos halted after 914 iterations (dim = 57704)
Sun Dec 20 19:27:38 2009  recovered 18 nontrivial dependencies
Sun Dec 20 19:27:39 2009  prp31 factor: 6037781829603402624141784211479
Sun Dec 20 19:27:39 2009  prp60 factor: 145966079967011519653813948740251707221351710207307695892649
Sun Dec 20 19:27:39 2009  elapsed time 01:26:06

(71·10114+1)/9 = 7(8)1139<115> = 293 · 95071 · 8107423 · C101

C101 = P32 · P69

P32 = 42398963895894229799188757473783<32>

P69 = 823876433612668009486141208252372609064801449929114534675087671870307<69>

Number: 78889_114
N=34931507163421610206610224383858619167543865784783833609556884978012331018677064688324578980128661381
  ( 101 digits)
SNFS difficulty: 115 digits.
Divisors found:
 r1=42398963895894229799188757473783 (pp32)
 r2=823876433612668009486141208252372609064801449929114534675087671870307 (pp69)
Version: Msieve-1.40
Total time: 0.69 hours.
Scaled time: 2.33 units (timescale=3.357).
Factorization parameters were as follows:
name: 78889_114
n: 34931507163421610206610224383858619167543865784783833609556884978012331018677064688324578980128661381
m: 10000000000000000000000
deg: 5
c5: 710000
c0: 1
skew: 0.07
type: snfs
lss: 1
rlim: 600000
alim: 600000
lpbr: 25
lpba: 25
mfbr: 45
mfba: 45
rlambda: 2.2
alambda: 2.2
Factor base limits: 600000/600000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 45/45
Sieved rational special-q in [300000, 450001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 64107 x 64355
Total sieving time: 0.67 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.01 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,115.000,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.2,2.2,50000
total time: 0.69 hours.
 --------- CPU info (if available) ----------

(71·10118+1)/9 = 7(8)1179<119> = 79 · 181068263 · 9695661421<10> · C99

C99 = P37 · P63

P37 = 4629826203506991550366336552853175767<37>

P63 = 122858238080954372067688156624451271378033096834390976714196851<63>

Number: 78889_118
N=568812289983903075646333463174718043205943712690409987847046675098502761266067007380611790140909717
  ( 99 digits)
SNFS difficulty: 119 digits.
Divisors found:
 r1=4629826203506991550366336552853175767 (pp37)
 r2=122858238080954372067688156624451271378033096834390976714196851 (pp63)
Version: Msieve-1.40
Total time: 1.34 hours.
Scaled time: 4.50 units (timescale=3.357).
Factorization parameters were as follows:
name: 78889_118
n: 568812289983903075646333463174718043205943712690409987847046675098502761266067007380611790140909717
m: 100000000000000000000000
deg: 5
c5: 71000
c0: 1
skew: 0.11
type: snfs
lss: 1
rlim: 700000
alim: 700000
lpbr: 25
lpba: 25
mfbr: 45
mfba: 45
rlambda: 2.2
alambda: 2.2
Factor base limits: 700000/700000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 45/45
Sieved rational special-q in [350000, 650001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 80643 x 80889
Total sieving time: 1.31 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.01 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,119.000,5,0,0,0,0,0,0,0,0,700000,700000,25,25,45,45,2.2,2.2,50000
total time: 1.34 hours.
 --------- CPU info (if available) ----------

(71·10121+1)/9 = 7(8)1209<122> = 59 · 661 · 5507 · 249726804891671<15> · C100

C100 = P30 · P70

P30 = 837424794414531343286736123919<30>

P70 = 1756452120257436723413400175349062946231050201120212949001708369397677<70>

Number: 78889_121
N=1470896555705551631901652642187255901230418889313472168255707759560509498224919426240522739662736163
  ( 100 digits)
SNFS difficulty: 122 digits.
Divisors found:
 r1=837424794414531343286736123919 (pp30)
 r2=1756452120257436723413400175349062946231050201120212949001708369397677 (pp70)
Version: Msieve v. 1.42
Total time: 0.05 hours.
Scaled time: 0.04 units (timescale=0.796).
Factorization parameters were as follows:
name: 78889_121
n: 1470896555705551631901652642187255901230418889313472168255707759560509498224919426240522739662736163
m: 1000000000000000000000000
deg: 5
c5: 710
c0: 1
skew: 0.27
type: snfs
lss: 1
rlim: 780000
alim: 780000
lpbr: 25
lpba: 25
mfbr: 46
mfba: 46
rlambda: 2.2
alambda: 2.2
Factor base limits: 780000/780000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved rational special-q in [390000, 690001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 97717 x 97954
Total sieving time: 0.00 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.03 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,122.000,5,0,0,0,0,0,0,0,0,780000,780000,25,25,46,46,2.2,2.2,50000
total time: 0.05 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
CPU1: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.30 BogoMIPS (lpj=1860651)
Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860572)
Total of 2 processors activated (7442.44 BogoMIPS).

Total time: 1 hour 19 min

(71·10126+1)/9 = 7(8)1259<127> = C127

C127 = P52 · P76

P52 = 7587196654306648843559104301528059865200491996390383<52>

P76 = 1039763333985945036629986381863723907672179016478373540234641288978651293783<76>

Number: 78889_126
N=7888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889
  ( 127 digits)
SNFS difficulty: 127 digits.
Divisors found:
 r1=7587196654306648843559104301528059865200491996390383 (pp52)
 r2=1039763333985945036629986381863723907672179016478373540234641288978651293783 (pp76)
Version: Msieve v. 1.42
Total time: 0.12 hours.
Scaled time: 0.09 units (timescale=0.796).
Factorization parameters were as follows:
name: 78889_126
n: 7888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889
m: 10000000000000000000000000
deg: 5
c5: 710
c0: 1
skew: 0.27
type: snfs
lss: 1
rlim: 950000
alim: 950000
lpbr: 26
lpba: 26
mfbr: 46
mfba: 46
rlambda: 2.3
alambda: 2.3
Factor base limits: 950000/950000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 46/46
Sieved rational special-q in [475000, 825001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 142132 x 142357
Total sieving time: 0.00 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.06 hours.
Time per square root: 0.03 hours.
Prototype def-par.txt line would be:
snfs,127.000,5,0,0,0,0,0,0,0,0,950000,950000,26,26,46,46,2.3,2.3,50000
total time: 0.12 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
CPU1: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.30 BogoMIPS (lpj=1860651)
Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860572)
Total of 2 processors activated (7442.44 BogoMIPS).

Total time: 1 hour 54 min.

(71·10108+1)/9 = 7(8)1079<109> = 191 · 254002043 · C99

C99 = P47 · P52

P47 = 91795782432987139797997126963526524873114196143<47>

P52 = 1771424040471773033547607068923205730064620491353771<52>

Number: 78889_108
N=162609255815709883194299336104259587695147701740090484869532846062341352279399593674717448496705253
  ( 99 digits)
SNFS difficulty: 109 digits.
Divisors found:
 r1=91795782432987139797997126963526524873114196143 (pp47)
 r2=1771424040471773033547607068923205730064620491353771 (pp52)
Version: Msieve-1.40
Total time: 0.64 hours.
Scaled time: 2.14 units (timescale=3.357).
Factorization parameters were as follows:
name: 78889_108
n: 162609255815709883194299336104259587695147701740090484869532846062341352279399593674717448496705253
m: 1000000000000000000000
deg: 5
c5: 71000
c0: 1
skew: 0.11
type: snfs
lss: 1
rlim: 470000
alim: 470000
lpbr: 25
lpba: 25
mfbr: 44
mfba: 44
rlambda: 2.2
alambda: 2.2
Factor base limits: 470000/470000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 44/44
Sieved rational special-q in [235000, 385001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 49881 x 50111
Total sieving time: 0.62 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,109.000,5,0,0,0,0,0,0,0,0,470000,470000,25,25,44,44,2.2,2.2,50000
total time: 0.64 hours.
 --------- CPU info (if available) ----------

(61·10163+11)/9 = 6(7)1629<164> = 3 · 68531 · 1194517 · 53428043521649<14> · 229355260976131<15> · 10688166830659133<17> · 1484592475394454432301<22> · C88

C88 = P43 · P45

P43 = 1871588248380026241365627576216769897016787<43>

P45 = 758381797619450576082406619267293711227799391<45>

Sun Dec 20 19:38:10 2009  Msieve v. 1.42
Sun Dec 20 19:38:10 2009  random seeds: 3250e898 fa2901fd
Sun Dec 20 19:38:10 2009  factoring 1419378460209883058482089957602475403206110804677664224171468339314844093054113795376717 (88 digits)
Sun Dec 20 19:38:11 2009  searching for 15-digit factors
Sun Dec 20 19:38:12 2009  commencing quadratic sieve (88-digit input)
Sun Dec 20 19:38:12 2009  using multiplier of 7
Sun Dec 20 19:38:12 2009  using 32kb Intel Core sieve core
Sun Dec 20 19:38:12 2009  sieve interval: 24 blocks of size 32768
Sun Dec 20 19:38:12 2009  processing polynomials in batches of 9
Sun Dec 20 19:38:12 2009  using a sieve bound of 1508383 (57277 primes)
Sun Dec 20 19:38:12 2009  using large prime bound of 120670640 (26 bits)
Sun Dec 20 19:38:12 2009  using double large prime bound of 352275850752880 (42-49 bits)
Sun Dec 20 19:38:12 2009  using trial factoring cutoff of 49 bits
Sun Dec 20 19:38:12 2009  polynomial 'A' values have 11 factors
Sun Dec 20 20:31:41 2009  57399 relations (15538 full + 41861 combined from 608371 partial), need 57373
Sun Dec 20 20:31:41 2009  begin with 623909 relations
Sun Dec 20 20:31:42 2009  reduce to 138787 relations in 10 passes
Sun Dec 20 20:31:42 2009  attempting to read 138787 relations
Sun Dec 20 20:31:44 2009  recovered 138787 relations
Sun Dec 20 20:31:44 2009  recovered 119426 polynomials
Sun Dec 20 20:31:44 2009  attempting to build 57399 cycles
Sun Dec 20 20:31:44 2009  found 57399 cycles in 5 passes
Sun Dec 20 20:31:44 2009  distribution of cycle lengths:
Sun Dec 20 20:31:44 2009     length 1 : 15538
Sun Dec 20 20:31:44 2009     length 2 : 11111
Sun Dec 20 20:31:44 2009     length 3 : 10290
Sun Dec 20 20:31:44 2009     length 4 : 7582
Sun Dec 20 20:31:44 2009     length 5 : 5361
Sun Dec 20 20:31:44 2009     length 6 : 3370
Sun Dec 20 20:31:44 2009     length 7 : 1860
Sun Dec 20 20:31:44 2009     length 9+: 2287
Sun Dec 20 20:31:44 2009  largest cycle: 22 relations
Sun Dec 20 20:31:44 2009  matrix is 57277 x 57399 (13.8 MB) with weight 3395606 (59.16/col)
Sun Dec 20 20:31:44 2009  sparse part has weight 3395606 (59.16/col)
Sun Dec 20 20:31:45 2009  filtering completed in 3 passes
Sun Dec 20 20:31:45 2009  matrix is 53367 x 53430 (13.0 MB) with weight 3193737 (59.77/col)
Sun Dec 20 20:31:45 2009  sparse part has weight 3193737 (59.77/col)
Sun Dec 20 20:31:45 2009  saving the first 48 matrix rows for later
Sun Dec 20 20:31:45 2009  matrix is 53319 x 53430 (9.0 MB) with weight 2572383 (48.14/col)
Sun Dec 20 20:31:45 2009  sparse part has weight 2027747 (37.95/col)
Sun Dec 20 20:31:45 2009  matrix includes 64 packed rows
Sun Dec 20 20:31:45 2009  using block size 21372 for processor cache size 1024 kB
Sun Dec 20 20:31:46 2009  commencing Lanczos iteration
Sun Dec 20 20:31:46 2009  memory use: 8.8 MB
Sun Dec 20 20:32:03 2009  lanczos halted after 845 iterations (dim = 53317)
Sun Dec 20 20:32:03 2009  recovered 18 nontrivial dependencies
Sun Dec 20 20:32:04 2009  prp43 factor: 1871588248380026241365627576216769897016787
Sun Dec 20 20:32:04 2009  prp45 factor: 758381797619450576082406619267293711227799391
Sun Dec 20 20:32:04 2009  elapsed time 00:53:54

(71·10109+1)/9 = 7(8)1089<110> = 17 · 1171 · C106

C106 = P48 · P58

P48 = 640071740902143598334229762236177766260184004567<48>

P58 = 6191293170857901796165747872454979438270371959359205290981<58>

Number: 78889_109
N=3962871798306569994920826286677494795242321238202084135675334751036765403571049826135976736268091067910227
  ( 106 digits)
SNFS difficulty: 110 digits.
Divisors found:
 r1=640071740902143598334229762236177766260184004567 (pp48)
 r2=6191293170857901796165747872454979438270371959359205290981 (pp58)
Version: Msieve-1.40
Total time: 0.46 hours.
Scaled time: 1.52 units (timescale=3.287).
Factorization parameters were as follows:
name: 78889_109
n: 3962871798306569994920826286677494795242321238202084135675334751036765403571049826135976736268091067910227
m: 1000000000000000000000
deg: 5
c5: 710000
c0: 1
skew: 0.07
type: snfs
lss: 1
rlim: 490000
alim: 490000
lpbr: 25
lpba: 25
mfbr: 44
mfba: 44
rlambda: 2.2
alambda: 2.2
Factor base limits: 490000/490000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 44/44
Sieved rational special-q in [245000, 345001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 50567 x 50809
Total sieving time: 0.45 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,110.000,5,0,0,0,0,0,0,0,0,490000,490000,25,25,44,44,2.2,2.2,50000
total time: 0.46 hours.
 --------- CPU info (if available) ----------

Dec 20, 2009 (4th)

By Erik Branger / GMP-ECM / Dec 20, 2009

(7·10178-61)/9 = (7)1771<178> = 631 · 1024697 · 6580916367326053<16> · C154

C154 = P30 · P124

P30 = 186853769745984246704156867807<30>

P124 = 9782333637560272544478678024910065237123917040258780920153923456086893930036713667499114063668907467528111774118161057376943<124>

GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM]
Input number is 1827865917091083679227195736806847949179150862459087072361259147703090009125078037186612403122755531495802543275504447567473492126110741317289394220774001 (154 digits)
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=790654530
Step 1 took 48033ms
Step 2 took 16552ms
********** Factor found in step 2: 186853769745984246704156867807
Found probable prime factor of 30 digits: 186853769745984246704156867807
Probable prime cofactor 9782333637560272544478678024910065237123917040258780920153923456086893930036713667499114063668907467528111774118161057376943 has 124 digits

Dec 20, 2009 (3rd)

By juno1369 / GMP-ECM 5.1 beta / Dec 20, 2009

(23·10147+7)/3 = 7(6)1469<148> = 277 · 268507 · 404735883876508589<18> · 11428779322469336699<20> · C104

C104 = P37 · P68

P37 = 1576927594338858417099868817129842397<37>

P68 = 14131487848710943543825233712682918947740417532191773099546602894313<68>

Using B1=3000000, B2=4016636514, polynomial Dickson(12), sigma=3492825937
Step 1 took 33200ms
Step 2 took 30915ms
********** Factor found in step 2: 1576927594338858417099868817129842397
Found probable prime factor of 37 digits: 1576927594338858417099868817129842397
Probable prime cofactor 14131487848710943543825233712682918947740417532191773099
546602894313 has 68 digits

Dec 20, 2009 (2nd)

By Lionel Debroux / ggnfs-lasieve4I14e on the RSALS grid + msieve (Lionel Debroux + Jeff Gilchrist) / Dec 20, 2009

(34·10205-61)/9 = 3(7)2041<206> = 29 · 10631 · C201

C201 = P76 · P125

P76 = 6653243940397392494635175065150674777204673885975283838243914877021705541471<76>

P125 = 18417507036875378011545196305661182023918816674371806336236801413263317602935876713906011448012567514226718926734700609166399<125>

Fri Dec 18 20:08:07 2009  Msieve v. 1.43
Fri Dec 18 20:08:07 2009  random seeds: 000c36bf be452018
Fri Dec 18 20:08:07 2009  factoring
122536167090317444356867125024011682742330587441989035896249348125611104083301527989963567114320117086911659712739184291151699414457321554003671039405829333788879554516160538236509939304953236234232929
(201 digits)
Fri Dec 18 20:08:09 2009  no P-1/P+1/ECM available, skipping
Fri Dec 18 20:08:09 2009  commencing number field sieve (201-digit input)
Fri Dec 18 20:08:09 2009  R0: -100000000000000000000000000000000000000000
Fri Dec 18 20:08:09 2009  R1:  1
Fri Dec 18 20:08:09 2009  A0: -61
Fri Dec 18 20:08:09 2009  A1:  0
Fri Dec 18 20:08:09 2009  A2:  0
Fri Dec 18 20:08:09 2009  A3:  0
Fri Dec 18 20:08:09 2009  A4:  0
Fri Dec 18 20:08:09 2009  A5:  34
Fri Dec 18 20:08:09 2009  skew 1.12, size 2.293652e-14, alpha
0.988805, combined = 8.014853e-12
Fri Dec 18 20:08:09 2009
Fri Dec 18 20:08:09 2009  commencing linear algebra
Fri Dec 18 20:08:10 2009  read 2849179 cycles
Fri Dec 18 20:08:17 2009  cycles contain 8158912 unique relations
Fri Dec 18 20:09:38 2009  read 8158912 relations
Fri Dec 18 20:09:55 2009  using 20 quadratic characters above 536869560
Fri Dec 18 20:10:52 2009  building initial matrix
Fri Dec 18 20:13:37 2009  memory use: 1077.2 MB
Fri Dec 18 20:13:40 2009  read 2849179 cycles
Fri Dec 18 20:13:43 2009  matrix is 2848753 x 2849179 (844.7 MB) with
weight 251220916 (88.17/col)
Fri Dec 18 20:13:43 2009  sparse part has weight 190104494 (66.72/col)
Fri Dec 18 20:15:06 2009  filtering completed in 3 passes
Fri Dec 18 20:15:07 2009  matrix is 2841034 x 2841234 (843.4 MB) with
weight 250791225 (88.27/col)
Fri Dec 18 20:15:07 2009  sparse part has weight 189847200 (66.82/col)
Fri Dec 18 20:15:32 2009  read 2841234 cycles
Fri Dec 18 20:15:35 2009  matrix is 2841034 x 2841234 (843.4 MB) with
weight 250791225 (88.27/col)
Fri Dec 18 20:15:35 2009  sparse part has weight 189847200 (66.82/col)
Fri Dec 18 20:15:36 2009  saving the first 48 matrix rows for later
Fri Dec 18 20:15:38 2009  matrix is 2840986 x 2841234 (803.6 MB) with
weight 198459543 (69.85/col)
Fri Dec 18 20:15:38 2009  sparse part has weight 182257595 (64.15/col)
Fri Dec 18 20:15:38 2009  matrix includes 64 packed rows
Fri Dec 18 20:15:38 2009  using block size 65536 for processor cache
size 6144 kB
Fri Dec 18 20:15:55 2009  commencing Lanczos iteration (5 threads)
Fri Dec 18 20:15:55 2009  memory use: 886.4 MB
Fri Dec 18 20:16:10 2009  linear algebra at 0.0%, ETA 14h39m
Sat Dec 19 10:10:47 2009  lanczos halted after 44931 iterations (dim = 2840986)
Sat Dec 19 10:10:54 2009  recovered 37 nontrivial dependencies
Sat Dec 19 10:10:54 2009  BLanczosTime: 50565
Sat Dec 19 10:10:54 2009  elapsed time 14:02:47
Sat Dec 19 12:35:30 2009
Sat Dec 19 12:35:30 2009
Sat Dec 19 12:35:30 2009  Msieve v. 1.43
Sat Dec 19 12:35:30 2009  random seeds: 28422809 e2d017fb
Sat Dec 19 12:35:30 2009  factoring
122536167090317444356867125024011682742330587441989035896249348125611104083301527989963567114320117086911659712739184291151699414457321554003671039405829333788879554516160538236509939304953236234232929
(201 digits)
Sat Dec 19 12:35:33 2009  no P-1/P+1/ECM available, skipping
Sat Dec 19 12:35:33 2009  commencing number field sieve (201-digit input)
Sat Dec 19 12:35:33 2009  R0: -100000000000000000000000000000000000000000
Sat Dec 19 12:35:33 2009  R1:  1
Sat Dec 19 12:35:33 2009  A0: -61
Sat Dec 19 12:35:33 2009  A1:  0
Sat Dec 19 12:35:33 2009  A2:  0
Sat Dec 19 12:35:33 2009  A3:  0
Sat Dec 19 12:35:33 2009  A4:  0
Sat Dec 19 12:35:33 2009  A5:  34
Sat Dec 19 12:35:33 2009  skew 1.12, size 2.293652e-14, alpha
0.988805, combined = 8.014853e-12
Sat Dec 19 12:35:33 2009
Sat Dec 19 12:35:33 2009  commencing square root phase
Sat Dec 19 12:35:33 2009  reading relations for dependency 1
Sat Dec 19 12:35:33 2009  read 1420842 cycles
Sat Dec 19 12:35:37 2009  cycles contain 4076728 unique relations
Sat Dec 19 12:36:24 2009  read 4076728 relations
Sat Dec 19 12:36:55 2009  multiplying 4076728 relations
Sat Dec 19 12:40:50 2009  multiply complete, coefficients have about
118.51 million bits
Sat Dec 19 12:40:51 2009  initial square root is modulo 320981651
Sat Dec 19 12:48:53 2009  sqrtTime: 800
Sat Dec 19 12:48:54 2009  prp76 factor:
6653243940397392494635175065150674777204673885975283838243914877021705541471
Sat Dec 19 12:48:54 2009  prp125 factor:
18417507036875378011545196305661182023918816674371806336236801413263317602935876713906011448012567514226718926734700609166399
Sat Dec 19 12:48:54 2009  elapsed time 00:13:24

Dec 20, 2009

Factorizations of 788...889 have been extended up to n=150. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.

Factorizations of 677...779 have been extended up to n=200. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.

Dec 19, 2009 (6th)

By Robert Backstrom / GGNFS, Msieve / Dec 19, 2009

(22·10190-1)/3 = 7(3)190<191> = 13 · 292 · C187

C187 = P79 · P109

P79 = 1589086954460310120342930905879429521528809366833603609513909755118328264030697<79>

P109 = 4220990897919505612367717770836984034814470888118032848168472213249861735519420554262095622041612365536173433<109>

Number: n
N=6707521570779596938931064971493033324186713009542973871154608372206469709442361047592914418122503734869965547730113722979359126802646422147016677337723711088752705875179121314674227872801
  ( 187 digits)
SNFS difficulty: 191 digits.
Divisors found:

Sun Dec 20 01:10:59 2009  prp79 factor: 1589086954460310120342930905879429521528809366833603609513909755118328264030697
Sun Dec 20 01:10:59 2009  prp109 factor: 4220990897919505612367717770836984034814470888118032848168472213249861735519420554262095622041612365536173433
Sun Dec 20 01:10:59 2009  elapsed time 05:31:12 (Msieve 1.42 - dependency 1)

Version: GGNFS-0.77.1-20050930-k8
Total time: ~ 24.00 hours.
Scaled time: 0.00 units (timescale=0.841).
Factorization parameters were as follows:
name: KA_7_3_190
n: 6707521570779596938931064971493033324186713009542973871154608372206469709442361047592914418122503734869965547730113722979359126802646422147016677337723711088752705875179121314674227872801
m: 100000000000000000000000000000000000000
deg: 5
c5: 22
c0: -1
skew: 0.54
type: snfs
lss: 1
rlim: 10800000
alim: 10800000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 10800000/10800000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 56/56
Sieved  special-q in [100000, 100000)
Primes: RFBsize:714154, AFBsize:715059, 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 2607696 hash collisions in 25900935 relations
Msieve: matrix is 1487381 x 1487606 (399.5 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,191,5,0,0,0,0,0,0,0,0,10800000,10800000,28,28,56,56,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------

Dec 19, 2009 (5th)

By Lionel Debroux / GMP-ECM 6.2.3 / Dec 19, 2009

4·10184+9 = 4(0)1839<185> = 86629 · 17315047017625261<17> · C164

C164 = P45 · P119

P45 = 288744426922067304879725083649398238432589757<45>

P119 = 92354785582575909641556220757639434258139568193136633677444230328449938740199812268290197677719701254300588804590341373<119>

GMP-ECM 6.2.3 [powered by GMP 4.2.2] [ECM]
Input number is 26666929636551284865749676559985064929619556026911197840995261892026232694863092865560797017860538142122468810446558611395066656624799409134739874379357033093116361 (164 digits)
Run 35 out of 100:
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1323134362
Step 1 took 318837ms
********** Factor found in step 1: 288744426922067304879725083649398238432589757
Found probable prime factor of 45 digits: 288744426922067304879725083649398238432589757
Probable prime cofactor 92354785582575909641556220757639434258139568193136633677444230328449938740199812268290197677719701254300588804590341373 has 119 digits

Dec 19, 2009 (4th)

By Erik Branger / GMP-ECM / Dec 19, 2009

4·10232+9 = 4(0)2319<233> = 6781 · 86869 · C224

C224 = P42 · C183

P42 = 101923364225918527839065891102757815508373<42>

C183 = [666235353567257533671029519064380742774418132917318448895197569176610167844598276515950058676003746683731464996043877358855070285429649231163084825310162994068656389331159825129096997<183>]

GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM]
Input number is 67904948601819198358348975988027569864095494226722118685189278313149540860095860499224382037763303411691122682004950443910691554199279454139415979313395714972638320593552945621688300060030181474837730472727141115135982655881 (224 digits)
Run 236 out of 500:
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1485941456
Step 1 took 127406ms
Step 2 took 29578ms
********** Factor found in step 2: 101923364225918527839065891102757815508373
Found probable prime factor of 42 digits: 101923364225918527839065891102757815508373
Composite cofactor 666235353567257533671029519064380742774418132917318448895197569176610167844598276515950058676003746683731464996043877358855070285429649231163084825310162994068656389331159825129096997 has 183 digits

Dec 19, 2009 (3rd)

By Sinkiti Sibata / Msieve / Dec 19, 2009

(23·10141+7)/3 = 7(6)1409<142> = 9138981342729282882631<22> · C120

C120 = P49 · P72

P49 = 2083853324801408599389966838086141184874984236681<49>

P72 = 402570218528526070940163750097373007378101682310498374715713110986762579<72>

Number: 76669_141
N=838897288346698676736378991019063509193383444639059360334579951375235148072501160068008255407397685675289825881689960299
  ( 120 digits)
SNFS difficulty: 142 digits.
Divisors found:
 r1=2083853324801408599389966838086141184874984236681 (pp49)
 r2=402570218528526070940163750097373007378101682310498374715713110986762579 (pp72)
Version: Msieve v. 1.42
Total time: 0.30 hours.
Scaled time: 0.21 units (timescale=0.682).
Factorization parameters were as follows:
name: 76669_141
n: 838897288346698676736378991019063509193383444639059360334579951375235148072501160068008255407397685675289825881689960299
m: 10000000000000000000000000000
deg: 5
c5: 230
c0: 7
skew: 0.50
type: snfs
lss: 1
rlim: 1650000
alim: 1650000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.3
alambda: 2.3
Factor base limits: 1650000/1650000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved rational special-q in [825000, 1625001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 264587 x 264812
Total sieving time: 0.00 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.23 hours.
Time per square root: 0.04 hours.
Prototype def-par.txt line would be:
snfs,142.000,5,0,0,0,0,0,0,0,0,1650000,1650000,26,26,48,48,2.3,2.3,100000
total time: 0.30 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
CPU1: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.30 BogoMIPS (lpj=1860651)
Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860572)
Total of 2 processors activated (7442.44 BogoMIPS).

Total time: 4 hours 44 min.

(71·10141-53)/9 = 7(8)1403<142> = 233754297133941847<18> · C125

C125 = P49 · P77

P49 = 1028967226993553793418908374844708409590884949523<49>

P77 = 32798553711507640264348032595324966676169736366141269700962862828462355796743<77>

Number: 78883_141
N=33748636861929148339334334363836166800737368700426691036330973643596267989705810764371598304678331614234259024551154002803589
  ( 125 digits)
SNFS difficulty: 142 digits.
Divisors found:
 r1=1028967226993553793418908374844708409590884949523 (pp49)
 r2=32798553711507640264348032595324966676169736366141269700962862828462355796743 (pp77)
Version: Msieve-1.40
Total time: 8.15 hours.
Scaled time: 27.07 units (timescale=3.322).
Factorization parameters were as follows:
name: 78883_141
n: 33748636861929148339334334363836166800737368700426691036330973643596267989705810764371598304678331614234259024551154002803589
m: 10000000000000000000000000000
deg: 5
c5: 710
c0: -53
skew: 0.60
type: snfs
lss: 1
rlim: 1680000
alim: 1680000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.3
alambda: 2.3
Factor base limits: 1680000/1680000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved rational special-q in [840000, 2240001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 293687 x 293935
Total sieving time: 7.94 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.16 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,142.000,5,0,0,0,0,0,0,0,0,1680000,1680000,26,26,48,48,2.3,2.3,100000
total time: 8.15 hours.
 --------- CPU info (if available) ----------

(71·10142-53)/9 = 7(8)1413<143> = 7 · 29 · 9883 · 439015815397321<15> · C122

C122 = P42 · P81

P42 = 386490477254802054771629653876754876141479<42>

P81 = 231745890891283210023353126279632762290504685320045999233520726993901299486391013<81>

Number: 78883_142
N=89567579972411332167997785100721330165586386507326808361935784453289559482928541490572916963000743105308267240364502128227
  ( 122 digits)
SNFS difficulty: 143 digits.
Divisors found:
 r1=386490477254802054771629653876754876141479 (pp42)
 r2=231745890891283210023353126279632762290504685320045999233520726993901299486391013 (pp81)
Version: Msieve-1.40
Total time: 8.84 hours.
Scaled time: 29.36 units (timescale=3.322).
Factorization parameters were as follows:
name: 78883_142
n: 89567579972411332167997785100721330165586386507326808361935784453289559482928541490572916963000743105308267240364502128227
m: 10000000000000000000000000000
deg: 5
c5: 7100
c0: -53
skew: 0.38
type: snfs
lss: 1
rlim: 1750000
alim: 1750000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.3
alambda: 2.3
Factor base limits: 1750000/1750000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved rational special-q in [875000, 2375001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 326827 x 327075
Total sieving time: 8.56 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.20 hours.
Time per square root: 0.05 hours.
Prototype def-par.txt line would be:
snfs,143.000,5,0,0,0,0,0,0,0,0,1750000,1750000,26,26,48,48,2.3,2.3,100000
total time: 8.84 hours.
 --------- CPU info (if available) ----------

(23·10142+7)/3 = 7(6)1419<143> = 67 · 89 · 465529 · 37894385693<11> · C123

C123 = P32 · P92

P32 = 71949625685388118004628906184513<32>

P92 = 10129584265009358087759358380931186887271440274828731755903178974061895680101063464082645483<92>

Number: 76669_142
N=728819796216020631469069013156918914136300178569459943687460673644864973048609517087817464282035309952331459120412764004779
  ( 123 digits)
SNFS difficulty: 143 digits.
Divisors found:
 r1=71949625685388118004628906184513 (pp32)
 r2=10129584265009358087759358380931186887271440274828731755903178974061895680101063464082645483 (pp92)
Version: Msieve v. 1.42
Total time: 0.36 hours.
Scaled time: 0.24 units (timescale=0.682).
Factorization parameters were as follows:
name: 76669_142
n: 728819796216020631469069013156918914136300178569459943687460673644864973048609517087817464282035309952331459120412764004779
m: 10000000000000000000000000000
deg: 5
c5: 2300
c0: 7
skew: 0.31
type: snfs
lss: 1
rlim: 1720000
alim: 1720000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.3
alambda: 2.3
Factor base limits: 1720000/1720000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved rational special-q in [860000, 2160001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 304107 x 304332
Total sieving time: 0.00 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.27 hours.
Time per square root: 0.05 hours.
Prototype def-par.txt line would be:
snfs,143.000,5,0,0,0,0,0,0,0,0,1720000,1720000,26,26,48,48,2.3,2.3,100000
total time: 0.36 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
CPU1: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.30 BogoMIPS (lpj=1860651)
Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860572)
Total of 2 processors activated (7442.44 BogoMIPS).

Total time: 7 hours 28 min.

Dec 19, 2009 (2nd)

By Dmitry Domanov / ECMNET, GMP-ECM / Dec 19, 2009

(10221+53)/9 = (1)2207<221> = 373669 · C215

C215 = P41 · P174

P41 = 47430347717597954312536069175541845627383<41>

P174 = 626922868782558004553335157712002344289399823572657343183104607051391681936448830280881347095951536584729574529903284010942437487887893901180186138277399954934031929504291071<174>

Factor=47430347717597954312536069175541845627383  Method=ECM  B1=11000000  Sigma=2749378352

Dec 19, 2009

By Erik Branger / PFGW / Dec 19, 2009

(7·1037963-61)/9 = (7)379621<37963> is PRP.

(7·1091856-61)/9 = (7)918551<91856> is PRP.

PRP91856 is the second largest unprovable near-repdigit PRP in our tables so far. Congratulations!

Note: (7·1037963-61)/9-1 = 70·(1037962-1)/9 = 70·Πd|37962,d>1Φd(10) = 2·5·7·Πd=2,3,6,9,18,19,27,37,38,54,57,74,111,114,171,222,333,342,513,666,703,999,1026,1406,1998,2109,4218,6327,12654,18981,37962Φd(10)

Dec 18, 2009 (6th)

By Lionel Debroux / ggnfs-lasieve4I14e on the RSALS grid + msieve (Lionel Debroux + Jeff Gilchrist) / Dec 18, 2009

(10210+17)/9 = (1)2093<210> = 991 · 17033 · C202

C202 = P53 · P150

P53 = 54717842005390052986694843098297751937806958850145813<53>

P150 = 120299474039985466509894312228083847477033404838138052450639905530474929720985885145271068672098287759467609956582980764206909588207568280635808876067<150>

Thu Dec 17 06:26:40 2009  Msieve v. 1.43
Thu Dec 17 06:26:40 2009  random seeds: 55bc7df8 28c1ed01
Thu Dec 17 06:26:40 2009  factoring
6582527613851446978131730819618752244107085954717989475947006360900491620682609825013574653008474800244477708589488281346603735332968305847034815192608016332462195046388618988800401944934168042595957471
(202 digits)
Thu Dec 17 06:26:42 2009  no P-1/P+1/ECM available, skipping
Thu Dec 17 06:26:42 2009  commencing number field sieve (202-digit input)
Thu Dec 17 06:26:42 2009  R0: -1000000000000000000000000000000000000000000
Thu Dec 17 06:26:42 2009  R1:  1
Thu Dec 17 06:26:42 2009  A0:  17
Thu Dec 17 06:26:42 2009  A1:  0
Thu Dec 17 06:26:42 2009  A2:  0
Thu Dec 17 06:26:42 2009  A3:  0
Thu Dec 17 06:26:42 2009  A4:  0
Thu Dec 17 06:26:42 2009  A5:  1
Thu Dec 17 06:26:42 2009  skew 1.76, size 2.505786e-14, alpha
1.047729, combined = 7.967069e-12
Thu Dec 17 06:26:42 2009
Thu Dec 17 06:26:42 2009  commencing linear algebra
Thu Dec 17 06:26:43 2009  read 2888485 cycles
Thu Dec 17 06:26:50 2009  cycles contain 8004660 unique relations
Thu Dec 17 06:28:10 2009  read 8004660 relations
Thu Dec 17 06:28:26 2009  using 20 quadratic characters above 536868864
Thu Dec 17 06:29:23 2009  building initial matrix
Thu Dec 17 06:32:05 2009  memory use: 1052.8 MB
Thu Dec 17 06:32:08 2009  read 2888485 cycles
Thu Dec 17 06:32:11 2009  matrix is 2888023 x 2888485 (844.9 MB) with
weight 248051754 (85.88/col)
Thu Dec 17 06:32:11 2009  sparse part has weight 189723693 (65.68/col)
Thu Dec 17 06:33:34 2009  filtering completed in 3 passes
Thu Dec 17 06:33:35 2009  matrix is 2881653 x 2881853 (843.8 MB) with
weight 247679676 (85.94/col)
Thu Dec 17 06:33:35 2009  sparse part has weight 189487001 (65.75/col)
Thu Dec 17 06:34:00 2009  read 2881853 cycles
Thu Dec 17 06:34:04 2009  matrix is 2881653 x 2881853 (843.8 MB) with
weight 247679676 (85.94/col)
Thu Dec 17 06:34:04 2009  sparse part has weight 189487001 (65.75/col)
Thu Dec 17 06:34:04 2009  saving the first 48 matrix rows for later
Thu Dec 17 06:34:06 2009  matrix is 2881605 x 2881853 (799.4 MB) with
weight 195469859 (67.83/col)
Thu Dec 17 06:34:07 2009  sparse part has weight 180734590 (62.71/col)
Thu Dec 17 06:34:07 2009  matrix includes 64 packed rows
Thu Dec 17 06:34:07 2009  using block size 65536 for processor cache
size 6144 kB
Thu Dec 17 06:34:23 2009  commencing Lanczos iteration (5 threads)
Thu Dec 17 06:34:23 2009  memory use: 885.9 MB
Thu Dec 17 06:34:38 2009  linear algebra at 0.0%, ETA 14h51m
Thu Dec 17 20:55:45 2009  lanczos halted after 45570 iterations (dim = 2881603)
Thu Dec 17 20:55:53 2009  recovered 34 nontrivial dependencies
Thu Dec 17 20:55:54 2009  BLanczosTime: 52152
Thu Dec 17 20:55:54 2009  elapsed time 14:29:14
Thu Dec 17 21:23:08 2009
Thu Dec 17 21:23:08 2009
Thu Dec 17 21:23:08 2009  Msieve v. 1.43
Thu Dec 17 21:23:08 2009  random seeds: f9fbe826 ee5d58a0
Thu Dec 17 21:23:08 2009  factoring
6582527613851446978131730819618752244107085954717989475947006360900491620682609825013574653008474800244477708589488281346603735332968305847034815192608016332462195046388618988800401944934168042595957471
(202 digits)
Thu Dec 17 21:23:10 2009  no P-1/P+1/ECM available, skipping
Thu Dec 17 21:23:10 2009  commencing number field sieve (202-digit input)
Thu Dec 17 21:23:10 2009  R0: -1000000000000000000000000000000000000000000
Thu Dec 17 21:23:10 2009  R1:  1
Thu Dec 17 21:23:10 2009  A0:  17
Thu Dec 17 21:23:10 2009  A1:  0
Thu Dec 17 21:23:10 2009  A2:  0
Thu Dec 17 21:23:10 2009  A3:  0
Thu Dec 17 21:23:10 2009  A4:  0
Thu Dec 17 21:23:10 2009  A5:  1
Thu Dec 17 21:23:10 2009  skew 1.76, size 2.505786e-14, alpha
1.047729, combined = 7.967069e-12
Thu Dec 17 21:23:11 2009
Thu Dec 17 21:23:11 2009  commencing square root phase
Thu Dec 17 21:23:11 2009  reading relations for dependency 1
Thu Dec 17 21:23:11 2009  read 1439936 cycles
Thu Dec 17 21:23:15 2009  cycles contain 3996572 unique relations
Thu Dec 17 21:24:02 2009  read 3996572 relations
Thu Dec 17 21:24:33 2009  multiplying 3996572 relations
Thu Dec 17 21:27:39 2009  multiply complete, coefficients have about
97.23 million bits
Thu Dec 17 21:27:41 2009  initial square root is modulo 9532921
Thu Dec 17 21:33:58 2009  sqrtTime: 647
Thu Dec 17 21:33:59 2009  prp53 factor:
54717842005390052986694843098297751937806958850145813
Thu Dec 17 21:33:59 2009  prp150 factor:
120299474039985466509894312228083847477033404838138052450639905530474929720985885145271068672098287759467609956582980764206909588207568280635808876067
Thu Dec 17 21:33:59 2009  elapsed time 00:10:51

Dec 18, 2009 (6th)

By Sinkiti Sibata / Msieve / Dec 18, 2009

(64·10166+71)/9 = 7(1)1659<167> = 503 · 20117 · 395429341 · C152

C152 = P48 · P104

P48 = 210228399327928377239219774246468321235282735719<48>

P104 = 84536835945892939231027778594787388720995315395727328509256533229038199119074887652958622708169064322511<104>

Number: 71119_166
N=17772043705152750668618075206786427141878408477059419522437704603544996626585922137963280383978633254754888183355446140445126615312662697395867395470409
  ( 152 digits)
SNFS difficulty: 167 digits.
Divisors found:
 r1=210228399327928377239219774246468321235282735719 (pp48)
 r2=84536835945892939231027778594787388720995315395727328509256533229038199119074887652958622708169064322511 (pp104)
Version: Msieve-1.40
Total time: 45.88 hours.
Scaled time: 153.20 units (timescale=3.339).
Factorization parameters were as follows:
name: 71119_166
n: 17772043705152750668618075206786427141878408477059419522437704603544996626585922137963280383978633254754888183355446140445126615312662697395867395470409
m: 2000000000000000000000000000000000
deg: 5
c5: 20
c0: 71
skew: 1.29
type: snfs
lss: 1
rlim: 4400000
alim: 4400000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 4400000/4400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [2200000, 4600001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 798327 x 798575
Total sieving time: 44.54 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 1.20 hours.
Time per square root: 0.05 hours.
Prototype def-par.txt line would be:
snfs,167.000,5,0,0,0,0,0,0,0,0,4400000,4400000,27,27,51,51,2.4,2.4,100000
total time: 45.88 hours.
 --------- CPU info (if available) ----------

(71·10139-53)/9 = 7(8)1383<140> = 801174683 · C131

C131 = P32 · P38 · P62

P32 = 14659793272247047053381486853609<32>

P38 = 68028420190133278374253607086763647043<38>

P62 = 98734831756079313401932916138550660196735650678372000189629323<62>

Number: 78883_139
N=98466527416329865342099044945593829865051900159567185036585696616288221989272330624667141271722996879681592346183621092890785827401
  ( 131 digits)
SNFS difficulty: 140 digits.
Divisors found:
 r1=14659793272247047053381486853609 (pp32)
 r2=68028420190133278374253607086763647043 (pp38)
 r3=98734831756079313401932916138550660196735650678372000189629323 (pp62)
Version: Msieve v. 1.42
Total time: 0.62 hours.
Scaled time: 0.50 units (timescale=0.796).
Factorization parameters were as follows:
name: 78883_139
n: 98466527416329865342099044945593829865051900159567185036585696616288221989272330624667141271722996879681592346183621092890785827401
m: 1000000000000000000000000000
deg: 5
c5: 710000
c0: -53
skew: 0.15
type: snfs
lss: 1
rlim: 1560000
alim: 1560000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.3
alambda: 2.3
Factor base limits: 1560000/1560000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved rational special-q in [780000, 2180001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 306659 x 306907
Total sieving time: 0.00 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.30 hours.
Time per square root: 0.28 hours.
Prototype def-par.txt line would be:
snfs,140.000,5,0,0,0,0,0,0,0,0,1560000,1560000,26,26,48,48,2.3,2.3,100000
total time: 0.62 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
CPU1: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.30 BogoMIPS (lpj=1860651)
Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860572)
Total of 2 processors activated (7442.44 BogoMIPS).

Total time: 8 hours 14 min.

Dec 18, 2009 (5th)

By Dmitry Domanov / YAFU v1.14, Msieve, GGNFS/msieve, ECMNET, GMP-ECM / Dec 18, 2009

(23·10145+7)/3 = 7(6)1449<146> = 109 · 359 · 4339 · 1679273 · 490556707 · 74145169250683<14> · 176715146310626906597009<24> · C86

C86 = P33 · P54

P33 = 308224982757838303873874799904859<33>

P54 = 135725355871998971820929399371563345018944591056562047<54>

12/17/09 19:19:44 v1.14 @ REPGMAIL, starting SIQS on c86: 41833945473448350880238225571747760250081278595496669485943405224873781172003230286373
12/17/09 19:19:44 v1.14 @ REPGMAIL, random seeds: 0, 3887612160
12/17/09 19:19:44 v1.14 @ REPGMAIL, ==== sieve params ====
12/17/09 19:19:44 v1.14 @ REPGMAIL, n = 86 digits, 286 bits
12/17/09 19:19:44 v1.14 @ REPGMAIL, factor base: 57516 primes (max prime = 1506473)
12/17/09 19:19:44 v1.14 @ REPGMAIL, single large prime cutoff: 165712030 (110 * pmax)
12/17/09 19:19:44 v1.14 @ REPGMAIL, double large prime range from 43 to 50 bits
12/17/09 19:19:44 v1.14 @ REPGMAIL, double large prime cutoff: 623501162502699
12/17/09 19:19:44 v1.14 @ REPGMAIL, allocating 12 large prime slices of factor base
12/17/09 19:19:44 v1.14 @ REPGMAIL, buckets hold 1024 elements
12/17/09 19:19:44 v1.14 @ REPGMAIL, sieve interval: 18 blocks of size 32768
12/17/09 19:19:44 v1.14 @ REPGMAIL, polynomial A has ~ 11 factors
12/17/09 19:19:44 v1.14 @ REPGMAIL, using multiplier of 2
12/17/09 19:19:44 v1.14 @ REPGMAIL, using small prime variation correction of 21 bits
12/17/09 19:19:44 v1.14 @ REPGMAIL, using SSE2 for trial division and x128 sieve scanning
12/17/09 19:19:44 v1.14 @ REPGMAIL, trial factoring cutoff at 93 bits
12/17/09 19:19:44 v1.14 @ REPGMAIL, ==== sieving started ( 8 threads) ====
12/17/09 19:27:13 v1.14 @ REPGMAIL, trial division touched 12867503 sieve locations out of 5630374969344
12/17/09 19:27:13 v1.14 @ REPGMAIL, 57789 relations found: 19383 full + 38406 from 538217 partial, using 4772928 polys (383 A polys)
12/17/09 19:27:13 v1.14 @ REPGMAIL, on average, sieving found 0.12 rels/poly and 1243.53 rels/sec
12/17/09 19:27:13 v1.14 @ REPGMAIL, trial division touched 12867503 sieve locations out of 5630374969344
12/17/09 19:27:13 v1.14 @ REPGMAIL, ==== post processing stage (msieve-1.38) ====
12/17/09 19:27:13 v1.14 @ REPGMAIL, begin with 557600 relations
12/17/09 19:27:13 v1.14 @ REPGMAIL, reduce to 118522 relations in 9 passes
12/17/09 19:27:17 v1.14 @ REPGMAIL, recovered 118522 relations
12/17/09 19:27:17 v1.14 @ REPGMAIL, recovered 88934 polynomials
12/17/09 19:27:17 v1.14 @ REPGMAIL, attempting to build 57789 cycles
12/17/09 19:27:17 v1.14 @ REPGMAIL, found 57789 cycles in 5 passes
12/17/09 19:27:17 v1.14 @ REPGMAIL, distribution of cycle lengths:
12/17/09 19:27:17 v1.14 @ REPGMAIL,    length 1 : 19383
12/17/09 19:27:17 v1.14 @ REPGMAIL,    length 2 : 15799
12/17/09 19:27:17 v1.14 @ REPGMAIL,    length 3 : 10625
12/17/09 19:27:17 v1.14 @ REPGMAIL,    length 4 : 6108
12/17/09 19:27:17 v1.14 @ REPGMAIL,    length 5 : 3174
12/17/09 19:27:17 v1.14 @ REPGMAIL,    length 6 : 1511
12/17/09 19:27:17 v1.14 @ REPGMAIL,    length 7 : 662
12/17/09 19:27:17 v1.14 @ REPGMAIL,    length 9+: 527
12/17/09 19:27:17 v1.14 @ REPGMAIL, largest cycle: 18 relations
12/17/09 19:27:18 v1.14 @ REPGMAIL, matrix is 57516 x 57789 (11.5 MB) with weight 2782363 (48.15/col)
12/17/09 19:27:18 v1.14 @ REPGMAIL, sparse part has weight 2782363 (48.15/col)
12/17/09 19:27:19 v1.14 @ REPGMAIL, filtering completed in 3 passes
12/17/09 19:27:19 v1.14 @ REPGMAIL, matrix is 50686 x 50748 (10.3 MB) with weight 2498924 (49.24/col)
12/17/09 19:27:19 v1.14 @ REPGMAIL, sparse part has weight 2498924 (49.24/col)
12/17/09 19:27:19 v1.14 @ REPGMAIL, saving the first 48 matrix rows for later
12/17/09 19:27:19 v1.14 @ REPGMAIL, matrix is 50638 x 50748 (8.4 MB) with weight 2108203 (41.54/col)
12/17/09 19:27:19 v1.14 @ REPGMAIL, sparse part has weight 1895287 (37.35/col)
12/17/09 19:27:19 v1.14 @ REPGMAIL, matrix includes 64 packed rows
12/17/09 19:27:19 v1.14 @ REPGMAIL, using block size 20299 for processor cache size 6144 kB
12/17/09 19:27:20 v1.14 @ REPGMAIL, commencing Lanczos iteration
12/17/09 19:27:20 v1.14 @ REPGMAIL, memory use: 7.7 MB
12/17/09 19:27:34 v1.14 @ REPGMAIL, lanczos halted after 802 iterations (dim = 50632)
12/17/09 19:27:35 v1.14 @ REPGMAIL, recovered 14 nontrivial dependencies
12/17/09 19:27:35 v1.14 @ REPGMAIL, prp54 = 135725355871998971820929399371563345018944591056562047
12/17/09 19:27:39 v1.14 @ REPGMAIL, prp33 = 308224982757838303873874799904859
12/17/09 19:27:39 v1.14 @ REPGMAIL, Lanczos elapsed time = 21.9690 seconds.
12/17/09 19:27:39 v1.14 @ REPGMAIL, Sqrt elapsed time = 4.4530 seconds.
12/17/09 19:27:39 v1.14 @ REPGMAIL, SIQS elapsed time = 474.8220 seconds.

(22·10173+23)/9 = 2(4)1727<174> = 7 · 26557 · C169

C169 = P51 · P118

P51 = 624738918926696617026480583427783554414155170496779<51>

P118 = 2104769569075983439269108367771371408243333338166694269946412434388897100049518126394608775065678536993872431454145207<118>

N=1314931465174338992917898667795116942234463038770754250665385206184242219939023041783142698155689080868882804342381854902094386975962455120492549419009486035128991788253
  ( 169 digits)
SNFS difficulty: 174 digits.
Divisors found:
 r1=624738918926696617026480583427783554414155170496779 (pp51)
 r2=2104769569075983439269108367771371408243333338166694269946412434388897100049518126394608775065678536993872431454145207 (pp118)
Version: Msieve-1.40
Total time: 94.38 hours.
Scaled time: 174.60 units (timescale=1.850).
Factorization parameters were as follows:
n: 1314931465174338992917898667795116942234463038770754250665385206184242219939023041783142698155689080868882804342381854902094386975962455120492549419009486035128991788253
m: 10000000000000000000000000000000000
deg: 5
c5: 22000
c0: 23
skew: 0.25
type: snfs
lss: 1
rlim: 5600000
alim: 5600000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4
qintsize: 240000Factor base limits: 5600000/5600000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2800000, 8080001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 970616 x 970843
Total sieving time: 92.89 hours.
Total relation processing time: 0.11 hours.
Matrix solve time: 1.14 hours.
Time per square root: 0.24 hours.
Prototype def-par.txt line would be:
snfs,174.000,5,0,0,0,0,0,0,0,0,5600000,5600000,27,27,52,52,2.4,2.4,100000
total time: 94.38 hours.
 --------- CPU info (if available) ----------

(23·10102+7)/3 = 7(6)1019<103> = C103

C103 = P38 · P66

P38 = 16366251904462813283148459651532808177<38>

P66 = 468443643139581039544972884127926202489907608934281528490340905597<66>

N=7666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666669
  ( 103 digits)
SNFS difficulty: 103 digits.
Divisors found:
 r1=16366251904462813283148459651532808177 (pp38)
 r2=468443643139581039544972884127926202489907608934281528490340905597 (pp66)
Version: Msieve-1.40
Total time: 0.29 hours.
Scaled time: 0.55 units (timescale=1.899).
Factorization parameters were as follows:
n: 7666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666669
m: 10000000000000000000000000
deg: 4
c4: 2300
c0: 7
skew: 0.23
type: snfs
lss: 1
rlim: 370000
alim: 370000
lpbr: 25
lpba: 25
mfbr: 43
mfba: 43
rlambda: 2.2
alambda: 2.2Factor base limits: 370000/370000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 43/43
Sieved rational special-q in [185000, 245001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 29258 x 29485
Total sieving time: 0.28 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.01 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,103.000,4,0,0,0,0,0,0,0,0,370000,370000,25,25,43,43,2.2,2.2,10000
total time: 0.29 hours.
 --------- CPU info (if available) ----------

(71·10102-53)/9 = 7(8)1013<103> = C103

C103 = P32 · P72

P32 = 70844568918754187799073067693869<32>

P72 = 111354885904323972056732251864761215138728152912876090552311636191082207<72>

N=7888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888883
  ( 103 digits)
SNFS difficulty: 103 digits.
Divisors found:
 r1=70844568918754187799073067693869 (pp32)
 r2=111354885904323972056732251864761215138728152912876090552311636191082207 (pp72)
Version: Msieve-1.40
Total time: 0.34 hours.
Scaled time: 0.65 units (timescale=1.888).
Factorization parameters were as follows:
n: 7888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888883
m: 10000000000000000000000000
deg: 4
c4: 7100
c0: -53
skew: 0.29
type: snfs
lss: 1
rlim: 380000
alim: 380000
lpbr: 25
lpba: 25
mfbr: 43
mfba: 43
rlambda: 2.2
alambda: 2.2Factor base limits: 380000/380000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 43/43
Sieved rational special-q in [190000, 250001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 30812 x 31042
Total sieving time: 0.33 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,103.000,4,0,0,0,0,0,0,0,0,380000,380000,25,25,43,43,2.2,2.2,10000
total time: 0.34 hours.
 --------- CPU info (if available) ----------

(23·10101+7)/3 = 7(6)1009<102> = 127 · 499 · C98

C98 = P35 · P63

P35 = 15503305797418981345720755638978753<35>

P63 = 780329456446274801345339576045023254771125029723964628297791201<63>

N=12097686186020334632519632440734487347398208490471757162619201657908993840699772247907889269352353
  ( 98 digits)
SNFS difficulty: 102 digits.
Divisors found:
 r1=15503305797418981345720755638978753 (pp35)
 r2=780329456446274801345339576045023254771125029723964628297791201 (pp63)
Version: Msieve-1.40
Total time: 0.24 hours.
Scaled time: 0.46 units (timescale=1.899).
Factorization parameters were as follows:
n: 12097686186020334632519632440734487347398208490471757162619201657908993840699772247907889269352353
m: 10000000000000000000000000
deg: 4
c4: 230
c0: 7
skew: 0.42
type: snfs
lss: 1
rlim: 360000
alim: 360000
lpbr: 25
lpba: 25
mfbr: 43
mfba: 43
rlambda: 2.2
alambda: 2.2Factor base limits: 360000/360000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 43/43
Sieved rational special-q in [180000, 230001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 28464 x 28690
Total sieving time: 0.23 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.01 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,102.000,4,0,0,0,0,0,0,0,0,360000,360000,25,25,43,43,2.2,2.2,10000
total time: 0.24 hours.
 --------- CPU info (if available) ----------

(71·10112-53)/9 = 7(8)1113<113> = 72 · 96853717 · C104

C104 = P32 · P72

P32 = 47211579907345209783386536065091<32>

P72 = 352091007064452232705688454932089110461872691511398725150686552297151261<72>

N=16622772714681033343850236198164510360461350285372364831785947387382841694980130661290056398395768729751
  ( 104 digits)
SNFS difficulty: 113 digits.
Divisors found:
 r1=47211579907345209783386536065091 (pp32)
 r2=352091007064452232705688454932089110461872691511398725150686552297151261 (pp72)
Version: Msieve-1.40
Total time: 1.16 hours.
Scaled time: 2.19 units (timescale=1.894).
Factorization parameters were as follows:
n: 16622772714681033343850236198164510360461350285372364831785947387382841694980130661290056398395768729751
m: 10000000000000000000000
deg: 5
c5: 7100
c0: -53
skew: 0.38
type: snfs
lss: 1
rlim: 550000
alim: 550000
lpbr: 25
lpba: 25
mfbr: 45
mfba: 45
rlambda: 2.2
alambda: 2.2Factor base limits: 550000/550000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 45/45
Sieved rational special-q in [275000, 575001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 61515 x 61746
Total sieving time: 1.13 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.01 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,113.000,5,0,0,0,0,0,0,0,0,550000,550000,25,25,45,45,2.2,2.2,50000
total time: 1.16 hours.
 --------- CPU info (if available) ----------

(23·10117+7)/3 = 7(6)1169<118> = C118

C118 = P56 · P63

P56 = 14569581354226241661746116562056802057508343476522953837<56>

P63 = 526210498453531331924932909008559187519482724594784737411043137<63>

N=7666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666669
  ( 118 digits)
SNFS difficulty: 118 digits.
Divisors found:
 r1=14569581354226241661746116562056802057508343476522953837 (pp56)
 r2=526210498453531331924932909008559187519482724594784737411043137 (pp63)
Version: Msieve-1.40
Total time: 1.40 hours.
Scaled time: 2.63 units (timescale=1.883).
Factorization parameters were as follows:
n: 7666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666669
m: 100000000000000000000000
deg: 5
c5: 2300
c0: 7
skew: 0.31
type: snfs
lss: 1
rlim: 660000
alim: 660000
lpbr: 25
lpba: 25
mfbr: 45
mfba: 45
rlambda: 2.2
alambda: 2.2Factor base limits: 660000/660000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 45/45
Sieved rational special-q in [330000, 680001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 73555 x 73781
Total sieving time: 1.36 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.01 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,118.000,5,0,0,0,0,0,0,0,0,660000,660000,25,25,45,45,2.2,2.2,50000
total time: 1.40 hours.
 --------- CPU info (if available) ----------

(8·10214+1)/9 = (8)2139<214> = 3 · 1699 · 2459 · C207

C207 = P30 · C178

P30 = 335641198293710957912166662603<30>

C178 = [2112997836126207443444981630168333103292685356156473714928084867103157017340713491392612217986513249301447225320298675488334218036013653216145526375104840470441559720260810151081<178>]

Factor=335641198293710957912166662603  Method=ECM  B1=11000000  Sigma=265716689

(71·10114-53)/9 = 7(8)1133<115> = 29 · 103 · C112

C112 = P53 · P59

P53 = 56519698895229316188490043104959016857411842457689633<53>

P59 = 46728385615779825473711854488768379726422437915981202391673<59>

N=2641074284864040471673548339099058884797083658817840270803109771974853996949745192128854666517873749209537626009
  ( 112 digits)
SNFS difficulty: 115 digits.
Divisors found:
 r1=56519698895229316188490043104959016857411842457689633 (pp53)
 r2=46728385615779825473711854488768379726422437915981202391673 (pp59)
Version: Msieve-1.40
Total time: 1.53 hours.
Scaled time: 2.87 units (timescale=1.877).
Factorization parameters were as follows:
n: 2641074284864040471673548339099058884797083658817840270803109771974853996949745192128854666517873749209537626009
m: 10000000000000000000000
deg: 5
c5: 710000
c0: -53
skew: 0.15
type: snfs
lss: 1
rlim: 600000
alim: 600000
lpbr: 25
lpba: 25
mfbr: 45
mfba: 45
rlambda: 2.2
alambda: 2.2Factor base limits: 600000/600000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 45/45
Sieved rational special-q in [300000, 700001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 68831 x 69064
Total sieving time: 1.49 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.01 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,115.000,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.2,2.2,50000
total time: 1.53 hours.
 --------- CPU info (if available) ----------

(71·10120-53)/9 = 7(8)1193<121> = 59 · C120

C120 = P46 · P74

P46 = 2214181774753291992262900298930816059454662351<46>

P74 = 60387987423709368360648898963089341431741881661843328297994020494593986887<74>

N=133709981167608286252354048964218455743879472693032015065913370998116760828625235404896421845574387947269303201506591337
  ( 120 digits)
SNFS difficulty: 121 digits.
Divisors found:
 r1=2214181774753291992262900298930816059454662351 (pp46)
 r2=60387987423709368360648898963089341431741881661843328297994020494593986887 (pp74)
Version: Msieve-1.40
Total time: 1.30 hours.
Scaled time: 2.52 units (timescale=1.934).
Factorization parameters were as follows:
n: 133709981167608286252354048964218455743879472693032015065913370998116760828625235404896421845574387947269303201506591337
m: 1000000000000000000000000
deg: 5
c5: 71
c0: -53
skew: 0.94
type: snfs
lss: 1
rlim: 750000
alim: 750000
lpbr: 25
lpba: 25
mfbr: 46
mfba: 46
rlambda: 2.2
alambda: 2.2Factor base limits: 750000/750000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved rational special-q in [375000, 675001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 73350 x 73577
Total sieving time: 1.27 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.01 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,121.000,5,0,0,0,0,0,0,0,0,750000,750000,25,25,46,46,2.2,2.2,50000
total time: 1.30 hours.
 --------- CPU info (if available) ----------

(23·10127+7)/3 = 7(6)1269<128> = 977 · 2884173194897<13> · C113

C113 = P36 · P77

P36 = 903364418940510837202718011796346043<36>

P77 = 30118108980930079273273885810813189661278080103264113178198009378613739190807<77>

N=27207628019144882054012175877546708769211265306368105830557938863759367147355611190125656060628084554910176426701
  ( 113 digits)
SNFS difficulty: 128 digits.
Divisors found:
 r1=903364418940510837202718011796346043 (pp36)
 r2=30118108980930079273273885810813189661278080103264113178198009378613739190807 (pp77)
Version: Msieve-1.40
Total time: 2.10 hours.
Scaled time: 3.95 units (timescale=1.877).
Factorization parameters were as follows:
n: 27207628019144882054012175877546708769211265306368105830557938863759367147355611190125656060628084554910176426701
m: 10000000000000000000000000
deg: 5
c5: 2300
c0: 7
skew: 0.31
type: snfs
lss: 1
rlim: 960000
alim: 960000
lpbr: 26
lpba: 26
mfbr: 47
mfba: 47
rlambda: 2.3
alambda: 2.3Factor base limits: 960000/960000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved rational special-q in [480000, 930001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 147422 x 147647
Total sieving time: 2.02 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.05 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,128.000,5,0,0,0,0,0,0,0,0,960000,960000,26,26,47,47,2.3,2.3,50000
total time: 2.10 hours.
 --------- CPU info (if available) ----------

(71·10117-53)/9 = 7(8)1163<118> = 2341 · 54773 · 60533682573218171561<20> · C91

C91 = P43 · P48

P43 = 4704278905960870672702840636154862664420573<43>

P48 = 216051725822903176121266690809152805746919124127<48>

12/17/09 22:34:05 v1.14 @ REPGMAIL, starting SIQS on c91: 1016367576385124944414837275702956041270890279227086998560930210620703853098252911119464771
12/17/09 22:34:05 v1.14 @ REPGMAIL, random seeds: 0, 3887612160
12/17/09 22:34:06 v1.14 @ REPGMAIL, ==== sieve params ====
12/17/09 22:34:06 v1.14 @ REPGMAIL, n = 91 digits, 302 bits
12/17/09 22:34:06 v1.14 @ REPGMAIL, factor base: 66328 primes (max prime = 1763191)
12/17/09 22:34:06 v1.14 @ REPGMAIL, single large prime cutoff: 211582920 (120 * pmax)
12/17/09 22:34:06 v1.14 @ REPGMAIL, double large prime range from 43 to 50 bits
12/17/09 22:34:06 v1.14 @ REPGMAIL, double large prime cutoff: 967977118911139
12/17/09 22:34:06 v1.14 @ REPGMAIL, allocating 13 large prime slices of factor base
12/17/09 22:34:06 v1.14 @ REPGMAIL, buckets hold 1024 elements
12/17/09 22:34:06 v1.14 @ REPGMAIL, sieve interval: 22 blocks of size 32768
12/17/09 22:34:06 v1.14 @ REPGMAIL, polynomial A has ~ 12 factors
12/17/09 22:34:06 v1.14 @ REPGMAIL, using multiplier of 5
12/17/09 22:34:06 v1.14 @ REPGMAIL, using small prime variation correction of 21 bits
12/17/09 22:34:06 v1.14 @ REPGMAIL, using SSE2 for trial division and x128 sieve scanning
12/17/09 22:34:06 v1.14 @ REPGMAIL, trial factoring cutoff at 96 bits
12/17/09 22:34:06 v1.14 @ REPGMAIL, ==== sieving started ( 8 threads) ====
12/17/09 22:56:17 v1.14 @ REPGMAIL, trial division touched 29986440 sieve locations out of 34609201938432
12/17/09 22:56:17 v1.14 @ REPGMAIL, 66603 relations found: 18480 full + 48123 from 829499 partial, using 24004296 polys (847 A polys)
12/17/09 22:56:17 v1.14 @ REPGMAIL, on average, sieving found 0.04 rels/poly and 636.88 rels/sec
12/17/09 22:56:17 v1.14 @ REPGMAIL, trial division touched 29986440 sieve locations out of 34609201938432
12/17/09 22:56:17 v1.14 @ REPGMAIL, ==== post processing stage (msieve-1.38) ====
12/17/09 22:56:17 v1.14 @ REPGMAIL, begin with 847979 relations
12/17/09 22:56:18 v1.14 @ REPGMAIL, reduce to 160269 relations in 11 passes
12/17/09 22:56:22 v1.14 @ REPGMAIL, failed to read relation 72710
12/17/09 22:56:28 v1.14 @ REPGMAIL, recovered 160268 relations
12/17/09 22:56:28 v1.14 @ REPGMAIL, recovered 134681 polynomials
12/17/09 22:56:28 v1.14 @ REPGMAIL, attempting to build 66602 cycles
12/17/09 22:56:28 v1.14 @ REPGMAIL, found 66602 cycles in 6 passes
12/17/09 22:56:28 v1.14 @ REPGMAIL, distribution of cycle lengths:
12/17/09 22:56:28 v1.14 @ REPGMAIL,    length 1 : 18480
12/17/09 22:56:28 v1.14 @ REPGMAIL,    length 2 : 13601
12/17/09 22:56:28 v1.14 @ REPGMAIL,    length 3 : 11904
12/17/09 22:56:28 v1.14 @ REPGMAIL,    length 4 : 8618
12/17/09 22:56:28 v1.14 @ REPGMAIL,    length 5 : 5823
12/17/09 22:56:28 v1.14 @ REPGMAIL,    length 6 : 3680
12/17/09 22:56:28 v1.14 @ REPGMAIL,    length 7 : 2109
12/17/09 22:56:28 v1.14 @ REPGMAIL,    length 9+: 2387
12/17/09 22:56:28 v1.14 @ REPGMAIL, largest cycle: 18 relations
12/17/09 22:56:31 v1.14 @ REPGMAIL, matrix is 66328 x 66602 (16.2 MB) with weight 3980066 (59.76/col)
12/17/09 22:56:31 v1.14 @ REPGMAIL, sparse part has weight 3980066 (59.76/col)
12/17/09 22:56:32 v1.14 @ REPGMAIL, filtering completed in 3 passes
12/17/09 22:56:32 v1.14 @ REPGMAIL, matrix is 61864 x 61928 (15.2 MB) with weight 3735380 (60.32/col)
12/17/09 22:56:32 v1.14 @ REPGMAIL, sparse part has weight 3735380 (60.32/col)
12/17/09 22:56:32 v1.14 @ REPGMAIL, saving the first 48 matrix rows for later
12/17/09 22:56:32 v1.14 @ REPGMAIL, matrix is 61816 x 61928 (12.9 MB) with weight 3247323 (52.44/col)
12/17/09 22:56:32 v1.14 @ REPGMAIL, sparse part has weight 3019707 (48.76/col)
12/17/09 22:56:32 v1.14 @ REPGMAIL, matrix includes 64 packed rows
12/17/09 22:56:32 v1.14 @ REPGMAIL, using block size 24771 for processor cache size 6144 kB
12/17/09 22:56:33 v1.14 @ REPGMAIL, commencing Lanczos iteration
12/17/09 22:56:33 v1.14 @ REPGMAIL, memory use: 11.0 MB
12/17/09 22:57:01 v1.14 @ REPGMAIL, lanczos halted after 979 iterations (dim = 61812)
12/17/09 22:57:02 v1.14 @ REPGMAIL, recovered 16 nontrivial dependencies
12/17/09 22:57:04 v1.14 @ REPGMAIL, prp43 = 4704278905960870672702840636154862664420573
12/17/09 22:57:06 v1.14 @ REPGMAIL, prp48 = 216051725822903176121266690809152805746919124127
12/17/09 22:57:06 v1.14 @ REPGMAIL, Lanczos elapsed time = 44.6400 seconds.
12/17/09 22:57:06 v1.14 @ REPGMAIL, Sqrt elapsed time = 4.2340 seconds.
12/17/09 22:57:06 v1.14 @ REPGMAIL, SIQS elapsed time = 1380.3237 seconds.

(71·10128-53)/9 = 7(8)1273<129> = 32 · 2377 · 8831 · C121

C121 = P51 · P71

P51 = 165003680788079684382461700620601145550349398065163<51>

P71 = 25306998018702680821578149424957973175262997834761086043278516609659927<71>

N=4175747822782582172672610354365328861810822794603033200758691974801465054889408209589736969803438969113914787009215823101
  ( 121 digits)
SNFS difficulty: 129 digits.
Divisors found:
 r1=165003680788079684382461700620601145550349398065163 (pp51)
 r2=25306998018702680821578149424957973175262997834761086043278516609659927 (pp71)
Version: Msieve-1.40
Total time: 2.54 hours.
Scaled time: 4.90 units (timescale=1.928).
Factorization parameters were as follows:
n: 4175747822782582172672610354365328861810822794603033200758691974801465054889408209589736969803438969113914787009215823101
m: 10000000000000000000000000
deg: 5
c5: 71000
c0: -53
skew: 0.24
type: snfs
lss: 1
rlim: 1020000
alim: 1020000
lpbr: 26
lpba: 26
mfbr: 47
mfba: 47
rlambda: 2.3
alambda: 2.3Factor base limits: 1020000/1020000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved rational special-q in [510000, 1060001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 162277 x 162502
Total sieving time: 2.44 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.06 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,129.000,5,0,0,0,0,0,0,0,0,1020000,1020000,26,26,47,47,2.3,2.3,50000
total time: 2.54 hours.
 --------- CPU info (if available) ----------

9·10217-1 = 8(9)217<218> = 4283 · 9437 · C211

C211 = P34 · C178

P34 = 1577290686429983687836459293964961<34>

C178 = [1411720564399112483471084781044967565528016798392234290981345680970916119805289999619210137081639694786400613276406019352676005253348050274461896592584529492199240348443770814929<178>]

Factor=1577290686429983687836459293964961  Method=ECM  B1=11000000  Sigma=421968920

(71·10131-53)/9 = 7(8)1303<132> = 3 · C132

C132 = P48 · P85

P48 = 196715840065308398795279369007364211116917928283<48>

P85 = 1336765574524455904141319038788517795589445839396460183951749385129955666167430296067<85>

N=262962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962961
  ( 132 digits)
SNFS difficulty: 132 digits.
Divisors found:
 r1=196715840065308398795279369007364211116917928283 (pp48)
 r2=1336765574524455904141319038788517795589445839396460183951749385129955666167430296067 (pp85)
Version: Msieve-1.40
Total time: 3.13 hours.
Scaled time: 5.94 units (timescale=1.899).
Factorization parameters were as follows:
n: 262962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962961
m: 100000000000000000000000000
deg: 5
c5: 710
c0: -53
skew: 0.60
type: snfs
lss: 1
rlim: 1150000
alim: 1150000
lpbr: 26
lpba: 26
mfbr: 47
mfba: 47
rlambda: 2.3
alambda: 2.3Factor base limits: 1150000/1150000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved rational special-q in [575000, 1225001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 185212 x 185437
Total sieving time: 3.00 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.08 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,132.000,5,0,0,0,0,0,0,0,0,1150000,1150000,26,26,47,47,2.3,2.3,50000
total time: 3.13 hours.
 --------- CPU info (if available) ----------

(71·10132-53)/9 = 7(8)1313<133> = C133

C133 = P60 · P74

P60 = 517214393087147489390495048364390108944880537532928038319981<60>

P74 = 15252647633801751029471431177710620169842615413914822823473476439081203743<74>

N=7888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888883
  ( 133 digits)
SNFS difficulty: 133 digits.
Divisors found:
 r1=517214393087147489390495048364390108944880537532928038319981 (pp60)
 r2=15252647633801751029471431177710620169842615413914822823473476439081203743 (pp74)
Version: Msieve-1.40
Total time: 3.53 hours.
Scaled time: 6.41 units (timescale=1.818).
Factorization parameters were as follows:
n: 7888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888883
m: 100000000000000000000000000
deg: 5
c5: 7100
c0: -53
skew: 0.38
type: snfs
lss: 1
rlim: 1190000
alim: 1190000
lpbr: 26
lpba: 26
mfbr: 47
mfba: 47
rlambda: 2.3
alambda: 2.3Factor base limits: 1190000/1190000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved rational special-q in [595000, 1345001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 205361 x 205586
Total sieving time: 3.43 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.05 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,133.000,5,0,0,0,0,0,0,0,0,1190000,1190000,26,26,47,47,2.3,2.3,75000
total time: 3.53 hours.
 --------- CPU info (if available) ----------

(71·10121-53)/9 = 7(8)1203<122> = 73 · 83 · 635363 · C113

C113 = P52 · P61

P52 = 3100375569266222976004203131079653569034995145663653<52>

P61 = 6609653005401652853305308565447112625996842016862736480888983<61>

N=20492406699274351032060072910217225536645754047004998692822135641463339761256101427317966891992832342738951234899
  ( 113 digits)
SNFS difficulty: 122 digits.
Divisors found:
 r1=3100375569266222976004203131079653569034995145663653 (pp52)
 r2=6609653005401652853305308565447112625996842016862736480888983 (pp61)
Version: Msieve-1.40
Total time: 1.87 hours.
Scaled time: 3.54 units (timescale=1.894).
Factorization parameters were as follows:
n: 20492406699274351032060072910217225536645754047004998692822135641463339761256101427317966891992832342738951234899
m: 1000000000000000000000000
deg: 5
c5: 710
c0: -53
skew: 0.60
type: snfs
lss: 1
rlim: 780000
alim: 780000
lpbr: 25
lpba: 25
mfbr: 46
mfba: 46
rlambda: 2.2
alambda: 2.2Factor base limits: 780000/780000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved rational special-q in [390000, 840001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 92638 x 92863
Total sieving time: 1.81 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.02 hours.
Time per square root: 0.03 hours.
Prototype def-par.txt line would be:
snfs,122.000,5,0,0,0,0,0,0,0,0,780000,780000,25,25,46,46,2.2,2.2,50000
total time: 1.87 hours.
 --------- CPU info (if available) ----------

(23·10115+7)/3 = 7(6)1149<116> = 101540519 · 3192714031843379<16> · C93

C93 = P39 · P55

P39 = 145717171735411817146963718723119073599<39>

P55 = 1622917518152125158739229174383634945061249878227930231<55>

N=236486950704981546873301241060210324387354907053759004965902155459257877449591326407926071369
  ( 93 digits)
SNFS difficulty: 116 digits.
Divisors found:
 r1=145717171735411817146963718723119073599 (pp39)
 r2=1622917518152125158739229174383634945061249878227930231 (pp55)
Version: Msieve-1.40
Total time: 1.03 hours.
Scaled time: 2.00 units (timescale=1.934).
Factorization parameters were as follows:
n: 236486950704981546873301241060210324387354907053759004965902155459257877449591326407926071369
m: 100000000000000000000000
deg: 5
c5: 23
c0: 7
skew: 0.79
type: snfs
lss: 1
rlim: 610000
alim: 610000
lpbr: 25
lpba: 25
mfbr: 45
mfba: 45
rlambda: 2.2
alambda: 2.2Factor base limits: 610000/610000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 45/45
Sieved rational special-q in [305000, 555001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 62040 x 62274
Total sieving time: 1.01 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.01 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,116.000,5,0,0,0,0,0,0,0,0,610000,610000,25,25,45,45,2.2,2.2,50000
total time: 1.03 hours.
 --------- CPU info (if available) ----------

(23·10118+7)/3 = 7(6)1179<119> = 79 · 97 · 241 · 439 · 3301 · 253823 · C102

C102 = P45 · P57

P45 = 616662315237088461756368984825451529618304609<45>

P57 = 183021574262896725676823532935622444218431584201994836991<57>

N=112862507723294616972009178085600140935549884805945509772132374654095565184658821451591703944738991519
  ( 102 digits)
SNFS difficulty: 119 digits.
Divisors found:
 r1=616662315237088461756368984825451529618304609 (pp45)
 r2=183021574262896725676823532935622444218431584201994836991 (pp57)
Version: Msieve-1.40
Total time: 1.42 hours.
Scaled time: 2.65 units (timescale=1.866).
Factorization parameters were as follows:
n: 112862507723294616972009178085600140935549884805945509772132374654095565184658821451591703944738991519
m: 100000000000000000000000
deg: 5
c5: 23000
c0: 7
skew: 0.20
type: snfs
lss: 1
rlim: 680000
alim: 680000
lpbr: 25
lpba: 25
mfbr: 45
mfba: 45
rlambda: 2.2
alambda: 2.2Factor base limits: 680000/680000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 45/45
Sieved rational special-q in [340000, 690001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 70562 x 70793
Total sieving time: 1.39 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.01 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,119.000,5,0,0,0,0,0,0,0,0,680000,680000,25,25,45,45,2.2,2.2,50000
total time: 1.42 hours.
 --------- CPU info (if available) ----------

(23·10132+7)/3 = 7(6)1319<133> = 515119773492893<15> · C119

C119 = P43 · P77

P43 = 1325930876011785899835125289730218699242507<43>

P77 = 11224770657653797020738499348061137631067325221162132058552569512965365014419<77>

N=14883269991134289211077349683781442707264471531662519776756720046042023420857648997080679874326196989860850194432708433
  ( 119 digits)
SNFS difficulty: 133 digits.
Divisors found:
 r1=1325930876011785899835125289730218699242507 (pp43)
 r2=11224770657653797020738499348061137631067325221162132058552569512965365014419 (pp77)
Version: Msieve-1.40
Total time: 3.14 hours.
Scaled time: 5.93 units (timescale=1.888).
Factorization parameters were as follows:
n: 14883269991134289211077349683781442707264471531662519776756720046042023420857648997080679874326196989860850194432708433
m: 100000000000000000000000000
deg: 5
c5: 2300
c0: 7
skew: 0.31
type: snfs
lss: 1
rlim: 1170000
alim: 1170000
lpbr: 26
lpba: 26
mfbr: 47
mfba: 47
rlambda: 2.3
alambda: 2.3Factor base limits: 1170000/1170000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved rational special-q in [585000, 1235001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 187019 x 187244
Total sieving time: 3.01 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.09 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,133.000,5,0,0,0,0,0,0,0,0,1170000,1170000,26,26,47,47,2.3,2.3,50000
total time: 3.14 hours.
 --------- CPU info (if available) ----------

(71·10134-53)/9 = 7(8)1333<135> = 3 · 1248424878698281<16> · C120

C120 = P49 · P71

P49 = 3749028001261114267397282247344700583630333114637<49>

P71 = 56184107410696183723363555425171112886122517296076068553504744503648013<71>

N=210635791908562071728644557621682794294921668230253551186820616199446384520540884426027237215207303593232937643026266281
  ( 120 digits)
SNFS difficulty: 135 digits.
Divisors found:
 r1=3749028001261114267397282247344700583630333114637 (pp49)
 r2=56184107410696183723363555425171112886122517296076068553504744503648013 (pp71)
Version: Msieve-1.40
Total time: 4.59 hours.
Scaled time: 8.74 units (timescale=1.905).
Factorization parameters were as follows:
n: 210635791908562071728644557621682794294921668230253551186820616199446384520540884426027237215207303593232937643026266281
m: 100000000000000000000000000
deg: 5
c5: 710000
c0: -53
skew: 0.15
type: snfs
lss: 1
rlim: 1290000
alim: 1290000
lpbr: 26
lpba: 26
mfbr: 47
mfba: 47
rlambda: 2.3
alambda: 2.3Factor base limits: 1290000/1290000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved rational special-q in [645000, 1620001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 231832 x 232057
Total sieving time: 4.41 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.07 hours.
Time per square root: 0.09 hours.
Prototype def-par.txt line would be:
snfs,135.000,5,0,0,0,0,0,0,0,0,1290000,1290000,26,26,47,47,2.3,2.3,75000
total time: 4.59 hours.
 --------- CPU info (if available) ----------

(71·10150-53)/9 = 7(8)1493<151> = 1307 · C148

C148 = P48 · P101

P48 = 128415372495535273586931730868534677776502526639<48>

P101 = 47002746513966858009036774509430398095275660887836235273369621377326418835059116058961137334091595271<101>

N=6035875201904276120037405423786449035110090963189662501062654084842302133809402363342684689279945592110856074130748958598996854543908866785683924169
  ( 148 digits)
SNFS difficulty: 151 digits.
Divisors found:
 r1=128415372495535273586931730868534677776502526639 (pp48)
 r2=47002746513966858009036774509430398095275660887836235273369621377326418835059116058961137334091595271 (pp101)
Version: Msieve-1.40
Total time: 11.65 hours.
Scaled time: 22.67 units (timescale=1.946).
Factorization parameters were as follows:
n: 6035875201904276120037405423786449035110090963189662501062654084842302133809402363342684689279945592110856074130748958598996854543908866785683924169
m: 1000000000000000000000000000000
deg: 5
c5: 71
c0: -53
skew: 0.94
type: snfs
lss: 1
rlim: 2400000
alim: 2400000
lpbr: 27
lpba: 27
mfbr: 49
mfba: 49
rlambda: 2.4
alambda: 2.4Factor base limits: 2400000/2400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 49/49
Sieved rational special-q in [1200000, 1900001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 396211 x 396438
Total sieving time: 11.37 hours.
Total relation processing time: 0.06 hours.
Matrix solve time: 0.19 hours.
Time per square root: 0.03 hours.
Prototype def-par.txt line would be:
snfs,151.000,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000
total time: 11.65 hours.
 --------- CPU info (if available) ----------

(71·10135-53)/9 = 7(8)1343<136> = C136

C136 = P64 · P73

P64 = 6745880366212108691779530567928483529559329688486999836127929329<64>

P73 = 1169438006698389308964930379145889791962225646934827427481335042336893027<73>

N=7888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888883
  ( 136 digits)
SNFS difficulty: 136 digits.
Divisors found:
 r1=6745880366212108691779530567928483529559329688486999836127929329 (pp64)
 r2=1169438006698389308964930379145889791962225646934827427481335042336893027 (pp73)
Version: Msieve-1.40
Total time: 3.20 hours.
Scaled time: 6.27 units (timescale=1.958).
Factorization parameters were as follows:
n: 7888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888883
m: 1000000000000000000000000000
deg: 5
c5: 71
c0: -53
skew: 0.94
type: snfs
lss: 1
rlim: 1340000
alim: 1340000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.3
alambda: 2.3Factor base limits: 1340000/1340000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved rational special-q in [670000, 1270001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 185613 x 185840
Total sieving time: 2.99 hours.
Total relation processing time: 0.07 hours.
Matrix solve time: 0.09 hours.
Time per square root: 0.06 hours.
Prototype def-par.txt line would be:
snfs,136.000,5,0,0,0,0,0,0,0,0,1340000,1340000,26,26,48,48,2.3,2.3,75000
total time: 3.20 hours.
 --------- CPU info (if available) ----------

(71·10136-53)/9 = 7(8)1353<137> = 7 · 51980300653<11> · C126

C126 = P39 · P87

P39 = 954769764248960953148801851587662128903<39>

P87 = 227080768266703753928456788022703634642399994316630471933625214253812105368451884403791<87>

Number: ass5
N=216809851583473676705627523909375219620660574439738030217619127587489482104551329168343620455085044000722121819194881943871273
  ( 126 digits)
SNFS difficulty: 137 digits.
Divisors found:
r1=954769764248960953148801851587662128903 (pp39)
r2=227080768266703753928456788022703634642399994316630471933625214253812105368451884403791 (pp87)
Version: Msieve-1.40
Total time: 13.24 hours.
Scaled time: 25.08 units (timescale=1.894).
Factorization parameters were as follows:
n: 216809851583473676705627523909375219620660574439738030217619127587489482104551329168343620455085044000722121819194881943871273
m: 1000000000000000000000000000
deg: 5
c5: 710
c0: -53
skew: 0.60
type: snfs
lss: 1
rlim: 1390000
alim: 1390000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.3
alambda: 2.3Factor base limits: 1390000/1390000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved rational special-q in [695000, 1595001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 244174 x 244400
Total sieving time: 12.77 hours.
Total relation processing time: 0.08 hours.
Matrix solve time: 0.27 hours.
Time per square root: 0.13 hours.
Prototype def-par.txt line would be:
snfs,137.000,5,0,0,0,0,0,0,0,0,1390000,1390000,26,26,48,48,2.3,2.3,75000
total time: 13.24 hours.
 --------- CPU info (if available) ----------

(71·10148-53)/9 = 7(8)1473<149> = 7 · 103 · C147

C147 = P61 · P86

P61 = 4623071854794763055981863186790303195310782012328269473558183<61>

P86 = 23667366222130787792273066730206177697377235694310735886378311300462181777177208904581<86>

Fri Dec 18 14:56:52 2009  Msieve v. 1.42
Fri Dec 18 14:56:52 2009  random seeds: 802eda00 a82eb800
Fri Dec 18 14:56:52 2009  factoring 109415934658653105255047002619818153798736323008167668361843119124672522730775157959623979041454769610109415934658653105255047002619818153798736323 (147 digits)
Fri Dec 18 14:56:53 2009  searching for 15-digit factors
Fri Dec 18 14:56:54 2009  commencing number field sieve (147-digit input)
Fri Dec 18 14:56:54 2009  R0: -100000000000000000000000000000
Fri Dec 18 14:56:54 2009  R1:  1
Fri Dec 18 14:56:54 2009  A0: -53
Fri Dec 18 14:56:54 2009  A1:  0
Fri Dec 18 14:56:54 2009  A2:  0
Fri Dec 18 14:56:54 2009  A3:  0
Fri Dec 18 14:56:54 2009  A4:  0
Fri Dec 18 14:56:54 2009  A5:  71000
Fri Dec 18 14:56:54 2009  skew 0.24, size 6.808355e-011, alpha 0.102333, combined = 1.009260e-009
Fri Dec 18 14:56:54 2009  
Fri Dec 18 14:56:54 2009  commencing relation filtering
Fri Dec 18 14:56:54 2009  estimated available RAM is 4096.0 MB
Fri Dec 18 14:56:54 2009  commencing duplicate removal, pass 1
Fri Dec 18 14:57:39 2009  found 1113252 hash collisions in 5720106 relations
Fri Dec 18 14:57:49 2009  added 1576 free relations
Fri Dec 18 14:57:49 2009  commencing duplicate removal, pass 2
Fri Dec 18 14:57:58 2009  found 1143824 duplicates and 4577857 unique relations
Fri Dec 18 14:57:58 2009  memory use: 26.6 MB
Fri Dec 18 14:57:58 2009  reading ideals above 100000
Fri Dec 18 14:57:58 2009  commencing singleton removal, initial pass
Fri Dec 18 14:58:48 2009  memory use: 74.6 MB
Fri Dec 18 14:58:49 2009  reading all ideals from disk
Fri Dec 18 14:58:49 2009  memory use: 151.9 MB
Fri Dec 18 14:58:49 2009  keeping 5077417 ideals with weight <= 200, target excess is 24183
Fri Dec 18 14:58:50 2009  commencing in-memory singleton removal
Fri Dec 18 14:58:50 2009  begin with 4577857 relations and 5077417 unique ideals
Fri Dec 18 14:58:55 2009  reduce to 1888309 relations and 1753238 ideals in 15 passes
Fri Dec 18 14:58:55 2009  max relations containing the same ideal: 113
Fri Dec 18 14:58:56 2009  removing 326014 relations and 272505 ideals in 53509 cliques
Fri Dec 18 14:58:56 2009  commencing in-memory singleton removal
Fri Dec 18 14:58:56 2009  begin with 1562295 relations and 1753238 unique ideals
Fri Dec 18 14:58:58 2009  reduce to 1528026 relations and 1445324 ideals in 7 passes
Fri Dec 18 14:58:58 2009  max relations containing the same ideal: 95
Fri Dec 18 14:58:58 2009  removing 245675 relations and 192166 ideals in 53509 cliques
Fri Dec 18 14:58:59 2009  commencing in-memory singleton removal
Fri Dec 18 14:58:59 2009  begin with 1282351 relations and 1445324 unique ideals
Fri Dec 18 14:58:59 2009  reduce to 1257014 relations and 1226970 ideals in 7 passes
Fri Dec 18 14:58:59 2009  max relations containing the same ideal: 85
Fri Dec 18 14:59:00 2009  relations with 0 large ideals: 577
Fri Dec 18 14:59:00 2009  relations with 1 large ideals: 164
Fri Dec 18 14:59:00 2009  relations with 2 large ideals: 2220
Fri Dec 18 14:59:00 2009  relations with 3 large ideals: 18794
Fri Dec 18 14:59:00 2009  relations with 4 large ideals: 86118
Fri Dec 18 14:59:00 2009  relations with 5 large ideals: 224100
Fri Dec 18 14:59:00 2009  relations with 6 large ideals: 364557
Fri Dec 18 14:59:00 2009  relations with 7+ large ideals: 560484
Fri Dec 18 14:59:00 2009  commencing 2-way merge
Fri Dec 18 14:59:01 2009  reduce to 799629 relation sets and 769585 unique ideals
Fri Dec 18 14:59:01 2009  commencing full merge
Fri Dec 18 14:59:23 2009  memory use: 87.9 MB
Fri Dec 18 14:59:23 2009  found 402653 cycles, need 397785
Fri Dec 18 14:59:23 2009  weight of 397785 cycles is about 28219113 (70.94/cycle)
Fri Dec 18 14:59:23 2009  distribution of cycle lengths:
Fri Dec 18 14:59:23 2009  1 relations: 33585
Fri Dec 18 14:59:23 2009  2 relations: 41457
Fri Dec 18 14:59:23 2009  3 relations: 43885
Fri Dec 18 14:59:23 2009  4 relations: 41345
Fri Dec 18 14:59:23 2009  5 relations: 38853
Fri Dec 18 14:59:23 2009  6 relations: 34460
Fri Dec 18 14:59:23 2009  7 relations: 30544
Fri Dec 18 14:59:23 2009  8 relations: 26123
Fri Dec 18 14:59:23 2009  9 relations: 22197
Fri Dec 18 14:59:23 2009  10+ relations: 85336
Fri Dec 18 14:59:23 2009  heaviest cycle: 23 relations
Fri Dec 18 14:59:23 2009  commencing cycle optimization
Fri Dec 18 14:59:24 2009  start with 2542001 relations
Fri Dec 18 14:59:31 2009  pruned 75418 relations
Fri Dec 18 14:59:31 2009  memory use: 62.5 MB
Fri Dec 18 14:59:31 2009  distribution of cycle lengths:
Fri Dec 18 14:59:31 2009  1 relations: 33585
Fri Dec 18 14:59:31 2009  2 relations: 42324
Fri Dec 18 14:59:31 2009  3 relations: 45477
Fri Dec 18 14:59:31 2009  4 relations: 42542
Fri Dec 18 14:59:31 2009  5 relations: 40031
Fri Dec 18 14:59:31 2009  6 relations: 35283
Fri Dec 18 14:59:31 2009  7 relations: 31283
Fri Dec 18 14:59:31 2009  8 relations: 26361
Fri Dec 18 14:59:31 2009  9 relations: 22186
Fri Dec 18 14:59:31 2009  10+ relations: 78713
Fri Dec 18 14:59:31 2009  heaviest cycle: 23 relations
Fri Dec 18 14:59:32 2009  RelProcTime: 158
Fri Dec 18 14:59:32 2009  
Fri Dec 18 14:59:32 2009  commencing linear algebra
Fri Dec 18 14:59:32 2009  read 397785 cycles
Fri Dec 18 14:59:32 2009  cycles contain 1226470 unique relations
Fri Dec 18 15:00:02 2009  read 1226470 relations
Fri Dec 18 15:00:03 2009  using 20 quadratic characters above 67107968
Fri Dec 18 15:00:10 2009  building initial matrix
Fri Dec 18 15:00:24 2009  memory use: 134.1 MB
Fri Dec 18 15:00:24 2009  read 397785 cycles
Fri Dec 18 15:00:36 2009  matrix is 397608 x 397785 (113.2 MB) with weight 35897815 (90.24/col)
Fri Dec 18 15:00:36 2009  sparse part has weight 26902376 (67.63/col)
Fri Dec 18 15:00:39 2009  filtering completed in 2 passes
Fri Dec 18 15:00:40 2009  matrix is 397460 x 397637 (113.2 MB) with weight 35892088 (90.26/col)
Fri Dec 18 15:00:40 2009  sparse part has weight 26900033 (67.65/col)
Fri Dec 18 15:00:41 2009  read 397637 cycles
Fri Dec 18 15:01:23 2009  matrix is 397460 x 397637 (113.2 MB) with weight 35892088 (90.26/col)
Fri Dec 18 15:01:23 2009  sparse part has weight 26900033 (67.65/col)
Fri Dec 18 15:01:23 2009  saving the first 48 matrix rows for later
Fri Dec 18 15:01:24 2009  matrix is 397412 x 397637 (106.4 MB) with weight 28341079 (71.27/col)
Fri Dec 18 15:01:24 2009  sparse part has weight 25515877 (64.17/col)
Fri Dec 18 15:01:24 2009  matrix includes 64 packed rows
Fri Dec 18 15:01:24 2009  using block size 65536 for processor cache size 6144 kB
Fri Dec 18 15:01:27 2009  commencing Lanczos iteration (6 threads)
Fri Dec 18 15:01:27 2009  memory use: 123.9 MB
Fri Dec 18 15:11:30 2009  lanczos halted after 6286 iterations (dim = 397412)
Fri Dec 18 15:11:31 2009  recovered 37 nontrivial dependencies
Fri Dec 18 15:11:31 2009  BLanczosTime: 719
Fri Dec 18 15:11:31 2009  
Fri Dec 18 15:11:31 2009  commencing square root phase
Fri Dec 18 15:11:31 2009  reading relations for dependency 1
Fri Dec 18 15:11:32 2009  read 198961 cycles
Fri Dec 18 15:11:32 2009  cycles contain 768805 unique relations
Fri Dec 18 15:11:51 2009  read 768805 relations
Fri Dec 18 15:11:55 2009  multiplying 613156 relations
Fri Dec 18 15:13:05 2009  multiply complete, coefficients have about 21.74 million bits
Fri Dec 18 15:13:05 2009  initial square root is modulo 1749431
Fri Dec 18 15:14:40 2009  sqrtTime: 189
Fri Dec 18 15:14:40 2009  prp61 factor: 4623071854794763055981863186790303195310782012328269473558183
Fri Dec 18 15:14:40 2009  prp86 factor: 23667366222130787792273066730206177697377235694310735886378311300462181777177208904581
Fri Dec 18 15:14:40 2009  elapsed time 00:17:48

Dec 18, 2009 (3rd)

By Erik Branger / YAFU, Msieve, GGNFS, Msieve / Dec 18, 2009

(23·10104+7)/3 = 7(6)1039<105> = 31 · 59 · 1259081973381863<16> · C87

C87 = P39 · P48

P39 = 485355677072414738525607759311522393567<39>

P48 = 685928354668540614395845427196619202593904737841<48>

12/17/09 17:20:06 v1.14 @ ERIK-DATOR, starting SIQS on c87: 332919221003316962952714214283774363080007369160491821897306409696378607336009959868847
12/17/09 17:20:06 v1.14 @ ERIK-DATOR, random seeds: 0, 4234451912
12/17/09 17:20:07 v1.14 @ ERIK-DATOR, ==== sieve params ====
12/17/09 17:20:07 v1.14 @ ERIK-DATOR, n = 88 digits, 292 bits
12/17/09 17:20:07 v1.14 @ ERIK-DATOR, factor base: 59299 primes (max prime = 1555291)
12/17/09 17:20:07 v1.14 @ ERIK-DATOR, single large prime cutoff: 171082010 (110 * pmax)
12/17/09 17:20:07 v1.14 @ ERIK-DATOR, double large prime range from 43 to 50 bits
12/17/09 17:20:07 v1.14 @ ERIK-DATOR, double large prime cutoff: 660340325177177
12/17/09 17:20:07 v1.14 @ ERIK-DATOR, allocating 12 large prime slices of factor base
12/17/09 17:20:07 v1.14 @ ERIK-DATOR, buckets hold 1024 elements
12/17/09 17:20:07 v1.14 @ ERIK-DATOR, sieve interval: 18 blocks of size 32768
12/17/09 17:20:07 v1.14 @ ERIK-DATOR, polynomial A has ~ 11 factors
12/17/09 17:20:07 v1.14 @ ERIK-DATOR, using multiplier of 13
12/17/09 17:20:07 v1.14 @ ERIK-DATOR, using small prime variation correction of 21 bits
12/17/09 17:20:07 v1.14 @ ERIK-DATOR, using SSE2 for trial division and x128 sieve scanning
12/17/09 17:20:07 v1.14 @ ERIK-DATOR, trial factoring cutoff at 96 bits
12/17/09 17:20:07 v1.14 @ ERIK-DATOR, ==== sieving started ( 2 threads) ====
12/17/09 17:47:38 v1.14 @ ERIK-DATOR, trial division touched 13557846 sieve locations out of 45420989644800
12/17/09 17:47:38 v1.14 @ ERIK-DATOR, 59732 relations found: 19973 full + 39759 from 551163 partial, using 38503850 polys (547 A polys)
12/17/09 17:47:38 v1.14 @ ERIK-DATOR, on average, sieving found 0.01 rels/poly and 345.78 rels/sec
12/17/09 17:47:38 v1.14 @ ERIK-DATOR, trial division touched 13557846 sieve locations out of 45420989644800
12/17/09 17:47:38 v1.14 @ ERIK-DATOR, ==== post processing stage (msieve-1.38) ====
12/17/09 17:47:39 v1.14 @ ERIK-DATOR, begin with 571136 relations
12/17/09 17:47:40 v1.14 @ ERIK-DATOR, reduce to 122343 relations in 9 passes
12/17/09 17:47:53 v1.14 @ ERIK-DATOR, recovered 122343 relations
12/17/09 17:47:53 v1.14 @ ERIK-DATOR, recovered 98940 polynomials
12/17/09 17:47:53 v1.14 @ ERIK-DATOR, attempting to build 59732 cycles
12/17/09 17:47:53 v1.14 @ ERIK-DATOR, found 59732 cycles in 4 passes
12/17/09 17:47:53 v1.14 @ ERIK-DATOR, distribution of cycle lengths:
12/17/09 17:47:53 v1.14 @ ERIK-DATOR,    length 1 : 19973
12/17/09 17:47:53 v1.14 @ ERIK-DATOR,    length 2 : 16102
12/17/09 17:47:53 v1.14 @ ERIK-DATOR,    length 3 : 11108
12/17/09 17:47:53 v1.14 @ ERIK-DATOR,    length 4 : 6291
12/17/09 17:47:53 v1.14 @ ERIK-DATOR,    length 5 : 3390
12/17/09 17:47:53 v1.14 @ ERIK-DATOR,    length 6 : 1583
12/17/09 17:47:53 v1.14 @ ERIK-DATOR,    length 7 : 755
12/17/09 17:47:53 v1.14 @ ERIK-DATOR,    length 9+: 530
12/17/09 17:47:53 v1.14 @ ERIK-DATOR, largest cycle: 17 relations
12/17/09 17:47:53 v1.14 @ ERIK-DATOR, matrix is 59299 x 59732 (12.1 MB) with weight 2922762 (48.93/col)
12/17/09 17:47:53 v1.14 @ ERIK-DATOR, sparse part has weight 2922762 (48.93/col)
12/17/09 17:47:53 v1.14 @ ERIK-DATOR, filtering completed in 3 passes
12/17/09 17:47:53 v1.14 @ ERIK-DATOR, matrix is 52382 x 52443 (10.8 MB) with weight 2612003 (49.81/col)
12/17/09 17:47:53 v1.14 @ ERIK-DATOR, sparse part has weight 2612003 (49.81/col)
12/17/09 17:47:54 v1.14 @ ERIK-DATOR, saving the first 48 matrix rows for later
12/17/09 17:47:54 v1.14 @ ERIK-DATOR, matrix is 52334 x 52443 (9.0 MB) with weight 2228680 (42.50/col)
12/17/09 17:47:54 v1.14 @ ERIK-DATOR, sparse part has weight 2043916 (38.97/col)
12/17/09 17:47:54 v1.14 @ ERIK-DATOR, matrix includes 64 packed rows
12/17/09 17:47:54 v1.14 @ ERIK-DATOR, using block size 20977 for processor cache size 2048 kB
12/17/09 17:47:54 v1.14 @ ERIK-DATOR, commencing Lanczos iteration
12/17/09 17:47:54 v1.14 @ ERIK-DATOR, memory use: 8.1 MB
12/17/09 17:48:20 v1.14 @ ERIK-DATOR, lanczos halted after 829 iterations (dim = 52333)
12/17/09 17:48:21 v1.14 @ ERIK-DATOR, recovered 19 nontrivial dependencies
12/17/09 17:48:22 v1.14 @ ERIK-DATOR, prp39 = 485355677072414738525607759311522393567
12/17/09 17:48:23 v1.14 @ ERIK-DATOR, prp48 = 685928354668540614395845427196619202593904737841
12/17/09 17:48:23 v1.14 @ ERIK-DATOR, Lanczos elapsed time = 42.5920 seconds.
12/17/09 17:48:23 v1.14 @ ERIK-DATOR, Sqrt elapsed time = 2.5280 seconds.
12/17/09 17:48:23 v1.14 @ ERIK-DATOR, SIQS elapsed time = 1696.8740 seconds.

(23·10108+7)/3 = 7(6)1079<109> = 17 · 2242460041<10> · 62518635437<11> · C88

C88 = P43 · P46

P43 = 2080914820955598617907251122725823898148173<43>

P46 = 1545856417436797515310721619019024547744620877<46>

2/17/09 18:11:31 v1.14 @ ERIK-DATOR, starting SIQS on c88: 3216795530113556618934915882743498388485970004369579124482771856979467751789282255207721
12/17/09 18:11:31 v1.14 @ ERIK-DATOR, random seeds: 0, 4234451912
12/17/09 18:11:31 v1.14 @ ERIK-DATOR, ==== sieve params ====
12/17/09 18:11:31 v1.14 @ ERIK-DATOR, n = 88 digits, 291 bits
12/17/09 18:11:31 v1.14 @ ERIK-DATOR, factor base: 61083 primes (max prime = 1611749)
12/17/09 18:11:31 v1.14 @ ERIK-DATOR, single large prime cutoff: 177292390 (110 * pmax)
12/17/09 18:11:31 v1.14 @ ERIK-DATOR, double large prime range from 43 to 50 bits
12/17/09 18:11:31 v1.14 @ ERIK-DATOR, double large prime cutoff: 704112687915357
12/17/09 18:11:31 v1.14 @ ERIK-DATOR, allocating 12 large prime slices of factor base
12/17/09 18:11:31 v1.14 @ ERIK-DATOR, buckets hold 1024 elements
12/17/09 18:11:31 v1.14 @ ERIK-DATOR, sieve interval: 18 blocks of size 32768
12/17/09 18:11:31 v1.14 @ ERIK-DATOR, polynomial A has ~ 11 factors
12/17/09 18:11:31 v1.14 @ ERIK-DATOR, using multiplier of 1
12/17/09 18:11:31 v1.14 @ ERIK-DATOR, using small prime variation correction of 20 bits
12/17/09 18:11:31 v1.14 @ ERIK-DATOR, using SSE2 for trial division and x128 sieve scanning
12/17/09 18:11:31 v1.14 @ ERIK-DATOR, trial factoring cutoff at 97 bits
12/17/09 18:11:31 v1.14 @ ERIK-DATOR, ==== sieving started ( 2 threads) ====
12/17/09 18:39:06 v1.14 @ ERIK-DATOR, trial division touched 12387346 sieve locations out of 36035391651840
12/17/09 18:39:06 v1.14 @ ERIK-DATOR, 61605 relations found: 20676 full + 40929 from 577615 partial, using 30547580 polys (487 A polys)
12/17/09 18:39:06 v1.14 @ ERIK-DATOR, on average, sieving found 0.02 rels/poly and 361.41 rels/sec
12/17/09 18:39:06 v1.14 @ ERIK-DATOR, trial division touched 12387346 sieve locations out of 36035391651840
12/17/09 18:39:06 v1.14 @ ERIK-DATOR, ==== post processing stage (msieve-1.38) ====
12/17/09 18:39:07 v1.14 @ ERIK-DATOR, begin with 598291 relations
12/17/09 18:39:08 v1.14 @ ERIK-DATOR, reduce to 126888 relations in 9 passes
12/17/09 18:39:20 v1.14 @ ERIK-DATOR, recovered 126888 relations
12/17/09 18:39:20 v1.14 @ ERIK-DATOR, recovered 99447 polynomials
12/17/09 18:39:20 v1.14 @ ERIK-DATOR, attempting to build 61605 cycles
12/17/09 18:39:20 v1.14 @ ERIK-DATOR, found 61605 cycles in 5 passes
12/17/09 18:39:20 v1.14 @ ERIK-DATOR, distribution of cycle lengths:
12/17/09 18:39:20 v1.14 @ ERIK-DATOR,    length 1 : 20676
12/17/09 18:39:20 v1.14 @ ERIK-DATOR,    length 2 : 16707
12/17/09 18:39:20 v1.14 @ ERIK-DATOR,    length 3 : 11348
12/17/09 18:39:20 v1.14 @ ERIK-DATOR,    length 4 : 6423
12/17/09 18:39:20 v1.14 @ ERIK-DATOR,    length 5 : 3462
12/17/09 18:39:20 v1.14 @ ERIK-DATOR,    length 6 : 1681
12/17/09 18:39:20 v1.14 @ ERIK-DATOR,    length 7 : 723
12/17/09 18:39:20 v1.14 @ ERIK-DATOR,    length 9+: 585
12/17/09 18:39:20 v1.14 @ ERIK-DATOR, largest cycle: 15 relations
12/17/09 18:39:21 v1.14 @ ERIK-DATOR, matrix is 61083 x 61605 (12.2 MB) with weight 2961410 (48.07/col)
12/17/09 18:39:21 v1.14 @ ERIK-DATOR, sparse part has weight 2961410 (48.07/col)
12/17/09 18:39:22 v1.14 @ ERIK-DATOR, filtering completed in 4 passes
12/17/09 18:39:22 v1.14 @ ERIK-DATOR, matrix is 53728 x 53792 (10.9 MB) with weight 2631067 (48.91/col)
12/17/09 18:39:22 v1.14 @ ERIK-DATOR, sparse part has weight 2631067 (48.91/col)
12/17/09 18:39:22 v1.14 @ ERIK-DATOR, saving the first 48 matrix rows for later
12/17/09 18:39:22 v1.14 @ ERIK-DATOR, matrix is 53680 x 53792 (9.2 MB) with weight 2274175 (42.28/col)
12/17/09 18:39:22 v1.14 @ ERIK-DATOR, sparse part has weight 2084036 (38.74/col)
12/17/09 18:39:22 v1.14 @ ERIK-DATOR, matrix includes 64 packed rows
12/17/09 18:39:22 v1.14 @ ERIK-DATOR, using block size 21516 for processor cache size 2048 kB
12/17/09 18:39:24 v1.14 @ ERIK-DATOR, commencing Lanczos iteration
12/17/09 18:39:24 v1.14 @ ERIK-DATOR, memory use: 8.3 MB
12/17/09 18:39:47 v1.14 @ ERIK-DATOR, lanczos halted after 851 iterations (dim = 53676)
12/17/09 18:39:48 v1.14 @ ERIK-DATOR, recovered 13 nontrivial dependencies
12/17/09 18:39:49 v1.14 @ ERIK-DATOR, prp43 = 2080914820955598617907251122725823898148173
12/17/09 18:39:53 v1.14 @ ERIK-DATOR, prp46 = 1545856417436797515310721619019024547744620877
12/17/09 18:39:53 v1.14 @ ERIK-DATOR, Lanczos elapsed time = 41.3880 seconds.
12/17/09 18:39:53 v1.14 @ ERIK-DATOR, Sqrt elapsed time = 5.2320 seconds.
12/17/09 18:39:53 v1.14 @ ERIK-DATOR, SIQS elapsed time = 1702.0760 seconds.

(71·10106-53)/9 = 7(8)1053<107> = 7 · 395216035203671863<18> · C89

C89 = P41 · P48

P41 = 53297442354068332478494079591206476081077<41>

P48 = 535028447019444715581687239232391799724047883719<48>

Thu Dec 17 17:30:46 2009  Msieve v. 1.43
Thu Dec 17 17:30:46 2009  random seeds: 71c02d80 12ee9b7a
Thu Dec 17 17:30:46 2009  factoring 28515647812805557665654578219032714046939482963930944496594790241418751535994394512285363 (89 digits)
Thu Dec 17 17:30:49 2009  searching for 15-digit factors
Thu Dec 17 17:30:50 2009  commencing quadratic sieve (89-digit input)
Thu Dec 17 17:30:50 2009  using multiplier of 1
Thu Dec 17 17:30:50 2009  using 64kb Pentium 4 sieve core
Thu Dec 17 17:30:50 2009  sieve interval: 15 blocks of size 65536
Thu Dec 17 17:30:50 2009  processing polynomials in batches of 7
Thu Dec 17 17:30:50 2009  using a sieve bound of 1546823 (58611 primes)
Thu Dec 17 17:30:50 2009  using large prime bound of 123745840 (26 bits)
Thu Dec 17 17:30:50 2009  using double large prime bound of 368599753674560 (42-49 bits)
Thu Dec 17 17:30:50 2009  using trial factoring cutoff of 49 bits
Thu Dec 17 17:30:50 2009  polynomial 'A' values have 11 factors
Thu Dec 17 19:21:41 2009  58786 relations (15786 full + 43000 combined from 626816 partial), need 58707
Thu Dec 17 19:21:43 2009  begin with 642602 relations
Thu Dec 17 19:21:44 2009  reduce to 143411 relations in 10 passes
Thu Dec 17 19:21:44 2009  attempting to read 143411 relations
Thu Dec 17 19:21:49 2009  recovered 143411 relations
Thu Dec 17 19:21:49 2009  recovered 123175 polynomials
Thu Dec 17 19:21:49 2009  attempting to build 58786 cycles
Thu Dec 17 19:21:49 2009  found 58786 cycles in 6 passes
Thu Dec 17 19:21:49 2009  distribution of cycle lengths:
Thu Dec 17 19:21:49 2009     length 1 : 15786
Thu Dec 17 19:21:49 2009     length 2 : 11230
Thu Dec 17 19:21:49 2009     length 3 : 10197
Thu Dec 17 19:21:49 2009     length 4 : 7832
Thu Dec 17 19:21:49 2009     length 5 : 5528
Thu Dec 17 19:21:49 2009     length 6 : 3586
Thu Dec 17 19:21:49 2009     length 7 : 2143
Thu Dec 17 19:21:49 2009     length 9+: 2484
Thu Dec 17 19:21:49 2009  largest cycle: 16 relations
Thu Dec 17 19:21:49 2009  matrix is 58611 x 58786 (14.3 MB) with weight 3525701 (59.98/col)
Thu Dec 17 19:21:49 2009  sparse part has weight 3525701 (59.98/col)
Thu Dec 17 19:21:51 2009  filtering completed in 3 passes
Thu Dec 17 19:21:51 2009  matrix is 54725 x 54789 (13.5 MB) with weight 3315509 (60.51/col)
Thu Dec 17 19:21:51 2009  sparse part has weight 3315509 (60.51/col)
Thu Dec 17 19:21:51 2009  saving the first 48 matrix rows for later
Thu Dec 17 19:21:51 2009  matrix is 54677 x 54789 (9.5 MB) with weight 2710808 (49.48/col)
Thu Dec 17 19:21:51 2009  sparse part has weight 2160529 (39.43/col)
Thu Dec 17 19:21:51 2009  matrix includes 64 packed rows
Thu Dec 17 19:21:51 2009  using block size 21845 for processor cache size 512 kB
Thu Dec 17 19:21:52 2009  commencing Lanczos iteration
Thu Dec 17 19:21:52 2009  memory use: 9.2 MB
Thu Dec 17 19:22:19 2009  lanczos halted after 866 iterations (dim = 54674)
Thu Dec 17 19:22:20 2009  recovered 15 nontrivial dependencies
Thu Dec 17 19:22:20 2009  prp41 factor: 53297442354068332478494079591206476081077
Thu Dec 17 19:22:20 2009  prp48 factor: 535028447019444715581687239232391799724047883719
Thu Dec 17 19:22:20 2009  elapsed time 01:51:34

(23·10136+7)/3 = 7(6)1359<137> = 749773 · 4153301 · 14435189 · 32457907 · 188176079764936119047<21> · C90

C90 = P36 · P55

P36 = 181640374412425783567041523872410101<36>

P55 = 1537317554685431513606392745565325440665719944957889313<55>

12/17/09 19:00:07 v1.14 @ ERIK-DATOR, starting SIQS on c90: 279238936223856629565358566671998470909289797293239621891946305210805050327370355301150613
12/17/09 19:00:07 v1.14 @ ERIK-DATOR, random seeds: 0, 4234451912
12/17/09 19:00:07 v1.14 @ ERIK-DATOR, ==== sieve params ====
12/17/09 19:00:07 v1.14 @ ERIK-DATOR, n = 91 digits, 300 bits
12/17/09 19:00:07 v1.14 @ ERIK-DATOR, factor base: 65244 primes (max prime = 1727969)
12/17/09 19:00:07 v1.14 @ ERIK-DATOR, single large prime cutoff: 190076590 (110 * pmax)
12/17/09 19:00:07 v1.14 @ ERIK-DATOR, double large prime range from 43 to 50 bits
12/17/09 19:00:07 v1.14 @ ERIK-DATOR, double large prime cutoff: 798126145132792
12/17/09 19:00:07 v1.14 @ ERIK-DATOR, allocating 13 large prime slices of factor base
12/17/09 19:00:07 v1.14 @ ERIK-DATOR, buckets hold 1024 elements
12/17/09 19:00:07 v1.14 @ ERIK-DATOR, sieve interval: 18 blocks of size 32768
12/17/09 19:00:07 v1.14 @ ERIK-DATOR, polynomial A has ~ 12 factors
12/17/09 19:00:07 v1.14 @ ERIK-DATOR, using multiplier of 5
12/17/09 19:00:07 v1.14 @ ERIK-DATOR, using small prime variation correction of 19 bits
12/17/09 19:00:07 v1.14 @ ERIK-DATOR, using SSE2 for trial division and x128 sieve scanning
12/17/09 19:00:07 v1.14 @ ERIK-DATOR, trial factoring cutoff at 97 bits
12/17/09 19:00:07 v1.14 @ ERIK-DATOR, ==== sieving started ( 2 threads) ====
12/17/09 20:01:35 v1.14 @ ERIK-DATOR, trial division touched 24313873 sieve locations out of 127655263862784
12/17/09 20:01:35 v1.14 @ ERIK-DATOR, 65511 relations found: 18382 full + 47129 from 776551 partial, using 108214708 polys (901 A polys)
12/17/09 20:01:35 v1.14 @ ERIK-DATOR, on average, sieving found 0.01 rels/poly and 215.54 rels/sec
12/17/09 20:01:35 v1.14 @ ERIK-DATOR, trial division touched 24313873 sieve locations out of 127655263862784
12/17/09 20:01:35 v1.14 @ ERIK-DATOR, ==== post processing stage (msieve-1.38) ====
12/17/09 20:01:37 v1.14 @ ERIK-DATOR, begin with 794933 relations
12/17/09 20:01:37 v1.14 @ ERIK-DATOR, reduce to 155460 relations in 10 passes
12/17/09 20:02:01 v1.14 @ ERIK-DATOR, recovered 155460 relations
12/17/09 20:02:01 v1.14 @ ERIK-DATOR, recovered 132922 polynomials
12/17/09 20:02:01 v1.14 @ ERIK-DATOR, attempting to build 65511 cycles
12/17/09 20:02:01 v1.14 @ ERIK-DATOR, found 65511 cycles in 5 passes
12/17/09 20:02:01 v1.14 @ ERIK-DATOR, distribution of cycle lengths:
12/17/09 20:02:01 v1.14 @ ERIK-DATOR,    length 1 : 18382
12/17/09 20:02:01 v1.14 @ ERIK-DATOR,    length 2 : 13580
12/17/09 20:02:01 v1.14 @ ERIK-DATOR,    length 3 : 11794
12/17/09 20:02:01 v1.14 @ ERIK-DATOR,    length 4 : 8587
12/17/09 20:02:01 v1.14 @ ERIK-DATOR,    length 5 : 5541
12/17/09 20:02:01 v1.14 @ ERIK-DATOR,    length 6 : 3548
12/17/09 20:02:01 v1.14 @ ERIK-DATOR,    length 7 : 1864
12/17/09 20:02:01 v1.14 @ ERIK-DATOR,    length 9+: 2215
12/17/09 20:02:01 v1.14 @ ERIK-DATOR, largest cycle: 17 relations
12/17/09 20:02:02 v1.14 @ ERIK-DATOR, matrix is 65244 x 65511 (15.5 MB) with weight 3798781 (57.99/col)
12/17/09 20:02:02 v1.14 @ ERIK-DATOR, sparse part has weight 3798781 (57.99/col)
12/17/09 20:02:02 v1.14 @ ERIK-DATOR, filtering completed in 3 passes
12/17/09 20:02:02 v1.14 @ ERIK-DATOR, matrix is 60588 x 60650 (14.5 MB) with weight 3552557 (58.57/col)
12/17/09 20:02:02 v1.14 @ ERIK-DATOR, sparse part has weight 3552557 (58.57/col)
12/17/09 20:02:03 v1.14 @ ERIK-DATOR, saving the first 48 matrix rows for later
12/17/09 20:02:04 v1.14 @ ERIK-DATOR, matrix is 60540 x 60650 (12.5 MB) with weight 3129931 (51.61/col)
12/17/09 20:02:04 v1.14 @ ERIK-DATOR, sparse part has weight 2911807 (48.01/col)
12/17/09 20:02:04 v1.14 @ ERIK-DATOR, matrix includes 64 packed rows
12/17/09 20:02:04 v1.14 @ ERIK-DATOR, using block size 24260 for processor cache size 2048 kB
12/17/09 20:02:05 v1.14 @ ERIK-DATOR, commencing Lanczos iteration
12/17/09 20:02:05 v1.14 @ ERIK-DATOR, memory use: 10.7 MB
12/17/09 20:02:54 v1.14 @ ERIK-DATOR, lanczos halted after 959 iterations (dim = 60538)
12/17/09 20:02:54 v1.14 @ ERIK-DATOR, recovered 17 nontrivial dependencies
12/17/09 20:02:57 v1.14 @ ERIK-DATOR, prp55 = 1537317554685431513606392745565325440665719944957889313
12/17/09 20:03:00 v1.14 @ ERIK-DATOR, prp36 = 181640374412425783567041523872410101
12/17/09 20:03:00 v1.14 @ ERIK-DATOR, Lanczos elapsed time = 79.7520 seconds.
12/17/09 20:03:00 v1.14 @ ERIK-DATOR, Sqrt elapsed time = 5.3220 seconds.
12/17/09 20:03:00 v1.14 @ ERIK-DATOR, SIQS elapsed time = 3773.2500 seconds.

(23·10139+7)/3 = 7(6)1389<140> = 2131 · 16091 · 9230651 · 17938289 · 371558381039545550824559959<27> · C92

C92 = P42 · P50

P42 = 775231789371928457084912814154799110990573<42>

P50 = 46877896298271797921498266587994595101347397988693<50>

Number: 76669_139
N=36341235429300947152532358431311731673430180271977943420379116126867369874894462531083591089
  ( 92 digits)
Divisors found:
 r1=775231789371928457084912814154799110990573 (pp42)
 r2=46877896298271797921498266587994595101347397988693 (pp50)
Version: Msieve v. 1.43
Total time: 2.11 hours.
Scaled time: 1.64 units (timescale=0.777).
Factorization parameters were as follows:
n: 36341235429300947152532358431311731673430180271977943420379116126867369874894462531083591089
# Murphy_E = 3.229128e-008
skew: 555236.39
Y0: -11092746106454675872026
Y1: 708120481289
c0: 29526976497269909000205785
c1: -682708658988982613014
c2: 439706832670957
c3: 2783592832
c4: 2400
type: gnfs
Factor base limits: 700000/700000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 44/44
Sieved algebraic special-q in [350000, 790001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 105343 x 105568
Total sieving time: 2.03 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.04 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
gnfs,91,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,700000,700000,25,25,44,44,2.4,2.4,40000
total time: 2.11 hours.
 --------- CPU info (if available) ----------

(71·10143-53)/9 = 7(8)1423<144> = 3 · 17 · 6301 · 153929 · 419651 · 35797100488701217<17> · 6937361701708324267103<22> · C90

C90 = P33 · P57

P33 = 153780535368606699808334225196851<33>

P57 = 995139386383652479833893377455100373087666602506469998827<57>

Thu Dec 17 19:27:30 2009  Msieve v. 1.43
Thu Dec 17 19:27:30 2009  random seeds: 914d6de8 98ee6a6a
Thu Dec 17 19:27:30 2009  factoring 153033067604464838667101747728037243338673247578173298965964268593285084430575079814093777 (90 digits)
Thu Dec 17 19:27:31 2009  searching for 15-digit factors
Thu Dec 17 19:27:32 2009  commencing quadratic sieve (90-digit input)
Thu Dec 17 19:27:32 2009  using multiplier of 73
Thu Dec 17 19:27:32 2009  using 64kb Pentium 4 sieve core
Thu Dec 17 19:27:32 2009  sieve interval: 18 blocks of size 65536
Thu Dec 17 19:27:32 2009  processing polynomials in batches of 6
Thu Dec 17 19:27:32 2009  using a sieve bound of 1575281 (59405 primes)
Thu Dec 17 19:27:32 2009  using large prime bound of 126022480 (26 bits)
Thu Dec 17 19:27:32 2009  using double large prime bound of 380896014563600 (42-49 bits)
Thu Dec 17 19:27:32 2009  using trial factoring cutoff of 49 bits
Thu Dec 17 19:27:32 2009  polynomial 'A' values have 12 factors
Thu Dec 17 21:28:20 2009  60034 relations (16546 full + 43488 combined from 628080 partial), need 59501
Thu Dec 17 21:28:22 2009  begin with 644626 relations
Thu Dec 17 21:28:23 2009  reduce to 144631 relations in 10 passes
Thu Dec 17 21:28:23 2009  attempting to read 144631 relations
Thu Dec 17 21:28:28 2009  recovered 144631 relations
Thu Dec 17 21:28:28 2009  recovered 123342 polynomials
Thu Dec 17 21:28:28 2009  attempting to build 60034 cycles
Thu Dec 17 21:28:28 2009  found 60033 cycles in 5 passes
Thu Dec 17 21:28:28 2009  distribution of cycle lengths:
Thu Dec 17 21:28:28 2009     length 1 : 16546
Thu Dec 17 21:28:28 2009     length 2 : 11699
Thu Dec 17 21:28:28 2009     length 3 : 10471
Thu Dec 17 21:28:28 2009     length 4 : 7896
Thu Dec 17 21:28:28 2009     length 5 : 5549
Thu Dec 17 21:28:28 2009     length 6 : 3432
Thu Dec 17 21:28:28 2009     length 7 : 2116
Thu Dec 17 21:28:28 2009     length 9+: 2324
Thu Dec 17 21:28:28 2009  largest cycle: 18 relations
Thu Dec 17 21:28:29 2009  matrix is 59405 x 60033 (14.5 MB) with weight 3561514 (59.33/col)
Thu Dec 17 21:28:29 2009  sparse part has weight 3561514 (59.33/col)
Thu Dec 17 21:28:30 2009  filtering completed in 3 passes
Thu Dec 17 21:28:30 2009  matrix is 55134 x 55198 (13.3 MB) with weight 3276690 (59.36/col)
Thu Dec 17 21:28:30 2009  sparse part has weight 3276690 (59.36/col)
Thu Dec 17 21:28:30 2009  saving the first 48 matrix rows for later
Thu Dec 17 21:28:30 2009  matrix is 55086 x 55198 (8.4 MB) with weight 2562204 (46.42/col)
Thu Dec 17 21:28:30 2009  sparse part has weight 1871413 (33.90/col)
Thu Dec 17 21:28:30 2009  matrix includes 64 packed rows
Thu Dec 17 21:28:30 2009  using block size 21845 for processor cache size 512 kB
Thu Dec 17 21:28:31 2009  commencing Lanczos iteration
Thu Dec 17 21:28:31 2009  memory use: 8.6 MB
Thu Dec 17 21:28:57 2009  lanczos halted after 872 iterations (dim = 55084)
Thu Dec 17 21:28:57 2009  recovered 17 nontrivial dependencies
Thu Dec 17 21:28:58 2009  prp33 factor: 153780535368606699808334225196851
Thu Dec 17 21:28:58 2009  prp57 factor: 995139386383652479833893377455100373087666602506469998827
Thu Dec 17 21:28:58 2009  elapsed time 02:01:28

(71·10146-53)/9 = 7(8)1453<147> = 32 · 155009 · 767549 · 548065700787859763<18> · 28313464398271296426643<23> · C95

C95 = P32 · P63

P32 = 90043846252206546356078001486191<32>

P63 = 527267048811299110914254879692935600567639860720341154915317553<63>

Number: 78883_146
N=47477153077019301591159437118623653232470390621832433349503030875070890539062923001884709410623
  ( 95 digits)
Divisors found:
 r1=90043846252206546356078001486191 (pp32)
 r2=527267048811299110914254879692935600567639860720341154915317553 (pp63)
Version: Msieve v. 1.43
Total time: 3.39 hours.
Scaled time: 3.11 units (timescale=0.917).
Factorization parameters were as follows:
n: 47477153077019301591159437118623653232470390621832433349503030875070890539062923001884709410623
# Murphy_E = 2.199459e-008
skew: 821603.19
Y0: -59297521755283477345156
Y1: 2701252515379
c0: -412061918369381128218326745
c1: 525673834041331095722
c2: -1165956053512201
c3: 1411579704
c4: 3840
type: gnfs
Factor base limits: 1200000/1200000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 45/45
Sieved algebraic special-q in [600000, 840001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 141600 x 141825
Total sieving time: 3.14 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.11 hours.
Time per square root: 0.11 hours.
Prototype def-par.txt line would be:
gnfs,94,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000
total time: 3.39 hours.
 --------- CPU info (if available) ----------

Dec 18, 2009 (2nd)

By Markus Tervooren / Msieve / Dec 18, 2009

(55·10201+53)/9 = 6(1)2007<202> = 3 · 29 · 183770345533477853<18> · 9930904669574722752815513<25> · 3182926213879566929452257852809267<34> · C125

C125 = P37 · P43 · P46

P37 = 1013944414775298531887586674648494811<37>

P43 = 2482825775424863871031919439485952104015647<43>

P46 = 4803410675320021647238892316395541852769020721<46>

N=12092333369161073721453095497369483934473764519498218736238482790936465340160389049119166372609930051353777385455408331203957
  ( 125 digits)
Divisors found:
 r1=1013944414775298531887586674648494811 (pp37)
 r2=2482825775424863871031919439485952104015647 (pp43)
 r3=4803410675320021647238892316395541852769020721 (pp46)
Version: Msieve-1.39
Total time: 41.67 hours.
Scaled time: 0.00 units (timescale=0.000).
Factorization parameters were as follows:
n: 12092333369161073721453095497369483934473764519498218736238482790936465340160389049119166372609930051353777385455408331203957
Y0: -1274220013688769562210121
Y1: 23595695924081
c0: -4189165970554800237272722358592
c1: 28436094983909550967213948
c2: 554318636804277421328
c3: -207429849887747
c4: -6490537500
c5: 3600
skew: 301287.21
type: gnfs
# selected mechanically
rlim: 6800000
alim: 6800000
lpbr: 29
lpba: 29
mfbr: 55
mfba: 55
rlambda: 2.6
alambda: 2.6

Factor base limits: 6800000/6800000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 55/55
Sieved algebraic special-q in [3400000, 6100001)
Primes: , ,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 953591 x 953835
Total sieving time: 39.29 hours.
Total relation processing time: 0.42 hours.
Matrix solve time: 1.74 hours.
Time per square root: 0.22 hours.
Prototype def-par.txt line would be:
gnfs,124,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,6800000,6800000,29,29,55,55,2.6,2.6,300000
total time: 41.67 hours.
 --------- CPU info (if available) ----------
[    0.144009] CPU0: Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
[    0.236014] CPU1: Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
[    0.332940] CPU2: Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
[    0.432541] CPU3: Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
[    0.004000] Memory: 8197988k/10485760k available (2226k kernel code, 189848k reserved, 1082k data, 392k init)
[    0.083990] Calibrating delay using timer specific routine.. 5337.16 BogoMIPS (lpj=10674326)
[    0.156009] Calibrating delay using timer specific routine.. 5333.34 BogoMIPS (lpj=10666681)
[    0.256016] Calibrating delay using timer specific routine.. 5333.37 BogoMIPS (lpj=10666743)
[    0.352020] Calibrating delay using timer specific routine.. 5333.36 BogoMIPS (lpj=10666726)
[    0.440025] Total of 4 processors activated (21337.23 BogoMIPS).

Dec 18, 2009

Factorizations of 766...669 and Factorizations of 788...883 have been extended up to n=150. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.

Dec 17, 2009 (6th)

By Wataru Sakai / GMP-ECM 6.2.1 / Dec 17, 2009

(29·10202+43)/9 = 3(2)2017<203> = 13 · 37 · 67 · 281 · C196

C196 = P43 · P153

P43 = 3674105515071385923953475204266498683006339<43>

P153 = 968451029165192787220172854208092971645574837169322265433382588380652505264113029568531164766001228858681871429432540061664423654443730298774148095125139<153>

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1735727886
Step 1 took 75389ms
Step 2 took 22706ms
********** Factor found in step 2: 3674105515071385923953475204266498683006339
Found probable prime factor of 43 digits: 3674105515071385923953475204266498683006339
Probable prime cofactor 968451029165192787220172854208092971645574837169322265433382588380652505264113029568531164766001228858681871429432540061664423654443730298774148095125139 has 153 digits

(58·10197-31)/9 = 6(4)1961<198> = 7 · 701359 · C192

C192 = P34 · P158

P34 = 5096513647532794501083118207545671<34>

P158 = 25755730864699073082591851139288692898367531568560403723880529183734319522625123361538086832200835064883598563324719178361854842928202684987796418138149494567<158>

Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3484559451
Step 1 took 23184ms
Step 2 took 9180ms
********** Factor found in step 2: 5096513647532794501083118207545671
Found probable prime factor of 34 digits: 5096513647532794501083118207545671
Probable prime cofactor 25755730864699073082591851139288692898367531568560403723880529183734319522625123361538086832200835064883598563324719178361854842928202684987796418138149494567 has 158 digits

Dec 17, 2009 (5th)

By Robert Backstrom / GGNFS, GMP-ECM / Dec 17, 2009

(23·10145-11)/3 = 7(6)1443<146> = 73 · 3038768926042968579379669855909439<34> · C111

C111 = P48 · P63

P48 = 845283140698843865336212986554806013518603912649<48>

P63 = 408868673677092400223227385697963975271696927286475015890283721<63>

Number: n
N=345609796619143374458216318336570804191938122766182957592489445289969179338203424935277656426699958813310686929
  ( 111 digits)
SNFS difficulty: 146 digits.
Divisors found:
 r1=845283140698843865336212986554806013518603912649 (pp48)
 r2=408868673677092400223227385697963975271696927286475015890283721 (pp63)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 8.21 hours.
Scaled time: 14.97 units (timescale=1.823).
Factorization parameters were as follows:
name: KA_7_6_144_3
n: 345609796619143374458216318336570804191938122766182957592489445289969179338203424935277656426699958813310686929
m: 100000000000000000000000000000
deg: 5
c5: 23
c0: -11
skew: 0.86
type: snfs
lss: 1
rlim: 1930000
alim: 1930000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.3
alambda: 2.3
qintsize: 50000
Factor base limits: 1930000/1930000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved rational special-q in [965000, 2265001)
Primes: RFBsize:144125, AFBsize:143033, largePrimes:3989739 encountered
Relations: rels:3985007, finalFF:336507
Max relations in full relation-set: 48
Initial matrix: 287225 x 336507 with sparse part having weight 43143938.
Pruned matrix : 272402 x 273902 with weight 29441363.
Total sieving time: 7.15 hours.
Total relation processing time: 0.08 hours.
Matrix solve time: 0.86 hours.
Total square root time: 0.13 hours, sqrts: 3.
Prototype def-par.txt line would be:
snfs,146,5,0,0,0,0,0,0,0,0,1930000,1930000,26,26,49,49,2.3,2.3,100000
total time: 8.21 hours.
 --------- CPU info (if available) ----------

(23·10145-17)/3 = 7(6)1441<146> = 43 · 1398251 · 1256710869813684340075674424685443<34> · C106

C106 = P36 · P70

P36 = 352755190695254784102272351641732783<36>

P70 = 2876366371462316267559577405110123487885940029900306706265095862354433<70>

GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM]
Input number is 1014653167874607433393138777593797766888773887153826194843762435948768275207619865105895761692478221477039 (106 digits)
Using B1=6248000, B2=14271184210, polynomial Dickson(12), sigma=1751604143
Step 1 took 43078ms
Step 2 took 20937ms
********** Factor found in step 2: 352755190695254784102272351641732783
Found probable prime factor of 36 digits: 352755190695254784102272351641732783
Probable prime cofactor 2876366371462316267559577405110123487885940029900306706265095862354433 has 70 digits

Dec 17, 2009 (4th)

By Lionel Debroux / ggnfs-lasieve4I14e on the RSALS grid + msieve / Dec 17, 2009

(44·10203-17)/9 = 4(8)2027<204> = 7 · 163 · C201

C201 = P47 · P70 · P85

P47 = 25630033563617031385847435547249273144166992113<47>

P70 = 4318542942595009757820233830306013464597471777655328897723327414407359<70>

P85 = 3871133112888410851242347512433614554822820895229540799493946065464240230365835632021<85>

Msieve v. 1.44
Wed Dec 16 08:27:43 2009
random seeds: b663c5c9 2a7cea5e
factoring 428474048105949946440743986756256694907001655467913136624793066510857921900866686142759762391664232155029701041970980621287369753627422339078780796572207615152400428474048105949946440743986756256694907 (201 digits)
searching for 15-digit factors
commencing number field sieve (201-digit input)
R0: -100000000000000000000000000000000000000000
R1:  1
A0: -425
A1:  0
A2:  0
A3:  0
A4:  0
A5:  11
skew 2.08, size 2.533068e-14, alpha 0.591541, combined = 8.538608e-12

commencing linear algebra
read 2577934 cycles
cycles contain 7049519 unique relations
read 7049519 relations
using 20 quadratic characters above 536869920
building initial matrix
memory use: 942.8 MB
read 2577934 cycles
matrix is 2577640 x 2577934 (760.6 MB) with weight 223821725 (86.82/col)
sparse part has weight 171040876 (66.35/col)
filtering completed in 3 passes
matrix is 2573115 x 2573315 (759.9 MB) with weight 223594494 (86.89/col)
sparse part has weight 170906338 (66.41/col)
read 2573315 cycles
matrix is 2573115 x 2573315 (759.9 MB) with weight 223594494 (86.89/col)
sparse part has weight 170906338 (66.41/col)
saving the first 48 matrix rows for later
matrix is 2573067 x 2573315 (719.2 MB) with weight 176770577 (68.69/col)
sparse part has weight 162792089 (63.26/col)
matrix includes 64 packed rows
using block size 65536 for processor cache size 4096 kB
commencing Lanczos iteration (2 threads)
memory use: 735.8 MB
linear algebra at 0.0%, ETA 22h41m73315 dimensions (0.0%, ETA 22h41m)
linear algebra completed 2573030 of 2573315 dimensions (100.0%, ETA 0h 0m)
lanczos halted after 40690 iterations (dim = 2573066)
recovered 37 nontrivial dependencies
BLanczosTime: 80905

commencing square root phase
reading relations for dependency 1
read 1286702 cycles
cycles contain 3522180 unique relations
read 3522180 relations
multiplying 3522180 relations
multiply complete, coefficients have about 98.19 million bits
initial square root is modulo 11164921
reading relations for dependency 2
read 1286513 cycles
cycles contain 3523688 unique relations
read 3523688 relations
multiplying 3523688 relations
multiply complete, coefficients have about 98.23 million bits
initial square root is modulo 11235751
sqrtTime: 3833
prp47 factor: 25630033563617031385847435547249273144166992113
prp70 factor: 4318542942595009757820233830306013464597471777655328897723327414407359
prp85 factor: 3871133112888410851242347512433614554822820895229540799493946065464240230365835632021
elapsed time 23:32:21

(47·10203+43)/9 = 5(2)2027<204> = 5113 · C201

C201 = P51 · P74 · P77

P51 = 181487491329456893529699014005976048522291563291883<51>

P74 = 30049111668022269060293639919135523844585639431557126784120834903582570631<74>

P77 = 18728423468739666763833572416758539431513609604685681999119733206665398554423<77>

Tue Dec 15 17:32:50 2009  Msieve v. 1.43
Tue Dec 15 17:32:50 2009  random seeds: c7eef5b7 40a71adb
Tue Dec 15 17:32:50 2009  factoring
102136167068692005128539452810917704326661885824803876828128735032705304561357759089032314144772584045026837907729752048156116217919464545711367538083751656996327444205402351304952517547862746376339179
(201 digits)
Tue Dec 15 17:32:52 2009  no P-1/P+1/ECM available, skipping
Tue Dec 15 17:32:52 2009  commencing number field sieve (201-digit input)
Tue Dec 15 17:32:52 2009  R0: -50000000000000000000000000000000000000000
Tue Dec 15 17:32:52 2009  R1:  1
Tue Dec 15 17:32:52 2009  A0:  1075
Tue Dec 15 17:32:52 2009  A1:  0
Tue Dec 15 17:32:52 2009  A2:  0
Tue Dec 15 17:32:52 2009  A3:  0
Tue Dec 15 17:32:52 2009  A4:  0
Tue Dec 15 17:32:52 2009  A5:  376
Tue Dec 15 17:32:52 2009  skew 1.23, size 1.228381e-14, alpha
0.965678, combined = 5.741146e-12
Tue Dec 15 17:32:52 2009
Tue Dec 15 17:32:52 2009  commencing linear algebra
Tue Dec 15 17:32:53 2009  read 3494552 cycles
Tue Dec 15 17:33:02 2009  cycles contain 10342707 unique relations
Tue Dec 15 17:34:42 2009  read 10342707 relations
Tue Dec 15 17:35:03 2009  using 20 quadratic characters above 536870684
Tue Dec 15 17:36:16 2009  building initial matrix
Tue Dec 15 17:39:41 2009  memory use: 1331.6 MB
Tue Dec 15 17:39:44 2009  read 3494552 cycles
Tue Dec 15 17:39:49 2009  matrix is 3494250 x 3494552 (1047.8 MB) with
weight 306605268 (87.74/col)
Tue Dec 15 17:39:49 2009  sparse part has weight 236229949 (67.60/col)
Tue Dec 15 17:41:36 2009  filtering completed in 3 passes
Tue Dec 15 17:41:38 2009  matrix is 3483497 x 3483697 (1046.3 MB) with
weight 306109139 (87.87/col)
Tue Dec 15 17:41:38 2009  sparse part has weight 235953625 (67.73/col)
Tue Dec 15 17:42:10 2009  read 3483697 cycles
Tue Dec 15 17:42:14 2009  matrix is 3483497 x 3483697 (1046.3 MB) with
weight 306109139 (87.87/col)
Tue Dec 15 17:42:14 2009  sparse part has weight 235953625 (67.73/col)
Tue Dec 15 17:42:14 2009  saving the first 48 matrix rows for later
Tue Dec 15 17:42:17 2009  matrix is 3483449 x 3483697 (993.8 MB) with
weight 243574570 (69.92/col)
Tue Dec 15 17:42:17 2009  sparse part has weight 225668811 (64.78/col)
Tue Dec 15 17:42:17 2009  matrix includes 64 packed rows
Tue Dec 15 17:42:17 2009  using block size 65536 for processor cache
size 6144 kB
Tue Dec 15 17:42:37 2009  commencing Lanczos iteration (5 threads)
Tue Dec 15 17:42:37 2009  memory use: 1100.4 MB
Tue Dec 15 17:42:57 2009  linear algebra at 0.0%, ETA 22h53m
Wed Dec 16 16:00:00 2009  lanczos halted after 55088 iterations (dim = 3483449)
Wed Dec 16 16:00:09 2009  recovered 39 nontrivial dependencies
Wed Dec 16 16:00:09 2009  BLanczosTime: 80837
Wed Dec 16 16:00:09 2009  elapsed time 22:27:19
Wed Dec 16 16:52:37 2009
Wed Dec 16 16:52:37 2009
Wed Dec 16 16:52:37 2009  Msieve v. 1.43
Wed Dec 16 16:52:37 2009  random seeds: 0a15e1d6 f5d23238
Wed Dec 16 16:52:37 2009  factoring
102136167068692005128539452810917704326661885824803876828128735032705304561357759089032314144772584045026837907729752048156116217919464545711367538083751656996327444205402351304952517547862746376339179
(201 digits)
Wed Dec 16 16:52:40 2009  no P-1/P+1/ECM available, skipping
Wed Dec 16 16:52:40 2009  commencing number field sieve (201-digit input)
Wed Dec 16 16:52:40 2009  R0: -50000000000000000000000000000000000000000
Wed Dec 16 16:52:40 2009  R1:  1
Wed Dec 16 16:52:40 2009  A0:  1075
Wed Dec 16 16:52:40 2009  A1:  0
Wed Dec 16 16:52:40 2009  A2:  0
Wed Dec 16 16:52:40 2009  A3:  0
Wed Dec 16 16:52:40 2009  A4:  0
Wed Dec 16 16:52:40 2009  A5:  376
Wed Dec 16 16:52:40 2009  skew 1.23, size 1.228381e-14, alpha
0.965678, combined = 5.741146e-12
Wed Dec 16 16:52:40 2009
Wed Dec 16 16:52:40 2009  commencing square root phase
Wed Dec 16 16:52:40 2009  reading relations for dependency 1
Wed Dec 16 16:52:41 2009  read 1742548 cycles
Wed Dec 16 16:52:45 2009  cycles contain 5168802 unique relations
Wed Dec 16 16:53:42 2009  read 5168802 relations
Wed Dec 16 16:54:22 2009  multiplying 5168802 relations
Wed Dec 16 17:00:50 2009  multiply complete, coefficients have about
169.25 million bits
Wed Dec 16 17:00:51 2009  initial square root is modulo 1186001
Wed Dec 16 17:15:18 2009  reading relations for dependency 2
Wed Dec 16 17:15:19 2009  read 1741131 cycles
Wed Dec 16 17:15:24 2009  cycles contain 5164836 unique relations
Wed Dec 16 17:16:20 2009  read 5164836 relations
Wed Dec 16 17:17:01 2009  multiplying 5164836 relations
Wed Dec 16 17:23:31 2009  multiply complete, coefficients have about
169.12 million bits
Wed Dec 16 17:23:33 2009  initial square root is modulo 1173121
Wed Dec 16 17:38:01 2009  reading relations for dependency 3
Wed Dec 16 17:38:01 2009  read 1741280 cycles
Wed Dec 16 17:38:06 2009  cycles contain 5166270 unique relations
Wed Dec 16 17:39:02 2009  read 5166270 relations
Wed Dec 16 17:39:43 2009  multiplying 5166270 relations
Wed Dec 16 17:46:10 2009  multiply complete, coefficients have about
169.17 million bits
Wed Dec 16 17:46:12 2009  initial square root is modulo 1177921
Wed Dec 16 18:00:39 2009  sqrtTime: 4079
Wed Dec 16 18:00:40 2009  prp51 factor:
181487491329456893529699014005976048522291563291883
Wed Dec 16 18:00:40 2009  prp74 factor:
30049111668022269060293639919135523844585639431557126784120834903582570631
Wed Dec 16 18:00:40 2009  prp77 factor:
18728423468739666763833572416758539431513609604685681999119733206665398554423
Wed Dec 16 18:00:40 2009  elapsed time 01:08:03

Dec 17, 2009 (3rd)

By Sinkiti Sibata / Msieve / Dec 17, 2009

(23·10128-17)/3 = 7(6)1271<129> = 439 · 33359 · C122

C122 = P30 · P92

P30 = 796330877846429536306828912489<30>

P92 = 65740875249676750527318907470608197372316851127687878872318015560789092527574729697323746949<92>

Number: 76661_128
N=52351488897967699267919055402510909424344621384131030040809351286980551171497718965963406354783354402531463074116301746061
  ( 122 digits)
SNFS difficulty: 129 digits.
Divisors found:
 r1=796330877846429536306828912489 (pp30)
 r2=65740875249676750527318907470608197372316851127687878872318015560789092527574729697323746949 (pp92)
Version: Msieve v. 1.42
Total time: 0.19 hours.
Scaled time: 0.15 units (timescale=0.796).
Factorization parameters were as follows:
name: 76661_128
n: 52351488897967699267919055402510909424344621384131030040809351286980551171497718965963406354783354402531463074116301746061
m: 10000000000000000000000000
deg: 5
c5: 23000
c0: -17
skew: 0.24
type: snfs
lss: 1
rlim: 1000000
alim: 1000000
lpbr: 26
lpba: 26
mfbr: 47
mfba: 47
rlambda: 2.3
alambda: 2.3
Factor base limits: 1000000/1000000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved rational special-q in [500000, 950001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 169338 x 169580
Total sieving time: 0.00 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.08 hours.
Time per square root: 0.09 hours.
Prototype def-par.txt line would be:
snfs,129.000,5,0,0,0,0,0,0,0,0,1000000,1000000,26,26,47,47,2.3,2.3,50000
total time: 0.19 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
CPU1: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.33 BogoMIPS (lpj=1860666)
Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860571)
Total of 2 processors activated (7442.47 BogoMIPS).

Total time: 2 hours 24 min.

(68·10149-23)/9 = 7(5)1483<150> = 3 · 16553 · 50929 · C141

C141 = P59 · P83

P59 = 17113117275140880783030116386021552160919406381244764651037<59>

P83 = 17457182741759537230668434734479558816443041150505523061434504635431445561687384479<83>

Number: 75553_149
N=298746815553296382052316567908906005368897905967537402451862449042826513609541950162254094199336945246739671451464771736035835617887685054723
  ( 141 digits)
SNFS difficulty: 150 digits.
Divisors found:
 r1=17113117275140880783030116386021552160919406381244764651037 (pp59)
 r2=17457182741759537230668434734479558816443041150505523061434504635431445561687384479 (pp83)
Version: Msieve-1.40
Total time: 22.23 hours.
Scaled time: 45.60 units (timescale=2.051).
Factorization parameters were as follows:
name: 75553_149
n: 298746815553296382052316567908906005368897905967537402451862449042826513609541950162254094199336945246739671451464771736035835617887685054723
m: 200000000000000000000000000000
deg: 5
c5: 21250
c0: -23
skew: 0.26
type: snfs
lss: 1
rlim: 2300000
alim: 2300000
lpbr: 27
lpba: 27
mfbr: 49
mfba: 49
rlambda: 2.4
alambda: 2.4
Factor base limits: 2300000/2300000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 49/49
Sieved rational special-q in [1150000, 2050001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 463542 x 463790
Total sieving time: 20.70 hours.
Total relation processing time: 0.12 hours.
Matrix solve time: 0.75 hours.
Time per square root: 0.66 hours.
Prototype def-par.txt line would be:
snfs,150.000,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000
total time: 22.23 hours.
 --------- CPU info (if available) ----------

(68·10150-23)/9 = 7(5)1493<151> = 563 · C149

C149 = P32 · P41 · P77

P32 = 14954759575038077017989758004101<32>

P41 = 61061284304473599603372195208904250303373<41>

P77 = 14696456667525975952009223329233872114376566246538367924642568716200666134747<77>

Number: 75553_150
N=13420169725675942372212354450365107558713242549832247878429050720347345569370436155516084468127096901519636865995658180382869548056048944148411288731
  ( 149 digits)
SNFS difficulty: 151 digits.
Divisors found:
 r1=14954759575038077017989758004101 (pp32)
 r2=61061284304473599603372195208904250303373 (pp41)
 r3=14696456667525975952009223329233872114376566246538367924642568716200666134747 (pp77)
Version: Msieve v. 1.42
Total time: 0.63 hours.
Scaled time: 0.50 units (timescale=0.796).
Factorization parameters were as follows:
name: 75553_150
n: 13420169725675942372212354450365107558713242549832247878429050720347345569370436155516084468127096901519636865995658180382869548056048944148411288731
m: 1000000000000000000000000000000
deg: 5
c5: 68
c0: -23
skew: 0.81
type: snfs
lss: 1
rlim: 2400000
alim: 2400000
lpbr: 27
lpba: 27
mfbr: 49
mfba: 49
rlambda: 2.4
alambda: 2.4
Factor base limits: 2400000/2400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 49/49
Sieved rational special-q in [1200000, 2000001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 398069 x 398296
Total sieving time: 0.00 hours.
Total relation processing time: 0.07 hours.
Matrix solve time: 0.45 hours.
Time per square root: 0.11 hours.
Prototype def-par.txt line would be:
snfs,151.000,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000
total time: 0.63 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
CPU1: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.33 BogoMIPS (lpj=1860666)
Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860571)
Total of 2 processors activated (7442.47 BogoMIPS).

Total time: 14 hours.

Dec 17, 2009 (2nd)

By Dmitry Domanov / GGNFS/msieve / Dec 17, 2009

(23·10150-11)/3 = 7(6)1493<151> = 5237 · 32719 · C143

C143 = P68 · P76

P68 = 20730300332205578545577304811001844751211485934910034956055592189129<68>

P76 = 2158332705171856636744098266679217747556662312757756507611949426597067237949<76>

N=44742885195034304652153743813549596473742407300168222159879171955251379934289392690015188828330301604066088673017825843645727010012790454056421
  ( 143 digits)
SNFS difficulty: 151 digits.
Divisors found:
 r1=20730300332205578545577304811001844751211485934910034956055592189129 (pp68)
 r2=2158332705171856636744098266679217747556662312757756507611949426597067237949 (pp76)
Version: Msieve-1.40
Total time: 11.42 hours.
Scaled time: 22.03 units (timescale=1.928).
Factorization parameters were as follows:
n: 44742885195034304652153743813549596473742407300168222159879171955251379934289392690015188828330301604066088673017825843645727010012790454056421
m: 1000000000000000000000000000000
deg: 5
c5: 23
c0: -11
skew: 0.86
type: snfs
lss: 1
rlim: 2300000
alim: 2300000
lpbr: 27
lpba: 27
mfbr: 49
mfba: 49
rlambda: 2.4
alambda: 2.4Factor base limits: 2300000/2300000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 49/49
Sieved rational special-q in [1150000, 1850001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 458174 x 458422
Total sieving time: 11.07 hours.
Total relation processing time: 0.05 hours.
Matrix solve time: 0.26 hours.
Time per square root: 0.05 hours.
Prototype def-par.txt line would be:
snfs,151.000,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000
total time: 11.42 hours.
 --------- CPU info (if available) ----------

(23·10140-17)/3 = 7(6)1391<141> = 31 · 6983 · C136

C136 = P35 · P102

P35 = 12092697592643045806310843800295173<35>

P102 = 292873213870386294147063822532631373146765490196977576713937119242887016739140553003906553448857860809<102>

N=3541627208320052231302133137465950334067836019580578948259906162277358685224793238263740358689844306988246417182127409268900355548574957
  ( 136 digits)
SNFS difficulty: 141 digits.
Divisors found:
 r1=12092697592643045806310843800295173 (pp35)
 r2=292873213870386294147063822532631373146765490196977576713937119242887016739140553003906553448857860809 (pp102)
Version: Msieve-1.40
Total time: 4.50 hours.
Scaled time: 8.89 units (timescale=1.976).
Factorization parameters were as follows:
n: 3541627208320052231302133137465950334067836019580578948259906162277358685224793238263740358689844306988246417182127409268900355548574957
m: 10000000000000000000000000000
deg: 5
c5: 23
c0: -17
skew: 0.94
type: snfs
lss: 1
rlim: 1590000
alim: 1590000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.3
alambda: 2.3Factor base limits: 1590000/1590000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved rational special-q in [795000, 1595001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 195465 x 195690
Total sieving time: 4.35 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.10 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,141.000,5,0,0,0,0,0,0,0,0,1590000,1590000,26,26,48,48,2.3,2.3,100000
total time: 4.50 hours.
 --------- CPU info (if available) ----------

(23·10135-17)/3 = 7(6)1341<136> = 824172551 · 194129529985105327<18> · C110

C110 = P55 · P56

P55 = 1905320850171848469909562071495906961196008761575322601<55>

P56 = 25149462747812728594322660597906703351892283482122779893<56>

N=47917795744027780378413304806221669354275218945932946509109283412132135919751097227147273714466857302391261693
  ( 110 digits)
SNFS difficulty: 136 digits.
Divisors found:
 r1=1905320850171848469909562071495906961196008761575322601 (pp55)
 r2=25149462747812728594322660597906703351892283482122779893 (pp56)
Version: Msieve-1.40
Total time: 3.71 hours.
Scaled time: 6.97 units (timescale=1.877).
Factorization parameters were as follows:
n: 47917795744027780378413304806221669354275218945932946509109283412132135919751097227147273714466857302391261693
m: 1000000000000000000000000000
deg: 5
c5: 23
c0: -17
skew: 0.94
type: snfs
lss: 1
rlim: 1310000
alim: 1310000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.3
alambda: 2.3Factor base limits: 1310000/1310000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved rational special-q in [655000, 1330001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 155675 x 155900
Total sieving time: 3.59 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.06 hours.
Time per square root: 0.03 hours.
Prototype def-par.txt line would be:
snfs,136.000,5,0,0,0,0,0,0,0,0,1310000,1310000,26,26,48,48,2.3,2.3,75000
total time: 3.71 hours.
 --------- CPU info (if available) ----------

(23·10131-17)/3 = 7(6)1301<132> = 7 · 191 · 2996638793<10> · 3890997715465607<16> · C104

C104 = P48 · P56

P48 = 512631118506491300694853903522261777639574203531<48>

P56 = 95934504107332076044084320068184723105024374504364475513<56>

N=49179012143907225906578389671542644025191118244977237920486566849786794594596600064062738910557527636403
  ( 104 digits)
SNFS difficulty: 132 digits.
Divisors found:
 r1=512631118506491300694853903522261777639574203531 (pp48)
 r2=95934504107332076044084320068184723105024374504364475513 (pp56)
Version: Msieve-1.40
Total time: 2.36 hours.
Scaled time: 4.28 units (timescale=1.813).
Factorization parameters were as follows:
n: 49179012143907225906578389671542644025191118244977237920486566849786794594596600064062738910557527636403
m: 100000000000000000000000000
deg: 5
c5: 230
c0: -17
skew: 0.59
type: snfs
lss: 1
rlim: 1120000
alim: 1120000
lpbr: 26
lpba: 26
mfbr: 47
mfba: 47
rlambda: 2.3
alambda: 2.3Factor base limits: 1120000/1120000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved rational special-q in [560000, 1010001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 143159 x 143390
Total sieving time: 2.27 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.05 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,132.000,5,0,0,0,0,0,0,0,0,1120000,1120000,26,26,47,47,2.3,2.3,50000
total time: 2.36 hours.
 --------- CPU info (if available) ----------

(23·10130-17)/3 = 7(6)1291<131> = 13 · 61 · 10399 · C124

C124 = P47 · P78

P47 = 30318235100717866400373492092541671420427759317<47>

P78 = 306646420444444276169168758599822702752172077221617339445341659227794033863719<78>

N=9296978267828239215778055420580947152701372448227048054585065552387441787273738328300636467090051056983564680553199310519923
  ( 124 digits)
SNFS difficulty: 131 digits.
Divisors found:
 r1=30318235100717866400373492092541671420427759317 (pp47)
 r2=306646420444444276169168758599822702752172077221617339445341659227794033863719 (pp78)
Version: Msieve-1.40
Total time: 2.14 hours.
Scaled time: 4.18 units (timescale=1.957).
Factorization parameters were as follows:
n: 9296978267828239215778055420580947152701372448227048054585065552387441787273738328300636467090051056983564680553199310519923
m: 100000000000000000000000000
deg: 5
c5: 23
c0: -17
skew: 0.94
type: snfs
lss: 1
rlim: 1080000
alim: 1080000
lpbr: 26
lpba: 26
mfbr: 47
mfba: 47
rlambda: 2.3
alambda: 2.3Factor base limits: 1080000/1080000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved rational special-q in [540000, 940001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 118274 x 118500
Total sieving time: 2.07 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.04 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,131.000,5,0,0,0,0,0,0,0,0,1080000,1080000,26,26,47,47,2.3,2.3,50000
total time: 2.14 hours.
 --------- CPU info (if available) ----------

(23·10148-11)/3 = 7(6)1473<149> = 51005438018230242249981203<26> · C124

C124 = P39 · P86

P39 = 127187830640740361371221967602054087623<39>

P86 = 11818015082134451599966379985993827454800138229230558833671370815526360219428259516027<86>

N=1503107700776231921657131924014173176654439989939501657160233819006711595971027654175356316074967623086933826733503030833821
  ( 124 digits)
SNFS difficulty: 149 digits.
Divisors found:
 r1=127187830640740361371221967602054087623 (pp39)
 r2=11818015082134451599966379985993827454800138229230558833671370815526360219428259516027 (pp86)
Version: Msieve-1.40
Total time: 12.94 hours.
Scaled time: 25.18 units (timescale=1.946).
Factorization parameters were as follows:
n: 1503107700776231921657131924014173176654439989939501657160233819006711595971027654175356316074967623086933826733503030833821
m: 100000000000000000000000000000
deg: 5
c5: 23000
c0: -11
skew: 0.22
type: snfs
lss: 1
rlim: 2200000
alim: 2200000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.3
alambda: 2.3Factor base limits: 2200000/2200000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved rational special-q in [1100000, 3500001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 440688 x 440913
Total sieving time: 12.55 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.24 hours.
Time per square root: 0.10 hours.
Prototype def-par.txt line would be:
snfs,149.000,5,0,0,0,0,0,0,0,0,2200000,2200000,26,26,49,49,2.3,2.3,100000
total time: 12.94 hours.
 --------- CPU info (if available) ----------

Dec 17, 2009

By Agnew yoyo / GMP-ECM / Dec 17, 2009

(64·10347-1)/9 = 7(1)347<348> = 3 · 443 · 5987 · 2586730480696668987564422124671<31> · C311

C311 = P47 · P265

P47 = 14659087572470179449229116683122603300318536157<47>

P265 = 2356921431952052588934037590177099728109555193853091850719231714273453062213133365460581304663024067212955079325297428858553446842378615826672539689330219694793449179709509610909732438351804460200561335905172483023901987009557897904983940745732286127093215612360831<265>

GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM]
Input number is 34550317672416953827084892267499412045197057142161000818419076015596720334161716626133851628318223460475062662606699081504178180162856355490806191872531832714709422759302739849459589670365940831870050834695459866677147871642828326730993136466595287731450202444255399833480033929257170613279218153276120804066467 (311 digits)
[Thu Dec 17 03:28:23 2009]
Using MODMULN
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1594316881
dF=65536, k=5, d=690690, d2=17, i0=46
Expected number of curves to find a factor of n digits:
20	25	30	35	40	45	50	55	60	65
2	5	14	55	246	1277	7553	49797	358989	2841353
Step 1 took 848438ms
Using 36 small primes for NTT
Estimated memory usage: 402M
Initializing tables of differences for F took 234ms
Computing roots of F took 14437ms
Building F from its roots took 16016ms
Computing 1/F took 7422ms
Initializing table of differences for G took 313ms
Computing roots of G took 11594ms
Building G from its roots took 15109ms
Computing roots of G took 11594ms
Building G from its roots took 15109ms
Computing G * H took 4079ms
Reducing  G * H mod F took 4062ms
Computing roots of G took 11594ms
Building G from its roots took 15062ms
Computing G * H took 4031ms
Reducing  G * H mod F took 4063ms
Computing roots of G took 10969ms
Building G from its roots took 15078ms
Computing G * H took 3828ms
Reducing  G * H mod F took 3922ms
Computing roots of G took 11328ms
Building G from its roots took 14860ms
Computing G * H took 3968ms
Reducing  G * H mod F took 4000ms
Computing polyeval(F,G) took 27656ms
Computing product of all F(g_i) took 188ms
Step 2 took 231031ms
********** Factor found in step 2: 14659087572470179449229116683122603300318536157
Found probable prime factor of 47 digits: 14659087572470179449229116683122603300318536157
Probable prime cofactor 2356921431952052588934037590177099728109555193853091850719231714273453062213133365460581304663024067212955079325297428858553446842378615826672539689330219694793449179709509610909732438351804460200561335905172483023901987009557897904983940745732286127093215612360831 has 265 digits

Dec 16, 2009 (8th)

By Sinkiti Sibata / Msieve, GGNFS / Dec 16, 2009

(68·10147-23)/9 = 7(5)1463<148> = 7 · 13 · 191 · 114145524058937334950410751<27> · C118

C118 = P40 · P78

P40 = 7444412125212146417878210412001724747661<40>

P78 = 511566797573705714139540064583403760560721746535899396273870560730050344203583<78>

Number: 75553_147
N=3808314070713642463132865247438710710836951689144171374141341852389397914903274595705945055940917351089773374687069363
  ( 118 digits)
SNFS difficulty: 148 digits.
Divisors found:
 r1=7444412125212146417878210412001724747661 (pp40)
 r2=511566797573705714139540064583403760560721746535899396273870560730050344203583 (pp78)
Version: Msieve v. 1.42
Total time: 0.58 hours.
Scaled time: 0.46 units (timescale=0.796).
Factorization parameters were as follows:
name: 75553_147
n: 3808314070713642463132865247438710710836951689144171374141341852389397914903274595705945055940917351089773374687069363
m: 100000000000000000000000000000
deg: 5
c5: 6800
c0: -23
skew: 0.32
type: snfs
lss: 1
rlim: 2100000
alim: 2100000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.3
alambda: 2.3
Factor base limits: 2100000/2100000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved rational special-q in [1050000, 2650001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 362627 x 362851
Total sieving time: 0.00 hours.
Total relation processing time: 0.05 hours.
Matrix solve time: 0.38 hours.
Time per square root: 0.15 hours.
Prototype def-par.txt line would be:
snfs,148.000,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000
total time: 0.58 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
CPU1: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.33 BogoMIPS (lpj=1860666)
Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860571)
Total of 2 processors activated (7442.47 BogoMIPS).

Total time: 9 hours.

(68·10148+31)/9 = 7(5)1479<149> = 11 · 367 · 28001 · C141

C141 = P38 · P43 · P61

P38 = 92800742277266402244455752296406105709<38>

P43 = 5095578428923988067283965606586821860079463<43>

P61 = 1413478385719658305746935999570713543673849123265009091961921<61>

Number: 75559_148
N=668396415648338433890954543438052444688739402620290681217271324456091212669680527046851157307702894290060746844549914253438855080660983466907
  ( 141 digits)
SNFS difficulty: 149 digits.
Divisors found:
 r1=92800742277266402244455752296406105709 (pp38)
 r2=5095578428923988067283965606586821860079463 (pp43)
 r3=1413478385719658305746935999570713543673849123265009091961921 (pp61)
Version: Msieve-1.40
Total time: 15.20 hours.
Scaled time: 30.49 units (timescale=2.006).
Factorization parameters were as follows:
name: 75559_148
n: 668396415648338433890954543438052444688739402620290681217271324456091212669680527046851157307702894290060746844549914253438855080660983466907
m: 200000000000000000000000000000
deg: 5
c5: 2125
c0: 31
skew: 0.43
type: snfs
lss: 1
rlim: 2200000
alim: 2200000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.3
alambda: 2.3
Factor base limits: 2200000/2200000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved rational special-q in [1100000, 2800001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 361343 x 361575
Total sieving time: 14.29 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 0.46 hours.
Time per square root: 0.36 hours.
Prototype def-par.txt line would be:
snfs,149.000,5,0,0,0,0,0,0,0,0,2200000,2200000,26,26,49,49,2.3,2.3,100000
total time: 15.20 hours.
 --------- CPU info (if available) ----------

(68·10148-23)/9 = 7(5)1473<149> = 31 · 61089959452919<14> · C134

C134 = P44 · P91

P44 = 33379177452900859040901458273531293497645001<44>

P91 = 1195251348071351262939369843658738348823063310087712346521340434884593591391504262928936177<91>

Number: 75553_148
N=39896506848092604746137269695445224030913290669912862255101837235764336396056343724509946701322150758800725954828675926061567732101177
  ( 134 digits)
SNFS difficulty: 149 digits.
Divisors found:
 r1=33379177452900859040901458273531293497645001 (pp44)
 r2=1195251348071351262939369843658738348823063310087712346521340434884593591391504262928936177 (pp91)
Version: Msieve-1.40
Total time: 11.69 hours.
Scaled time: 38.84 units (timescale=3.322).
Factorization parameters were as follows:
name: 75553_148
n: 39896506848092604746137269695445224030913290669912862255101837235764336396056343724509946701322150758800725954828675926061567732101177
m: 200000000000000000000000000000
deg: 5
c5: 2125
c0: -23
skew: 0.40
type: snfs
lss: 1
rlim: 2200000
alim: 2200000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.3
alambda: 2.3
Factor base limits: 2200000/2200000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved rational special-q in [1100000, 2900001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 388346 x 388594
Total sieving time: 11.35 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.28 hours.
Time per square root: 0.03 hours.
Prototype def-par.txt line would be:
snfs,149.000,5,0,0,0,0,0,0,0,0,2200000,2200000,26,26,49,49,2.3,2.3,100000
total time: 11.69 hours.
 --------- CPU info (if available) ----------

(23·10113-11)/3 = 7(6)1123<114> = 73 · 4001 · 184073 · 271519425493<12> · C92

C92 = P38 · P55

P38 = 11411606196574225655815607303001588809<38>

P55 = 4602326201348474538346286072127148267220249089588845731<55>

Number: 76663_113
N=52519934197964169378187398269922763301280269896278975894836658825836486587279754057397024379
  ( 92 digits)
SNFS difficulty: 114 digits.
Divisors found:
 r1=11411606196574225655815607303001588809 (pp38)
 r2=4602326201348474538346286072127148267220249089588845731 (pp55)
Version: Msieve-1.40
Total time: 1.57 hours.
Scaled time: 3.23 units (timescale=2.051).
Factorization parameters were as follows:
name: 76663_113
n: 52519934197964169378187398269922763301280269896278975894836658825836486587279754057397024379
m: 10000000000000000000000
deg: 5
c5: 23000
c0: -11
skew: 0.22
type: snfs
lss: 1
rlim: 560000
alim: 560000
lpbr: 25
lpba: 25
mfbr: 45
mfba: 45
rlambda: 2.2
alambda: 2.2
Factor base limits: 560000/560000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 45/45
Sieved rational special-q in [280000, 530001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 68760 x 68985
Total sieving time: 1.49 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.02 hours.
Time per square root: 0.05 hours.
Prototype def-par.txt line would be:
snfs,114.000,5,0,0,0,0,0,0,0,0,560000,560000,25,25,45,45,2.2,2.2,50000
total time: 1.57 hours.
 --------- CPU info (if available) ----------

(23·10120-11)/3 = 7(6)1193<121> = 17 · 79 · 499 · 569 · C113

C113 = P56 · P57

P56 = 25522691488157552788809468757639086299259225092491527019<56>

P57 = 787755212873123836676281249152475749953193949007977372369<57>

Number: 76663_120
N=20105633266348618800994983033463626316231562973668231677796065657826655924279261934685768126702001408007987538011
  ( 113 digits)
SNFS difficulty: 121 digits.
Divisors found:
 r1=25522691488157552788809468757639086299259225092491527019 (pp56)
 r2=787755212873123836676281249152475749953193949007977372369 (pp57)
Version: Msieve-1.40
Total time: 1.16 hours.
Scaled time: 3.88 units (timescale=3.357).
Factorization parameters were as follows:
name: 76663_120
n: 20105633266348618800994983033463626316231562973668231677796065657826655924279261934685768126702001408007987538011
m: 1000000000000000000000000
deg: 5
c5: 23
c0: -11
skew: 0.86
type: snfs
lss: 1
rlim: 740000
alim: 740000
lpbr: 25
lpba: 25
mfbr: 46
mfba: 46
rlambda: 2.2
alambda: 2.2
Factor base limits: 740000/740000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved rational special-q in [370000, 620001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 82925 x 83157
Total sieving time: 1.13 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.01 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,121.000,5,0,0,0,0,0,0,0,0,740000,740000,25,25,46,46,2.2,2.2,50000
total time: 1.16 hours.
 --------- CPU info (if available) ----------

(23·10114-11)/3 = 7(6)1133<115> = 107 · 22651 · 8445108594849167<16> · C93

C93 = P37 · P57

P37 = 3059870380737586822512005449734369637<37>

P57 = 122412891178728360371674809568046004111359888829192602221<57>

Number: 76663_114
N=374567579938244331406279693518468187924635006153465102723180322997238243405496028525121163777
  ( 93 digits)
SNFS difficulty: 115 digits.
Divisors found:
 r1=3059870380737586822512005449734369637 (pp37)
 r2=122412891178728360371674809568046004111359888829192602221 (pp57)
Version: Msieve-1.40
Total time: 1.06 hours.
Scaled time: 2.17 units (timescale=2.045).
Factorization parameters were as follows:
name: 76663_114
n: 374567579938244331406279693518468187924635006153465102723180322997238243405496028525121163777
m: 10000000000000000000000
deg: 5
c5: 230000
c0: -11
skew: 0.14
type: snfs
lss: 1
rlim: 590000
alim: 590000
lpbr: 25
lpba: 25
mfbr: 45
mfba: 45
rlambda: 2.2
alambda: 2.2
Factor base limits: 590000/590000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 45/45
Sieved rational special-q in [295000, 445001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 58900 x 59126
Total sieving time: 1.00 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.01 hours.
Time per square root: 0.03 hours.
Prototype def-par.txt line would be:
snfs,115.000,5,0,0,0,0,0,0,0,0,590000,590000,25,25,45,45,2.2,2.2,50000
total time: 1.06 hours.
 --------- CPU info (if available) ----------

(23·10126-11)/3 = 7(6)1253<127> = 47 · 61 · 1057464970577446092973<22> · C103

C103 = P32 · P72

P32 = 13413698726583970462081322925539<32>

P72 = 188523003684124076180996738433766325149793904672787761086552059533456187<72>

Number: 76663_126
N=2528790774449520292669339776762899096930856296816157041815109917097158021385913870850834746574719859793
  ( 103 digits)
SNFS difficulty: 127 digits.
Divisors found:
 r1=13413698726583970462081322925539 (pp32)
 r2=188523003684124076180996738433766325149793904672787761086552059533456187 (pp72)
Version: Msieve-1.40
Total time: 1.66 hours.
Scaled time: 5.53 units (timescale=3.339).
Factorization parameters were as follows:
name: 76663_126
n: 2528790774449520292669339776762899096930856296816157041815109917097158021385913870850834746574719859793
m: 10000000000000000000000000
deg: 5
c5: 230
c0: -11
skew: 0.54
type: snfs
lss: 1
rlim: 930000
alim: 930000
lpbr: 26
lpba: 26
mfbr: 46
mfba: 46
rlambda: 2.3
alambda: 2.3
Factor base limits: 930000/930000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 46/46
Sieved rational special-q in [465000, 765001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 120459 x 120690
Total sieving time: 1.59 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.03 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,127.000,5,0,0,0,0,0,0,0,0,930000,930000,26,26,46,46,2.3,2.3,50000
total time: 1.66 hours.
 --------- CPU info (if available) ----------

(23·10120-17)/3 = 7(6)1191<121> = 251 · 941 · 641701847 · 137279406996157<15> · C93

C93 = P44 · P49

P44 = 40385545056978807490330733028374505691311499<44>

P49 = 9123859816461408438093111424239616025271490303651<49>

Number: 76661_120
N=368472051711260603290907951809574825594060081448813710281059755320847323776252661535937982849
  ( 93 digits)
SNFS difficulty: 121 digits.
Divisors found:
 r1=40385545056978807490330733028374505691311499 (pp44)
 r2=9123859816461408438093111424239616025271490303651 (pp49)
Version: GGNFS-0.77.1-20050930-pentium4
Total time: 2.37 hours.
Scaled time: 1.11 units (timescale=0.468).
Factorization parameters were as follows:
name: 76661_120
n: 368472051711260603290907951809574825594060081448813710281059755320847323776252661535937982849
m: 1000000000000000000000000
deg: 5
c5: 23
c0: -17
skew: 0.94
type: snfs
lss: 1
rlim: 740000
alim: 740000
lpbr: 25
lpba: 25
mfbr: 46
mfba: 46
rlambda: 2.2
alambda: 2.2
Factor base limits: 740000/740000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved rational special-q in [370000, 570001)
Primes: RFBsize:59531, AFBsize:59778, largePrimes:1289988 encountered
Relations: rels:1259145, finalFF:145398
Max relations in full relation-set: 28
Initial matrix: 119374 x 145398 with sparse part having weight 6389763.
Pruned matrix : 104465 x 105125 with weight 3571061.
Total sieving time: 2.21 hours.
Total relation processing time: 0.05 hours.
Matrix solve time: 0.09 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,121,5,0,0,0,0,0,0,0,0,740000,740000,25,25,46,46,2.2,2.2,50000
total time: 2.37 hours.
 --------- CPU info (if available) ----------

(23·10118-17)/3 = 7(6)1171<119> = 13 · 19 · C117

C117 = P37 · P80

P37 = 9220814096092378075081918296352874047<37>

P80 = 33662034586998177818149074936349876698328006634392197039896356491332469987852029<80>

Number: 76661_118
N=310391363022941970310391363022941970310391363022941970310391363022941970310391363022941970310391363022941970310391363
  ( 117 digits)
SNFS difficulty: 119 digits.
Divisors found:
 r1=9220814096092378075081918296352874047 (pp37)
 r2=33662034586998177818149074936349876698328006634392197039896356491332469987852029 (pp80)
Version: Msieve v. 1.42
Total time: 0.04 hours.
Scaled time: 0.03 units (timescale=0.795).
Factorization parameters were as follows:
name: 76661_118
n: 310391363022941970310391363022941970310391363022941970310391363022941970310391363022941970310391363022941970310391363
m: 100000000000000000000000
deg: 5
c5: 23000
c0: -17
skew: 0.24
type: snfs
lss: 1
rlim: 680000
alim: 680000
lpbr: 25
lpba: 25
mfbr: 45
mfba: 45
rlambda: 2.2
alambda: 2.2
Factor base limits: 680000/680000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 45/45
Sieved rational special-q in [340000, 640001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 79185 x 79410
Total sieving time: 0.00 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.02 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,119.000,5,0,0,0,0,0,0,0,0,680000,680000,25,25,45,45,2.2,2.2,50000
total time: 0.04 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
CPU1: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.33 BogoMIPS (lpj=1860666)
Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860571)
Total of 2 processors activated (7442.47 BogoMIPS).

Total time: 83 min.

(23·10125-17)/3 = 7(6)1241<126> = 72 · 31 · 521 · 14370729157<11> · C110

C110 = P46 · P65

P46 = 2558995386883296022720615957313118525870831481<46>

P65 = 26342851081520675035689188882287686037742543187479440491093033967<65>

Number: 76661_125
N=67411234394965052867362708500102595217340895755614475022353081977374166777198257577218719672431852753265915127
  ( 110 digits)
SNFS difficulty: 126 digits.
Divisors found:
 r1=2558995386883296022720615957313118525870831481 (pp46)
 r2=26342851081520675035689188882287686037742543187479440491093033967 (pp65)
Version: Msieve v. 1.42
Total time: 0.09 hours.
Scaled time: 0.07 units (timescale=0.795).
Factorization parameters were as follows:
name: 76661_125
n: 67411234394965052867362708500102595217340895755614475022353081977374166777198257577218719672431852753265915127
m: 10000000000000000000000000
deg: 5
c5: 23
c0: -17
skew: 0.94
type: snfs
lss: 1
rlim: 890000
alim: 890000
lpbr: 26
lpba: 26
mfbr: 46
mfba: 46
rlambda: 2.3
alambda: 2.3
Factor base limits: 890000/890000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 46/46
Sieved rational special-q in [445000, 645001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 130853 x 131095
Total sieving time: 0.00 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.06 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,126.000,5,0,0,0,0,0,0,0,0,890000,890000,26,26,46,46,2.3,2.3,50000
total time: 0.09 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
CPU1: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.33 BogoMIPS (lpj=1860666)
Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860571)
Total of 2 processors activated (7442.47 BogoMIPS).

Total time: 71 min.

(23·10139-17)/3 = 7(6)1381<140> = 7333 · 870461 · 21472703873<11> · 4636213698349<13> · 12226441866109<14> · C94

C94 = P42 · P53

P42 = 371170686541166156016178439269165816819121<42>

P53 = 26585916743770808161710550311179305870423365914583949<53>

Wed Dec 16 18:14:05 2009  Msieve v. 1.42
Wed Dec 16 18:14:05 2009  random seeds: a37cea14 4740c28b
Wed Dec 16 18:14:05 2009  factoring 9867912970111695460549107729778455971521528100356802580128959817623419385028243844407302888829 (94 digits)
Wed Dec 16 18:14:06 2009  searching for 15-digit factors
Wed Dec 16 18:14:07 2009  commencing quadratic sieve (94-digit input)
Wed Dec 16 18:14:07 2009  using multiplier of 5
Wed Dec 16 18:14:07 2009  using 32kb Intel Core sieve core
Wed Dec 16 18:14:07 2009  sieve interval: 36 blocks of size 32768
Wed Dec 16 18:14:07 2009  processing polynomials in batches of 6
Wed Dec 16 18:14:07 2009  using a sieve bound of 2092049 (77647 primes)
Wed Dec 16 18:14:07 2009  using large prime bound of 297070958 (28 bits)
Wed Dec 16 18:14:07 2009  using double large prime bound of 1782987509181578 (42-51 bits)
Wed Dec 16 18:14:07 2009  using trial factoring cutoff of 51 bits
Wed Dec 16 18:14:07 2009  polynomial 'A' values have 12 factors
Wed Dec 16 21:09:09 2009  77957 relations (19573 full + 58384 combined from 1128063 partial), need 77743
Wed Dec 16 21:09:10 2009  begin with 1147636 relations
Wed Dec 16 21:09:12 2009  reduce to 200886 relations in 11 passes
Wed Dec 16 21:09:12 2009  attempting to read 200886 relations
Wed Dec 16 21:09:15 2009  recovered 200886 relations
Wed Dec 16 21:09:15 2009  recovered 182269 polynomials
Wed Dec 16 21:09:15 2009  attempting to build 77957 cycles
Wed Dec 16 21:09:15 2009  found 77957 cycles in 6 passes
Wed Dec 16 21:09:15 2009  distribution of cycle lengths:
Wed Dec 16 21:09:15 2009     length 1 : 19573
Wed Dec 16 21:09:15 2009     length 2 : 13851
Wed Dec 16 21:09:15 2009     length 3 : 13195
Wed Dec 16 21:09:15 2009     length 4 : 10679
Wed Dec 16 21:09:15 2009     length 5 : 7717
Wed Dec 16 21:09:15 2009     length 6 : 5129
Wed Dec 16 21:09:15 2009     length 7 : 3326
Wed Dec 16 21:09:15 2009     length 9+: 4487
Wed Dec 16 21:09:15 2009  largest cycle: 21 relations
Wed Dec 16 21:09:16 2009  matrix is 77647 x 77957 (20.5 MB) with weight 5073118 (65.08/col)
Wed Dec 16 21:09:16 2009  sparse part has weight 5073118 (65.08/col)
Wed Dec 16 21:09:17 2009  filtering completed in 3 passes
Wed Dec 16 21:09:17 2009  matrix is 73626 x 73690 (19.5 MB) with weight 4814531 (65.33/col)
Wed Dec 16 21:09:17 2009  sparse part has weight 4814531 (65.33/col)
Wed Dec 16 21:09:17 2009  saving the first 48 matrix rows for later
Wed Dec 16 21:09:17 2009  matrix is 73578 x 73690 (12.6 MB) with weight 3834182 (52.03/col)
Wed Dec 16 21:09:17 2009  sparse part has weight 2868194 (38.92/col)
Wed Dec 16 21:09:17 2009  matrix includes 64 packed rows
Wed Dec 16 21:09:17 2009  using block size 29476 for processor cache size 1024 kB
Wed Dec 16 21:09:18 2009  commencing Lanczos iteration
Wed Dec 16 21:09:18 2009  memory use: 12.5 MB
Wed Dec 16 21:09:56 2009  lanczos halted after 1165 iterations (dim = 73576)
Wed Dec 16 21:09:56 2009  recovered 17 nontrivial dependencies
Wed Dec 16 21:09:57 2009  prp42 factor: 371170686541166156016178439269165816819121
Wed Dec 16 21:09:57 2009  prp53 factor: 26585916743770808161710550311179305870423365914583949
Wed Dec 16 21:09:57 2009  elapsed time 02:55:52

(23·10102-11)/3 = 7(6)1013<103> = 24365927 · C96

C96 = P36 · P61

P36 = 245245101836602285803147368918044021<36>

P61 = 1282990085704394596547225527931058487571930541873060963231389<61>

Number: 76663_102
N=314647034223925347337151041561713070332463306923092508102263733559846365240553608597229510975169
  ( 96 digits)
SNFS difficulty: 103 digits.
Divisors found:
 r1=245245101836602285803147368918044021 (pp36)
 r2=1282990085704394596547225527931058487571930541873060963231389 (pp61)
Version: Msieve v. 1.42
Total time: 0.02 hours.
Scaled time: 0.01 units (timescale=0.796).
Factorization parameters were as follows:
name: 76663_102
n: 314647034223925347337151041561713070332463306923092508102263733559846365240553608597229510975169
m: 10000000000000000000000000
deg: 4
c4: 2300
c0: -11
skew: 0.26
type: snfs
lss: 1
rlim: 370000
alim: 370000
lpbr: 25
lpba: 25
mfbr: 43
mfba: 43
rlambda: 2.2
alambda: 2.2
Factor base limits: 370000/370000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 43/43
Sieved rational special-q in [185000, 235001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 29754 x 29979
Total sieving time: 0.00 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.01 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,103.000,4,0,0,0,0,0,0,0,0,370000,370000,25,25,43,43,2.2,2.2,10000
total time: 0.02 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
CPU1: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.33 BogoMIPS (lpj=1860666)
Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860571)
Total of 2 processors activated (7442.47 BogoMIPS).

Total time: 17 min.

(23·10104-11)/3 = 7(6)1033<105> = 7 · 17 · 317 · C101

C101 = P50 · P52

P50 = 10594311962989340631950058167917525981867419492781<50>

P52 = 1918348913925488028058767174886260061337183152503001<52>

Number: 76663_104
N=20323586847988406719154538787123682280483171186455654817131900078643444759607312956728432698000335781
  ( 101 digits)
SNFS difficulty: 105 digits.
Divisors found:
 r1=10594311962989340631950058167917525981867419492781 (pp50)
 r2=1918348913925488028058767174886260061337183152503001 (pp52)
Version: Msieve v. 1.42
Total time: 0.02 hours.
Scaled time: 0.01 units (timescale=0.793).
Factorization parameters were as follows:
name: 76663_104
n: 20323586847988406719154538787123682280483171186455654817131900078643444759607312956728432698000335781
m: 100000000000000000000000000
deg: 4
c4: 23
c0: -11
skew: 0.83
type: snfs
lss: 1
rlim: 400000
alim: 400000
lpbr: 25
lpba: 25
mfbr: 44
mfba: 44
rlambda: 2.2
alambda: 2.2
Factor base limits: 400000/400000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 44/44
Sieved rational special-q in [200000, 240001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 39072 x 39301
Total sieving time: 0.00 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.01 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,105.000,4,0,0,0,0,0,0,0,0,400000,400000,25,25,44,44,2.2,2.2,20000
total time: 0.02 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
CPU1: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.33 BogoMIPS (lpj=1860666)
Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860571)
Total of 2 processors activated (7442.47 BogoMIPS).

Total time: 13 min.

(23·10127-17)/3 = 7(6)1261<128> = 179 · 1291 · C123

C123 = P44 · P80

P44 = 17325323742942685585564136440668567011871023<44>

P80 = 19148993397947114116728493211346650542616183424561745135636491481312527026611163<80>

Number: 76661_127
N=331762509970905870321247080850523679909760597287913603272620794008657559064545117537687499909847144029645143934443728029749
  ( 123 digits)
SNFS difficulty: 128 digits.
Divisors found:
 r1=17325323742942685585564136440668567011871023 (pp44)
 r2=19148993397947114116728493211346650542616183424561745135636491481312527026611163 (pp80)
Version: Msieve-1.40
Total time: 2.33 hours.
Scaled time: 7.77 units (timescale=3.339).
Factorization parameters were as follows:
name: 76661_127
n: 331762509970905870321247080850523679909760597287913603272620794008657559064545117537687499909847144029645143934443728029749
m: 10000000000000000000000000
deg: 5
c5: 2300
c0: -17
skew: 0.37
type: snfs
lss: 1
rlim: 960000
alim: 960000
lpbr: 26
lpba: 26
mfbr: 47
mfba: 47
rlambda: 2.3
alambda: 2.3
Factor base limits: 960000/960000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved rational special-q in [480000, 930001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 143966 x 144214
Total sieving time: 2.26 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.04 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,128.000,5,0,0,0,0,0,0,0,0,960000,960000,26,26,47,47,2.3,2.3,50000
total time: 2.33 hours.
 --------- CPU info (if available) ----------

Dec 16, 2009 (7th)

By Jo Yeong Uk / GGNFS, Msieve v1.39 / Dec 16, 2009

(2·10198+1)/3 = (6)1977<198> = 457 · 23735503197283<14> · C182

C182 = P81 · P102

P81 = 129389304721127158993072298490322182653518774585778107201775886232669989219843001<81>

P102 = 475002306456793448468446173700751795865776779342906923374169016985392423513854627200194137571758416857<102>

Number: 66667_198
N=61460218173376274139436257924925696309875419738351789195735595207504741324042282642242875514121009483559905778993186545329492535174833115309207892574829946390934849157827781851867857
  ( 182 digits)
SNFS difficulty: 200 digits.
Divisors found:
 r1=129389304721127158993072298490322182653518774585778107201775886232669989219843001
 r2=475002306456793448468446173700751795865776779342906923374169016985392423513854627200194137571758416857
Version: 
Total time: 278.57 hours.
Scaled time: 663.27 units (timescale=2.381).
Factorization parameters were as follows:
n: 61460218173376274139436257924925696309875419738351789195735595207504741324042282642242875514121009483559905778993186545329492535174833115309207892574829946390934849157827781851867857
m: 10000000000000000000000000000000000000000
deg: 5
c5: 1
c0: 50
skew: 2.19
type: snfs
lss: 1
rlim: 15000000
alim: 15000000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 15000000/15000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved rational special-q in [7500000, 13600001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 37116511
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2764086 x 2764334
Total sieving time: 244.16 hours.
Total relation processing time: 12.36 hours.
Matrix solve time: 20.63 hours.
Time per square root: 1.42 hours.
Prototype def-par.txt line would be:
snfs,200,5,0,0,0,0,0,0,0,0,15000000,15000000,29,29,56,56,2.6,2.6,100000
total time: 278.57 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673795)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672307)
Calibrating delay using timer specific routine.. 5237.88 BogoMIPS (lpj=2618943)

Dec 16, 2009 (6th)

By Robert Backstrom / GMP-ECM, Msieve / Dec 16, 2009

(23·10117-17)/3 = 7(6)1161<118> = 83 · 1172292529<10> · 2618649367751318479<19> · C89

C89 = P34 · P56

P34 = 1118338087153059584933843463282641<34>

P56 = 26905559319248589651357853745624920225257541945854546857<56>

GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM]
Input number is 30089511742871643769964632131175135743122042073471668918174706140412512932354920769209337 (89 digits)
Using B1=922000, B2=871204962, polynomial Dickson(3), sigma=3498851850
Step 1 took 5719ms
Step 2 took 2687ms
********** Factor found in step 2: 1118338087153059584933843463282641
Found probable prime factor of 34 digits: 1118338087153059584933843463282641
Probable prime cofactor 26905559319248589651357853745624920225257541945854546857 has 56 digits

(23·10111-11)/3 = 7(6)1103<112> = 29 · 102328133850591764833<21> · C91

C91 = P42 · P50

P42 = 114020995310251665818999261240617858936247<42>

P50 = 22658371947974329014450969228515292119437447560997<50>

Wed Dec 16 18:42:30 2009  
Wed Dec 16 18:42:30 2009  
Wed Dec 16 18:42:30 2009  Msieve v. 1.43
Wed Dec 16 18:42:30 2009  random seeds: b9219cc0 d0de1132
Wed Dec 16 18:42:30 2009  factoring 2583530121617918870290587730447033099093456835689377352764840295500870921278374451066758259 (91 digits)
Wed Dec 16 18:42:30 2009  searching for 15-digit factors
Wed Dec 16 18:42:31 2009  commencing quadratic sieve (91-digit input)
Wed Dec 16 18:42:31 2009  using multiplier of 59
Wed Dec 16 18:42:31 2009  using 64kb Opteron sieve core
Wed Dec 16 18:42:31 2009  sieve interval: 18 blocks of size 65536
Wed Dec 16 18:42:31 2009  processing polynomials in batches of 6
Wed Dec 16 18:42:31 2009  using a sieve bound of 1678553 (63529 primes)
Wed Dec 16 18:42:31 2009  using large prime bound of 154426876 (27 bits)
Wed Dec 16 18:42:31 2009  using double large prime bound of 549162818684260 (42-49 bits)
Wed Dec 16 18:42:31 2009  using trial factoring cutoff of 49 bits
Wed Dec 16 18:42:31 2009  polynomial 'A' values have 12 factors
Wed Dec 16 19:47:58 2009  64234 relations (17173 full + 47061 combined from 718510 partial), need 63625
Wed Dec 16 19:47:59 2009  begin with 735683 relations
Wed Dec 16 19:47:59 2009  reduce to 156774 relations in 9 passes
Wed Dec 16 19:47:59 2009  attempting to read 156774 relations
Wed Dec 16 19:48:00 2009  recovered 156774 relations
Wed Dec 16 19:48:00 2009  recovered 135082 polynomials
Wed Dec 16 19:48:00 2009  attempting to build 64234 cycles
Wed Dec 16 19:48:00 2009  found 64234 cycles in 5 passes
Wed Dec 16 19:48:01 2009  distribution of cycle lengths:
Wed Dec 16 19:48:01 2009     length 1 : 17173
Wed Dec 16 19:48:01 2009     length 2 : 12267
Wed Dec 16 19:48:01 2009     length 3 : 11466
Wed Dec 16 19:48:01 2009     length 4 : 8568
Wed Dec 16 19:48:01 2009     length 5 : 5959
Wed Dec 16 19:48:01 2009     length 6 : 3853
Wed Dec 16 19:48:01 2009     length 7 : 2264
Wed Dec 16 19:48:01 2009     length 9+: 2684
Wed Dec 16 19:48:01 2009  largest cycle: 18 relations
Wed Dec 16 19:48:01 2009  matrix is 63529 x 64234 (15.4 MB) with weight 3780171 (58.85/col)
Wed Dec 16 19:48:01 2009  sparse part has weight 3780171 (58.85/col)
Wed Dec 16 19:48:02 2009  filtering completed in 3 passes
Wed Dec 16 19:48:02 2009  matrix is 59295 x 59359 (14.2 MB) with weight 3484662 (58.70/col)
Wed Dec 16 19:48:02 2009  sparse part has weight 3484662 (58.70/col)
Wed Dec 16 19:48:02 2009  saving the first 48 matrix rows for later
Wed Dec 16 19:48:02 2009  matrix is 59247 x 59359 (8.2 MB) with weight 2616342 (44.08/col)
Wed Dec 16 19:48:02 2009  sparse part has weight 1796079 (30.26/col)
Wed Dec 16 19:48:02 2009  matrix includes 64 packed rows
Wed Dec 16 19:48:02 2009  using block size 23743 for processor cache size 1024 kB
Wed Dec 16 19:48:02 2009  commencing Lanczos iteration
Wed Dec 16 19:48:02 2009  memory use: 8.9 MB
Wed Dec 16 19:48:20 2009  lanczos halted after 939 iterations (dim = 59244)
Wed Dec 16 19:48:20 2009  recovered 16 nontrivial dependencies
Wed Dec 16 19:48:21 2009  prp42 factor: 114020995310251665818999261240617858936247
Wed Dec 16 19:48:21 2009  prp50 factor: 22658371947974329014450969228515292119437447560997
Wed Dec 16 19:48:21 2009  elapsed time 01:05:51

Dec 16, 2009 (5th)

By Serge Batalov / Msieve, GMP-ECM / Dec 16, 2009

(68·10135-23)/9 = 7(5)1343<136> = 7 · 13 · 29 · 673 · 1231 · 39201067 · 19451678419<11> · 3508444016179<13> · C97

C97 = P44 · P53

P44 = 49354536817403980992556188494349510678134521<44>

P53 = 26173228415604033307918617128471408780767311182184547<53>

Divisors found:
 r1=49354536817403980992556188494349510678134521 (pp44)
 r2=26173228415604033307918617128471408780767311182184547 (pp53)
Version: Msieve v. 1.44 SVN157
Total time: 1.38 hours.
Scaled time: 3.31 units (timescale=2.400).
Factorization parameters were as follows:
name: test
type: gnfs
n:  1291767565468253325983099240866543604203429986670042714470360827476299445498122120010631513446987
skew:  1028695.48
Y0:  -173066555608276491936265
Y1:   6118599925867
c0:  -178362389484675470839201668
c1:  -1431652149419258675948
c2:  -1867644117274291
c3:  -2880742358
c4:   1440
Factor base limits: 1500000/1500000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved algebraic special-q in [937500, 1217501)
Primes: , ,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 151064 x 151296
Total sieving time: 1.28 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.08 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
gnfs,96,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,25,25,46,46,2.5,2.5,70000
total time: 1.38 hours.

(23·10132-17)/3 = 7(6)1311<133> = 97 · 109 · 5616540927610014119<19> · C111

C111 = P28 · P83

P28 = 6765672016507302473411933737<28>

P83 = 19082201642817897816379464000476263038247593631835682844121143546670724325874838919<83>

Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=4049908066
Step 1 took 4545ms
Step 2 took 2884ms
********** Factor found in step 2: 6765672016507302473411933737
Found probable prime factor of 28 digits: 6765672016507302473411933737
Probable prime cofactor has 83 digits

(23·10145-17)/3 = 7(6)1441<146> = 43 · 1398251 · C139

C139 = P34 · C106

P34 = 1256710869813684340075674424685443<34>

C106 = [1014653167874607433393138777593797766888773887153826194843762435948768275207619865105895761692478221477039<106>]

Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=31174486
Step 1 took 6084ms
Step 2 took 3536ms
********** Factor found in step 2: 1256710869813684340075674424685443
Found probable prime factor of 34 digits: 1256710869813684340075674424685443
Composite cofactor has 106 digits

(23·10109-11)/3 = 7(6)1083<110> = 31 · 2160293 · C103

C103 = P39 · P64

P39 = 395005637395866571582641984926624812093<39>

P64 = 2898203891676581815541170847707467709328545235576051915248772777<64>

Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=3105122533
Step 1 took 4672ms
Step 2 took 2761ms
********** Factor found in step 2: 395005637395866571582641984926624812093
Found probable prime factor of 39 digits: 395005637395866571582641984926624812093
Probable prime cofactor has 64 digits

(23·10108-11)/3 = 7(6)1073<109> = 4129 · 48239 · C101

C101 = P31 · P71

P31 = 3490683832872464247555442771201<31>

P71 = 11026886073725625310081747759869262788979540725428702635385850485874473<71>

Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=1966405737
Step 1 took 4600ms
Step 2 took 2760ms
********** Factor found in step 2: 3490683832872464247555442771201
Found probable prime factor of 31 digits: 3490683832872464247555442771201
Probable prime cofactor has 71 digits

(23·10122-17)/3 = 7(6)1211<123> = 783504322140893<15> · C108

C108 = P30 · P79

P30 = 741688256826905058083748714823<30>

P79 = 1319300666580334226218159946688540099971933859484532199655146475100465378632399<79>

Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=3326129902
Step 1 took 4316ms
Step 2 took 2776ms
********** Factor found in step 2: 741688256826905058083748714823
Found probable prime factor of 30 digits: 741688256826905058083748714823
Probable prime cofactor has 79 digits

(23·10149-17)/3 = 7(6)1481<150> = 7 · 2170830172909759<16> · 2025999339574266401<19> · C116

C116 = P30 · P35 · P52

P30 = 282319935301119438794660871407<30>

P35 = 38746341941048510460017005102921493<35>

P52 = 2276518268891766986132754409859082639389235326181847<52>

Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=2296079492
Step 1 took 5028ms
Step 2 took 2753ms
********** Factor found in step 2: 38746341941048510460017005102921493
Found probable prime factor of 35 digits: 38746341941048510460017005102921493

Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=1494950385
Step 1 took 4837ms
Step 2 took 2800ms
********** Factor found in step 2: 282319935301119438794660871407
Found probable prime factor of 30 digits: 282319935301119438794660871407

(23·10109-17)/3 = 7(6)1081<110> = 4423 · C107

C107 = P41 · P67

P41 = 15657590962371840382069424283498865142543<41>

P67 = 1107043531122213731069211459476835017897299236455125765923081029149<67>

SNFS difficulty: 110 digits.
Divisors found:
 r1=15657590962371840382069424283498865142543 (pp41)
 r2=1107043531122213731069211459476835017897299236455125765923081029149 (pp67)
Version: Msieve v. 1.44 SVN157
Total time: 0.63 hours.
Scaled time: 1.52 units (timescale=2.400).
Factorization parameters were as follows:
n: 17333634787851382922601552490767955384731328660788303564699675936393096691536664405757781294747155022985907
m: 1000000000000000000000
deg: 5
c5: 230000
c0: -17
skew: 0.15
type: snfs
lss: 1
rlim: 480000
alim: 480000
lpbr: 25
lpba: 25
mfbr: 44
mfba: 44
rlambda: 2.2
alambda: 2.2
Factor base limits: 480000/480000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 44/44
Sieved rational special-q in [300000, 550001)
Primes: , ,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 53200 x 53427
Total sieving time: 0.61 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.01 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,110.000,5,0,0,0,0,0,0,0,0,480000,480000,25,25,44,44,2.2,2.2,50000
total time: 0.63 hours.

(23·10101-11)/3 = 7(6)1003<102> = 1187 · 144616811 · C91

C91 = P39 · P53

P39 = 117490606566065595674608813209924208099<39>

P53 = 38013156698927423089936634558266123507013784775835341<53>

SNFS difficulty: 102 digits.
Divisors found:
 r1=117490606566065595674608813209924208099 (pp39)
 r2=38013156698927423089936634558266123507013784775835341 (pp53)
Version: Msieve v. 1.44 SVN157
Total time: 0.25 hours.
Scaled time: 0.59 units (timescale=2.400).
Factorization parameters were as follows:
n: 4466188838047882679105645836099257794848851734404077705552959099165042916804289190642626759
m: 10000000000000000000000000
deg: 4
c4: 230
c0: -11
skew: 0.47
type: snfs
lss: 1
rlim: 360000
alim: 360000
lpbr: 25
lpba: 25
mfbr: 43
mfba: 43
rlambda: 2.2
alambda: 2.2
Factor base limits: 360000/360000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 43/43
Sieved rational special-q in [225000, 305001)
Primes: , ,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 31084 x 31313
Total sieving time: 0.23 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,102.000,4,0,0,0,0,0,0,0,0,360000,360000,25,25,43,43,2.2,2.2,10000
total time: 0.25 hours.

Dec 16, 2009 (4th)

By Dmitry Domanov / GGNFS/msieve / Dec 16, 2009

(68·10139-41)/9 = 7(5)1381<140> = 599 · 821 · 10853 · C131

C131 = P50 · P81

P50 = 26314862340375890781828977363194955018961042928123<50>

P81 = 537954467230265270119267925540183493428275358501670203932591652282443058644303651<81>

N=14156197750554683790147026237153098492357917675483143856926387225621787416644308258645266789658964485380813320181708505491379477073
  ( 131 digits)
SNFS difficulty: 140 digits.
Divisors found:
 r1=26314862340375890781828977363194955018961042928123 (pp50)
 r2=537954467230265270119267925540183493428275358501670203932591652282443058644303651 (pp81)
Version: Msieve-1.40
Total time: 6.06 hours.
Scaled time: 11.27 units (timescale=1.860).
Factorization parameters were as follows:
n: 14156197750554683790147026237153098492357917675483143856926387225621787416644308258645266789658964485380813320181708505491379477073
m: 2000000000000000000000000000
deg: 5
c5: 21250
c0: -41
skew: 0.29
type: snfs
lss: 1
rlim: 1560000
alim: 1560000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.3
alambda: 2.3Factor base limits: 1560000/1560000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved rational special-q in [780000, 1980001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 255672 x 255897
Total sieving time: 5.92 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.08 hours.
Time per square root: 0.03 hours.
Prototype def-par.txt line would be:
snfs,140.000,5,0,0,0,0,0,0,0,0,1560000,1560000,26,26,48,48,2.3,2.3,100000
total time: 6.06 hours.
 --------- CPU info (if available) ----------

(68·10135-41)/9 = 7(5)1341<136> = 3 · 367859203 · C127

C127 = P49 · P79

P49 = 1708072995693845187847890294158793372992730136343<49>

P79 = 4008271182346875021369471912260587784241104960646929039911381637642429568831473<79>

N=6846419765984537618101995720679356004907449654096375885744847108034751324458555189438929215856857381704593424344798894479523239
  ( 127 digits)
SNFS difficulty: 136 digits.
Divisors found:
 r1=1708072995693845187847890294158793372992730136343 (pp49)
 r2=4008271182346875021369471912260587784241104960646929039911381637642429568831473 (pp79)
Version: Msieve-1.40
Total time: 4.22 hours.
Scaled time: 8.04 units (timescale=1.905).
Factorization parameters were as follows:
n: 6846419765984537618101995720679356004907449654096375885744847108034751324458555189438929215856857381704593424344798894479523239
m: 1000000000000000000000000000
deg: 5
c5: 68
c0: -41
skew: 0.90
type: snfs
lss: 1
rlim: 1340000
alim: 1340000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.3
alambda: 2.3Factor base limits: 1340000/1340000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved rational special-q in [670000, 1495001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 168089 x 168314
Total sieving time: 4.10 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.07 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,136.000,5,0,0,0,0,0,0,0,0,1340000,1340000,26,26,48,48,2.3,2.3,75000
total time: 4.22 hours.
 --------- CPU info (if available) ----------

(68·10138-41)/9 = 7(5)1371<139> = 32 · 103969 · 4437413462063<13> · C121

C121 = P41 · P81

P41 = 11410900863836166592220488321239541570811<41>

P81 = 159466770155403882014625840449690972139449148893901469976263858019351462850409067<81>

N=1819659505319461587167496116262275636870772186566922955290666967512874577913658754479211365347032761992684206423096943337
  ( 121 digits)
SNFS difficulty: 139 digits.
Divisors found:
 r1=11410900863836166592220488321239541570811 (pp41)
 r2=159466770155403882014625840449690972139449148893901469976263858019351462850409067 (pp81)
Version: Msieve-1.40
Total time: 5.40 hours.
Scaled time: 10.19 units (timescale=1.888).
Factorization parameters were as follows:
n: 1819659505319461587167496116262275636870772186566922955290666967512874577913658754479211365347032761992684206423096943337
m: 2000000000000000000000000000
deg: 5
c5: 2125
c0: -41
skew: 0.45
type: snfs
lss: 1
rlim: 1500000
alim: 1500000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.3
alambda: 2.3Factor base limits: 1500000/1500000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved rational special-q in [750000, 1800001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 214144 x 214369
Total sieving time: 5.26 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.06 hours.
Time per square root: 0.05 hours.
Prototype def-par.txt line would be:
snfs,139.000,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,48,48,2.3,2.3,75000
total time: 5.40 hours.
 --------- CPU info (if available) ----------

Dec 16, 2009 (3rd)

By Wataru Sakai / GMP-ECM 6.2.1 / Dec 16, 2009

(53·10199-17)/9 = 5(8)1987<200> = 3 · 19 · 29 · 2087 · C194

C194 = P32 · P36 · P37 · P90

P32 = 17033129343042131723119795399783<32>

P36 = 179440627551006617308087186383630077<36>

P37 = 6418601372244116209995402203201277923<37>

P90 = 870126567592585573632839389930035462775978166234114786224389433355392972174658899238979469<90>

Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3769953513
Step 1 took 25038ms
Step 2 took 9558ms
********** Factor found in step 2: 17033129343042131723119795399783
Found probable prime factor of 32 digits: 17033129343042131723119795399783
Composite cofactor 1002175111884014052862920762883581298496554004464709613050251304739359685726211840475054410063345510265115970720689986952986565831641247191170176592569731656952299 has 163 digits
---------------------------
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4056795063
Step 1 took 17322ms
Step 2 took 7340ms
********** Factor found in step 2: 6418601372244116209995402203201277923
Found probable prime factor of 37 digits: 6418601372244116209995402203201277923
Composite cofactor 156136057337616932522918625137023487892475982796937651766950011790633232673692347250804848273683749803164350079769169093889113 has 126 digits
---------------------------
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4016537737
Step 1 took 11682ms
Step 2 took 5633ms
********** Factor found in step 2: 179440627551006617308087186383630077
Found probable prime factor of 36 digits: 179440627551006617308087186383630077
Probable prime cofactor 870126567592585573632839389930035462775978166234114786224389433355392972174658899238979469 has 90 digits

Dec 16, 2009 (2nd)

By juno1369 / GMP-ECM + Msieve v1.43 / Dec 16, 2009

(68·10141+31)/9 = 7(5)1409<142> = 624851 · 1592881 · 73898372251340891<17> · C114

C114 = P38 · P76

P38 = 12691592973270826647859080507280059533<38>

P76 = 8093858248747963723614320594420759566733031650636803553239263136703583574963<76>

Number: 75559_141
N=102723954476459774940437404231851091242454241248712021855259577828447262557110513731009155996686407321671608272279
  ( 114 digits)
SNFS difficulty: 142 digits.
Divisors found:
 r1=12691592973270826647859080507280059533 (pp38)
 r2=8093858248747963723614320594420759566733031650636803553239263136703583574963 (pp76)
Version: Msieve v. 1.43
Total time: 24.33 hours.
Scaled time: 39.86 units (timescale=1.638).
Factorization parameters were as follows:
n: 102723954476459774940437404231851091242454241248712021855259577828447262557110513731009155996686407321671608272279
m: 10000000000000000000000000000
deg: 5
c5: 680
c0: 31
skew: 0.54
type: snfs
lss: 1
rlim: 1680000
alim: 1680000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.3
alambda: 2.3
qintsize: 5
Factor base limits: 1680000/1680000
Large primes per side: 2
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved rational special-q in [840000, 1640001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 253831 x 254056
Total sieving time: 23.80 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 0.36 hours.
Time per square root: 0.08 hours.
Prototype def-par.txt line would be:
snfs,142.000,5,0,0,0,0,0,0,0,0,1680000,1680000,26,26,48,48,2.3,2.3,100000
total time: 24.33 hours.
 --------- CPU info (if available) ----------

Dec 16, 2009

Factorizations of 766...661 and Factorizations of 766...663 have been extended up to n=150. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.

Dec 15, 2009 (5th)

By Dmitry Domanov / GGNFS/msieve, YAFU v1.14 / Dec 15, 2009

(68·10102-23)/9 = 7(5)1013<103> = 251 · C101

C101 = P42 · P59

P42 = 475408704971357587178647157962547319178567<42>

P59 = 63317761428424632567026630310285880151845690096680698073109<59>

N=30101814962372731297034085878707392651615759185480301018149623727312970340858787073926516157591854803
  ( 101 digits)
SNFS difficulty: 103 digits.
Divisors found:
 r1=475408704971357587178647157962547319178567 (pp42)
 r2=63317761428424632567026630310285880151845690096680698073109 (pp59)
Version: Msieve-1.40
Total time: 0.42 hours.
Scaled time: 0.79 units (timescale=1.911).
Factorization parameters were as follows:
n: 30101814962372731297034085878707392651615759185480301018149623727312970340858787073926516157591854803
m: 20000000000000000000000000
deg: 4
c4: 425
c0: -23
skew: 0.48
type: snfs
lss: 1
rlim: 380000
alim: 380000
lpbr: 25
lpba: 25
mfbr: 43
mfba: 43
rlambda: 2.2
alambda: 2.2Factor base limits: 380000/380000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 43/43
Sieved rational special-q in [190000, 280001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 34910 x 35140
Total sieving time: 0.40 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,103.000,4,0,0,0,0,0,0,0,0,380000,380000,25,25,43,43,2.2,2.2,10000
total time: 0.42 hours.
 --------- CPU info (if available) ----------

(68·10106+31)/9 = 7(5)1059<107> = 11 · 191 · C104

C104 = P28 · P77

P28 = 1246448664957339799134281813<28>

P77 = 28851337696777360109702926354001502481219789662031045816855532298591111394943<77>

N=35961711354381511449574276799407689460045480987889364852715638055952192077846528108308213020254905071659
  ( 104 digits)
SNFS difficulty: 107 digits.
Divisors found:
 r1=1246448664957339799134281813 (pp28)
 r2=28851337696777360109702926354001502481219789662031045816855532298591111394943 (pp77)
Version: Msieve-1.40
Total time: 0.40 hours.
Scaled time: 0.74 units (timescale=1.834).
Factorization parameters were as follows:
n: 35961711354381511449574276799407689460045480987889364852715638055952192077846528108308213020254905071659
m: 1000000000000000000000
deg: 5
c5: 680
c0: 31
skew: 0.54
type: snfs
lss: 1
rlim: 440000
alim: 440000
lpbr: 25
lpba: 25
mfbr: 44
mfba: 44
rlambda: 2.2
alambda: 2.2Factor base limits: 440000/440000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 44/44
Sieved rational special-q in [220000, 320001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 38652 x 38877
Total sieving time: 0.39 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,107.000,5,0,0,0,0,0,0,0,0,440000,440000,25,25,44,44,2.2,2.2,50000
total time: 0.40 hours.
 --------- CPU info (if available) ----------

(68·10108+31)/9 = 7(5)1079<109> = 11 · 29 · 5297 · C103

C103 = P48 · P56

P48 = 150578119693288207836470725802931710300783336777<48>

P56 = 29695037467385152935692049177562015039149743749687411169<56>

N=4471422906060599484984139928708422260400283093674929001366216966459133463228168754393748372122598262313
  ( 103 digits)
SNFS difficulty: 109 digits.
Divisors found:
 r1=150578119693288207836470725802931710300783336777 (pp48)
 r2=29695037467385152935692049177562015039149743749687411169 (pp56)
Version: Msieve-1.40
Total time: 0.64 hours.
Scaled time: 1.26 units (timescale=1.963).
Factorization parameters were as follows:
n: 4471422906060599484984139928708422260400283093674929001366216966459133463228168754393748372122598262313
m: 2000000000000000000000
deg: 5
c5: 2125
c0: 31
skew: 0.43
type: snfs
lss: 1
rlim: 470000
alim: 470000
lpbr: 25
lpba: 25
mfbr: 44
mfba: 44
rlambda: 2.2
alambda: 2.2Factor base limits: 470000/470000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 44/44
Sieved rational special-q in [235000, 385001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 44728 x 44959
Total sieving time: 0.62 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.01 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,109.000,5,0,0,0,0,0,0,0,0,470000,470000,25,25,44,44,2.2,2.2,50000
total time: 0.64 hours.
 --------- CPU info (if available) ----------

(68·10118-23)/9 = 7(5)1173<119> = 19 · 31 · 19207 · C112

C112 = P30 · P83

P30 = 127468924906638624877222907711<30>

P83 = 52394686868873641010380131832209559693086903605068551738708211241825910072617577101<83>

N=6678694405995298965223714114871599104453867100090361753152174336867276083780960548883392519824943169466949925811
  ( 112 digits)
SNFS difficulty: 119 digits.
Divisors found:
 r1=127468924906638624877222907711 (pp30)
 r2=52394686868873641010380131832209559693086903605068551738708211241825910072617577101 (pp83)
Version: Msieve-1.40
Total time: 1.10 hours.
Scaled time: 2.17 units (timescale=1.969).
Factorization parameters were as follows:
n: 6678694405995298965223714114871599104453867100090361753152174336867276083780960548883392519824943169466949925811
m: 200000000000000000000000
deg: 5
c5: 2125
c0: -23
skew: 0.40
type: snfs
lss: 1
rlim: 700000
alim: 700000
lpbr: 25
lpba: 25
mfbr: 45
mfba: 45
rlambda: 2.2
alambda: 2.2Factor base limits: 700000/700000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 45/45
Sieved rational special-q in [350000, 600001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 78114 x 78339
Total sieving time: 1.06 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.02 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,119.000,5,0,0,0,0,0,0,0,0,700000,700000,25,25,45,45,2.2,2.2,50000
total time: 1.10 hours.
 --------- CPU info (if available) ----------

(68·10127-23)/9 = 7(5)1263<128> = 11047 · 442948658389<12> · C113

C113 = P46 · P67

P46 = 2930179327475689888309979195558841620446520287<46>

P67 = 5269561271030268835690782346468544997247579366619279931709924249093<67>

N=15440759501239414746052470786880310377793924823079230995536396814451703822625126232937210152415871427113265849691
  ( 113 digits)
SNFS difficulty: 128 digits.
Divisors found:
 r1=2930179327475689888309979195558841620446520287 (pp46)
 r2=5269561271030268835690782346468544997247579366619279931709924249093 (pp67)
Version: Msieve-1.40
Total time: 2.86 hours.
Scaled time: 2.67 units (timescale=0.932).
Factorization parameters were as follows:
n: 15440759501239414746052470786880310377793924823079230995536396814451703822625126232937210152415871427113265849691
m: 10000000000000000000000000
deg: 5
c5: 6800
c0: -23
skew: 0.32
type: snfs
lss: 1
rlim: 980000
alim: 980000
lpbr: 26
lpba: 26
mfbr: 47
mfba: 47
rlambda: 2.3
alambda: 2.3Factor base limits: 980000/980000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved rational special-q in [490000, 890001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 139843 x 140068
Total sieving time: 2.70 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.07 hours.
Time per square root: 0.06 hours.
Prototype def-par.txt line would be:
snfs,128.000,5,0,0,0,0,0,0,0,0,980000,980000,26,26,47,47,2.3,2.3,50000
total time: 2.86 hours.
 --------- CPU info (if available) ----------

(68·10134-23)/9 = 7(5)1333<135> = 32 · 39906263 · 116212627 · 12319813631<11> · 121288423449913428549107<24> · C86

C86 = P35 · P51

P35 = 15879193363065865107998274559766137<35>

P51 = 762917520428606904550569900796832771668642509188273<51>

12/14/09 21:48:57 v1.14 @ REPGMAIL, starting SIQS on c86: 12114514826956601318952190098073537821701752211837444802265577948466686443108582911401
12/14/09 21:48:57 v1.14 @ REPGMAIL, random seeds: 0, 3887612160
12/14/09 21:48:57 v1.14 @ REPGMAIL, ==== sieve params ====
12/14/09 21:48:57 v1.14 @ REPGMAIL, n = 86 digits, 283 bits
12/14/09 21:48:57 v1.14 @ REPGMAIL, factor base: 56327 primes (max prime = 1476803)
12/14/09 21:48:57 v1.14 @ REPGMAIL, single large prime cutoff: 162448330 (110 * pmax)
12/14/09 21:48:57 v1.14 @ REPGMAIL, double large prime range from 42 to 50 bits
12/14/09 21:48:57 v1.14 @ REPGMAIL, double large prime cutoff: 601571775592514
12/14/09 21:48:57 v1.14 @ REPGMAIL, allocating 12 large prime slices of factor base
12/14/09 21:48:57 v1.14 @ REPGMAIL, buckets hold 1024 elements
12/14/09 21:48:57 v1.14 @ REPGMAIL, sieve interval: 18 blocks of size 32768
12/14/09 21:48:57 v1.14 @ REPGMAIL, polynomial A has ~ 11 factors
12/14/09 21:48:57 v1.14 @ REPGMAIL, using multiplier of 1
12/14/09 21:48:57 v1.14 @ REPGMAIL, using small prime variation correction of 19 bits
12/14/09 21:48:57 v1.14 @ REPGMAIL, using SSE2 for trial division and x128 sieve scanning
12/14/09 21:48:57 v1.14 @ REPGMAIL, trial factoring cutoff at 94 bits
12/14/09 21:48:57 v1.14 @ REPGMAIL, ==== sieving started ( 8 threads) ====
12/14/09 21:55:25 v1.14 @ REPGMAIL, trial division touched 10682534 sieve locations out of 4744629190656
12/14/09 21:55:25 v1.14 @ REPGMAIL, 56750 relations found: 19827 full + 36923 from 490861 partial, using 4022072 polys (367 A polys)
12/14/09 21:55:25 v1.14 @ REPGMAIL, on average, sieving found 0.13 rels/poly and 1315.91 rels/sec
12/14/09 21:55:25 v1.14 @ REPGMAIL, trial division touched 10682534 sieve locations out of 4744629190656
12/14/09 21:55:25 v1.14 @ REPGMAIL, ==== post processing stage (msieve-1.38) ====
12/14/09 21:55:26 v1.14 @ REPGMAIL, begin with 510688 relations
12/14/09 21:55:26 v1.14 @ REPGMAIL, reduce to 112219 relations in 9 passes
12/14/09 21:55:33 v1.14 @ REPGMAIL, recovered 112219 relations
12/14/09 21:55:33 v1.14 @ REPGMAIL, recovered 82618 polynomials
12/14/09 21:55:36 v1.14 @ REPGMAIL, attempting to build 56750 cycles
12/14/09 21:55:36 v1.14 @ REPGMAIL, found 56750 cycles in 4 passes
12/14/09 21:55:36 v1.14 @ REPGMAIL, distribution of cycle lengths:
12/14/09 21:55:36 v1.14 @ REPGMAIL,    length 1 : 19827
12/14/09 21:55:36 v1.14 @ REPGMAIL,    length 2 : 16452
12/14/09 21:55:36 v1.14 @ REPGMAIL,    length 3 : 10389
12/14/09 21:55:36 v1.14 @ REPGMAIL,    length 4 : 5444
12/14/09 21:55:36 v1.14 @ REPGMAIL,    length 5 : 2627
12/14/09 21:55:36 v1.14 @ REPGMAIL,    length 6 : 1196
12/14/09 21:55:36 v1.14 @ REPGMAIL,    length 7 : 484
12/14/09 21:55:36 v1.14 @ REPGMAIL,    length 9+: 331
12/14/09 21:55:36 v1.14 @ REPGMAIL, largest cycle: 13 relations
12/14/09 21:55:36 v1.14 @ REPGMAIL, matrix is 56327 x 56750 (10.6 MB) with weight 2564365 (45.19/col)
12/14/09 21:55:36 v1.14 @ REPGMAIL, sparse part has weight 2564365 (45.19/col)
12/14/09 21:55:36 v1.14 @ REPGMAIL, filtering completed in 3 passes
12/14/09 21:55:36 v1.14 @ REPGMAIL, matrix is 48272 x 48334 (9.3 MB) with weight 2235142 (46.24/col)
12/14/09 21:55:36 v1.14 @ REPGMAIL, sparse part has weight 2235142 (46.24/col)
12/14/09 21:55:36 v1.14 @ REPGMAIL, saving the first 48 matrix rows for later
12/14/09 21:55:46 v1.14 @ REPGMAIL, matrix is 48224 x 48334 (7.6 MB) with weight 1897902 (39.27/col)
12/14/09 21:55:46 v1.14 @ REPGMAIL, sparse part has weight 1696057 (35.09/col)
12/14/09 21:55:46 v1.14 @ REPGMAIL, matrix includes 64 packed rows
12/14/09 21:55:46 v1.14 @ REPGMAIL, using block size 19333 for processor cache size 6144 kB
12/14/09 21:55:47 v1.14 @ REPGMAIL, commencing Lanczos iteration
12/14/09 21:55:47 v1.14 @ REPGMAIL, memory use: 7.0 MB
12/14/09 21:55:59 v1.14 @ REPGMAIL, lanczos halted after 764 iterations (dim = 48220)
12/14/09 21:55:59 v1.14 @ REPGMAIL, recovered 15 nontrivial dependencies
12/14/09 21:56:00 v1.14 @ REPGMAIL, prp35 = 15879193363065865107998274559766137
12/14/09 21:56:02 v1.14 @ REPGMAIL, prp51 = 762917520428606904550569900796832771668642509188273
12/14/09 21:56:02 v1.14 @ REPGMAIL, Lanczos elapsed time = 33.8740 seconds.
12/14/09 21:56:02 v1.14 @ REPGMAIL, Sqrt elapsed time = 3.1880 seconds.
12/14/09 21:56:02 v1.14 @ REPGMAIL, SIQS elapsed time = 425.1639 seconds.

(68·10130+31)/9 = 7(5)1299<131> = 11 · 56131 · 8228147 · 1229854799<10> · 1169247389592624844202971<25> · C86

C86 = P34 · P52

P34 = 6328328267930458654843816832915939<34>

P52 = 1634254345465820314671612324574857719012196626173507<52>

12/14/09 21:58:42 v1.14 @ REPGMAIL, starting SIQS on c86: 10342097971399540079633988595037935069400821487904349185261500024432707324650559828073
12/14/09 21:58:42 v1.14 @ REPGMAIL, random seeds: 0, 3887612160
12/14/09 21:58:43 v1.14 @ REPGMAIL, ==== sieve params ====
12/14/09 21:58:43 v1.14 @ REPGMAIL, n = 86 digits, 284 bits
12/14/09 21:58:43 v1.14 @ REPGMAIL, factor base: 56327 primes (max prime = 1475729)
12/14/09 21:58:43 v1.14 @ REPGMAIL, single large prime cutoff: 162330190 (110 * pmax)
12/14/09 21:58:43 v1.14 @ REPGMAIL, double large prime range from 42 to 50 bits
12/14/09 21:58:43 v1.14 @ REPGMAIL, double large prime cutoff: 600784520801526
12/14/09 21:58:43 v1.14 @ REPGMAIL, allocating 12 large prime slices of factor base
12/14/09 21:58:43 v1.14 @ REPGMAIL, buckets hold 1024 elements
12/14/09 21:58:43 v1.14 @ REPGMAIL, sieve interval: 18 blocks of size 32768
12/14/09 21:58:43 v1.14 @ REPGMAIL, polynomial A has ~ 11 factors
12/14/09 21:58:43 v1.14 @ REPGMAIL, using multiplier of 2
12/14/09 21:58:43 v1.14 @ REPGMAIL, using small prime variation correction of 21 bits
12/14/09 21:58:43 v1.14 @ REPGMAIL, using SSE2 for trial division and x128 sieve scanning
12/14/09 21:58:43 v1.14 @ REPGMAIL, trial factoring cutoff at 92 bits
12/14/09 21:58:43 v1.14 @ REPGMAIL, ==== sieving started ( 8 threads) ====
12/14/09 22:05:23 v1.14 @ REPGMAIL, trial division touched 13815966 sieve locations out of 3668761903104
12/14/09 22:05:23 v1.14 @ REPGMAIL, 58137 relations found: 19063 full + 39074 from 549464 partial, using 3110048 polys (311 A polys)
12/14/09 22:05:23 v1.14 @ REPGMAIL, on average, sieving found 0.18 rels/poly and 1418.23 rels/sec
12/14/09 22:05:23 v1.14 @ REPGMAIL, trial division touched 13815966 sieve locations out of 3668761903104
12/14/09 22:05:23 v1.14 @ REPGMAIL, ==== post processing stage (msieve-1.38) ====
12/14/09 22:05:24 v1.14 @ REPGMAIL, begin with 568527 relations
12/14/09 22:05:24 v1.14 @ REPGMAIL, reduce to 121540 relations in 9 passes
12/14/09 22:05:27 v1.14 @ REPGMAIL, recovered 121540 relations
12/14/09 22:05:27 v1.14 @ REPGMAIL, recovered 84249 polynomials
12/14/09 22:05:28 v1.14 @ REPGMAIL, attempting to build 58137 cycles
12/14/09 22:05:28 v1.14 @ REPGMAIL, found 58137 cycles in 4 passes
12/14/09 22:05:28 v1.14 @ REPGMAIL, distribution of cycle lengths:
12/14/09 22:05:28 v1.14 @ REPGMAIL,    length 1 : 19063
12/14/09 22:05:28 v1.14 @ REPGMAIL,    length 2 : 15070
12/14/09 22:05:28 v1.14 @ REPGMAIL,    length 3 : 10885
12/14/09 22:05:28 v1.14 @ REPGMAIL,    length 4 : 6333
12/14/09 22:05:28 v1.14 @ REPGMAIL,    length 5 : 3437
12/14/09 22:05:28 v1.14 @ REPGMAIL,    length 6 : 1799
12/14/09 22:05:28 v1.14 @ REPGMAIL,    length 7 : 862
12/14/09 22:05:28 v1.14 @ REPGMAIL,    length 9+: 688
12/14/09 22:05:28 v1.14 @ REPGMAIL, largest cycle: 16 relations
12/14/09 22:05:28 v1.14 @ REPGMAIL, matrix is 56327 x 58137 (11.8 MB) with weight 2860361 (49.20/col)
12/14/09 22:05:28 v1.14 @ REPGMAIL, sparse part has weight 2860361 (49.20/col)
12/14/09 22:05:28 v1.14 @ REPGMAIL, filtering completed in 4 passes
12/14/09 22:05:28 v1.14 @ REPGMAIL, matrix is 48817 x 48881 (9.8 MB) with weight 2374448 (48.58/col)
12/14/09 22:05:28 v1.14 @ REPGMAIL, sparse part has weight 2374448 (48.58/col)
12/14/09 22:05:28 v1.14 @ REPGMAIL, saving the first 48 matrix rows for later
12/14/09 22:05:28 v1.14 @ REPGMAIL, matrix is 48769 x 48881 (7.9 MB) with weight 1988288 (40.68/col)
12/14/09 22:05:28 v1.14 @ REPGMAIL, sparse part has weight 1773744 (36.29/col)
12/14/09 22:05:28 v1.14 @ REPGMAIL, matrix includes 64 packed rows
12/14/09 22:05:28 v1.14 @ REPGMAIL, using block size 19552 for processor cache size 6144 kB
12/14/09 22:05:29 v1.14 @ REPGMAIL, commencing Lanczos iteration
12/14/09 22:05:29 v1.14 @ REPGMAIL, memory use: 7.2 MB
12/14/09 22:05:42 v1.14 @ REPGMAIL, lanczos halted after 773 iterations (dim = 48763)
12/14/09 22:05:42 v1.14 @ REPGMAIL, recovered 14 nontrivial dependencies
12/14/09 22:05:43 v1.14 @ REPGMAIL, prp52 = 1634254345465820314671612324574857719012196626173507
12/14/09 22:05:44 v1.14 @ REPGMAIL, prp34 = 6328328267930458654843816832915939
12/14/09 22:05:44 v1.14 @ REPGMAIL, Lanczos elapsed time = 18.6090 seconds.
12/14/09 22:05:44 v1.14 @ REPGMAIL, Sqrt elapsed time = 2.5000 seconds.
12/14/09 22:05:44 v1.14 @ REPGMAIL, SIQS elapsed time = 421.9790 seconds.

(68·10119-23)/9 = 7(5)1183<120> = 3 · 5381 · 19433 · 4054741 · 111624977 · 3066829543<10> · C88

C88 = P35 · P54

P35 = 17163877973414236572565193518549799<35>

P54 = 101091059547567240552656506384975203422975075543975963<54>

12/14/09 22:17:32 v1.14 @ REPGMAIL, starting SIQS on c88: 1735114610277596319882101492881858349358905458206119477631290544003282647794410274481437
12/14/09 22:17:32 v1.14 @ REPGMAIL, random seeds: 0, 3887612160
12/14/09 22:17:33 v1.14 @ REPGMAIL, ==== sieve params ====
12/14/09 22:17:33 v1.14 @ REPGMAIL, n = 89 digits, 294 bits
12/14/09 22:17:33 v1.14 @ REPGMAIL, factor base: 60488 primes (max prime = 1597793)
12/14/09 22:17:33 v1.14 @ REPGMAIL, single large prime cutoff: 175757230 (110 * pmax)
12/14/09 22:17:33 v1.14 @ REPGMAIL, double large prime range from 43 to 50 bits
12/14/09 22:17:33 v1.14 @ REPGMAIL, double large prime cutoff: 693176384915362
12/14/09 22:17:33 v1.14 @ REPGMAIL, allocating 12 large prime slices of factor base
12/14/09 22:17:33 v1.14 @ REPGMAIL, buckets hold 1024 elements
12/14/09 22:17:33 v1.14 @ REPGMAIL, sieve interval: 18 blocks of size 32768
12/14/09 22:17:33 v1.14 @ REPGMAIL, polynomial A has ~ 11 factors
12/14/09 22:17:33 v1.14 @ REPGMAIL, using multiplier of 13
12/14/09 22:17:33 v1.14 @ REPGMAIL, using small prime variation correction of 20 bits
12/14/09 22:17:33 v1.14 @ REPGMAIL, using SSE2 for trial division and x128 sieve scanning
12/14/09 22:17:33 v1.14 @ REPGMAIL, trial factoring cutoff at 98 bits
12/14/09 22:17:33 v1.14 @ REPGMAIL, ==== sieving started ( 8 threads) ====
12/14/09 22:31:20 v1.14 @ REPGMAIL, trial division touched 13149469 sieve locations out of 20630231580672
12/14/09 22:31:20 v1.14 @ REPGMAIL, 61829 relations found: 19559 full + 42270 from 580301 partial, using 17488464 polys (735 A polys)
12/14/09 22:31:20 v1.14 @ REPGMAIL, on average, sieving found 0.03 rels/poly and 724.59 rels/sec
12/14/09 22:31:20 v1.14 @ REPGMAIL, trial division touched 13149469 sieve locations out of 20630231580672
12/14/09 22:31:20 v1.14 @ REPGMAIL, ==== post processing stage (msieve-1.38) ====
12/14/09 22:31:20 v1.14 @ REPGMAIL, begin with 599860 relations
12/14/09 22:31:20 v1.14 @ REPGMAIL, reduce to 130589 relations in 9 passes
12/14/09 22:31:28 v1.14 @ REPGMAIL, recovered 130589 relations
12/14/09 22:31:28 v1.14 @ REPGMAIL, recovered 110394 polynomials
12/14/09 22:31:28 v1.14 @ REPGMAIL, attempting to build 61829 cycles
12/14/09 22:31:28 v1.14 @ REPGMAIL, found 61829 cycles in 5 passes
12/14/09 22:31:28 v1.14 @ REPGMAIL, distribution of cycle lengths:
12/14/09 22:31:28 v1.14 @ REPGMAIL,    length 1 : 19559
12/14/09 22:31:28 v1.14 @ REPGMAIL,    length 2 : 16198
12/14/09 22:31:28 v1.14 @ REPGMAIL,    length 3 : 11684
12/14/09 22:31:28 v1.14 @ REPGMAIL,    length 4 : 6913
12/14/09 22:31:28 v1.14 @ REPGMAIL,    length 5 : 3770
12/14/09 22:31:28 v1.14 @ REPGMAIL,    length 6 : 1976
12/14/09 22:31:28 v1.14 @ REPGMAIL,    length 7 : 948
12/14/09 22:31:28 v1.14 @ REPGMAIL,    length 9+: 781
12/14/09 22:31:28 v1.14 @ REPGMAIL, largest cycle: 18 relations
12/14/09 22:31:32 v1.14 @ REPGMAIL, matrix is 60488 x 61829 (12.7 MB) with weight 3090998 (49.99/col)
12/14/09 22:31:32 v1.14 @ REPGMAIL, sparse part has weight 3090998 (49.99/col)
12/14/09 22:31:33 v1.14 @ REPGMAIL, filtering completed in 4 passes
12/14/09 22:31:33 v1.14 @ REPGMAIL, matrix is 54334 x 54398 (11.2 MB) with weight 2705367 (49.73/col)
12/14/09 22:31:33 v1.14 @ REPGMAIL, sparse part has weight 2705367 (49.73/col)
12/14/09 22:31:33 v1.14 @ REPGMAIL, saving the first 48 matrix rows for later
12/14/09 22:31:33 v1.14 @ REPGMAIL, matrix is 54286 x 54398 (9.5 MB) with weight 2342063 (43.05/col)
12/14/09 22:31:33 v1.14 @ REPGMAIL, sparse part has weight 2168736 (39.87/col)
12/14/09 22:31:33 v1.14 @ REPGMAIL, matrix includes 64 packed rows
12/14/09 22:31:33 v1.14 @ REPGMAIL, using block size 21759 for processor cache size 6144 kB
12/14/09 22:31:33 v1.14 @ REPGMAIL, commencing Lanczos iteration
12/14/09 22:31:33 v1.14 @ REPGMAIL, memory use: 8.5 MB
12/14/09 22:31:51 v1.14 @ REPGMAIL, lanczos halted after 860 iterations (dim = 54286)
12/14/09 22:31:51 v1.14 @ REPGMAIL, recovered 18 nontrivial dependencies
12/14/09 22:31:51 v1.14 @ REPGMAIL, prp35 = 17163877973414236572565193518549799
12/14/09 22:31:52 v1.14 @ REPGMAIL, prp54 = 101091059547567240552656506384975203422975075543975963
12/14/09 22:31:52 v1.14 @ REPGMAIL, Lanczos elapsed time = 31.2030 seconds.
12/14/09 22:31:52 v1.14 @ REPGMAIL, Sqrt elapsed time = 1.5160 seconds.
12/14/09 22:31:52 v1.14 @ REPGMAIL, SIQS elapsed time = 860.5803 seconds.

(68·10119+31)/9 = 7(5)1189<120> = 3 · 72 · 43686701 · C111

C111 = P40 · P71

P40 = 6634669135672764257553453456120632517947<40>

P71 = 17732931987917711009328662473632708127743210594667847722218063513552451<71>

N=117652136545221912976539918304840573257486417659088317570207254929124209859585794047601347460666857922983338097
  ( 111 digits)
SNFS difficulty: 120 digits.
Divisors found:
 r1=6634669135672764257553453456120632517947 (pp40)
 r2=17732931987917711009328662473632708127743210594667847722218063513552451 (pp71)
Version: Msieve-1.40
Total time: 1.52 hours.
Scaled time: 2.93 units (timescale=1.922).
Factorization parameters were as follows:
n: 117652136545221912976539918304840573257486417659088317570207254929124209859585794047601347460666857922983338097
m: 200000000000000000000000
deg: 5
c5: 21250
c0: 31
skew: 0.27
type: snfs
lss: 1
rlim: 720000
alim: 720000
lpbr: 25
lpba: 25
mfbr: 46
mfba: 46
rlambda: 2.2
alambda: 2.2Factor base limits: 720000/720000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved rational special-q in [360000, 710001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 76233 x 76462
Total sieving time: 1.48 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.02 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,120.000,5,0,0,0,0,0,0,0,0,720000,720000,25,25,46,46,2.2,2.2,50000
total time: 1.52 hours.
 --------- CPU info (if available) ----------

(68·10123+31)/9 = 7(5)1229<124> = 643 · 509084894483527<15> · C107

C107 = P35 · P73

P35 = 15805941502604126681615117882084741<35>

P73 = 1460309293729239363139970762663567667195019351405645904493488161939164559<73>

N=23081563272393504608498474761706374197973657306420442943852972944554259658162200187498273275712430781894219
  ( 107 digits)
SNFS difficulty: 124 digits.
Divisors found:
 r1=15805941502604126681615117882084741 (pp35)
 r2=1460309293729239363139970762663567667195019351405645904493488161939164559 (pp73)
Version: Msieve-1.40
Total time: 1.58 hours.
Scaled time: 3.11 units (timescale=1.963).
Factorization parameters were as follows:
n: 23081563272393504608498474761706374197973657306420442943852972944554259658162200187498273275712430781894219
m: 2000000000000000000000000
deg: 5
c5: 2125
c0: 31
skew: 0.43
type: snfs
lss: 1
rlim: 840000
alim: 840000
lpbr: 25
lpba: 25
mfbr: 46
mfba: 46
rlambda: 2.2
alambda: 2.2Factor base limits: 840000/840000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 46/46
Sieved rational special-q in [420000, 770001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 99439 x 99664
Total sieving time: 1.53 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.03 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,124.000,5,0,0,0,0,0,0,0,0,840000,840000,25,25,46,46,2.2,2.2,50000
total time: 1.58 hours.
 --------- CPU info (if available) ----------

(68·10132-23)/9 = 7(5)1313<133> = 1451 · 15013853 · C123

C123 = P37 · P86

P37 = 3546780733597351884342375925933239181<37>

P86 = 97785056439323570071160433088360953550212624698377101232129668524217662486037165530171<86>

N=346822154212722509605722778538195475035879413238053901483291920294207306311553273500401847353147649829138159828113214829951
  ( 123 digits)
SNFS difficulty: 133 digits.
Divisors found:
 r1=3546780733597351884342375925933239181 (pp37)
 r2=97785056439323570071160433088360953550212624698377101232129668524217662486037165530171 (pp86)
Version: Msieve-1.40
Total time: 5.41 hours.
Scaled time: 5.04 units (timescale=0.933).
Factorization parameters were as follows:
n: 346822154212722509605722778538195475035879413238053901483291920294207306311553273500401847353147649829138159828113214829951
m: 100000000000000000000000000
deg: 5
c5: 6800
c0: -23
skew: 0.32
type: snfs
lss: 1
rlim: 1190000
alim: 1190000
lpbr: 26
lpba: 26
mfbr: 47
mfba: 47
rlambda: 2.3
alambda: 2.3Factor base limits: 1190000/1190000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved rational special-q in [595000, 1345001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 151774 x 151999
Total sieving time: 5.26 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.08 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,133.000,5,0,0,0,0,0,0,0,0,1190000,1190000,26,26,47,47,2.3,2.3,75000
total time: 5.41 hours.
 --------- CPU info (if available) ----------

(68·10133+31)/9 = 7(5)1329<134> = 1622420191243<13> · C122

C122 = P58 · P65

P58 = 3775676221594506443793913356406245596727082658528011309483<58>

P65 = 12334124159941821239867158087321352017654694921147016591540360511<65>

N=46569659304886651490438767131553120040397812939779228259856637279984635433151663202704620061831030849474071331459013025813
  ( 122 digits)
SNFS difficulty: 134 digits.
Divisors found:
 r1=3775676221594506443793913356406245596727082658528011309483 (pp58)
 r2=12334124159941821239867158087321352017654694921147016591540360511 (pp65)
Version: Msieve-1.40
Total time: 4.95 hours.
Scaled time: 4.61 units (timescale=0.932).
Factorization parameters were as follows:
n: 46569659304886651490438767131553120040397812939779228259856637279984635433151663202704620061831030849474071331459013025813
m: 200000000000000000000000000
deg: 5
c5: 2125
c0: 31
skew: 0.43
type: snfs
lss: 1
rlim: 1240000
alim: 1240000
lpbr: 26
lpba: 26
mfbr: 47
mfba: 47
rlambda: 2.3
alambda: 2.3Factor base limits: 1240000/1240000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved rational special-q in [620000, 1295001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 160015 x 160240
Total sieving time: 4.77 hours.
Total relation processing time: 0.05 hours.
Matrix solve time: 0.10 hours.
Time per square root: 0.03 hours.
Prototype def-par.txt line would be:
snfs,134.000,5,0,0,0,0,0,0,0,0,1240000,1240000,26,26,47,47,2.3,2.3,75000
total time: 4.95 hours.
 --------- CPU info (if available) ----------

(68·10133-23)/9 = 7(5)1323<134> = 31 · 1481 · 2157345597104996955689<22> · C108

C108 = P50 · P59

P50 = 47411469848704408241807854830975592670012824018181<50>

P59 = 16089646730547195710003465003961823026277166216107972643747<59>

N=762833800841643829710558482948388661851497005201100350789886529905966617825111340108110622150732462163964207
  ( 108 digits)
SNFS difficulty: 134 digits.
Divisors found:
 r1=47411469848704408241807854830975592670012824018181 (pp50)
 r2=16089646730547195710003465003961823026277166216107972643747 (pp59)
Version: Msieve-1.40
Total time: 4.88 hours.
Scaled time: 4.55 units (timescale=0.932).
Factorization parameters were as follows:
n: 762833800841643829710558482948388661851497005201100350789886529905966617825111340108110622150732462163964207
m: 200000000000000000000000000
deg: 5
c5: 2125
c0: -23
skew: 0.40
type: snfs
lss: 1
rlim: 1240000
alim: 1240000
lpbr: 26
lpba: 26
mfbr: 47
mfba: 47
rlambda: 2.3
alambda: 2.3Factor base limits: 1240000/1240000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved rational special-q in [620000, 1295001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 167310 x 167535
Total sieving time: 4.71 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.10 hours.
Time per square root: 0.03 hours.
Prototype def-par.txt line would be:
snfs,134.000,5,0,0,0,0,0,0,0,0,1240000,1240000,26,26,47,47,2.3,2.3,75000
total time: 4.88 hours.
 --------- CPU info (if available) ----------

(68·10129+31)/9 = 7(5)1289<130> = 2671 · 99105211 · C119

C119 = P44 · P76

P44 = 15850593937734961158350585904613693897074287<44>

P76 = 1800737813772841770073771228425346708559403534164709399543295848456867471397<76>

N=28542763874437913205487855707701668432438723177861207312592884591693426607608310073610917901821200641516476277956668939
  ( 119 digits)
SNFS difficulty: 130 digits.
Divisors found:
 r1=15850593937734961158350585904613693897074287 (pp44)
 r2=1800737813772841770073771228425346708559403534164709399543295848456867471397 (pp76)
Version: Msieve-1.40
Total time: 2.51 hours.
Scaled time: 4.56 units (timescale=1.813).
Factorization parameters were as follows:
n: 28542763874437913205487855707701668432438723177861207312592884591693426607608310073610917901821200641516476277956668939
m: 20000000000000000000000000
deg: 5
c5: 21250
c0: 31
skew: 0.27
type: snfs
lss: 1
rlim: 1060000
alim: 1060000
lpbr: 26
lpba: 26
mfbr: 47
mfba: 47
rlambda: 2.3
alambda: 2.3Factor base limits: 1060000/1060000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved rational special-q in [530000, 1030001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 151239 x 151466
Total sieving time: 2.42 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.06 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,130.000,5,0,0,0,0,0,0,0,0,1060000,1060000,26,26,47,47,2.3,2.3,50000
total time: 2.51 hours.
 --------- CPU info (if available) ----------

(68·10131-23)/9 = 7(5)1303<132> = 3 · 43 · 1101629849<10> · 103335380363<12> · C110

C110 = P54 · P57

P54 = 107465839243862724082249298851749174717083735327064911<54>

P57 = 478764037949569470056242460435709304889925309933652412501<57>

N=51450779138031025275378865230083848138539241379756745451743759286339154927443801592785384612075213434574852411
  ( 110 digits)
SNFS difficulty: 132 digits.
Divisors found:
 r1=107465839243862724082249298851749174717083735327064911 (pp54)
 r2=478764037949569470056242460435709304889925309933652412501 (pp57)
Version: Msieve-1.40
Total time: 2.62 hours.
Scaled time: 4.82 units (timescale=1.839).
Factorization parameters were as follows:
n: 51450779138031025275378865230083848138539241379756745451743759286339154927443801592785384612075213434574852411
m: 100000000000000000000000000
deg: 5
c5: 680
c0: -23
skew: 0.51
type: snfs
lss: 1
rlim: 1150000
alim: 1150000
lpbr: 26
lpba: 26
mfbr: 47
mfba: 47
rlambda: 2.3
alambda: 2.3Factor base limits: 1150000/1150000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved rational special-q in [575000, 1075001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 158594 x 158824
Total sieving time: 2.52 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.07 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,132.000,5,0,0,0,0,0,0,0,0,1150000,1150000,26,26,47,47,2.3,2.3,50000
total time: 2.62 hours.
 --------- CPU info (if available) ----------

(68·10138-23)/9 = 7(5)1373<139> = 353 · 8747 · 3440792217051907<16> · C117

C117 = P39 · P79

P39 = 105491386872953299968777534235333470421<39>

P79 = 6741509055502669216548343696385596867253895536109530691752085630089326932209789<79>

N=711171139881550079123670628242749562640990066684770750496910658551665628899866129078044125043581325269317051798151169
  ( 117 digits)
SNFS difficulty: 139 digits.
Divisors found:
 r1=105491386872953299968777534235333470421 (pp39)
 r2=6741509055502669216548343696385596867253895536109530691752085630089326932209789 (pp79)
Version: Msieve-1.40
Total time: 6.88 hours.
Scaled time: 6.42 units (timescale=0.933).
Factorization parameters were as follows:
n: 711171139881550079123670628242749562640990066684770750496910658551665628899866129078044125043581325269317051798151169
m: 2000000000000000000000000000
deg: 5
c5: 2125
c0: -23
skew: 0.40
type: snfs
lss: 1
rlim: 1500000
alim: 1500000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.3
alambda: 2.3Factor base limits: 1500000/1500000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved rational special-q in [750000, 1650001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 228654 x 228880
Total sieving time: 6.57 hours.
Total relation processing time: 0.05 hours.
Matrix solve time: 0.10 hours.
Time per square root: 0.16 hours.
Prototype def-par.txt line would be:
snfs,139.000,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,48,48,2.3,2.3,75000
total time: 6.88 hours.
 --------- CPU info (if available) ----------

(68·10139-23)/9 = 7(5)1383<140> = C140

C140 = P36 · P105

P36 = 164718007347958713783029320020009041<36>

P105 = 458696391317727327867207967595193328572030528906800158169735169192289759788564814046706350284250216889233<105>

N=75555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553
  ( 140 digits)
SNFS difficulty: 140 digits.
Divisors found:
 r1=164718007347958713783029320020009041 (pp36)
 r2=458696391317727327867207967595193328572030528906800158169735169192289759788564814046706350284250216889233 (pp105)
Version: Msieve-1.40
Total time: 6.80 hours.
Scaled time: 13.07 units (timescale=1.922).
Factorization parameters were as follows:
n: 75555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553
m: 2000000000000000000000000000
deg: 5
c5: 21250
c0: -23
skew: 0.26
type: snfs
lss: 1
rlim: 1560000
alim: 1560000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.3
alambda: 2.3Factor base limits: 1560000/1560000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved rational special-q in [780000, 2080001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 245317 x 245544
Total sieving time: 6.67 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.07 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,140.000,5,0,0,0,0,0,0,0,0,1560000,1560000,26,26,48,48,2.3,2.3,100000
total time: 6.80 hours.
 --------- CPU info (if available) ----------

(68·10140+31)/9 = 7(5)1399<141> = 32 · 11 · 61 · C138

C138 = P35 · P51 · P53

P35 = 64577825418450786827092826500152721<35>

P51 = 121323237318025912960150232176754713404906484098187<51>

P53 = 15968861963782638135182074151294697288027680707033603<53>

N=125112693418704347666096299976081396846424168828540413239866791779360085371014332762966642748063513090835495207079906533458446026752037681
  ( 138 digits)
SNFS difficulty: 141 digits.
Divisors found:
 r1=64577825418450786827092826500152721 (pp35)
 r2=121323237318025912960150232176754713404906484098187 (pp51)
 r3=15968861963782638135182074151294697288027680707033603 (pp53)
Version: Msieve-1.40
Total time: 5.62 hours.
Scaled time: 5.23 units (timescale=0.930).
Factorization parameters were as follows:
n: 125112693418704347666096299976081396846424168828540413239866791779360085371014332762966642748063513090835495207079906533458446026752037681
m: 10000000000000000000000000000
deg: 5
c5: 68
c0: 31
skew: 0.85
type: snfs
lss: 1
rlim: 1620000
alim: 1620000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.3
alambda: 2.3Factor base limits: 1620000/1620000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved rational special-q in [810000, 1510001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 202238 x 202469
Total sieving time: 5.44 hours.
Total relation processing time: 0.05 hours.
Matrix solve time: 0.08 hours.
Time per square root: 0.06 hours.
Prototype def-par.txt line would be:
snfs,141.000,5,0,0,0,0,0,0,0,0,1620000,1620000,26,26,48,48,2.3,2.3,100000
total time: 5.62 hours.
 --------- CPU info (if available) ----------

(68·10144+31)/9 = 7(5)1439<145> = 11 · 79 · 64627 · C138

C138 = P55 · P83

P55 = 2799109163358252944851206027149459226073495227890800061<55>

P83 = 48063212413234688284492794240032724922427393061352740109590143514766355380635138413<83>

N=134534178286319345832622898895901146596617568992049775936590496402371088128677003335143827037621475929875855995224923013657314268043843193
  ( 138 digits)
SNFS difficulty: 145 digits.
Divisors found:
 r1=2799109163358252944851206027149459226073495227890800061 (pp55)
 r2=48063212413234688284492794240032724922427393061352740109590143514766355380635138413 (pp83)
Version: Msieve-1.40
Total time: 8.14 hours.
Scaled time: 15.33 units (timescale=1.883).
Factorization parameters were as follows:
n: 134534178286319345832622898895901146596617568992049775936590496402371088128677003335143827037621475929875855995224923013657314268043843193
m: 20000000000000000000000000000
deg: 5
c5: 21250
c0: 31
skew: 0.27
type: snfs
lss: 1
rlim: 1890000
alim: 1890000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.3
alambda: 2.3Factor base limits: 1890000/1890000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved rational special-q in [945000, 2445001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 296638 x 296867
Total sieving time: 7.81 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.11 hours.
Time per square root: 0.19 hours.
Prototype def-par.txt line would be:
snfs,145.000,5,0,0,0,0,0,0,0,0,1890000,1890000,26,26,49,49,2.3,2.3,100000
total time: 8.14 hours.
 --------- CPU info (if available) ----------

(68·10147+31)/9 = 7(5)1469<148> = 113 · 1399231 · 494128459174997<15> · 854839314133520650537403<24> · C102

C102 = P37 · P65

P37 = 3307593458679400865926471611006730181<37>

P65 = 34202831604401379070594480213491731602791057229970797659864243443<65>

N=113129062083031078829244010170332132313320715044935113709770505518972384982973295951897659466799453183
  ( 102 digits)
Divisors found:
 r1=3307593458679400865926471611006730181 (pp37)
 r2=34202831604401379070594480213491731602791057229970797659864243443 (pp65)
Version: Msieve-1.40
Total time: 5.05 hours.
Scaled time: 9.94 units (timescale=1.969).
Factorization parameters were as follows:
name: g2
n: 113129062083031078829244010170332132313320715044935113709770505518972384982973295951897659466799453183
skew: 9373.09
# norm 1.77e+014
c5: 95040
c4: 993742740
c3: -20272824328200
c2: -64071914268138185
c1: 842627983672225941408
c0: -11947393337441418505264
# alpha -6.12
Y1: 113350393709
Y0: -16410706557440026473
# Murphy_E 2.82e-009
# M 92210185113258973315463136410439353282245099000867708977336273077550890938594157433529679528411226221
type: gnfs
rlim: 2300000
alim: 2300000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 2300000/2300000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved algebraic special-q in [1150000, 1750001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 213563 x 213788
Polynomial selection time: 0.50 hours.
Total sieving time: 4.35 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.13 hours.
Time per square root: 0.03 hours.
Prototype def-par.txt line would be:
gnfs,101,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000
total time: 5.05 hours.
 --------- CPU info (if available) ----------

(68·10142-23)/9 = 7(5)1413<143> = 67 · 1201 · 81317837369<11> · 212049219970753086168503801<27> · C101

C101 = P49 · P53

P49 = 2959672947226504162711354061714811058096170521161<49>

P53 = 18398498042538049399399151846094729471619424141236051<53>

N=54453536926099656419822835317968628649294196449567335387500606200426331378061740221365333895391575211
  ( 101 digits)
Divisors found:
 r1=2959672947226504162711354061714811058096170521161 (pp49)
 r2=18398498042538049399399151846094729471619424141236051 (pp53)
Version: Msieve-1.40
Total time: 3.76 hours.
Scaled time: 7.23 units (timescale=1.922).
Factorization parameters were as follows:
name: g1
n: 54453536926099656419822835317968628649294196449567335387500606200426331378061740221365333895391575211
skew: 2931.88
# norm 5.35e+013
c5: 409200
c4: 8901108
c3: -4950728848596
c2: 6043929165090551
c1: 23397151429743759722
c0: -69366011719193748738633
# alpha -6.24
Y1: 38386560253
Y0: -10588101280949284690
# Murphy_E 3.19e-009
# M 37728834848942648417473990291487294399973387734390897856397569738356643094034402185983653030400545834
type: gnfs
rlim: 1800000
alim: 1800000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 1800000/1800000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved algebraic special-q in [900000, 1400001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 237990 x 238238
Polynomial selection time: 0.43 hours.
Total sieving time: 3.07 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.15 hours.
Time per square root: 0.07 hours.
Prototype def-par.txt line would be:
gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000
total time: 3.76 hours.
 --------- CPU info (if available) ----------

(68·10132+31)/9 = 7(5)1319<133> = 11 · 19 · 15264131 · 72747172267872895085143<23> · C101

C101 = P47 · P54

P47 = 36954238232459266794746422219280310036992683933<47>

P54 = 880983270993343639800108777244778655265600180659756359<54>

N=32556065675099242514509548230892736110901273716548379934378236917526599026909990576685356401273879947
  ( 101 digits)
Divisors found:
 r1=36954238232459266794746422219280310036992683933 (pp47)
 r2=880983270993343639800108777244778655265600180659756359 (pp54)
Version: Msieve-1.40
Total time: 3.88 hours.
Scaled time: 7.39 units (timescale=1.905).
Factorization parameters were as follows:
name: g0
n: 32556065675099242514509548230892736110901273716548379934378236917526599026909990576685356401273879947
skew: 9331.96
# norm 1.42e+014
c5: 77700
c4: -857413225
c3: -17143839924827
c2: 70864659807859085
c1: 721204846229342710248
c0: -1087149978755970537439980
# alpha -6.52
Y1: 25776775063
Y0: -13318154067841040467
# Murphy_E 3.25e-009
# M 27532399991660424287791386334789384309991547594287584614629526678504506374241159243714975923135653028
type: gnfs
rlim: 1800000
alim: 1800000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 1800000/1800000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved algebraic special-q in [900000, 1400001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 195770 x 196001
Polynomial selection time: 0.43 hours.
Total sieving time: 3.28 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.10 hours.
Time per square root: 0.03 hours.
Prototype def-par.txt line would be:
gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000
total time: 3.88 hours.
 --------- CPU info (if available) ----------

Dec 15, 2009 (4th)

By Sinkiti Sibata / Msieve / Dec 15, 2009

(68·10140-23)/9 = 7(5)1393<141> = 3 · 48157279 · 158546731887285436938346074863<30> · C104

C104 = P44 · P60

P44 = 33766940649557270429843570725392477009158467<44>

P60 = 976864212320039983752591722330942844497734391931800612763689<60>

Number: 75553_140
N=32985715880087302264179078807117361590859919830808006197563651961591828459277939695772641530229024504763
  ( 104 digits)
SNFS difficulty: 141 digits.
Divisors found:
 r1=33766940649557270429843570725392477009158467 (pp44)
 r2=976864212320039983752591722330942844497734391931800612763689 (pp60)
Version: Msieve v. 1.42
Total time: 0.36 hours.
Scaled time: 0.28 units (timescale=0.796).
Factorization parameters were as follows:
name: 75553_140
n: 32985715880087302264179078807117361590859919830808006197563651961591828459277939695772641530229024504763
m: 10000000000000000000000000000
deg: 5
c5: 68
c0: -23
skew: 0.81
type: snfs
lss: 1
rlim: 1620000
alim: 1620000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.3
alambda: 2.3
Factor base limits: 1620000/1620000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved rational special-q in [810000, 1710001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 274332 x 274557
Total sieving time: 0.00 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.24 hours.
Time per square root: 0.08 hours.
Prototype def-par.txt line would be:
snfs,141.000,5,0,0,0,0,0,0,0,0,1620000,1620000,26,26,48,48,2.3,2.3,100000
total time: 0.36 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
CPU1: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.33 BogoMIPS (lpj=1860666)
Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860571)
Total of 2 processors activated (7442.47 BogoMIPS).

Total time: 5.5 hours.

(67·10167+41)/9 = 7(4)1669<168> = 12007 · 2883731174759<13> · C152

C152 = P46 · P47 · P59

P46 = 9099568540339976268577524952845344061739489817<46>

P47 = 98953310001994328393191015800849486407545328609<47>

P59 = 23877666584598768009724339692120824825964814162219197525241<59>

Number: 74449_167
N=21500225265668832778209732491679555951323094270407199545497962211634757197950504508122504681536277486547015682731062252501472455955612542806915181492273
  ( 152 digits)
SNFS difficulty: 168 digits.
Divisors found:
 r1=9099568540339976268577524952845344061739489817 (pp46)
 r2=98953310001994328393191015800849486407545328609 (pp47)
 r3=23877666584598768009724339692120824825964814162219197525241 (pp59)
Version: Msieve-1.40
Total time: 70.12 hours.
Scaled time: 230.47 units (timescale=3.287).
Factorization parameters were as follows:
name: 74449_167
n: 21500225265668832778209732491679555951323094270407199545497962211634757197950504508122504681536277486547015682731062252501472455955612542806915181492273
m: 1000000000000000000000000000000000
deg: 5
c5: 6700
c0: 41
skew: 0.36
type: snfs
lss: 1
rlim: 4600000
alim: 4600000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4
Factor base limits: 4600000/4600000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2300000, 6000001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 984373 x 984621
Total sieving time: 67.85 hours.
Total relation processing time: 0.10 hours.
Matrix solve time: 1.86 hours.
Time per square root: 0.30 hours.
Prototype def-par.txt line would be:
snfs,168.000,5,0,0,0,0,0,0,0,0,4600000,4600000,27,27,52,52,2.4,2.4,100000
total time: 70.12 hours.
 --------- CPU info (if available) ----------

(68·10143+31)/9 = 7(5)1429<144> = 3 · 7 · 256517971 · 722066453072714543<18> · C117

C117 = P51 · P67

P51 = 151840443799935154578099961093885897305133766399969<51>

P67 = 1279277258851732954711573830325981672571369287299325807035602299847<67>

Number: 75559_143
N=194246026727211654968913305488461548367824105430564236553497494764492736602120625486924694056985227303799150069504743
  ( 117 digits)
SNFS difficulty: 144 digits.
Divisors found:
 r1=151840443799935154578099961093885897305133766399969 (pp51)
 r2=1279277258851732954711573830325981672571369287299325807035602299847 (pp67)
Version: Msieve v. 1.42
Total time: 0.44 hours.
Scaled time: 0.35 units (timescale=0.796).
Factorization parameters were as follows:
name: 75559_143
n: 194246026727211654968913305488461548367824105430564236553497494764492736602120625486924694056985227303799150069504743
m: 20000000000000000000000000000
deg: 5
c5: 2125
c0: 31
skew: 0.43
type: snfs
lss: 1
rlim: 1820000
alim: 1820000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.3
alambda: 2.3
Factor base limits: 1820000/1820000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved rational special-q in [910000, 2010001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 310126 x 310351
Total sieving time: 0.00 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.30 hours.
Time per square root: 0.10 hours.
Prototype def-par.txt line would be:
snfs,144.000,5,0,0,0,0,0,0,0,0,1820000,1820000,26,26,49,49,2.3,2.3,100000
total time: 0.44 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
CPU1: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.33 BogoMIPS (lpj=1860666)
Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860571)
Total of 2 processors activated (7442.47 BogoMIPS).

Total time: 6 hours 40 min.

Dec 15, 2009 (3rd)

By [XTBA>TSA] IvanleFou + Beyond + Grubix + jiri kovar + veebee / yoyo@home, GMP-ECM / Dec 15, 2009

(10201+17)/9 = (1)2003<201> = 163 · 6610512331<10> · 591785342633<12> · C177

C177 = P33 · C144

P33 = 434937654132758116503430906897943<33>

C144 = [400630080585560047283559589031720836640469685776195262402744444159188517127238066932342627397734279890091910596475172516678632844545173721295559<144>]

GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM]
Input number is 174249107424901328154797173904681562657513437449116292897023905780144007058356290870928174957782571238810560254724268067008224047626355412568808491125189068775485687967752135137 (177 digits)
[Mon Dec 14 18:53:21 2009]
Using MODMULN
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3868083629
dF=16384, k=2, d=158340, d2=11, i0=8
Expected number of curves to find a factor of n digits:
20	25	30	35	40	45	50	55	60	65
3	11	54	322	2350	20265	199745	2246256	2.8e+007	4e+008
Step 1 took 15735ms
Using 22 small primes for NTT
Estimated memory usage: 60M
Initializing tables of differences for F took 15ms
Computing roots of F took 750ms
Building F from its roots took 1672ms
Computing 1/F took 890ms
Initializing table of differences for G took 16ms
Computing roots of G took 687ms
Building G from its roots took 1453ms
Computing roots of G took 688ms
Building G from its roots took 1453ms
Computing G * H took 532ms
Reducing  G * H mod F took 515ms
Computing polyeval(F,G) took 2812ms
Computing product of all F(g_i) took 16ms
Step 2 took 11671ms
********** Factor found in step 2: 434937654132758116503430906897943
Found probable prime factor of 33 digits: 434937654132758116503430906897943
Composite cofactor 400630080585560047283559589031720836640469685776195262402744444159188517127238066932342627397734279890091910596475172516678632844545173721295559 has 144 digits

(10224+17)/9 = (1)2233<224> = 13 · 2062057 · 13114217 · 83966699 · 96847363 · C193

C193 = P30 · C163

P30 = 435014947587352996741211293991<30>

C163 = [8934536893073881695362159200583021969912162189671777515715892258132715300674118774530310082315129943003392553047646488635199933129656686153169261847420414263935387<163>]

GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM]
Input number is 3886657098257806331434095545293329839817212614797090398280354923445762056113132379813681173655176220583770329799839670015856368240944943756244089374109897160110332176285865766830274002285359517 (193 digits)
[Mon Dec 14 20:03:58 2009]
Using MODMULN
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2823076904
dF=16384, k=2, d=158340, d2=11, i0=8
Expected number of curves to find a factor of n digits:
20	25	30	35	40	45	50	55	60	65
3	11	54	322	2350	20265	199745	2246256	2.8e+007	4e+008
Step 1 took 16578ms
Using 24 small primes for NTT
Estimated memory usage: 62M
Initializing tables of differences for F took 15ms
Computing roots of F took 469ms
Building F from its roots took 1781ms
Computing 1/F took 1047ms
Initializing table of differences for G took 16ms
Computing roots of G took 437ms
Building G from its roots took 1641ms
Computing roots of G took 437ms
Building G from its roots took 1625ms
Computing G * H took 578ms
Reducing  G * H mod F took 562ms
Computing polyeval(F,G) took 3141ms
Computing product of all F(g_i) took 16ms
Step 2 took 11922ms
********** Factor found in step 2: 435014947587352996741211293991
Found probable prime factor of 30 digits: 435014947587352996741211293991
Composite cofactor 8934536893073881695362159200583021969912162189671777515715892258132715300674118774530310082315129943003392553047646488635199933129656686153169261847420414263935387 has 163 digits

(10232+17)/9 = (1)2313<232> = 32 · 7 · 1031 · 242681851207<12> · 60172454155949833693<20> · C196

C196 = P29 · C168

P29 = 11034650601549874189730158399<29>

C168 = [106160918079293499828871171668387354975740392989821399884697192605813176167742276299320496961036627957248078891805720005695913237091468581973936046925810427808436406829<168>]

GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM]
Input number is 1171448638544762932351907908494663970476643690362893130411085823792270499423543789663011576627567935696315395295800785938152719188074903690312546061914970458942515265396550984538283442184575306771 (196 digits)
[Mon Dec 14 20:25:19 2009]
Using MODMULN
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2768889511
dF=16384, k=2, d=158340, d2=11, i0=8
Expected number of curves to find a factor of n digits:
20	25	30	35	40	45	50	55	60	65
3	11	54	322	2350	20265	199745	2246256	2.8e+007	4e+008
Step 1 took 11485ms
Using 24 small primes for NTT
Estimated memory usage: 66M
Initializing tables of differences for F took 16ms
Computing roots of F took 547ms
Building F from its roots took 1016ms
Computing 1/F took 687ms
Initializing table of differences for G took 16ms
Computing roots of G took 531ms
Building G from its roots took 1032ms
Computing roots of G took 515ms
Building G from its roots took 1031ms
Computing G * H took 375ms
Reducing  G * H mod F took 360ms
Computing polyeval(F,G) took 1781ms
Computing product of all F(g_i) took 16ms
Step 2 took 7984ms
********** Factor found in step 2: 11034650601549874189730158399
Found probable prime factor of 29 digits: 11034650601549874189730158399
Composite cofactor 106160918079293499828871171668387354975740392989821399884697192605813176167742276299320496961036627957248078891805720005695913237091468581973936046925810427808436406829 has 168 digits

(10237+17)/9 = (1)2363<237> = 6689 · 9661 · C229

C229 = P30 · P199

P30 = 245770041528399372761722440431<30>

P199 = 6995927008257020513213147481935171254602692742046147638121409624025066318654782565640266876425207293906006549803982132091174899763423630705114910859456080952174977330381795175212974818157466438019187<199>

GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM]
Input number is 1719389271348978713120039345953880983197197850781980217907177570052513982585072918121216259313173002381434952114088919670771135995384994134329291632029354871682571868524334037507490025036216312932327429399336120762515923242549597 (229 digits)
[Mon Dec 14 20:27:43 2009]
Using MODMULN
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3076026454
dF=16384, k=2, d=158340, d2=11, i0=8
Expected number of curves to find a factor of n digits:
20	25	30	35	40	45	50	55	60	65
3	11	54	322	2350	20265	199745	2246256	2.8e+007	4e+008
Step 1 took 26785ms
Using 27 small primes for NTT
Estimated memory usage: 72M
Initializing tables of differences for F took 16ms
Computing roots of F took 1076ms
Building F from its roots took 2277ms
Computing 1/F took 1389ms
Initializing table of differences for G took 15ms
Computing roots of G took 952ms
Building G from its roots took 2075ms
Computing roots of G took 952ms
Building G from its roots took 2028ms
Computing G * H took 748ms
Reducing  G * H mod F took 702ms
Computing polyeval(F,G) took 4150ms
Computing product of all F(g_i) took 31ms
Step 2 took 16520ms
********** Factor found in step 2: 245770041528399372761722440431
Found probable prime factor of 30 digits: 245770041528399372761722440431
Probable prime cofactor 6995927008257020513213147481935171254602692742046147638121409624025066318654782565640266876425207293906006549803982132091174899763423630705114910859456080952174977330381795175212974818157466438019187 has 199 digits

(10243+17)/9 = (1)2423<243> = 205998011 · 848344039447395897683339<24> · C210

C210 = P34 · P177

P34 = 5698757463712416358165250190011999<34>

P177 = 111568675330136835985158131132148286419662624343188790396091914312571328418864051146305057278675143858079578156757844170432496065307678374623319281825292812203036012184988862303<177>

GMP-ECM 6.2.3 [powered by GMP 4.2.1_MPIR_1.1.1] [ECM]
Input number is 635802821254124632245644134156344521699797959589567830765446538580491656222953927253387514145875048283079324184181135147768813698398498051741476677385558200484481165819627480049581712885502706227662268928773697 (210 digits)
[Tue Dec 15 06:52:15 2009]
Using MODMULN
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=978631340
dF=16384, k=2, d=158340, d2=11, i0=8
Expected number of curves to find a factor of n digits:
20	25	30	35	40	45	50	55	60	65
3	11	54	322	2350	20265	199745	2246256	2.8e+007	4e+008
Step 1 took 26067ms
Using 25 small primes for NTT
Estimated memory usage: 66M
Initializing tables of differences for F took 15ms
Computing roots of F took 952ms
Building F from its roots took 1841ms
Computing 1/F took 1029ms
Initializing table of differences for G took 32ms
Computing roots of G took 826ms
Building G from its roots took 1592ms
Computing roots of G took 734ms
Building G from its roots took 1684ms
Computing G * H took 546ms
Reducing  G * H mod F took 546ms
Computing polyeval(F,G) took 3276ms
Computing product of all F(g_i) took 16ms
Step 2 took 13136ms
********** Factor found in step 2: 5698757463712416358165250190011999
Found probable prime factor of 34 digits: 5698757463712416358165250190011999
Probable prime cofactor 111568675330136835985158131132148286419662624343188790396091914312571328418864051146305057278675143858079578156757844170432496065307678374623319281825292812203036012184988862303 has 177 digits

Dec 15, 2009 (2nd)

By Markus Tervooren / Msieve, GMP-ECM / Dec 15, 2009

(68·10104-23)/9 = 7(5)1033<105> = 3 · 659591 · 404904091 · C90

C90 = P40 · P51

P40 = 7708013546252113778869071536500067456077<40>

P51 = 122342061281926836162513959260860360435732273533123<51>

Used 4th degree poly for snfs,

n: 943014265637498297505998356358191789999906362475486416043098179590323289763284335407138471
m: 100000000000000000000000000
deg: 4
c4: 68
c0: -23
skew: 0.76
type: snfs
lss: 1
rlim: 100000
alim: 100000
lpbr: 23
lpba: 23
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4

total time: about 12 min.

Msieve v. 1.44
Mon Dec 14 18:03:45 2009
random seeds: f7271fc6 28bb6c01
factoring 943014265637498297505998356358191789999906362475486416043098179590323289763284335407138471 (90 digits)
searching for 15-digit factors
commencing number field sieve (90-digit input)
R0: -100000000000000000000000000
R1:  1
A0: -23
A1:  0
A2:  0
A3:  0
A4:  68
skew 0.76, size 5.461466e-11, alpha -0.039522, combined = 2.254282e-07

commencing square root phase
reading relations for dependency 1
read 18586 cycles
cycles contain 30766 unique relations
read 30766 relations
multiplying 30766 relations
multiply complete, coefficients have about 0.75 million bits
initial square root is modulo 9200017
sqrtTime: 1
prp40 factor: 7708013546252113778869071536500067456077
prp51 factor: 122342061281926836162513959260860360435732273533123
elapsed time 00:00:02

(68·10107-23)/9 = 7(5)1063<108> = 32 · 29 · 367 · 294703 · 713281 · C92

C92 = P38 · P54

P38 = 55841787356899758089337509139209931113<38>

P54 = 671978392635978033818610453543331621206951997598183941<54>

~12 mins. sieve time

prp38 factor: 55841787356899758089337509139209931113
prp54 factor: 671978392635978033818610453543331621206951997598183941

(68·10114-23)/9 = 7(5)1133<115> = 109 · 59833 · 786691 · 273886423817<12> · C91

C91 = P40 · P52

P40 = 3046332219582280736969449366056318755789<40>

P52 = 1765010021743646241126701494557487844073819577055603<52>

~41 mins total

prp40 factor: 3046332219582280736969449366056318755789
prp52 factor: 1765010021743646241126701494557487844073819577055603

(68·10108-23)/9 = 7(5)1073<109> = 1221209464999528236083<22> · C88

C88 = P30 · P59

P30 = 194946478745404642036108878353<30>

P59 = 31736632767257197268708000583187127425753435733110756525547<59>

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=720988234
Step 1 took 8113ms
Step 2 took 3832ms
********** Factor found in step 2: 194946478745404642036108878353
Found probable prime factor of 30 digits: 194946478745404642036108878353
Probable prime cofactor 31736632767257197268708000583187127425753435733110756525547 has 59 digits

(68·10146-23)/9 = 7(5)1453<147> = 3 · 1536852924590281489<19> · 16213118378585185452280153<26> · C104

C104 = P48 · P56

P48 = 222262927902466959012561494161438438028846547583<48>

P56 = 45475685662992432516577150080876318212189203602993452141<56>

prp48 factor: 222262927902466959012561494161438438028846547583
prp56 factor: 45475685662992432516577150080876318212189203602993452141

done by gnfs in about 12 CPU-hours (parameters were non-optimal).

poly:

Y0: -77566047231907110907
Y1: 31039371907
c0: -558398743597374860738736
c1: 137065067169670849580
c2: 59521037394430008
c3: -264552505753
c4: -300678770
c5: 3600

Dec 15, 2009

Factorizations of 755...553 and Factorizations of 755...559 have been extended up to n=150. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.

Dec 14, 2009 (4th)

By Dmitry Domanov / GGNFS/msieve / Dec 14, 2009

(14·10189+31)/9 = 1(5)1889<190> = 269 · C187

C187 = P65 · P123

P65 = 15476888878283271998699894906904401294117352114726080949942811469<65>

P123 = 373636746554657431899738325086669472686287739421434557195295928619410609529013993014149729410980424907284192083404696637519<123>

N=5782734407269723254853366377529946303180503923998347790169351507641470466749277158199091284593143329202808756712102437009500206526228831061544816191656340355225113589425857083849648905411
  ( 187 digits)
SNFS difficulty: 190 digits.
Divisors found:
 r1=15476888878283271998699894906904401294117352114726080949942811469 (pp65)
 r2=373636746554657431899738325086669472686287739421434557195295928619410609529013993014149729410980424907284192083404696637519 (pp123)
Version: Msieve-1.40
Total time: 477.33 hours.
Scaled time: 443.92 units (timescale=0.930).
Factorization parameters were as follows:
n: 5782734407269723254853366377529946303180503923998347790169351507641470466749277158199091284593143329202808756712102437009500206526228831061544816191656340355225113589425857083849648905411
m: 20000000000000000000000000000000000000
deg: 5
c5: 4375
c0: 31
skew: 0.37
type: snfs
lss: 1
rlim: 10300000
alim: 10300000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
qintsize: 300000Factor base limits: 10300000/10300000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved rational special-q in [5150000, 10850001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2109440 x 2109664
Total sieving time: 466.75 hours.
Total relation processing time: 0.42 hours.
Matrix solve time: 8.57 hours.
Time per square root: 1.60 hours.
Prototype def-par.txt line would be:
snfs,190.000,5,0,0,0,0,0,0,0,0,10300000,10300000,28,28,54,54,2.5,2.5,100000
total time: 477.33 hours.
 --------- CPU info (if available) ----------

(28·10188-1)/9 = 3(1)188<189> = 19 · 503 · C185

C185 = P43 · P143

P43 = 2416629624381304027373196419958393926957531<43>

P143 = 13470503866653980725975346962207094079095769556923068819279584548159094120699797381682796572270886434971475080102868213043108034624212177560433<143>

N=32553218699498912955018427447013823491797751502679827467940892655761338402334530826735493471917035796914419913268924464906467626986618301884598839710276353574459674700335995721576970923
  ( 185 digits)
SNFS difficulty: 189 digits.
Divisors found:
 r1=2416629624381304027373196419958393926957531 (pp43)
 r2=13470503866653980725975346962207094079095769556923068819279584548159094120699797381682796572270886434971475080102868213043108034624212177560433 (pp143)
Version: Msieve-1.40
Total time: 215.19 hours.
Scaled time: 419.84 units (timescale=1.951).
Factorization parameters were as follows:
n: 32553218699498912955018427447013823491797751502679827467940892655761338402334530826735493471917035796914419913268924464906467626986618301884598839710276353574459674700335995721576970923
m: 20000000000000000000000000000000000000
deg: 5
c5: 875
c0: -1
skew: 0.26
type: snfs
lss: 1
rlim: 10100000
alim: 10100000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
qintsize: 300000Factor base limits: 10100000/10100000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved rational special-q in [5050000, 8350001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1713525 x 1713749
Total sieving time: 210.31 hours.
Total relation processing time: 0.22 hours.
Matrix solve time: 3.72 hours.
Time per square root: 0.94 hours.
Prototype def-par.txt line would be:
snfs,189.000,5,0,0,0,0,0,0,0,0,10100000,10100000,28,28,54,54,2.5,2.5,100000
total time: 215.19 hours.
 --------- CPU info (if available) ----------

Dec 14, 2009 (3rd)

By Sinkiti Sibata / Msieve / Dec 14, 2009

(68·10146-41)/9 = 7(5)1451<147> = 13099 · 51047 · 34085993869<11> · 257027694399899<15> · C114

C114 = P35 · P38 · P41

P35 = 91745407526091275078581201574964401<35>

P38 = 31940625612168213799541729966676659153<38>

P41 = 44012334266984213041400029357929142350469<41>

Number: 75551_146
N=128973995797215448814484116169921270822336396257811193385527946367660864173463162736114202640935324439767195543557
  ( 114 digits)
SNFS difficulty: 147 digits.
Divisors found:
 r1=91745407526091275078581201574964401 (pp35)
 r2=31940625612168213799541729966676659153 (pp38)
 r3=44012334266984213041400029357929142350469 (pp41)
Version: Msieve v. 1.42
Total time: 0.46 hours.
Scaled time: 0.37 units (timescale=0.796).
Factorization parameters were as follows:
name: 75551_146
n: 128973995797215448814484116169921270822336396257811193385527946367660864173463162736114202640935324439767195543557
m: 100000000000000000000000000000
deg: 5
c5: 680
c0: -41
skew: 0.57
type: snfs
lss: 1
rlim: 2000000
alim: 2000000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.3
alambda: 2.3
Factor base limits: 2000000/2000000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved rational special-q in [1000000, 2400001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 334952 x 335178
Total sieving time: 0.00 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.32 hours.
Time per square root: 0.10 hours.
Prototype def-par.txt line would be:
snfs,147.000,5,0,0,0,0,0,0,0,0,2000000,2000000,26,26,49,49,2.3,2.3,100000
total time: 0.46 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
CPU1: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.33 BogoMIPS (lpj=1860666)
Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860571)
Total of 2 processors activated (7442.47 BogoMIPS).

Total time: 8 hours 43 min.

(68·10125-41)/9 = 7(5)1241<126> = 19 · 23 · 36109 · 76006820388463240697<20> · C99

C99 = P42 · P58

P42 = 104832014910643936866343141389359887599647<42>

P58 = 6009287840164729715877654115282117404072734705183137859033<58>

Sun Dec 13 21:19:36 2009  Msieve v. 1.42
Sun Dec 13 21:19:36 2009  random seeds: 4eb821a4 a5b6dbf8
Sun Dec 13 21:19:36 2009  factoring 629965752462500244411755920304594721110450811886953027877206783027562086509752461510463877026561351 (99 digits)
Sun Dec 13 21:19:37 2009  searching for 15-digit factors
Sun Dec 13 21:19:38 2009  commencing quadratic sieve (99-digit input)
Sun Dec 13 21:19:38 2009  using multiplier of 1
Sun Dec 13 21:19:38 2009  using 32kb Intel Core sieve core
Sun Dec 13 21:19:38 2009  sieve interval: 36 blocks of size 32768
Sun Dec 13 21:19:38 2009  processing polynomials in batches of 6
Sun Dec 13 21:19:38 2009  using a sieve bound of 2632339 (96471 primes)
Sun Dec 13 21:19:38 2009  using large prime bound of 394850850 (28 bits)
Sun Dec 13 21:19:38 2009  using double large prime bound of 2975633911281600 (43-52 bits)
Sun Dec 13 21:19:38 2009  using trial factoring cutoff of 52 bits
Sun Dec 13 21:19:38 2009  polynomial 'A' values have 13 factors
Mon Dec 14 07:13:00 2009  96785 relations (22492 full + 74293 combined from 1461184 partial), need 96567
Mon Dec 14 07:13:03 2009  begin with 1483676 relations
Mon Dec 14 07:13:04 2009  reduce to 257448 relations in 11 passes
Mon Dec 14 07:13:04 2009  attempting to read 257448 relations
Mon Dec 14 07:13:09 2009  recovered 257448 relations
Mon Dec 14 07:13:09 2009  recovered 248142 polynomials
Mon Dec 14 07:13:09 2009  attempting to build 96785 cycles
Mon Dec 14 07:13:09 2009  found 96785 cycles in 6 passes
Mon Dec 14 07:13:09 2009  distribution of cycle lengths:
Mon Dec 14 07:13:09 2009     length 1 : 22492
Mon Dec 14 07:13:09 2009     length 2 : 16333
Mon Dec 14 07:13:09 2009     length 3 : 16143
Mon Dec 14 07:13:09 2009     length 4 : 13204
Mon Dec 14 07:13:09 2009     length 5 : 10086
Mon Dec 14 07:13:09 2009     length 6 : 7088
Mon Dec 14 07:13:09 2009     length 7 : 4658
Mon Dec 14 07:13:09 2009     length 9+: 6781
Mon Dec 14 07:13:09 2009  largest cycle: 25 relations
Mon Dec 14 07:13:10 2009  matrix is 96471 x 96785 (26.6 MB) with weight 6591370 (68.10/col)
Mon Dec 14 07:13:10 2009  sparse part has weight 6591370 (68.10/col)
Mon Dec 14 07:13:11 2009  filtering completed in 3 passes
Mon Dec 14 07:13:11 2009  matrix is 92862 x 92926 (25.6 MB) with weight 6344118 (68.27/col)
Mon Dec 14 07:13:11 2009  sparse part has weight 6344118 (68.27/col)
Mon Dec 14 07:13:11 2009  saving the first 48 matrix rows for later
Mon Dec 14 07:13:11 2009  matrix is 92814 x 92926 (15.5 MB) with weight 4996132 (53.76/col)
Mon Dec 14 07:13:11 2009  sparse part has weight 3495382 (37.61/col)
Mon Dec 14 07:13:12 2009  matrix includes 64 packed rows
Mon Dec 14 07:13:12 2009  using block size 37170 for processor cache size 1024 kB
Mon Dec 14 07:13:12 2009  commencing Lanczos iteration
Mon Dec 14 07:13:12 2009  memory use: 16.0 MB
Mon Dec 14 07:14:15 2009  lanczos halted after 1469 iterations (dim = 92810)
Mon Dec 14 07:14:16 2009  recovered 14 nontrivial dependencies
Mon Dec 14 07:14:17 2009  prp42 factor: 104832014910643936866343141389359887599647
Mon Dec 14 07:14:17 2009  prp58 factor: 6009287840164729715877654115282117404072734705183137859033
Mon Dec 14 07:14:17 2009  elapsed time 09:54:41

(68·10126-41)/9 = 7(5)1251<127> = 3 · 508284318280477357<18> · C109

C109 = P49 · P61

P49 = 2168385789520885323592002973154798753361401333233<49>

P61 = 2285082504146138317270373988148621575643144140324925007627257<61>

Number: 75551_126
N=4954940429873285846004037959569307310974025261223476931270036000767248081276571677583695407987754373710731881
  ( 109 digits)
SNFS difficulty: 127 digits.
Divisors found:
 r1=2168385789520885323592002973154798753361401333233 (pp49)
 r2=2285082504146138317270373988148621575643144140324925007627257 (pp61)
Version: Msieve-1.40
Total time: 2.30 hours.
Scaled time: 4.79 units (timescale=2.085).
Factorization parameters were as follows:
name: 75551_126
n: 4954940429873285846004037959569307310974025261223476931270036000767248081276571677583695407987754373710731881
m: 10000000000000000000000000
deg: 5
c5: 680
c0: -41
skew: 0.57
type: snfs
lss: 1
rlim: 950000
alim: 950000
lpbr: 26
lpba: 26
mfbr: 46
mfba: 46
rlambda: 2.3
alambda: 2.3
Factor base limits: 950000/950000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 46/46
Sieved rational special-q in [475000, 775001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 145579 x 145827
Total sieving time: 2.13 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.07 hours.
Time per square root: 0.05 hours.
Prototype def-par.txt line would be:
snfs,127.000,5,0,0,0,0,0,0,0,0,950000,950000,26,26,46,46,2.3,2.3,50000
total time: 2.30 hours.
 --------- CPU info (if available) ----------

(68·10145-41)/9 = 7(5)1441<146> = 811 · 4057 · 12858849151<11> · C130

C130 = P43 · P88

P43 = 1255612128577662110396954971095716478536029<43>

P88 = 1422272908489788307449303177089974136622832027358183808413023957457841927697351017801047<88>

Number: 75551_145
N=1785823114047205532864564142717380990154970562116196561108798970213154646674726763889941941960613721969295735669951892273343422363
  ( 130 digits)
SNFS difficulty: 146 digits.
Divisors found:
 r1=1255612128577662110396954971095716478536029 (pp43)
 r2=1422272908489788307449303177089974136622832027358183808413023957457841927697351017801047 (pp88)
Version: Msieve v. 1.42
Total time: 0.44 hours.
Scaled time: 0.30 units (timescale=0.682).
Factorization parameters were as follows:
name: 75551_145
n: 1785823114047205532864564142717380990154970562116196561108798970213154646674726763889941941960613721969295735669951892273343422363
m: 100000000000000000000000000000
deg: 5
c5: 68
c0: -41
skew: 0.90
type: snfs
lss: 1
rlim: 1960000
alim: 1960000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.3
alambda: 2.3
Factor base limits: 1960000/1960000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved rational special-q in [980000, 2280001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 329999 x 330224
Total sieving time: 0.00 hours.
Total relation processing time: 0.05 hours.
Matrix solve time: 0.34 hours.
Time per square root: 0.05 hours.
Prototype def-par.txt line would be:
snfs,146.000,5,0,0,0,0,0,0,0,0,1960000,1960000,26,26,49,49,2.3,2.3,100000
total time: 0.44 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
CPU1: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.33 BogoMIPS (lpj=1860666)
Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860571)
Total of 2 processors activated (7442.47 BogoMIPS).

Total time: 8 hours.

(68·10133-41)/9 = 7(5)1321<134> = 2734133 · 108774481 · 391631987 · 990996343417<12> · C99

C99 = P47 · P52

P47 = 65828579710371249588047984796227037042501776203<47>

P52 = 9943861199397675884477351880290014463455082068241051<52>

Number: 75551_133
N=654590259593417765323944837115022385143444623850744621666113724888551685839988859703266523459509353
  ( 99 digits)
SNFS difficulty: 134 digits.
Divisors found:
 r1=65828579710371249588047984796227037042501776203 (pp47)
 r2=9943861199397675884477351880290014463455082068241051 (pp52)
Version: Msieve-1.40
Total time: 4.55 hours.
Scaled time: 9.50 units (timescale=2.085).
Factorization parameters were as follows:
name: 75551_133
n: 654590259593417765323944837115022385143444623850744621666113724888551685839988859703266523459509353
m: 200000000000000000000000000
deg: 5
c5: 2125
c0: -41
skew: 0.45
type: snfs
lss: 1
rlim: 1240000
alim: 1240000
lpbr: 26
lpba: 26
mfbr: 47
mfba: 47
rlambda: 2.3
alambda: 2.3
Factor base limits: 1240000/1240000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 47/47
Sieved rational special-q in [620000, 1220001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 204050 x 204298
Total sieving time: 4.29 hours.
Total relation processing time: 0.05 hours.
Matrix solve time: 0.14 hours.
Time per square root: 0.08 hours.
Prototype def-par.txt line would be:
snfs,134.000,5,0,0,0,0,0,0,0,0,1240000,1240000,26,26,47,47,2.3,2.3,75000
total time: 4.55 hours.
 --------- CPU info (if available) ----------

(68·10136-41)/9 = 7(5)1351<137> = 7 · 2716576406767969<16> · 157123207681893377227<21> · C101

C101 = P42 · P60

P42 = 181326086978689447388189009200639340728847<42>

P60 = 139458764202539283672117846442259581514338059678176104912213<60>

Number: 75551_136
N=25287512007730180440331763459094413686105338359406603987718124220534323648253614342533793796371708411
  ( 101 digits)
SNFS difficulty: 137 digits.
Divisors found:
 r1=181326086978689447388189009200639340728847 (pp42)
 r2=139458764202539283672117846442259581514338059678176104912213 (pp60)
Version: Msieve v. 1.42
Total time: 0.16 hours.
Scaled time: 0.13 units (timescale=0.796).
Factorization parameters were as follows:
name: 75551_136
n: 25287512007730180440331763459094413686105338359406603987718124220534323648253614342533793796371708411
m: 1000000000000000000000000000
deg: 5
c5: 680
c0: -41
skew: 0.57
type: snfs
lss: 1
rlim: 1390000
alim: 1390000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.3
alambda: 2.3
Factor base limits: 1390000/1390000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved rational special-q in [695000, 1370001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 196507 x 196734
Total sieving time: 0.00 hours.
Total relation processing time: 0.03 hours.
Matrix solve time: 0.11 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
snfs,137.000,5,0,0,0,0,0,0,0,0,1390000,1390000,26,26,48,48,2.3,2.3,75000
total time: 0.16 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
CPU1: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.33 BogoMIPS (lpj=1860666)
Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860571)
Total of 2 processors activated (7442.47 BogoMIPS).

Total time: 4 hours.

Dec 14, 2009 (2nd)

By Robert Backstrom / GGNFS, Msieve / Dec 14, 2009

(68·10114-41)/9 = 7(5)1131<115> = 3 · 829 · 4703 · 15359 · C104

C104 = P48 · P57

P48 = 333997449831259753820683440609596186256762920339<48>

P57 = 125924300771012935160478043723824767531313398139327105091<57>

Number: n
N=42058395329302856748555982678684448285323587877262098896368420867466531192794508644386219233543914345849
  ( 104 digits)
SNFS difficulty: 116 digits.
Divisors found:
 r1=333997449831259753820683440609596186256762920339 (pp48)
 r2=125924300771012935160478043723824767531313398139327105091 (pp57)
Version: GGNFS-0.77.1-20051202-athlon
Total time: 1.12 hours.
Scaled time: 2.04 units (timescale=1.829).
Factorization parameters were as follows:
name: KA_7_5_113_1
n: 42058395329302856748555982678684448285323587877262098896368420867466531192794508644386219233543914345849
m: 100000000000000000000000
deg: 5
c5: 34
c0: -205
skew: 1.43
type: snfs
lss: 1
rlim: 600000
alim: 600000
lpbr: 25
lpba: 25
mfbr: 45
mfba: 45
rlambda: 2.2
alambda: 2.2
qintsize: 50000
Factor base limits: 600000/600000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 45/45
Sieved rational special-q in [300000, 550001)
Primes: RFBsize:49098, AFBsize:49197, largePrimes:1306149 encountered
Relations: rels:1298818, finalFF:162913
Max relations in full relation-set: 48
Initial matrix: 98361 x 162913 with sparse part having weight 8032972.
Pruned matrix : 78797 x 79352 with weight 2865906.
Total sieving time: 1.07 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.02 hours.
Total square root time: 0.01 hours, sqrts: 1.
Prototype def-par.txt line would be:
snfs,116,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.2,2.2,50000
total time: 1.12 hours.
 --------- CPU info (if available) ----------

(26·10191-71)/9 = 2(8)1901<192> = 977 · C189

C189 = P64 · P126

P64 = 2357695266025173133599952969468394108657649003264896879481391411<64>

P126 = 125414746118265231875647176337445819091154835277185222972199907719810763192008226592232607294689716776008863337203936248400923<126>

Number: n
N=295689753212782895485044922097122711247583304901626293642670305925167747071534174911861708176958944615034686682588422608893437962015239394973274195382690776754236324348913908791083816672353
  ( 189 digits)
SNFS difficulty: 192 digits.
Divisors found:

Mon Dec 14 17:52:20 2009  prp64 factor: 2357695266025173133599952969468394108657649003264896879481391411
Mon Dec 14 17:52:20 2009  prp126 factor: 125414746118265231875647176337445819091154835277185222972199907719810763192008226592232607294689716776008863337203936248400923
Mon Dec 14 17:52:20 2009  elapsed time 10:44:17 (Msieve 1.42 - dependency 1)

Version: GGNFS-0.77.1-20050930-k8
Total time: ~ 570.00 hours.
Scaled time: 0.00 units (timescale=0.841).
Factorization parameters were as follows:
name: KA_2_8_190_1
n: 295689753212782895485044922097122711247583304901626293642670305925167747071534174911861708176958944615034686682588422608893437962015239394973274195382690776754236324348913908791083816672353
m: 100000000000000000000000000000000000000
deg: 5
c5: 260
c0: -71
skew: 0.77
type: snfs
lss: 1
rlim: 11300000
alim: 11300000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 11300000/11300000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 56/56
Sieved  special-q in [100000, 100000)
Primes: RFBsize:745001, AFBsize:744681, 
Relations: 
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 2971555 hash collisions in 25633478 relations
Msieve: matrix is 1999084 x 1999311 (539.2 MB)

Total sieving time: 0.00 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,192,5,0,0,0,0,0,0,0,0,11300000,11300000,28,28,56,56,2.5,2.5,100000
total time: 0.00 hours.
 --------- CPU info (if available) ----------
CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03
CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03
Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656)
Total of 2 processors activated (11993.08 BogoMIPS).

Dec 14, 2009

By Jo Yeong Uk / GGNFS, Msieve v1.39 / Dec 14, 2009

(68·10144-41)/9 = 7(5)1431<145> = 3 · 433 · 2182819 · 123348484942824364443388367321<30> · C107

C107 = P47 · P60

P47 = 24892467603668557753000090400586736677794572369<47>

P60 = 867836189664191492656674254659120524677089561991211694320479<60>

Number: 75551_144
N=21602584236507048793078528427619328574849069639901071407067296022517802018044160637327267054645009844244751
  ( 107 digits)
SNFS difficulty: 146 digits.
Divisors found:
 r1=24892467603668557753000090400586736677794572369
 r2=867836189664191492656674254659120524677089561991211694320479
Version: 
Total time: 6.29 hours.
Scaled time: 14.99 units (timescale=2.381).
Factorization parameters were as follows:
n: 21602584236507048793078528427619328574849069639901071407067296022517802018044160637327267054645009844244751
m: 100000000000000000000000000000
deg: 5
c5: 34
c0: -205
skew: 1.43
type: snfs
lss: 1
rlim: 2550000
alim: 2550000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.3
alambda: 2.3
Factor base limits: 2550000/2550000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved rational special-q in [1275000, 2625001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 4846416
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 395311 x 395559
Total sieving time: 5.52 hours.
Total relation processing time: 0.39 hours.
Matrix solve time: 0.34 hours.
Time per square root: 0.04 hours.
Prototype def-par.txt line would be:
snfs,146,5,0,0,0,0,0,0,0,0,2550000,2550000,26,26,49,49,2.3,2.3,75000
total time: 6.29 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673795)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672307)
Calibrating delay using timer specific routine.. 5237.88 BogoMIPS (lpj=2618943)

Dec 13, 2009 (5th)

By Serge Batalov / GMP-ECM, Msieve / Dec 13, 2009

(68·10105-41)/9 = 7(5)1041<106> = 3 · 593 · 19891 · C99

C99 = P30 · P69

P30 = 894072190013208651293443978613<30>

P69 = 238814807518177285306701902214891055326157967452167884477203413512843<69>

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4100245333
Step 1 took 7252ms
Step 2 took 4064ms
********** Factor found in step 2: 894072190013208651293443978613
Found probable prime factor of 30 digits: 894072190013208651293443978613
Probable prime cofactor has 69 digits

(68·10104-41)/9 = 7(5)1031<105> = 29 · 251 · 3460469994043<13> · C89

C89 = P40 · P50

P40 = 1219491298385716085076638074015566815389<40>

P50 = 24596929157866137036858482091193628353907400534847<50>

SNFS difficulty: 105 digits.
Divisors found:
 r1=1219491298385716085076638074015566815389 (pp40)
 r2=24596929157866137036858482091193628353907400534847 (pp50)
Version: Msieve v. 1.44 SVN157
Total time: 0.27 hours.
Scaled time: 0.65 units (timescale=2.400).
Factorization parameters were as follows:
c4: 68
c0: -41
m: 100000000000000000000000000
skew: 1
type: snfs
lss: 1
n: 29995741075027653585003958776986225169555673026120542765581718340570596425604843110360483
Factor base limits: 450000/500000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 44/44
Sieved rational special-q in [281250, 361251)
Pruned matrix : 36923 x 37154
Total sieving time: 0.24 hours.
Total relation processing time: 0.02 hours.
Matrix solve time: 0.01 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,105.000,4,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000
total time: 0.27 hours.

(68·10149-41)/9 = 7(5)1481<150> = 97812977672561<14> · C136

C136 = P32 · P105

P32 = 21519667365367654842470583146011<32>

P105 = 358950340046869773901826232727800735939422222200866796152564338086970669249438689493918216794682673538781<105>

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2986990002
Step 1 took 9185ms
Step 2 took 4904ms
********** Factor found in step 2: 21519667365367654842470583146011
Found probable prime factor of 32 digits: 21519667365367654842470583146011
Probable prime cofactor has 105 digits

(68·10111-41)/9 = 7(5)1101<112> = 32 · C111

C111 = P36 · P76

P36 = 490713461048873329138186470584317409<36>

P76 = 1710786924501943345697249840772477005309394792793479896885711790729024795271<76>

SNFS difficulty: 112 digits.
Divisors found:
 r1=490713461048873329138186470584317409 (pp36)
 r2=1710786924501943345697249840772477005309394792793479896885711790729024795271 (pp76)
Version: Msieve v. 1.44 SVN157
Total time: 0.55 hours.
Scaled time: 1.32 units (timescale=2.400).
Factorization parameters were as follows:
n: 839506172839506172839506172839506172839506172839506172839506172839506172839506172839506172839506172839506172839
m: 10000000000000000000000
deg: 5
c5: 680
c0: -41
skew: 0.57
type: snfs
lss: 1
rlim: 530000
alim: 530000
lpbr: 25
lpba: 25
mfbr: 45
mfba: 45
rlambda: 2.2
alambda: 2.2
Factor base limits: 530000/530000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 45/45
Sieved rational special-q in [331250, 531251)
Primes: , ,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 53227 x 53452
Total sieving time: 0.52 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.01 hours.
Time per square root: 0.01 hours.
Prototype def-par.txt line would be:
snfs,112.000,5,0,0,0,0,0,0,0,0,530000,530000,25,25,45,45,2.2,2.2,50000
total time: 0.55 hours.

(68·10108-41)/9 = 7(5)1071<109> = 3 · C109

C109 = P40 · P70

P40 = 1007951436257840014703722478246051500193<40>

P70 = 2498650657088072640392035749835149369157792772913697850301258944896469<70>

SNFS difficulty: 109 digits.
Divisors found:
 r1=1007951436257840014703722478246051500193 (pp40)
 r2=2498650657088072640392035749835149369157792772913697850301258944896469 (pp70)
Version: Msieve v. 1.44 SVN157
Total time: 0.52 hours.
Scaled time: 1.26 units (timescale=2.400).
Factorization parameters were as follows:
n: 2518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518517
m: 2000000000000000000000
deg: 5
c5: 2125
c0: -41
skew: 0.45
type: snfs
lss: 1
rlim: 470000
alim: 470000
lpbr: 25
lpba: 25
mfbr: 44
mfba: 44
rlambda: 2.2
alambda: 2.2
Factor base limits: 470000/470000
Large primes per side: 3
Large prime bits: 25/25
Max factor residue bits: 44/44
Sieved rational special-q in [293750, 493751)
Primes: , ,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 50272 x 50498
Total sieving time: 0.50 hours.
Total relation processing time: 0.01 hours.
Matrix solve time: 0.01 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,109.000,5,0,0,0,0,0,0,0,0,470000,470000,25,25,44,44,2.2,2.2,50000
total time: 0.52 hours.

(68·10131-41)/9 = 7(5)1301<132> = 1746581 · 23676437375413375371741998899<29> · C98

C98 = P29 · P29 · P40

P29 = 34364227725649240817067390053<29>

P29 = 53175703139543086944405198143<29>

P40 = 9998652804651218056314025782798260070851<40>

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1271878404
Step 1 took 7553ms
Step 2 took 4068ms
********** Factor found in step 2: 53175703139543086944405198143
Found probable prime factor of 29 digits: 53175703139543086944405198143
Composite cofactor has 69 digits

Input number is 18270957934982272959259478432488575544300788306364705919210711590286972123621551472888331313643729 (98 digits)
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1343956971
Step 1 took 7161ms
Step 2 took 3960ms
********** Factor found in step 2: 34364227725649240817067390053
Found probable prime factor of 29 digits: 34364227725649240817067390053

Dec 13, 2009 (4th)

By Dmitry Domanov / GGNFS/msieve, GMP-ECM / Dec 13, 2009

(64·10325-1)/9 = 7(1)325<326> = 2351 · 2693 · 559369 · 409481053 · 2055038511900243647232933024391865987<37> · C269

C269 = P47 · P223

P47 = 12496473753502778180221449028316893490069009723<47>

P223 = 1909452370878388370477013318447201720289355200397538489045339139889365737763581492405077795412274181233885926950655705548382204171049999441505150369579481408460023023185682075605079763890070556419189377761194302127528120161<223>

Factor=12496473753502778180221449028316893490069009723  Method=ECM  B1=11000000  Sigma=889830216

7·10173+3 = 7(0)1723<174> = 37 · 4830247 · 253488539 · 22348446469487<14> · 4395944156853610582716741443564661893213<40> · C105

C105 = P45 · P60

P45 = 290110443363764923642894085090214904885689697<45>

P60 = 542132919827093529306769989453942968418390454867117966238849<60>

Number: g105-1
N=157278421733130527374822423031190273787717697677845850752050907400924177459930910588027890386838400438753
  ( 105 digits)
Divisors found:
 r1=290110443363764923642894085090214904885689697 (pp45)
 r2=542132919827093529306769989453942968418390454867117966238849 (pp60)
Version: Msieve-1.40
Total time: 6.56 hours.
Scaled time: 12.53 units (timescale=1.911).
Factorization parameters were as follows:
name: g105-1
n: 157278421733130527374822423031190273787717697677845850752050907400924177459930910588027890386838400438753
skew: 13202.27
# norm 5.31e+014
c5: 69300
c4: 887486732
c3: 18054159829435
c2: -309959698006720573
c1: -3462703690957884986615
c0: 9494266772135327220966825
# alpha -7.07
Y1: 53466939577
Y0: -74333807980636864352
# Murphy_E 2.06e-009
# M 39261685110727373311766962481659204345999512574698899717038255884429614107360099199141019944888487217157
type: gnfs
rlim: 2500000
alim: 2500000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.6
alambda: 2.6
qintsize: 150000
Factor base limits: 2500000/2500000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved algebraic special-q in [1250000, 2000001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 276557 x 276783
Polynomial selection time: 0.74 hours.
Total sieving time: 5.46 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.23 hours.
Time per square root: 0.10 hours.
Prototype def-par.txt line would be:
gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000
total time: 6.56 hours.
 --------- CPU info (if available) ----------

Dec 13, 2009 (3rd)

By Sinkiti Sibata / Msieve / Dec 13, 2009

(68·10124-41)/9 = 7(5)1231<125> = 7 · 1783 · 4457 · C118

C118 = P54 · P65

P54 = 134509083086339760880041377384167466787761390470732873<54>

P65 = 10097707207448267830934383611435301631763864956190969829855808911<65>

Number: 75551_124
N=1358233337748190901605136788947794869526437745266105904453441981294278644002074637506547408746159417968092394414031303
  ( 118 digits)
SNFS difficulty: 125 digits.
Divisors found:
 r1=134509083086339760880041377384167466787761390470732873 (pp54)
 r2=10097707207448267830934383611435301631763864956190969829855808911 (pp65)
Version: Msieve-1.40
Total time: 2.65 hours.
Scaled time: 5.30 units (timescale=2.000).
Factorization parameters were as follows:
name: 75551_124
n: 1358233337748190901605136788947794869526437745266105904453441981294278644002074637506547408746159417968092394414031303
m: 2000000000000000000000000
deg: 5
c5: 21250
c0: -41
skew: 0.29
type: snfs
lss: 1
rlim: 880000
alim: 880000
lpbr: 26
lpba: 26
mfbr: 46
mfba: 46
rlambda: 2.3
alambda: 2.3
Factor base limits: 880000/880000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 46/46
Sieved rational special-q in [440000, 790001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 144439 x 144679
Total sieving time: 2.45 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.08 hours.
Time per square root: 0.09 hours.
Prototype def-par.txt line would be:
snfs,125.000,5,0,0,0,0,0,0,0,0,880000,880000,26,26,46,46,2.3,2.3,50000
total time: 2.65 hours.
 --------- CPU info (if available) ----------

Dec 13, 2009 (2nd)

By Jo Yeong Uk / GMP-ECM, YAFU v1.10, Msieve, GGNFS / Dec 13, 2009

(5·10197+1)/3 = 1(6)1967<198> = 43 · 1108021631163049657<19> · 3724929267509920843996372775497<31> · C147

C147 = P40 · P108

P40 = 4165800965005235814760754107643841829553<40>

P108 = 225431971171671469726015875312550232768705870586001468772728174911639271142852844564263297791187529959640337<108>

GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM]
Input number is 939104723049981509289811750930030691770734096377436694089298811115147192934297884941625038686793082121971137561628863866898691665347893823937479361 (147 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4906593635
Step 1 took 4696ms
Step 2 took 4555ms
********** Factor found in step 2: 4165800965005235814760754107643841829553
Found probable prime factor of 40 digits: 4165800965005235814760754107643841829553
Probable prime cofactor 225431971171671469726015875312550232768705870586001468772728174911639271142852844564263297791187529959640337 has 108 digits

(5·10184+1)/3 = 1(6)1837<185> = 7 · 1181 · 53401647263<11> · C170

C170 = P40 · C131

P40 = 2807399202518527814628463571806496953001<40>

C131 = [13447513409050908682573458648523764418473862031020518471328356268352372416765725844067113777872896048108156781413061310462101954727<131>]

GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM]
Input number is 37752538420426730353013726919101946495182605494565204069301466012242640645018256590170744393249454374498071184500225276512486394242670676202699669483096059890131548785727 (170 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=8330428008
Step 1 took 5523ms
Step 2 took 5085ms
********** Factor found in step 2: 2807399202518527814628463571806496953001
Found probable prime factor of 40 digits: 2807399202518527814628463571806496953001
Composite cofactor 13447513409050908682573458648523764418473862031020518471328356268352372416765725844067113777872896048108156781413061310462101954727 has 131 digits

(68·10148-41)/9 = 7(5)1471<149> = 7 · 960499 · 25761403841<11> · 180258765687439<15> · 167420142728256349478014981<27> · C92

C92 = P44 · P48

P44 = 76180334184904123317889342999934709966538801<44>

P48 = 189738274266043670657541526420182749846309412553<48>

GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM]
Input number is 14454325141254200952289562052566937159494074260230698612511874552142164528479835960990968953 (92 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=7439269695
Step 1 took 2839ms
Step 2 took 3401ms
********** Factor found in step 2: 76180334184904123317889342999934709966538801
Found probable prime factor of 44 digits: 76180334184904123317889342999934709966538801
Probable prime cofactor 189738274266043670657541526420182749846309412553 has 48 digits

(68·10132-41)/9 = 7(5)1311<133> = 3 · 29 · 21236947 · 6386548725541727<16> · 782726109051719592811<21> · C87

C87 = P31 · P57

P31 = 2737841057306658717210311098427<31>

P57 = 298793251879729100538739305699668971422640914787280856661<57>

12/13/09 16:02:35 v1.10 @ 조영욱-PC, starting SIQS on c87: 818048432642492312825176391448402735182696250821329401587176489745428307949924449572247
12/13/09 16:02:35 v1.10 @ 조영욱-PC, random seeds: 3158097181, 843817604
12/13/09 16:02:36 v1.10 @ 조영욱-PC, ==== sieve params ====
12/13/09 16:02:36 v1.10 @ 조영욱-PC, n = 87 digits, 290 bits
12/13/09 16:02:36 v1.10 @ 조영욱-PC, factor base: 59894 primes (max prime = 1570097)
12/13/09 16:02:36 v1.10 @ 조영욱-PC, single large prime cutoff: 172710670 (110 * pmax)
12/13/09 16:02:36 v1.10 @ 조영욱-PC, double large prime range from 43 to 50 bits
12/13/09 16:02:36 v1.10 @ 조영욱-PC, double large prime cutoff: 671698694327176
12/13/09 16:02:36 v1.10 @ 조영욱-PC, using 15 large prime slices of factor base
12/13/09 16:02:36 v1.10 @ 조영욱-PC, buckets hold 1024 elements
12/13/09 16:02:36 v1.10 @ 조영욱-PC, sieve interval: 9 blocks of size 65536
12/13/09 16:02:36 v1.10 @ 조영욱-PC, polynomial A has ~ 11 factors
12/13/09 16:02:36 v1.10 @ 조영욱-PC, using multiplier of 2
12/13/09 16:02:36 v1.10 @ 조영욱-PC, using small prime variation correction of 20 bits
12/13/09 16:02:36 v1.10 @ 조영욱-PC, using SSE2 for trial division and x128 sieve scanning
12/13/09 16:02:36 v1.10 @ 조영욱-PC, trial factoring cutoff at 96 bits
12/13/09 16:02:36 v1.10 @ 조영욱-PC, ==== sieving started ====
12/13/09 16:28:36 v1.10 @ 조영욱-PC, sieve time = 715.4150, relation time = 331.7410, poly_time = 512.5390
12/13/09 16:28:36 v1.10 @ 조영욱-PC, 59960 relations found: 19502 full + 40458 from 551248 partial, using 275738 polys (269 A polys)
12/13/09 16:28:36 v1.10 @ 조영욱-PC, on average, sieving found 2.07 rels/poly and 365.77 rels/sec
12/13/09 16:28:36 v1.10 @ 조영욱-PC, trial division touched 13368403 sieve locations out of 325273780224
12/13/09 16:28:36 v1.10 @ 조영욱-PC, ==== post processing stage (msieve-1.38) ====
12/13/09 16:28:36 v1.10 @ 조영욱-PC, begin with 570750 relations
12/13/09 16:28:36 v1.10 @ 조영욱-PC, reduce to 124129 relations in 9 passes
12/13/09 16:28:37 v1.10 @ 조영욱-PC, recovered 124129 relations
12/13/09 16:28:37 v1.10 @ 조영욱-PC, recovered 99998 polynomials
12/13/09 16:28:37 v1.10 @ 조영욱-PC, attempting to build 59960 cycles
12/13/09 16:28:37 v1.10 @ 조영욱-PC, found 59960 cycles in 6 passes
12/13/09 16:28:37 v1.10 @ 조영욱-PC, distribution of cycle lengths:
12/13/09 16:28:37 v1.10 @ 조영욱-PC,    length 1 : 19502
12/13/09 16:28:37 v1.10 @ 조영욱-PC,    length 2 : 16271
12/13/09 16:28:37 v1.10 @ 조영욱-PC,    length 3 : 11173
12/13/09 16:28:37 v1.10 @ 조영욱-PC,    length 4 : 6439
12/13/09 16:28:37 v1.10 @ 조영욱-PC,    length 5 : 3497
12/13/09 16:28:37 v1.10 @ 조영욱-PC,    length 6 : 1688
12/13/09 16:28:37 v1.10 @ 조영욱-PC,    length 7 : 758
12/13/09 16:28:37 v1.10 @ 조영욱-PC,    length 9+: 632
12/13/09 16:28:37 v1.10 @ 조영욱-PC, largest cycle: 16 relations
12/13/09 16:28:37 v1.10 @ 조영욱-PC, matrix is 59894 x 59960 (13.1 MB) with weight 2945380 (49.12/col)
12/13/09 16:28:37 v1.10 @ 조영욱-PC, sparse part has weight 2945380 (49.12/col)
12/13/09 16:28:38 v1.10 @ 조영욱-PC, filtering completed in 4 passes
12/13/09 16:28:38 v1.10 @ 조영욱-PC, matrix is 53222 x 53286 (11.8 MB) with weight 2672822 (50.16/col)
12/13/09 16:28:38 v1.10 @ 조영욱-PC, sparse part has weight 2672822 (50.16/col)
12/13/09 16:28:38 v1.10 @ 조영욱-PC, saving the first 48 matrix rows for later
12/13/09 16:28:38 v1.10 @ 조영욱-PC, matrix is 53174 x 53286 (8.4 MB) with weight 2131376 (40.00/col)
12/13/09 16:28:38 v1.10 @ 조영욱-PC, sparse part has weight 1674370 (31.42/col)
12/13/09 16:28:38 v1.10 @ 조영욱-PC, matrix includes 64 packed rows
12/13/09 16:28:38 v1.10 @ 조영욱-PC, using block size 21314 for processor cache size 4096 kB
12/13/09 16:28:38 v1.10 @ 조영욱-PC, commencing Lanczos iteration
12/13/09 16:28:38 v1.10 @ 조영욱-PC, memory use: 7.5 MB
12/13/09 16:28:49 v1.10 @ 조영욱-PC, lanczos halted after 842 iterations (dim = 53171)
12/13/09 16:28:49 v1.10 @ 조영욱-PC, recovered 16 nontrivial dependencies
12/13/09 16:28:51 v1.10 @ 조영욱-PC, prp57 = 298793251879729100538739305699668971422640914787280856661
12/13/09 16:28:51 v1.10 @ 조영욱-PC, prp31 = 2737841057306658717210311098427
12/13/09 16:28:51 v1.10 @ 조영욱-PC, Lanczos elapsed time = 13.7280 seconds.
12/13/09 16:28:51 v1.10 @ 조영욱-PC, Sqrt elapsed time = 1.8880 seconds.
12/13/09 16:28:51 v1.10 @ 조영욱-PC, SIQS elapsed time = 1576.0030 seconds.
12/13/09 16:28:51 v1.10 @ 조영욱-PC, 
12/13/09 16:28:51 v1.10 @ 조영욱-PC,

(68·10118-41)/9 = 7(5)1171<119> = 72 · 491 · 21563 · 1108229 · 34549578298961779<17> · C88

C88 = P41 · P48

P41 = 34532780382054814199867027222353498860857<41>

P48 = 110147803244464195761021537297140065029831121169<48>

12/13/09 16:32:06 v1.10 @ 조영욱-PC, starting SIQS on c88: 3803709899006866793179568153424366834859009484791078711335046454459323665574328638181833
12/13/09 16:32:06 v1.10 @ 조영욱-PC, random seeds: 1170905327, 2669193264
12/13/09 16:32:07 v1.10 @ 조영욱-PC, ==== sieve params ====
12/13/09 16:32:07 v1.10 @ 조영욱-PC, n = 88 digits, 291 bits
12/13/09 16:32:07 v1.10 @ 조영욱-PC, factor base: 61083 primes (max prime = 1616803)
12/13/09 16:32:07 v1.10 @ 조영욱-PC, single large prime cutoff: 177848330 (110 * pmax)
12/13/09 16:32:07 v1.10 @ 조영욱-PC, double large prime range from 43 to 50 bits
12/13/09 16:32:07 v1.10 @ 조영욱-PC, double large prime cutoff: 708091897184765
12/13/09 16:32:07 v1.10 @ 조영욱-PC, using 15 large prime slices of factor base
12/13/09 16:32:07 v1.10 @ 조영욱-PC, buckets hold 1024 elements
12/13/09 16:32:07 v1.10 @ 조영욱-PC, sieve interval: 9 blocks of size 65536
12/13/09 16:32:07 v1.10 @ 조영욱-PC, polynomial A has ~ 11 factors
12/13/09 16:32:07 v1.10 @ 조영욱-PC, using multiplier of 1
12/13/09 16:32:07 v1.10 @ 조영욱-PC, using small prime variation correction of 17 bits
12/13/09 16:32:07 v1.10 @ 조영욱-PC, using SSE2 for trial division and x128 sieve scanning
12/13/09 16:32:07 v1.10 @ 조영욱-PC, trial factoring cutoff at 100 bits
12/13/09 16:32:07 v1.10 @ 조영욱-PC, ==== sieving started ====
12/13/09 17:08:26 v1.10 @ 조영욱-PC, sieve time = 1059.0880, relation time = 331.8220, poly_time = 788.1500
12/13/09 17:08:26 v1.10 @ 조영욱-PC, 61186 relations found: 20399 full + 40787 from 541207 partial, using 423346 polys (413 A polys)
12/13/09 17:08:26 v1.10 @ 조영욱-PC, on average, sieving found 1.33 rels/poly and 257.62 rels/sec
12/13/09 17:08:26 v1.10 @ 조영욱-PC, trial division touched 10182730 sieve locations out of 499399262208
12/13/09 17:08:26 v1.10 @ 조영욱-PC, ==== post processing stage (msieve-1.38) ====
12/13/09 17:08:26 v1.10 @ 조영욱-PC, begin with 561606 relations
12/13/09 17:08:27 v1.10 @ 조영욱-PC, reduce to 123607 relations in 9 passes
12/13/09 17:08:27 v1.10 @ 조영욱-PC, failed to read relation 54067
12/13/09 17:08:28 v1.10 @ 조영욱-PC, recovered 123606 relations
12/13/09 17:08:28 v1.10 @ 조영욱-PC, recovered 107337 polynomials
12/13/09 17:08:28 v1.10 @ 조영욱-PC, attempting to build 61185 cycles
12/13/09 17:08:28 v1.10 @ 조영욱-PC, found 61185 cycles in 4 passes
12/13/09 17:08:28 v1.10 @ 조영욱-PC, distribution of cycle lengths:
12/13/09 17:08:28 v1.10 @ 조영욱-PC,    length 1 : 20399
12/13/09 17:08:28 v1.10 @ 조영욱-PC,    length 2 : 17522
12/13/09 17:08:28 v1.10 @ 조영욱-PC,    length 3 : 11422
12/13/09 17:08:28 v1.10 @ 조영욱-PC,    length 4 : 6306
12/13/09 17:08:28 v1.10 @ 조영욱-PC,    length 5 : 3105
12/13/09 17:08:28 v1.10 @ 조영욱-PC,    length 6 : 1417
12/13/09 17:08:28 v1.10 @ 조영욱-PC,    length 7 : 612
12/13/09 17:08:28 v1.10 @ 조영욱-PC,    length 9+: 402
12/13/09 17:08:28 v1.10 @ 조영욱-PC, largest cycle: 14 relations
12/13/09 17:08:28 v1.10 @ 조영욱-PC, matrix is 61083 x 61185 (12.7 MB) with weight 2845786 (46.51/col)
12/13/09 17:08:28 v1.10 @ 조영욱-PC, sparse part has weight 2845786 (46.51/col)
12/13/09 17:08:28 v1.10 @ 조영욱-PC, filtering completed in 4 passes
12/13/09 17:08:28 v1.10 @ 조영욱-PC, matrix is 54561 x 54625 (11.6 MB) with weight 2598928 (47.58/col)
12/13/09 17:08:28 v1.10 @ 조영욱-PC, sparse part has weight 2598928 (47.58/col)
12/13/09 17:08:28 v1.10 @ 조영욱-PC, saving the first 48 matrix rows for later
12/13/09 17:08:28 v1.10 @ 조영욱-PC, matrix is 54513 x 54625 (8.3 MB) with weight 2093151 (38.32/col)
12/13/09 17:08:28 v1.10 @ 조영욱-PC, sparse part has weight 1624518 (29.74/col)
12/13/09 17:08:28 v1.10 @ 조영욱-PC, matrix includes 64 packed rows
12/13/09 17:08:28 v1.10 @ 조영욱-PC, using block size 21850 for processor cache size 4096 kB
12/13/09 17:08:29 v1.10 @ 조영욱-PC, commencing Lanczos iteration
12/13/09 17:08:29 v1.10 @ 조영욱-PC, memory use: 7.5 MB
12/13/09 17:08:40 v1.10 @ 조영욱-PC, lanczos halted after 863 iterations (dim = 54511)
12/13/09 17:08:40 v1.10 @ 조영욱-PC, recovered 15 nontrivial dependencies
12/13/09 17:08:41 v1.10 @ 조영욱-PC, prp48 = 110147803244464195761021537297140065029831121169
12/13/09 17:08:42 v1.10 @ 조영욱-PC, prp41 = 34532780382054814199867027222353498860857
12/13/09 17:08:42 v1.10 @ 조영욱-PC, Lanczos elapsed time = 14.0090 seconds.
12/13/09 17:08:42 v1.10 @ 조영욱-PC, Sqrt elapsed time = 1.5600 seconds.
12/13/09 17:08:42 v1.10 @ 조영욱-PC, SIQS elapsed time = 2195.5280 seconds.
12/13/09 17:08:42 v1.10 @ 조영욱-PC, 
12/13/09 17:08:42 v1.10 @ 조영욱-PC,

(68·10120-41)/9 = 7(5)1191<121> = 32 · 103 · 640763489 · C110

C110 = P31 · P79

P31 = 7522650767954371464658123338883<31>

P79 = 1690900338472253717843974265424623024998093155324732145561110307961542934925899<79>

GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM]
Input number is 12720052729742606071376255874676753059000774246060165339703830758816106561742812070410938974039927844070430817 (110 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=7746665774
Step 1 took 3463ms
Step 2 took 3776ms
********** Factor found in step 2: 7522650767954371464658123338883
Found probable prime factor of 31 digits: 7522650767954371464658123338883
Probable prime cofactor 1690900338472253717843974265424623024998093155324732145561110307961542934925899 has 79 digits

(68·10119-41)/9 = 7(5)1181<120> = 149 · 179 · 12137278595563236544438241<26> · C91

C91 = P39 · P52

P39 = 693993837679896534923644341171069837383<39>

P52 = 3363180443604080019397353045243304202704788434190727<52>

12/13/09 17:12:04 v1.10 @ 조영욱-PC, starting SIQS on c91: 2334026502866772331445982526031065272433160759815583268239268004709042534418333865096547441
12/13/09 17:12:04 v1.10 @ 조영욱-PC, random seeds: 2799027576, 3905644624
12/13/09 17:12:05 v1.10 @ 조영욱-PC, ==== sieve params ====
12/13/09 17:12:05 v1.10 @ 조영욱-PC, n = 91 digits, 303 bits
12/13/09 17:12:05 v1.10 @ 조영욱-PC, factor base: 68495 primes (max prime = 1836641)
12/13/09 17:12:05 v1.10 @ 조영욱-PC, single large prime cutoff: 220396920 (120 * pmax)
12/13/09 17:12:05 v1.10 @ 조영욱-PC, double large prime range from 43 to 50 bits
12/13/09 17:12:05 v1.10 @ 조영욱-PC, double large prime cutoff: 1041765420895216
12/13/09 17:12:05 v1.10 @ 조영욱-PC, using 16 large prime slices of factor base
12/13/09 17:12:05 v1.10 @ 조영욱-PC, buckets hold 1024 elements
12/13/09 17:12:05 v1.10 @ 조영욱-PC, sieve interval: 11 blocks of size 65536
12/13/09 17:12:05 v1.10 @ 조영욱-PC, polynomial A has ~ 12 factors
12/13/09 17:12:05 v1.10 @ 조영욱-PC, using multiplier of 5
12/13/09 17:12:05 v1.10 @ 조영욱-PC, using small prime variation correction of 21 bits
12/13/09 17:12:05 v1.10 @ 조영욱-PC, using SSE2 for trial division and x128 sieve scanning
12/13/09 17:12:05 v1.10 @ 조영욱-PC, trial factoring cutoff at 96 bits
12/13/09 17:12:05 v1.10 @ 조영욱-PC, ==== sieving started ====
12/13/09 18:14:06 v1.10 @ 조영욱-PC, sieve time = 1746.3940, relation time = 734.7870, poly_time = 1239.4730
12/13/09 18:14:06 v1.10 @ 조영욱-PC, 68571 relations found: 18616 full + 49955 from 860287 partial, using 569705 polys (278 A polys)
12/13/09 18:14:06 v1.10 @ 조영욱-PC, on average, sieving found 1.54 rels/poly and 236.14 rels/sec
12/13/09 18:14:06 v1.10 @ 조영욱-PC, trial division touched 32698597 sieve locations out of 821396111360
12/13/09 18:14:06 v1.10 @ 조영욱-PC, ==== post processing stage (msieve-1.38) ====
12/13/09 18:14:07 v1.10 @ 조영욱-PC, begin with 878903 relations
12/13/09 18:14:07 v1.10 @ 조영욱-PC, reduce to 165407 relations in 10 passes
12/13/09 18:14:08 v1.10 @ 조영욱-PC, failed to read relation 141413
12/13/09 18:14:09 v1.10 @ 조영욱-PC, recovered 165406 relations
12/13/09 18:14:09 v1.10 @ 조영욱-PC, recovered 143655 polynomials
12/13/09 18:14:09 v1.10 @ 조영욱-PC, attempting to build 68570 cycles
12/13/09 18:14:09 v1.10 @ 조영욱-PC, found 68570 cycles in 4 passes
12/13/09 18:14:09 v1.10 @ 조영욱-PC, distribution of cycle lengths:
12/13/09 18:14:09 v1.10 @ 조영욱-PC,    length 1 : 18616
12/13/09 18:14:09 v1.10 @ 조영욱-PC,    length 2 : 13854
12/13/09 18:14:09 v1.10 @ 조영욱-PC,    length 3 : 12332
12/13/09 18:14:09 v1.10 @ 조영욱-PC,    length 4 : 9209
12/13/09 18:14:09 v1.10 @ 조영욱-PC,    length 5 : 6111
12/13/09 18:14:09 v1.10 @ 조영욱-PC,    length 6 : 3763
12/13/09 18:14:09 v1.10 @ 조영욱-PC,    length 7 : 2224
12/13/09 18:14:09 v1.10 @ 조영욱-PC,    length 9+: 2461
12/13/09 18:14:09 v1.10 @ 조영욱-PC, largest cycle: 19 relations
12/13/09 18:14:09 v1.10 @ 조영욱-PC, matrix is 68495 x 68570 (17.5 MB) with weight 4049507 (59.06/col)
12/13/09 18:14:09 v1.10 @ 조영욱-PC, sparse part has weight 4049507 (59.06/col)
12/13/09 18:14:09 v1.10 @ 조영욱-PC, filtering completed in 3 passes
12/13/09 18:14:09 v1.10 @ 조영욱-PC, matrix is 64145 x 64208 (16.6 MB) with weight 3838689 (59.79/col)
12/13/09 18:14:09 v1.10 @ 조영욱-PC, sparse part has weight 3838689 (59.79/col)
12/13/09 18:14:10 v1.10 @ 조영욱-PC, saving the first 48 matrix rows for later
12/13/09 18:14:10 v1.10 @ 조영욱-PC, matrix is 64097 x 64208 (11.3 MB) with weight 3041038 (47.36/col)
12/13/09 18:14:10 v1.10 @ 조영욱-PC, sparse part has weight 2315710 (36.07/col)
12/13/09 18:14:10 v1.10 @ 조영욱-PC, matrix includes 64 packed rows
12/13/09 18:14:10 v1.10 @ 조영욱-PC, using block size 25683 for processor cache size 4096 kB
12/13/09 18:14:10 v1.10 @ 조영욱-PC, commencing Lanczos iteration
12/13/09 18:14:10 v1.10 @ 조영욱-PC, memory use: 9.9 MB
12/13/09 18:14:28 v1.10 @ 조영욱-PC, lanczos halted after 1016 iterations (dim = 64097)
12/13/09 18:14:28 v1.10 @ 조영욱-PC, recovered 18 nontrivial dependencies
12/13/09 18:14:30 v1.10 @ 조영욱-PC, prp52 = 3363180443604080019397353045243304202704788434190727
12/13/09 18:14:32 v1.10 @ 조영욱-PC, prp39 = 693993837679896534923644341171069837383
12/13/09 18:14:32 v1.10 @ 조영욱-PC, Lanczos elapsed time = 22.0890 seconds.
12/13/09 18:14:32 v1.10 @ 조영욱-PC, Sqrt elapsed time = 3.6660 seconds.
12/13/09 18:14:32 v1.10 @ 조영욱-PC, SIQS elapsed time = 3747.7380 seconds.
12/13/09 18:14:32 v1.10 @ 조영욱-PC, 
12/13/09 18:14:32 v1.10 @ 조영욱-PC,

2·10197-1 = 1(9)197<198> = 3489781 · 1544884849<10> · 99635152957880897351925251119<29> · C153

C153 = P73 · P81

P73 = 3106715592670622545052652201311870702958135715650492536479382258704707479<73>

P81 = 119845468875413674461665854674334297323102627345704299514768319724130736097956971<81>

Number: 19999_197
N=372325786866169441250327851059588119485775841500993243856730119954248515508380134433190793829593497441299946322830257214959074704367324446826072083886109
  ( 153 digits)
SNFS difficulty: 197 digits.
Divisors found:
 r1=3106715592670622545052652201311870702958135715650492536479382258704707479
 r2=119845468875413674461665854674334297323102627345704299514768319724130736097956971
Version: 
Total time: 263.39 hours.
Scaled time: 628.18 units (timescale=2.385).
Factorization parameters were as follows:
n: 372325786866169441250327851059588119485775841500993243856730119954248515508380134433190793829593497441299946322830257214959074704367324446826072083886109
m: 2000000000000000000000000000000000000000
deg: 5
c5: 25
c0: -4
skew: 0.69
type: snfs
lss: 1
rlim: 14000000
alim: 14000000
lpbr: 29
lpba: 29
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
Factor base limits: 14000000/14000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 55/55
Sieved rational special-q in [7000000, 13000001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 33793998
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2655738 x 2655985
Total sieving time: 232.12 hours.
Total relation processing time: 10.63 hours.
Matrix solve time: 20.22 hours.
Time per square root: 0.41 hours.
Prototype def-par.txt line would be:
snfs,197,5,0,0,0,0,0,0,0,0,14000000,14000000,29,29,55,55,2.5,2.5,100000
total time: 263.39 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673795)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345)
Calibrating delay using timer specific routine.. 5344.61 BogoMIPS (lpj=2672307)
Calibrating delay using timer specific routine.. 5237.88 BogoMIPS (lpj=2618943)

Dec 13, 2009

Factorizations of 755...551 have been extended up to n=150. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.

Dec 12, 2009 (3rd)

By Wataru Sakai / GMP-ECM 6.2.1 / Dec 12, 2009

(17·10184+7)/3 = 5(6)1839<185> = 61 · 39041 · 1909371924869851302649714847256763860533<40> · C140

C140 = P37 · P103

P37 = 5124172426862591527993743217843926217<37>

P103 = 2431994737114378672034241234074769137183424168356159641033087179976549773766608679855816455013117557029<103>

********** Factor found in step 2: 5124172426862591527993743217843926217
Found probable prime factor of 37 digits: 5124172426862591527993743217843926217
Probable prime cofactor 2431994737114378672034241234074769137183424168356159641033087179976549773766608679855816455013117557029 has 103 digits

7·10173+3 = 7(0)1723<174> = 37 · 4830247 · 253488539 · 22348446469487<14> · C144

C144 = P40 · C105

P40 = 4395944156853610582716741443564661893213<40>

C105 = [157278421733130527374822423031190273787717697677845850752050907400924177459930910588027890386838400438753<105>]

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1786388023
Step 1 took 42364ms
********** Factor found in step 1: 4395944156853610582716741443564661893213
Found probable prime factor of 40 digits: 4395944156853610582716741443564661893213
Composite cofactor 157278421733130527374822423031190273787717697677845850752050907400924177459930910588027890386838400438753 has 105 digits

Dec 12, 2009 (2nd)

By Sinkiti Sibata / Msieve / Dec 12, 2009

(61·10166-43)/9 = 6(7)1653<167> = 3 · 19 · 613 · 4757101 · 6663407 · C149

C149 = P55 · P95

P55 = 1467058864327318536191200519538686958267945548946391343<55>

P95 = 41712454180418038540092264032930234816532137293588332276077015671466940950225200778451694516853<95>

Number: 67773_166
N=61194625658229398109012930480802869719547151981450925484771163997284152763997732120947147166743515730911733207086500287913412099184316954874246803579
  ( 149 digits)
SNFS difficulty: 167 digits.
Divisors found:
 r1=1467058864327318536191200519538686958267945548946391343 (pp55)
 r2=41712454180418038540092264032930234816532137293588332276077015671466940950225200778451694516853 (pp95)
Version: Msieve-1.40
Total time: 46.34 hours.
Scaled time: 152.30 units (timescale=3.287).
Factorization parameters were as follows:
name: 67773_166
n: 61194625658229398109012930480802869719547151981450925484771163997284152763997732120947147166743515730911733207086500287913412099184316954874246803579
m: 1000000000000000000000000000000000
deg: 5
c5: 610
c0: -43
skew: 0.59
type: snfs
lss: 1
rlim: 4400000
alim: 4400000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 4400000/4400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [2200000, 4600001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 836871 x 837119
Total sieving time: 44.68 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 1.33 hours.
Time per square root: 0.24 hours.
Prototype def-par.txt line would be:
snfs,167.000,5,0,0,0,0,0,0,0,0,4400000,4400000,27,27,51,51,2.4,2.4,100000
total time: 46.34 hours.
 --------- CPU info (if available) ----------

Dec 12, 2009

According to the progress report from Robert Backstrom, c241 has finally started the Lanczos step today. Msieve requires estimated 515 hours, so it will end early in the new year.

Dec 11, 2009 (4th)

By Lionel Debroux / ggnfs + msieve / Dec 11, 2009

(22·10166-7)/3 = 7(3)1651<167> = 409 · 419 · 3011 · 115597 · 25852643 · 794728813 · 8492728860754387<16> · C121

C121 = P43 · P79

P43 = 1104239814695922526636398039119065670197823<43>

P79 = 6380757027338811217564960531118647618150226218080350862755796008818598741511437<79>

Number: 73331_166
N=7045885957488314366183623370458357518983247288396398217078479943464251420227362790070367387651860604343780717909807001651
  ( 121 digits)
SNFS difficulty: 167 digits.
Divisors found:
 r1=1104239814695922526636398039119065670197823 (pp43)
 r2=6380757027338811217564960531118647618150226218080350862755796008818598741511437 (pp79)
Version: Msieve v. 1.44
Total time: 54.51 hours.
Scaled time: 81.55 units (timescale=1.496).
Factorization parameters were as follows:
n: 7045885957488314366183623370458357518983247288396398217078479943464251420227362790070367387651860604343780717909807001651
m: 1000000000000000000000000000000000
deg: 5
c5: 220
c0: -7
skew: 0.50
type: snfs
lss: 1
rlim: 4300000
alim: 4300000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 4300000/4300000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [2150000, 3850001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 750134 x 750359
Total sieving time: 52.28 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 1.38 hours.
Time per square root: 0.76 hours.
Prototype def-par.txt line would be:
snfs,167.000,5,0,0,0,0,0,0,0,0,4300000,4300000,27,27,51,51,2.4,2.4,100000
total time: 54.51 hours.
 --------- CPU info (if available) ----------
[    0.030572] CPU0: Intel(R) Core(TM)2 CPU         T7200  @ 2.00GHz stepping 06
[    0.102093] CPU1: Intel(R) Core(TM)2 CPU         T7200  @ 2.00GHz stepping 06
[    0.000000] Memory: 2051108k/2096800k available (7372k kernel code, 452k absent, 44524k reserved, 3466k data, 772k init)
[    0.001009] Calibrating delay loop (skipped), value calculated using timer frequency.. 3989.54 BogoMIPS (lpj=1994771)
[    0.001999] Calibrating delay using timer specific routine.. 5505.93 BogoMIPS (lpj=2752967)
[    0.103024] Total of 2 processors activated (9495.47 BogoMIPS).

Dec 11, 2009 (3rd)

By Dmitry Domanov / ECMNET, GMP-ECM / Dec 11, 2009

(52·10188-43)/9 = 5(7)1873<189> = 3 · 173 · 2267 · C183

C183 = P32 · P152

P32 = 31978900502670207700576552297793<32>

P152 = 15356011491672614427520253819593535366479447274276240103542314539618926993708539558051992434641622926845696534507596506662824902117550235921708729961457<152>

Factor=31978900502670207700576552297793  Method=ECM  B1=11000000  Sigma=590706511

Dec 11, 2009 (2nd)

By Wataru Sakai / GMP-ECM 6.2.1 / Dec 11, 2009

(17·10184+7)/3 = 5(6)1839<185> = 61 · 39041 · C179

C179 = P40 · C140

P40 = 1909371924869851302649714847256763860533<40>

C140 = [12461960374196436055720590007683928054218374877066989312361949971133799082404460422570765649635829025773078205178509197929750407572765729293<140>]

Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1534556179
Step 1 took 21297ms
Step 2 took 8517ms
********** Factor found in step 2: 1909371924869851302649714847256763860533
Found probable prime factor of 40 digits: 1909371924869851302649714847256763860533
Composite cofactor 12461960374196436055720590007683928054218374877066989312361949971133799082404460422570765649635829025773078205178509197929750407572765729293 has 140 digits

Dec 11, 2009

By Erik Branger / GMP-ECM / Dec 11, 2009

(23·10184-41)/9 = 2(5)1831<185> = 32 · 97 · 1061 · C179

C179 = P41 · C139

P41 = 19040340637648210868379117961880200224083<41>

C139 = [1449042038886457977275736047557847119439134383903865583802730356524462608737631889822415710776695664897224875214083590924322735359677843449<139>]

GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM]
Input number is 
27590254018670444852060458163758234041407213315968267369234491608184324969047933507967645508900436009983833310721320800640381791535957838253215434180030246115862032895499993582267 (179 digits)
Run 585 out of 1000:
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1385992420
Step 1 took 66581ms
Step 2 took 20826ms
********** Factor found in step 2: 19040340637648210868379117961880200224083
Found probable prime factor of 41 digits: 19040340637648210868379117961880200224083
Composite cofactor 
1449042038886457977275736047557847119439134383903865583802730356524462608737631889822415710776695664897224875214083590924322735359677843449 has 139 digits

Dec 10, 2009 (4th)

By yoshida / GGNFS / Dec 10, 2009

(59·10170+13)/9 = 6(5)1697<171> = 3 · 31 · 73 · 229 · 2371 · 136027 · 233155008560892980603136314014073<33> · C124

C124 = P44 · P80

P44 = 60584128360032301920436560271643813086991257<44>

P80 = 92556713209596906998848833423411539743687317470367214287086444809227713384971181<80>

N=5607467793672916357063206022743587336819544589797022881608229298842144002627748832647796629860992889557912488547520943964517
  ( 124 digits)
SNFS difficulty: 171 digits.
Divisors found:
 r1=60584128360032301920436560271643813086991257 (pp44)
 r2=92556713209596906998848833423411539743687317470367214287086444809227713384971181 (pp80)
Version: GGNFS-0.77.1-20060722-nocona
Total time: 257.03 hours.
Scaled time: 594.77 units (timescale=2.314).
Factorization parameters were as follows:
n: 5607467793672916357063206022743587336819544589797022881608229298842144002627748832647796629860992889557912488547520943964517
m: 10000000000000000000000000000000000
deg: 5
c5: 59
c0: 13
skew: 0.74
type: snfs
Factor base limits: 6000000/6000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [3000000, 9500001)
Primes: RFBsize:412849, AFBsize:413701, largePrimes:7914450 encountered
Relations: rels:9994565, finalFF:2581166
Max relations in full relation-set: 32
Initial matrix: 826617 x 2581166 with sparse part having weight 203256814.
Pruned matrix : 465392 x 469589 with weight 138232198.
Total sieving time: 253.71 hours.
Total relation processing time: 0.16 hours.
Matrix solve time: 3.07 hours.
Time per square root: 0.09 hours.
Prototype def-par.txt line would be:
snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000
total time: 257.03 hours.
 --------- CPU info (if available) ----------
Intel(R) Xeon(R) CPU           E5450  @ 3.00GHz stepping 0a
Intel(R) Xeon(R) CPU           E5450  @ 3.00GHz stepping 0a
Intel(R) Xeon(R) CPU           E5450  @ 3.00GHz stepping 0a
Intel(R) Xeon(R) CPU           E5450  @ 3.00GHz stepping 0a
Intel(R) Xeon(R) CPU           E5450  @ 3.00GHz stepping 0a
Intel(R) Xeon(R) CPU           E5450  @ 3.00GHz stepping 0a
Intel(R) Xeon(R) CPU           E5450  @ 3.00GHz stepping 0a
Memory for crash kernel (0x0 to 0x0) notwithin permissible range
Memory: 32944636k/35127296k available (2460k kernel code, 603560k reserved, 1250k data, 196k init)
Calibrating delay using timer specific routine.. 5988.95 BogoMIPS (lpj=2994477)
Calibrating delay using timer specific routine.. 5985.01 BogoMIPS (lpj=2992505)
Calibrating delay using timer specific routine.. 5984.97 BogoMIPS (lpj=2992487)
Calibrating delay using timer specific routine.. 5985.05 BogoMIPS (lpj=2992527)
Calibrating delay using timer specific routine.. 5985.21 BogoMIPS (lpj=2992605)
Calibrating delay using timer specific routine.. 5985.02 BogoMIPS (lpj=2992513)
Calibrating delay using timer specific routine.. 5985.05 BogoMIPS (lpj=2992529)
Calibrating delay using timer specific routine.. 5985.00 BogoMIPS (lpj=2992504)

Dec 10, 2009 (3rd)

By Dmitry Domanov / GGNFS/msieve, ECMNET, GMP-ECM / Dec 10, 2009

(47·10172+7)/9 = 5(2)1713<173> = 78889 · 1367259031<10> · 100846772862529249243<21> · 288949754807407778795535378837359651<36> · C104

C104 = P47 · P58

P47 = 12289616516746838106901363670752368934979810153<47>

P58 = 1351964941985702375077635494737512490391884094055273661193<58>

N=16615130681090168682484149882073393686384044650429952415437022192442172356711464024014618654692383492529
  ( 104 digits)
Divisors found:
 r1=12289616516746838106901363670752368934979810153 (pp47)
 r2=1351964941985702375077635494737512490391884094055273661193 (pp58)
Version: Msieve-1.40
Total time: 6.33 hours.
Scaled time: 12.01 units (timescale=1.899).
Factorization parameters were as follows:
n: 16615130681090168682484149882073393686384044650429952415437022192442172356711464024014618654692383492529
skew: 5197.87
# norm 1.04e+013
c5: 15960
c4: -184339309
c3: -1695036569856
c2: 5342536944215639
c1: 17116190166354377245
c0: -13677862918281503944854
# alpha -3.45
Y1: 10092556199
Y0: -63605450663550372257
# Murphy_E 2.21e-009
# M 1859835780868646606837778153991172769667025259596543365334539620061107358998462310498137234116573516495
type: gnfs
rlim: 2300000
alim: 2300000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 2300000/2300000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved algebraic special-q in [1150000, 1950001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 274907 x 275135
Polynomial selection time: 0.64 hours.
Total sieving time: 5.47 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.10 hours.
Time per square root: 0.07 hours.
Prototype def-par.txt line would be:
gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000
total time: 6.33 hours.
 --------- CPU info (if available) ----------

(19·10177-7)/3 = 6(3)1761<178> = 13 · 47317 · C173

C173 = P38 · C135

P38 = 52374708010720593180983888284200480121<38>

C135 = [196584909774591899891929740271017992127607138646378613009944940506168200305296645686623671326556823641070931963952390382765248092716091<135>]

Factor=52374708010720593180983888284200480121  Method=ECM  B1=11000000  Sigma=2413859118

(16·10183-1)/3 = 5(3)183<184> = 53 · 9923 · C179

C179 = P35 · P144

P35 = 18627864608408854457971430690578723<35>

P144 = 544398342498957622062084117964445373269473871781632235659942268003161698603526565536948832419130917001986223882572935713623771914211976408369209<144>

Factor=18627864608408854457971430690578723  Method=ECM  B1=11000000  Sigma=1934621045

Dec 10, 2009 (2nd)

By Markus Tervooren / GMP-ECM / Dec 10, 2009

(26·10166-11)/3 = 8(6)1653<167> = 17119841910469978219460966052115200873127<41> · C127

C127 = P32 · P95

P32 = 96207769849890958637787012089581<32>

P95 = 52618952197183905165622175960078885504996122246347121928682073766419239235963408943829919813349<95>

$> echo 5062352042729083324072603410562818478047593167544336937763961405378553912981858058946033962596449849227561328894684469987616769 | ecm -c 0 -I 1 10
GMP-ECM 6.2 [powered by GMP 4.3.0] [ECM]
Input number is 5062352042729083324072603410562818478047593167544336937763961405378553912981858058946033962596449849227561328894684469987616769 (127 digits)
Using B1=10, B2=84, polynomial x^1, sigma=1268245291
Step 1 took 0ms
Step 2 took 0ms
Run 2 out of 0:
Using B1=276, B2=276-7686, polynomial x^1, sigma=1621996872
Step 1 took 0ms
Step 2 took 4ms
Run 3 out of 0:
Using B1=542, B2=542-24246, polynomial x^1, sigma=1027277030
Step 1 took 0ms
Step 2 took 4ms
Run 4 out of 0:
Using B1=808, B2=808-42486, polynomial x^1, sigma=2444484533
Step 1 took 4ms
Step 2 took 4ms
Run 5 out of 0:
Using B1=1074, B2=1074-51606, polynomial x^1, sigma=801533018
Step 1 took 4ms
Step 2 took 8ms
Run 6 out of 0:
Using B1=1340, B2=1340-108636, polynomial x^1, sigma=1628484574
Step 1 took 4ms
Step 2 took 8ms
Run 7 out of 0:
Using B1=1606, B2=1606-109146, polynomial x^1, sigma=3394506902
Step 1 took 4ms
Step 2 took 8ms
Run 8 out of 0:
Using B1=1872, B2=1872-147396, polynomial x^1, sigma=1216102578
Step 1 took 8ms
Step 2 took 8ms
Run 9 out of 0:
Using B1=2138, B2=2138-147906, polynomial x^1, sigma=356966585
Step 1 took 12ms
Step 2 took 8ms
Run 10 out of 0:
Using B1=2540, B2=2540-186156, polynomial x^1, sigma=3077459549
Step 1 took 8ms
Step 2 took 12ms
Run 11 out of 0:
Using B1=2950, B2=2950-224406, polynomial x^1, sigma=485575138
Step 1 took 8ms
Step 2 took 12ms
Run 12 out of 0:
Using B1=3368, B2=3368-294786, polynomial x^1, sigma=2073073101
Step 1 took 16ms
Step 2 took 12ms
Run 13 out of 0:
Using B1=3794, B2=3794-446766, polynomial x^1, sigma=4253881041
Step 1 took 16ms
Step 2 took 12ms
Run 14 out of 0:
Using B1=4228, B2=4228-447786, polynomial x^1, sigma=1490636614
Step 1 took 20ms
Step 2 took 12ms
Run 15 out of 0:
Using B1=4671, B2=4671-447786, polynomial x^1, sigma=4178903842
Step 1 took 20ms
Step 2 took 16ms
********** Factor found in step 2: 96207769849890958637787012089581
Found probable prime factor of 32 digits: 96207769849890958637787012089581
Probable prime cofactor 52618952197183905165622175960078885504996122246347121928682073766419239235963408943829919813349 has 95 digits

After the composite number passed B1=1e6 (level 35) 150 times and B1=11e6 (level 45) 117 times, quite small B1=4671 found P32.

echo 5062352042729083324072603410562818478047593167544336937763961405378553912981858058946033962596449849227561328894684469987616769 | ecm -sigma 4178903842 4671

Dec 10, 2009

By Jo Yeong Uk / GMP-ECM / Dec 10, 2009

5·10185-1 = 4(9)185<186> = 17 · 31 · 87631 · 30963646453769<14> · C165

C165 = P38 · P128

P38 = 13467097731105253924325838530156698063<38>

P128 = 25964233709024130179916331896236768142386809082711053887820914535009226635473159313679197722834392092837158149045577065290385641<128>

GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM]
Input number is 349662872872685415260187866710169543054711722129687259296757512768829622544293685012492705071389202665843507861957179339289258414384928449524545789244775692467713383 (165 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=575025177
Step 1 took 5506ms
Step 2 took 5102ms
********** Factor found in step 2: 13467097731105253924325838530156698063
Found probable prime factor of 38 digits: 13467097731105253924325838530156698063
Probable prime cofactor 25964233709024130179916331896236768142386809082711053887820914535009226635473159313679197722834392092837158149045577065290385641 has 128 digits

Dec 9, 2009 (5th)

By Sinkiti Sibata / Msieve / Dec 9, 2009

10192-3 = (9)1917<192> = 3373 · 1103279 · 30864312787215673925304239<26> · 728214226699773901950646153594957<33> · C125

C125 = P43 · P82

P43 = 4461889850767293887261615958368082112572949<43>

P82 = 2679561266563623732221821991758971715091712588908370052804206440102760114201548833<82>

Number: 99997_192
N=11955907219789388090396927468596102846705760576688639467787460136053127454112956393569754103555054189544180606793438498318517
  ( 125 digits)
Divisors found:
 r1=4461889850767293887261615958368082112572949 (pp43)
 r2=2679561266563623732221821991758971715091712588908370052804206440102760114201548833 (pp82)
Version: Msieve-1.40
Total time: 74.34 hours.
Scaled time: 245.70 units (timescale=3.305).
Factorization parameters were as follows:
name: 99997_192
# Murphy_E = 1.580662e-10, selected by Jeff Gilchrist
n: 11955907219789388090396927468596102846705760576688639467787460136053127454112956393569754103555054189544180606793438498318517
Y0: -965904624584214002999227
Y1: 29757583127591
c0: -10062534597856893819796369537440
c1: 188270216174299077687152598
c2: -308953642659933419159
c3: -3444590731912942
c4: 12448625118
c5: 14220
skew: 302426.48
type: gnfs
# selected mechanically
rlim: 6800000
alim: 6800000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.5
alambda: 2.5
Factor base limits: 6800000/6800000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved algebraic special-q in [3400000, 6800001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 923005 x 923252
Total sieving time: 72.48 hours.
Total relation processing time: 0.11 hours.
Matrix solve time: 1.64 hours.
Time per square root: 0.11 hours.
Prototype def-par.txt line would be:
gnfs,124,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,6800000,6800000,27,27,52,52,2.5,2.5,100000
total time: 74.34 hours.
 --------- CPU info (if available) ----------

Dec 9, 2009 (4th)

By yoshida / GGNFS / Dec 9, 2009

(7·10175+17)/3 = 2(3)1749<176> = 210011 · 53664942222963223<17> · C154

C154 = P62 · P92

P62 = 26604037908536981465562648809727926589746663642702901812957027<62>

P92 = 77820948230221907813638916631944197307795299733591181906080936319588979797488625278156383469<92>

Number: 23339_175
N=2070351456795117553558270718726790833044380782036310828359575179480567729028641533439203231515578311502363046326991595489940095893568406641805115030186663
  ( 154 digits)
SNFS difficulty: 175 digits.
Divisors found:
 r1=26604037908536981465562648809727926589746663642702901812957027 (pp62)
 r2=77820948230221907813638916631944197307795299733591181906080936319588979797488625278156383469 (pp92)
Version: GGNFS-0.77.1-20060722-nocona
Total time: 340.07 hours.
Scaled time: 786.91 units (timescale=2.314).
Factorization parameters were as follows:
n: 2070351456795117553558270718726790833044380782036310828359575179480567729028641533439203231515578311502363046326991595489940095893568406641805115030186663
m: 100000000000000000000000000000000000
deg: 5
c5: 7
c0: 17
skew: 1.19
type: snfs
Factor base limits: 7400000/7400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [3700000, 13400001)
Primes: RFBsize:501962, AFBsize:502556, largePrimes:7532379 encountered
Relations: rels:8852741, finalFF:1897452
Max relations in full relation-set: 32
Initial matrix: 1004583 x 1897452 with sparse part having weight 145358172.
Pruned matrix : 506211 x 511297 with weight 316523678.
Total sieving time: 328.63 hours.
Total relation processing time: 0.14 hours.
Matrix solve time: 11.18 hours.
Time per square root: 0.12 hours.
Prototype def-par.txt line would be:
snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000
total time: 340.07 hours.
 --------- CPU info (if available) ----------
Intel(R) Xeon(R) CPU           E5450  @ 3.00GHz stepping 0a
Intel(R) Xeon(R) CPU           E5450  @ 3.00GHz stepping 0a
Intel(R) Xeon(R) CPU           E5450  @ 3.00GHz stepping 0a
Intel(R) Xeon(R) CPU           E5450  @ 3.00GHz stepping 0a
Intel(R) Xeon(R) CPU           E5450  @ 3.00GHz stepping 0a
Intel(R) Xeon(R) CPU           E5450  @ 3.00GHz stepping 0a
Intel(R) Xeon(R) CPU           E5450  @ 3.00GHz stepping 0a
Memory for crash kernel (0x0 to 0x0) notwithin permissible range
Memory: 32944636k/35127296k available (2460k kernel code, 603560k reserved, 1250k data, 196k init)
Calibrating delay using timer specific routine.. 5988.95 BogoMIPS (lpj=2994477)
Calibrating delay using timer specific routine.. 5985.01 BogoMIPS (lpj=2992505)
Calibrating delay using timer specific routine.. 5984.97 BogoMIPS (lpj=2992487)
Calibrating delay using timer specific routine.. 5985.05 BogoMIPS (lpj=2992527)
Calibrating delay using timer specific routine.. 5985.21 BogoMIPS (lpj=2992605)
Calibrating delay using timer specific routine.. 5985.02 BogoMIPS (lpj=2992513)
Calibrating delay using timer specific routine.. 5985.05 BogoMIPS (lpj=2992529)
Calibrating delay using timer specific routine.. 5985.00 BogoMIPS (lpj=2992504)

Dec 9, 2009 (3rd)

By Wataru Sakai / GMP-ECM 6.2.1 / Dec 9, 2009

(13·10188+11)/3 = 4(3)1877<189> = 1543 · 142860607 · 255207723123768259319<21> · 106516169444251311571441538317907<33> · C125

C125 = P41 · P85

P41 = 30942293088057381698511237526930241499691<41>

P85 = 2337124414249729105204220797351745040236609507852691754539000092085018567123113821079<85>

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1831739677
Step 1 took 34209ms
Step 2 took 13653ms
********** Factor found in step 2: 30942293088057381698511237526930241499691
Found probable prime factor of 41 digits: 30942293088057381698511237526930241499691
Probable prime cofactor 2337124414249729105204220797351745040236609507852691754539000092085018567123113821079 has 85 digits

(65·10172+7)/9 = 7(2)1713<173> = 257 · 809 · 6563 · 7321 · 1123872308281744993<19> · C142

C142 = P38 · P40 · P66

P38 = 16755539813811419577324028768476793049<38>

P40 = 2033261506695711968567171206558801965737<40>

P66 = 188819897611386026982238522704043786485667381321427555249205867653<66>

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3638956364
Step 1 took 42470ms
Step 2 took 14819ms
********** Factor found in step 2: 16755539813811419577324028768476793049
Found probable prime factor of 38 digits: 16755539813811419577324028768476793049
Composite cofactor
383920229511456818641132015114512787486199837707317822637944375746076797851094768115322811270691062605261
has 105 digits
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2005714314
Step 1 took 26762ms
Step 2 took 11953ms
********** Factor found in step 2: 2033261506695711968567171206558801965737
Found probable prime factor of 40 digits: 2033261506695711968567171206558801965737
Probable prime cofactor 188819897611386026982238522704043786485667381321427555249205867653 has 66 digits

(14·10189-11)/3 = 4(6)1883<190> = 47 · 48313 · 543227 · 24889499 · 158031581 · 40854831527<11> · 1413907600387<13> · 256254713349673<15> · C125

C125 = P38 · P88

P38 = 56028649144846154576918785107849174457<38>

P88 = 1159730457435645187988018725993250387128541623197163551356290007640701804261433189154169<88>

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=314256342
Step 1 took 34298ms
********** Factor found in step 1: 56028649144846154576918785107849174457
Found probable prime factor of 38 digits: 56028649144846154576918785107849174457
Probable prime cofactor 1159730457435645187988018725993250387128541623197163551356290007640701804261433189154169 has 88 digits

Dec 9, 2009 (2nd)

By Dmitry Domanov / GGNFS/msieve / Dec 9, 2009

(58·10197+41)/9 = 6(4)1969<198> = 13 · 933299923 · 8436592305409<13> · 111772795484434550519<21> · 5087832120754440156018956894208167<34> · C122

C122 = P56 · P66

P56 = 64694662489083286414695388018448613862933185715531862603<56>

P66 = 171126198208668315251298457671101379137801125215383625298494188981<66>

N=11070951636149765536840257253607829444595086747622399008620240727882623901740891490497776510088174513384413377746808577543
  ( 122 digits)
Divisors found:
 r1=64694662489083286414695388018448613862933185715531862603 (pp56)
 r2=171126198208668315251298457671101379137801125215383625298494188981 (pp66)
Version: Msieve-1.40
Total time: 55.80 hours.
Scaled time: 52.29 units (timescale=0.937).
Factorization parameters were as follows:
# Murphy_E = 2.621397e-10, selected by Jeff Gilchrist
n: 11070951636149765536840257253607829444595086747622399008620240727882623901740891490497776510088174513384413377746808577543
Y0: -274680933477785405343845
Y1: 8570518787149
c0: 1350928898463077874422589647232
c1: 19642762067379607582761780
c2: -384503260141907345357
c3: -122711510581868
c4: 4766478592
c5: 7080
skew: 245402.32
type: gnfs
# selected mechanically
rlim: 5600000
alim: 5600000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.5
alambda: 2.5
qintsize: 200000Factor base limits: 5600000/5600000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved algebraic special-q in [2800000, 4800001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 695403 x 695633
Total sieving time: 54.46 hours.
Total relation processing time: 0.15 hours.
Matrix solve time: 0.81 hours.
Time per square root: 0.38 hours.
Prototype def-par.txt line would be:
gnfs,121,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5600000,5600000,27,27,52,52,2.5,2.5,100000
total time: 55.80 hours.
 --------- CPU info (if available) ----------

(62·10183-71)/9 = 6(8)1821<184> = 7 · 307 · 317 · C179

C179 = P45 · P134

P45 = 158335949136530495728829921281768556200044049<45>

P134 = 63866625867023175938335010351970045440329405009221671936038865883820121592393893151960105634735076570416240607359428554200004909797393<134>

N=10112382824802804457342625634531634387777586947327696821629147279842416454999814878153126593821627679353303332176933426432496501033991143836086755763283471130859616150258265364257
  ( 179 digits)
SNFS difficulty: 184 digits.
Divisors found:
 r1=158335949136530495728829921281768556200044049 (pp45)
 r2=63866625867023175938335010351970045440329405009221671936038865883820121592393893151960105634735076570416240607359428554200004909797393 (pp134)
Version: Msieve-1.40
Total time: 253.94 hours.
Scaled time: 491.11 units (timescale=1.934).
Factorization parameters were as follows:
n: 10112382824802804457342625634531634387777586947327696821629147279842416454999814878153126593821627679353303332176933426432496501033991143836086755763283471130859616150258265364257
m: 1000000000000000000000000000000000000
deg: 5
c5: 62000
c0: -71
skew: 0.26
type: snfs
lss: 1
rlim: 8400000
alim: 8400000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
qintsize: 300000Factor base limits: 8400000/8400000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved rational special-q in [4200000, 8400001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1833346 x 1833571
Total sieving time: 248.73 hours.
Total relation processing time: 0.23 hours.
Matrix solve time: 4.66 hours.
Time per square root: 0.32 hours.
Prototype def-par.txt line would be:
snfs,184.000,5,0,0,0,0,0,0,0,0,8400000,8400000,28,28,54,54,2.5,2.5,100000
total time: 253.94 hours.
 --------- CPU info (if available) ----------

Dec 9, 2009

By Wataru Sakai / Msieve / Dec 9, 2009

(44·10197-71)/9 = 4(8)1961<198> = 37 · 73 · C195

C195 = P80 · P115

P80 = 52038938123538386499558426521065668429891280877444695007719721706031040955707989<80>

P115 = 3478220871825907204600143572083807398370519405902086642073165507604921729279187962113161108837292484759222844466529<115>

Number: 48881_197
N=181002920728948126208400181002920728948126208400181002920728948126208400181002920728948126208400181002920728948126208400181002920728948126208400181002920728948126208400181002920728948126208400181
  ( 195 digits)
SNFS difficulty: 198 digits.
Divisors found:
 r1=52038938123538386499558426521065668429891280877444695007719721706031040955707989
 r2=3478220871825907204600143572083807398370519405902086642073165507604921729279187962113161108837292484759222844466529
Version: 
Total time: 954.48 hours.
Scaled time: 1922.33 units (timescale=2.014).
Factorization parameters were as follows:
n: 181002920728948126208400181002920728948126208400181002920728948126208400181002920728948126208400181002920728948126208400181002920728948126208400181002920728948126208400181002920728948126208400181
m: 2000000000000000000000000000000000000000
deg: 5
c5: 275
c0: -142
skew: 0.88
type: snfs
lss: 1
rlim: 14500000
alim: 14500000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
Factor base limits: 14500000/14500000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved rational special-q in [7250000, 17750001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2286051 x 2286299
Total sieving time: 954.48 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,198,5,0,0,0,0,0,0,0,0,14500000,14500000,28,28,55,55,2.5,2.5,100000
total time: 954.48 hours.
 --------- CPU info (if available) ----------

(8·10172-53)/9 = (8)1713<172> = 3 · 7 · 17 · 19 · 739 · 1530721 · 18210329 · C152

C152 = P50 · P103

P50 = 19072250153851773845855631722459189802972333856393<50>

P103 = 3335534640447268827772499537443122415609424726507539563699561628396675540925992881380483170481360493007<103>

Number: 88883_172
N=63616151059448344057594636891100636407831511205135552367798619650654780752786002498411683774793207019413490574485517559732167544208283224904732018743751
  ( 152 digits)
SNFS difficulty: 172 digits.
Divisors found:
 r1=19072250153851773845855631722459189802972333856393
 r2=3335534640447268827772499537443122415609424726507539563699561628396675540925992881380483170481360493007
Version: 
Total time: 84.29 hours.
Scaled time: 169.68 units (timescale=2.013).
Factorization parameters were as follows:
n: 63616151059448344057594636891100636407831511205135552367798619650654780752786002498411683774793207019413490574485517559732167544208283224904732018743751
m: 20000000000000000000000000000000000
deg: 5
c5: 25
c0: -53
skew: 1.16
type: snfs
lss: 1
rlim: 5300000
alim: 5300000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4Factor base limits: 5300000/5300000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2650000, 5550001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 749176 x 749424
Total sieving time: 84.29 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,172,5,0,0,0,0,0,0,0,0,5300000,5300000,27,27,52,52,2.4,2.4,100000
total time: 84.29 hours.
 --------- CPU info (if available) ----------

Dec 8, 2009 (5th)

By Wataru Sakai / GMP-ECM 6.2.1 / Dec 8, 2009

(47·10172+7)/9 = 5(2)1713<173> = 78889 · 1367259031<10> · 100846772862529249243<21> · C139

C139 = P36 · C104

P36 = 288949754807407778795535378837359651<36>

C104 = [16615130681090168682484149882073393686384044650429952415437022192442172356711464024014618654692383492529<104>]

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=240630566
Step 1 took 42471ms
Step 2 took 14596ms
********** Factor found in step 2: 288949754807407778795535378837359651
Found probable prime factor of 36 digits: 288949754807407778795535378837359651
Composite cofactor 16615130681090168682484149882073393686384044650429952415437022192442172356711464024014618654692383492529 has 104 digits

Dec 8, 2009 (4th)

By Dmitry Domanov / GGNFS/msieve / Dec 8, 2009

(64·10178+17)/9 = 7(1)1773<179> = 7 · 23 · 7561 · C173

C173 = P35 · P64 · P75

P35 = 31770331922672269514195751652912853<35>

P64 = 2820691606995952582774864978273833453721249485749317742014394563<64>

P75 = 651860990166698295158172796521430338071271034227790252159666126584151543327<75>

N=58416071940852996958987079916563594245980403781016766416673261293538114524526489817485372478673341798187258012562923921554882492876662039931218726294141899393102650090741153
  ( 173 digits)
SNFS difficulty: 180 digits.
Divisors found:
 r1=31770331922672269514195751652912853 (pp35)
 r2=2820691606995952582774864978273833453721249485749317742014394563 (pp64)
 r3=651860990166698295158172796521430338071271034227790252159666126584151543327 (pp75)
Version: Msieve-1.40
Total time: 180.40 hours.
Scaled time: 168.85 units (timescale=0.936).
Factorization parameters were as follows:
n: 58416071940852996958987079916563594245980403781016766416673261293538114524526489817485372478673341798187258012562923921554882492876662039931218726294141899393102650090741153
m: 400000000000000000000000000000000000
deg: 5
c5: 125
c0: 34
skew: 0.77
type: snfs
lss: 1
rlim: 7000000
alim: 7000000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
qintsize: 300000Factor base limits: 7000000/7000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3500000, 5900001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1326304 x 1326539
Total sieving time: 175.81 hours.
Total relation processing time: 0.28 hours.
Matrix solve time: 3.12 hours.
Time per square root: 1.19 hours.
Prototype def-par.txt line would be:
snfs,180.000,5,0,0,0,0,0,0,0,0,7000000,7000000,28,28,53,53,2.5,2.5,100000
total time: 180.40 hours.
 --------- CPU info (if available) ----------

Dec 8, 2009 (3rd)

By Lionel Debroux / ggnfs-lasieve4I14e on the RSALS grid + msieve 1.44 SVN / Dec 8, 2009

(32·10197-23)/9 = 3(5)1963<198> = 11 · 2333 · C194

C194 = P48 · P147

P48 = 120096085869618304491892644395133067385455490461<48>

P147 = 115364235300837880965021708985205640774020775255855616745497866939437139692350135211083710292284840369791039781831123064423399172513464805436819371<147>

Msieve v. 1.44
Mon Dec  7 17:40:00 2009
random seeds: ab030b1e 60360f0e
factoring 13854793108972277424913515783640087112011672663194309143730489637047716773391869834218741205453592937519212701381582650335329289465594652049859936700913983382907514926374763494352006996670520031 (194 digits)
searching for 15-digit factors
commencing number field sieve (194-digit input)
R0: -2000000000000000000000000000000000000000
R1:  1
A0: -23
A1:  0
A2:  0
A3:  0
A4:  0
A5:  100
skew 0.75, size 1.190884e-13, alpha -0.297712, combined = 2.194006e-11

commencing linear algebra
read 1593703 cycles
cycles contain 3909055 unique relations
read 3909055 relations
using 20 quadratic characters above 268434578
building initial matrix
memory use: 525.1 MB
read 1593703 cycles
matrix is 1593360 x 1593703 (459.5 MB) with weight 137748177 (86.43/col)
sparse part has weight 102925632 (64.58/col)
filtering completed in 3 passes
matrix is 1589324 x 1589524 (458.9 MB) with weight 137556856 (86.54/col)
sparse part has weight 102814796 (64.68/col)
read 1589524 cycles
matrix is 1589324 x 1589524 (458.9 MB) with weight 137556856 (86.54/col)
sparse part has weight 102814796 (64.68/col)
saving the first 48 matrix rows for later
matrix is 1589276 x 1589524 (437.7 MB) with weight 108725656 (68.40/col)
sparse part has weight 98852707 (62.19/col)
matrix includes 64 packed rows
using block size 65536 for processor cache size 4096 kB
commencing Lanczos iteration (2 threads)
memory use: 447.1 MB
linear algebra at 0.0%, ETA 6h24m589524 dimensions (0.0%, ETA 6h24m)
linear algebra completed 2787 of 1589524 dimensions (0.2%, ETA 6h29m)
linear algebra completed 1589125 of 1589524 dimensions (100.0%, ETA 0h 0m)
lanczos halted after 25132 iterations (dim = 1589276)
recovered 39 nontrivial dependencies
BLanczosTime: 24188

commencing square root phase
reading relations for dependency 1
read 795629 cycles
cycles contain 1953244 unique relations
read 1953244 relations
multiplying 1953244 relations
multiply complete, coefficients have about 58.76 million bits
initial square root is modulo 273120781
reading relations for dependency 2
read 794579 cycles
cycles contain 1953628 unique relations
read 1953628 relations
multiplying 1953628 relations
multiply complete, coefficients have about 58.77 million bits
initial square root is modulo 274025231
sqrtTime: 2038
prp48 factor: 120096085869618304491892644395133067385455490461
prp147 factor: 115364235300837880965021708985205640774020775255855616745497866939437139692350135211083710292284840369791039781831123064423399172513464805436819371
elapsed time 07:17:10

Dec 8, 2009 (2nd)

By Sinkiti Sibata / Msieve / Dec 8, 2009

(10207-7)/3 = (3)2061<207> = 42491 · C202

C202 = P73 · P130

P73 = 1894904832363841708654936720234411577262109484929134576621581786833131223<73>

P130 = 4139943269110878681913041512994527160505437740968307294571520268473274361574028518742477201880838434865365018944874567545447883167<130>

Number: 33331_207
N=7844798506350364390890619974425956869297812085696578883371380606089132600629152840209299224149427721948961740917684529272865626446384724608348434570458057784785797776784103300306731621598299247683823241
  ( 202 digits)
SNFS difficulty: 207 digits.
Divisors found:
 r1=1894904832363841708654936720234411577262109484929134576621581786833131223 (pp73)
 r2=4139943269110878681913041512994527160505437740968307294571520268473274361574028518742477201880838434865365018944874567545447883167 (pp130)
Version: Msieve v. 1.42
Total time: 56.54 hours.
Scaled time: 57.90 units (timescale=1.024).
Factorization parameters were as follows:
name: 33331_207
n: 7844798506350364390890619974425956869297812085696578883371380606089132600629152840209299224149427721948961740917684529272865626446384724608348434570458057784785797776784103300306731621598299247683823241
m: 200000000000000000000000000000000000000000
deg: 5
c5: 25
c0: -56
skew: 1.18
type: snfs
lss: 1
rlim: 20000000
alim: 20000000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 20000000/20000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved rational special-q in [10000000, 24100001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 4023030 x 4023255
Total sieving time: 0.00 hours.
Total relation processing time: 0.41 hours.
Matrix solve time: 55.45 hours.
Time per square root: 0.68 hours.
Prototype def-par.txt line would be:
snfs,207.000,5,0,0,0,0,0,0,0,0,20000000,20000000,29,29,56,56,2.6,2.6,100000
total time: 56.54 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU    Q6600  @ 2.40GHz stepping 0b
CPU1: Intel(R) Core(TM)2 Quad CPU    Q6600  @ 2.40GHz stepping 0b
CPU2: Intel(R) Core(TM)2 Quad CPU    Q6600  @ 2.40GHz stepping 0b
CPU3: Intel(R) Core(TM)2 Quad CPU    Q6600  @ 2.40GHz stepping 0b
Memory: 3057976k/3145344k available (3786k kernel code, 496k absent, 86872k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 4787.88 BogoMIPS (lpj=2393941)
Calibrating delay using timer specific routine.. 4787.76 BogoMIPS (lpj=2393880)
Calibrating delay using timer specific routine.. 4787.77 BogoMIPS (lpj=2393886)
Calibrating delay using timer specific routine.. 4787.78 BogoMIPS (lpj=2393891)
Total of 4 processors activated (19151.19 BogoMIPS).

Total time: 30days 3hours.

(67·10185+41)/9 = 7(4)1849<186> = 17 · 241 · 251 · C180

C180 = P54 · P127

P54 = 677632651944004039691455516087438517717661638398255957<54>

P127 = 1068312434596328427520500847735761708190001667063750632770663316658289322784604922836617494449649709779386669313247067392841031<127>

Number: 74449_185
N=723923388160265401118926242255235289687668116350263524320530370044784926143066926285042348977966041078006202618809063909793527325352672244334300041177194511623454383048177749771667
  ( 180 digits)
SNFS difficulty: 186 digits.
Divisors found:
 r1=677632651944004039691455516087438517717661638398255957 (pp54)
 r2=1068312434596328427520500847735761708190001667063750632770663316658289322784604922836617494449649709779386669313247067392841031 (pp127)
Version: Msieve v. 1.42
Total time: 13.34 hours.
Scaled time: 10.62 units (timescale=0.796).
Factorization parameters were as follows:
name: 74449_185
n: 723923388160265401118926242255235289687668116350263524320530370044784926143066926285042348977966041078006202618809063909793527325352672244334300041177194511623454383048177749771667
m: 10000000000000000000000000000000000000
deg: 5
c5: 67
c0: 41
skew: 0.91
type: snfs
lss: 1
rlim: 9100000
alim: 9100000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
Factor base limits: 9100000/9100000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved rational special-q in [4550000, 8050001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1862951 x 1863182
Total sieving time: 0.00 hours.
Total relation processing time: 0.23 hours.
Matrix solve time: 12.31 hours.
Time per square root: 0.81 hours.
Prototype def-par.txt line would be:
snfs,186.000,5,0,0,0,0,0,0,0,0,9100000,9100000,28,28,54,54,2.5,2.5,100000
total time: 13.34 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
CPU1: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.33 BogoMIPS (lpj=1860666)
Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860571)
Total of 2 processors activated (7442.47 BogoMIPS).

Total time: 9 days.

Dec 8, 2009

By matsui / Msieve / Dec 8, 2009

(61·10172-43)/9 = 6(7)1713<173> = 32 · 232 · 29 · 484493 · C163

C163 = P71 · P92

P71 = 45877559189501164768877797875928683802683626877074584384877703699129389<71>

P92 = 22085301644293106916524888744251665456292380269293469527602545567192966951778264232461022321<92>

N=1013219733404044411721734469880469813759529495196507933262914040634945128375826233118810109979623807613314404653217433898670300606653927616376108259237164596091869
  ( 163 digits)
SNFS difficulty: 173 digits.
Divisors found:
 r1=45877559189501164768877797875928683802683626877074584384877703699129389 (pp71)
 r2=22085301644293106916524888744251665456292380269293469527602545567192966951778264232461022321 (pp92)
Version: Msieve v. 1.43
Total time: 
Scaled time: 3.82 units (timescale=1.293).
Factorization parameters were as follows:
n: 1013219733404044411721734469880469813759529495196507933262914040634945128375826233118810109979623807613314404653217433898670300606653927616376108259237164596091869
m: 10000000000000000000000000000000000
deg: 5
c5: 6100
c0: -43
skew: 0.37
type: snfs
lss: 1
rlim: 5500000
alim: 5500000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4
Factor base limits: 5500000/5500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2750000, 7450001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1120864 x 1121095
Total sieving time: 
Total relation processing time: 
Matrix solve time:
Time per square root: 
Prototype def-par.txt line would be:
snfs,173.000,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,52,52,2.4,2.4,100000
total time:

Dec 7, 2009 (4th)

By Wataru Sakai / GMP-ECM 6.2.3, GMP-ECM 6.2.1 / Dec 7, 2009

(46·10205+53)/9 = 5(1)2047<206> = 32 · 26988461 · 1312785826004579<16> · 36944846699201767801<20> · 8501087904039071003167365661<28> · C135

C135 = P48 · P87

P48 = 607274900896188899800306385808818802249277400279<48>

P87 = 840402056184302338438933074944598279441760700448891869373453899535604414870371463267633<87>

Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1222432706
Step 1 took 210809ms
Step 2 took 60202ms
********** Factor found in step 2: 607274900896188899800306385808818802249277400279
Found probable prime factor of 48 digits: 607274900896188899800306385808818802249277400279
Probable prime cofactor 840402056184302338438933074944598279441760700448891869373453899535604414870371463267633 has 87 digits

(2·10174+7)/9 = (2)1733<174> = 32653 · 8605748596807443176651449709360011<34> · C135

C135 = P38 · P98

P38 = 11120774026941337846943743141659507821<38>

P98 = 71111645333526043530566149919676115731469180881995789346211441308147356101925837992819399029941861<98>

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3996446347
Step 1 took 41946ms
Step 2 took 14940ms
********** Factor found in step 2: 11120774026941337846943743141659507821
Found probable prime factor of 38 digits: 11120774026941337846943743141659507821
Probable prime cofactor 71111645333526043530566149919676115731469180881995789346211441308147356101925837992819399029941861 has 98 digits

Dec 7, 2009 (3rd)

By yoshida / GGNFS / Dec 7, 2009

(4·10175-7)/3 = 1(3)1741<176> = 11 · 7198571 · C168

C168 = P46 · P122

P46 = 6641146625152017219757319418286962955580247263<46>

P122 = 25354595722568226578798768090052792466524658199608562063230132957861080214476755044435971838286795392845251319202194326677<122>

N=168383587815027749425840380281199160390599913805283315426370207659438535955555791853857122644497249818222550171710637030767928969808203895080304300967679852183457135051
  ( 168 digits)
SNFS difficulty: 175 digits.
Divisors found:
 r1=6641146625152017219757319418286962955580247263 (pp46)
 r2=25354595722568226578798768090052792466524658199608562063230132957861080214476755044435971838286795392845251319202194326677 (pp122)
Version: GGNFS-0.77.1-20060722-nocona
Total time: 228.69 hours.
Scaled time: 529.18 units (timescale=2.314).
Factorization parameters were as follows:
n: 168383587815027749425840380281199160390599913805283315426370207659438535955555791853857122644497249818222550171710637030767928969808203895080304300967679852183457135051
m: 100000000000000000000000000000000000
deg: 5
c5: 4
c0: -7
skew: 1.12
type: snfs
lss: 1
rlim: 5900000
alim: 5900000
lpbr: 28
lpba: 28
mfbr: 52
mfba: 52
rlambda: 2.5
alambda: 2.5
Factor base limits: 5900000/5900000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 52/52
Sieved rational special-q in [2950000, 6250001)
Primes: RFBsize:406429, AFBsize:405968, largePrimes:16864502 encountered
Relations: rels:18745749, finalFF:2369936
Max relations in full relation-set: 32
Initial matrix: 812461 x 2369934 with sparse part having weight 324211232.
Pruned matrix : 538174 x 542300 with weight 119994356.
Total sieving time: 223.94 hours.
Total relation processing time: 0.31 hours.
Matrix solve time: 4.33 hours.
Time per square root: 0.11 hours.
Prototype def-par.txt line would be:
snfs,175,5,0,0,0,0,0,0,0,0,5900000,5900000,28,28,52,52,2.5,2.5,100000
total time: 228.69 hours.
 --------- CPU info (if available) ----------
Intel(R) Xeon(R) CPU           E5450  @ 3.00GHz stepping 0a
Intel(R) Xeon(R) CPU           E5450  @ 3.00GHz stepping 0a
Intel(R) Xeon(R) CPU           E5450  @ 3.00GHz stepping 0a
Intel(R) Xeon(R) CPU           E5450  @ 3.00GHz stepping 0a
Intel(R) Xeon(R) CPU           E5450  @ 3.00GHz stepping 0a
Intel(R) Xeon(R) CPU           E5450  @ 3.00GHz stepping 0a
Intel(R) Xeon(R) CPU           E5450  @ 3.00GHz stepping 0a
Memory for crash kernel (0x0 to 0x0) notwithin permissible range
Memory: 32944636k/35127296k available (2460k kernel code, 603560k reserved, 1250k data, 196k init)
Calibrating delay using timer specific routine.. 5988.95 BogoMIPS (lpj=2994477)
Calibrating delay using timer specific routine.. 5985.01 BogoMIPS (lpj=2992505)
Calibrating delay using timer specific routine.. 5984.97 BogoMIPS (lpj=2992487)
Calibrating delay using timer specific routine.. 5985.05 BogoMIPS (lpj=2992527)
Calibrating delay using timer specific routine.. 5985.21 BogoMIPS (lpj=2992605)
Calibrating delay using timer specific routine.. 5985.02 BogoMIPS (lpj=2992513)
Calibrating delay using timer specific routine.. 5985.05 BogoMIPS (lpj=2992529)
Calibrating delay using timer specific routine.. 5985.00 BogoMIPS (lpj=2992504)

Dec 7, 2009 (2nd)

By Dmitry Domanov / GGNFS/msieve / Dec 7, 2009

(64·10186+71)/9 = 7(1)1859<187> = 3 · 109 · C185

C185 = P73 · P112

P73 = 3527800058195301401987694858738253841359278843815495535890073943442102681<73>

P112 = 6164328136693197517668216069637997130903302377698948344739122252464657975521632190630163982737623010865444415137<112>

N=21746517159361196058443764865783214407067618076792388718994223581379544682296975874957526333673122663948352021746517159361196058443764865783214407067618076792388718994223581379544682297
  ( 185 digits)
SNFS difficulty: 187 digits.
Divisors found:
 r1=3527800058195301401987694858738253841359278843815495535890073943442102681 (pp73)
 r2=6164328136693197517668216069637997130903302377698948344739122252464657975521632190630163982737623010865444415137 (pp112)
Version: Msieve-1.40
Total time: 242.25 hours.
Scaled time: 444.28 units (timescale=1.834).
Factorization parameters were as follows:
n: 21746517159361196058443764865783214407067618076792388718994223581379544682296975874957526333673122663948352021746517159361196058443764865783214407067618076792388718994223581379544682297
m: 20000000000000000000000000000000000000
deg: 5
c5: 20
c0: 71
skew: 1.29
type: snfs
lss: 1
rlim: 9400000
alim: 9400000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
qintsize: 200000Factor base limits: 9400000/9400000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved rational special-q in [4700000, 8900001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1945351 x 1945576
Total sieving time: 236.87 hours.
Total relation processing time: 0.22 hours.
Matrix solve time: 4.89 hours.
Time per square root: 0.27 hours.
Prototype def-par.txt line would be:
snfs,187.000,5,0,0,0,0,0,0,0,0,9400000,9400000,28,28,54,54,2.5,2.5,100000
total time: 242.25 hours.
 --------- CPU info (if available) ----------

Dec 7, 2009

By Jo Yeong Uk / GMP-ECM / Dec 7, 2009

(5·10177+1)/3 = 1(6)1767<178> = 172 · 225809 · 1473977 · 205975398179<12> · C152

C152 = P35 · P118

P35 = 44928186376086850422105844151536019<35>

P118 = 1872339992492679438794581670820130546867660492569256842639997168734029160890120241815698232929039287868814759633153771<118>

GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM]
Input number is 84120840142112156160459692364622682411095549541785432669929173279798144770850219502231597393973475703825025357058343212455701873856035812987746872177649 (152 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=7299212132
Step 1 took 4742ms
Step 2 took 4664ms
********** Factor found in step 2: 44928186376086850422105844151536019
Found probable prime factor of 35 digits: 44928186376086850422105844151536019
Probable prime cofactor 1872339992492679438794581670820130546867660492569256842639997168734029160890120241815698232929039287868814759633153771 has 118 digits

Dec 6, 2009 (2nd)

By Sinkiti Sibata / Msieve / Dec 6, 2009

(38·10185+43)/9 = 4(2)1847<186> = 132 · 47 · 145605431 · 683879683852489637896249<24> · 52526357427894006525435601<26> · C125

C125 = P62 · P63

P62 = 12355928475473544330597239983317552083603918386059392690368411<62>

P63 = 822520210340716770107651062277089751977022102040961398920039521<63>

Number: 42227_185
N=10163000888601351574091650327076122371330303933857311295882684888886742421333499613627838430705238530881569977996032169971131
  ( 125 digits)
Divisors found:
 r1=12355928475473544330597239983317552083603918386059392690368411 (pp62)
 r2=822520210340716770107651062277089751977022102040961398920039521 (pp63)
Version: Msieve-1.40
Total time: 67.16 hours.
Scaled time: 221.97 units (timescale=3.305).
Factorization parameters were as follows:
name: 42227_185
# Murphy_E = 1.682506e-10, selected by Jeff Gilchrist
n: 10163000888601351574091650327076122371330303933857311295882684888886742421333499613627838430705238530881569977996032169971131
Y0: -923619546624448304172779
Y1: 23021935201633
c0: 79096464115109631933811720529520
c1: 1167382777930674645846480746
c2: 114086121926159006627
c3: -25474691358524626
c4: 6419648568
c5: 15120
skew: 459976.76
type: gnfs
# selected mechanically
rlim: 6700000
alim: 6700000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.5
alambda: 2.5
Factor base limits: 6700000/6700000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved algebraic special-q in [3350000, 6350001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 880662 x 880910
Total sieving time: 65.45 hours.
Total relation processing time: 0.11 hours.
Matrix solve time: 1.49 hours.
Time per square root: 0.11 hours.
Prototype def-par.txt line would be:
gnfs,124,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,6700000,6700000,27,27,52,52,2.5,2.5,100000
total time: 67.16 hours.
 --------- CPU info (if available) ----------

Dec 6, 2009

By Wataru Sakai / GMP-ECM 6.2.1 / Dec 6, 2009

2·10174-9 = 1(9)1731<175> = 7 · 67807 · 195697 · 7483601 · 90799214287<11> · C146

C146 = P36 · P111

P36 = 174469979351152785406123306399771303<36>

P111 = 181618394791561707872745497404891429823321019239014722523833973110879902107321452734442912936754551424231080727<111>

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3677067375
Step 1 took 47396ms
Step 2 took 15678ms
********** Factor found in step 2: 174469979351152785406123306399771303
Found probable prime factor of 36 digits: 174469979351152785406123306399771303
Probable prime cofactor 181618394791561707872745497404891429823321019239014722523833973110879902107321452734442912936754551424231080727 has 111 digits

Dec 5, 2009 (3rd)

By Dmitry Domanov / ECMNET, GMP-ECM / Dec 5, 2009

(59·10183+13)/9 = 6(5)1827<184> = 152837 · C179

C179 = P38 · C142

P38 = 16565676361748490760573183459125786533<38>

C142 = [2589237124616989862313430226179513606732074304991694656132791636140467706731208512624523960761262512329409853525097262768135108390631536245517<142>]

Factor=16565676361748490760573183459125786533  Method=ECM  B1=11000000  Sigma=498181646

Dec 5, 2009 (2nd)

By Serge Batalov / PRIMO 3.0.7,3.0.8 / Dec 5, 2009

(47·102018+7)/9 = 5(2)20173<2019> is prime.

(58·102036-31)/9 = 6(4)20351<2037> is prime.

Dec 5, 2009

By Dmitry Domanov / GGNFS/msieve / Dec 5, 2009

(22·10197-7)/3 = 7(3)1961<198> = C198

C198 = P85 · P114

P85 = 1691177910918677267446605245592845163445118231338319440072463508348212239791344230793<85>

P114 = 433622819100666887719364223144800146851804753218297702397853994103761436609576924767421335549798919696781901321467<114>

N=733333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333331
  ( 198 digits)
SNFS difficulty: 198 digits.
Divisors found:
 r1=1691177910918677267446605245592845163445118231338319440072463508348212239791344230793 (pp85)
 r2=433622819100666887719364223144800146851804753218297702397853994103761436609576924767421335549798919696781901321467 (pp114)
Version: Msieve-1.40
Total time: 884.76 hours.
Scaled time: 826.37 units (timescale=0.934).
Factorization parameters were as follows:
n: 733333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333331
m: 2000000000000000000000000000000000000000
deg: 5
c5: 275
c0: -28
skew: 0.63
type: snfs
lss: 1
rlim: 14500000
alim: 14500000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
qintsize: 600000Factor base limits: 14500000/14500000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved rational special-q in [7250000, 17450001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2261830 x 2262055
Total sieving time: 873.62 hours.
Total relation processing time: 0.48 hours.
Matrix solve time: 9.77 hours.
Time per square root: 0.89 hours.
Prototype def-par.txt line would be:
snfs,198.000,5,0,0,0,0,0,0,0,0,14500000,14500000,28,28,55,55,2.5,2.5,100000
total time: 884.76 hours.
 --------- CPU info (if available) ----------

Dec 4, 2009 (5th)

By Wataru Sakai / GMP-ECM 6.2.1 / Dec 4, 2009

(55·10187+53)/9 = 6(1)1867<188> = 2016801382643310733<19> · 91041909846726201221<20> · 102340704059336916678649<24> · C127

C127 = P37 · P90

P37 = 8397437812343835280132655770909271267<37>

P90 = 387275919082175736508356647496709535387646969166143986070306062251228534714159765453364743<90>

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2229209567
Step 1 took 38497ms
Step 2 took 13868ms
********** Factor found in step 2: 8397437812343835280132655770909271267
Found probable prime factor of 37 digits: 8397437812343835280132655770909271267
Probable prime cofactor 387275919082175736508356647496709535387646969166143986070306062251228534714159765453364743 has 90 digits

Dec 4, 2009 (4th)

By yoshida / GGNFS / Dec 4, 2009

(64·10169+71)/9 = 7(1)1689<170> = 23 · 61 · 11549 · 23966031393282844036285531597<29> · C135

C135 = P44 · P91

P44 = 42975927797156758306397330649270731187983431<44>

P91 = 4261024457333070002753304298392271984643501354942246382861680398744526579464959645375737011<91>

Number: 64x169p71
N=183121479420265074596121733676477661039260136718147327732153993537840141616263984935289849205491402729831141669703427209999368481464741
  ( 135 digits)
SNFS difficulty: 171 digits.
Divisors found:
 r1=42975927797156758306397330649270731187983431 (pp44)
 r2=4261024457333070002753304298392271984643501354942246382861680398744526579464959645375737011 (pp91)
Version: GGNFS-0.77.1-20060722-nocona
Total time: 149.69 hours.
Scaled time: 346.24 units (timescale=2.313).
Factorization parameters were as follows:
n: 183121479420265074596121733676477661039260136718147327732153993537840141616263984935289849205491402729831141669703427209999368481464741
m: 20000000000000000000000000000000000
c5: 1
c0: 355
skew: 3.24
type: snfs
Factor base limits: 6000000/6000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 48/48
Sieved algebraic special-q in [3000000, 7900001)
Primes: RFBsize:412849, AFBsize:412917, largePrimes:6595493 encountered
Relations: rels:7270557, finalFF:1290130
Max relations in full relation-set: 32
Initial matrix: 825830 x 1290130 with sparse part having weight 91072286.
Pruned matrix : 474578 x 478771 with weight 104728234.
Total sieving time: 146.62 hours.
Total relation processing time: 0.13 hours.
Matrix solve time: 2.86 hours.
Time per square root: 0.09 hours.
Prototype def-par.txt line would be:
snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000
total time: 149.69 hours.
 --------- CPU info (if available) ----------
Intel(R) Xeon(R) CPU           E5450  @ 3.00GHz stepping 0a
Intel(R) Xeon(R) CPU           E5450  @ 3.00GHz stepping 0a
Intel(R) Xeon(R) CPU           E5450  @ 3.00GHz stepping 0a
Intel(R) Xeon(R) CPU           E5450  @ 3.00GHz stepping 0a
Intel(R) Xeon(R) CPU           E5450  @ 3.00GHz stepping 0a
Intel(R) Xeon(R) CPU           E5450  @ 3.00GHz stepping 0a
Intel(R) Xeon(R) CPU           E5450  @ 3.00GHz stepping 0a
Memory for crash kernel (0x0 to 0x0) notwithin permissible range
Memory: 32944636k/35127296k available (2460k kernel code, 603560k reserved, 1250k data, 196k init)
Calibrating delay using timer specific routine.. 5988.97 BogoMIPS (lpj=2994486)
Calibrating delay using timer specific routine.. 5985.01 BogoMIPS (lpj=2992506)
Calibrating delay using timer specific routine.. 5985.03 BogoMIPS (lpj=2992519)
Calibrating delay using timer specific routine.. 5985.06 BogoMIPS (lpj=2992533)
Calibrating delay using timer specific routine.. 5985.01 BogoMIPS (lpj=2992506)
Calibrating delay using timer specific routine.. 5985.01 BogoMIPS (lpj=2992507)
Calibrating delay using timer specific routine.. 5985.04 BogoMIPS (lpj=2992520)
Calibrating delay using timer specific routine.. 5984.89 BogoMIPS (lpj=2992449)

Dec 4, 2009 (3rd)

By Lionel Debroux / ggnfs-lasieve4I14e on the RSALS grid + msieve / Dec 4, 2009

(16·10227-7)/9 = 1(7)227<228> = 3 · 6978529417<10> · 998945248363<12> · C205

C205 = P89 · P117

P89 = 43313501227448011000083463763352610564812589301818962273432249121716141326899324578414523<89>

P117 = 196257981736799913361304440989775990019643124662452497442014310394640589026238986779888915065494733438722007484724523<117>

Thu Nov 26 22:27:46 2009  
Thu Nov 26 22:27:46 2009  
Thu Nov 26 22:27:46 2009  Msieve v. 1.43
Thu Nov 26 22:27:46 2009  random seeds: fb9cbe1d ae67a796
Thu Nov 26 22:27:46 2009  factoring 8500620332853352373100619494859864036219623065828944278551768110817378446210927884562453439711314210424131541144585190430418520177440149893041637577056204111557942429485079430082059275669583801816757447529 (205 digits)
Thu Nov 26 22:27:49 2009  no P-1/P+1/ECM available, skipping
Thu Nov 26 22:27:49 2009  commencing number field sieve (205-digit input)
Thu Nov 26 22:27:49 2009  R0: -100000000000000000000000000000000000000
Thu Nov 26 22:27:49 2009  R1:  1
Thu Nov 26 22:27:49 2009  A0: -35
Thu Nov 26 22:27:49 2009  A1:  0
Thu Nov 26 22:27:49 2009  A2:  0
Thu Nov 26 22:27:49 2009  A3:  0
Thu Nov 26 22:27:49 2009  A4:  0
Thu Nov 26 22:27:49 2009  A5:  0
Thu Nov 26 22:27:49 2009  A6:  8
Thu Nov 26 22:27:49 2009  skew 1.28, size 3.592136e-11, alpha -0.268121, combined = 1.602160e-12
Thu Nov 26 22:27:49 2009  
Thu Nov 26 22:27:49 2009  commencing relation filtering
Thu Nov 26 22:27:49 2009  estimated available RAM is 32159.4 MB
Thu Nov 26 22:27:49 2009  commencing duplicate removal, pass 1
Thu Nov 26 22:28:01 2009  error -9 reading relation 1291015
Thu Nov 26 22:28:01 2009  error -9 reading relation 1342830
Thu Nov 26 22:28:02 2009  error -9 reading relation 1370248
Thu Nov 26 22:28:13 2009  error -1 reading relation 2599430
Thu Nov 26 22:28:13 2009  error -15 reading relation 2626748
Thu Nov 26 22:28:16 2009  error -9 reading relation 2946812
Thu Nov 26 22:28:18 2009  error -1 reading relation 3185545
Thu Nov 26 22:28:19 2009  error -15 reading relation 3219303
Thu Nov 26 22:29:16 2009  error -9 reading relation 9486483
Thu Nov 26 22:29:16 2009  error -9 reading relation 9514482
Thu Nov 26 22:29:17 2009  error -9 reading relation 9556054
Thu Nov 26 22:29:24 2009  error -15 reading relation 10391075
Thu Nov 26 22:29:24 2009  error -1 reading relation 10399383
Thu Nov 26 22:29:27 2009  error -9 reading relation 10711737
Thu Nov 26 22:29:42 2009  error -9 reading relation 12335275
Thu Nov 26 22:29:59 2009  error -15 reading relation 14104824
Thu Nov 26 22:30:04 2009  error -15 reading relation 14711253
Thu Nov 26 22:30:56 2009  error -9 reading relation 20330305
Thu Nov 26 22:30:58 2009  error -15 reading relation 20604086
Thu Nov 26 22:31:59 2009  error -15 reading relation 27248323
Thu Nov 26 22:32:04 2009  error -1 reading relation 27748892
Thu Nov 26 22:32:11 2009  error -9 reading relation 28487866
Thu Nov 26 22:32:16 2009  error -9 reading relation 29006216
Thu Nov 26 22:36:02 2009  error -9 reading relation 51061370
Thu Nov 26 22:36:03 2009  error -15 reading relation 51120025
Thu Nov 26 22:36:46 2009  error -9 reading relation 55851497
Thu Nov 26 22:38:02 2009  error -11 reading relation 64156490
Thu Nov 26 22:38:02 2009  error -15 reading relation 64158279
Thu Nov 26 22:38:07 2009  error -11 reading relation 64707825
Thu Nov 26 22:38:07 2009  error -1 reading relation 64751839
Thu Nov 26 22:38:07 2009  error -15 reading relation 64756725
Thu Nov 26 22:38:12 2009  error -11 reading relation 65315616
Thu Nov 26 22:38:16 2009  error -15 reading relation 65761982
Thu Nov 26 22:38:16 2009  error -11 reading relation 65765885
Thu Nov 26 22:38:27 2009  error -11 reading relation 66855238
Thu Nov 26 22:38:40 2009  error -15 reading relation 68327551
Thu Nov 26 22:39:21 2009  error -15 reading relation 72782069
Thu Nov 26 22:39:23 2009  error -15 reading relation 72922516
Thu Nov 26 22:39:34 2009  error -9 reading relation 74169831
Thu Nov 26 22:39:47 2009  error -15 reading relation 75577775
Thu Nov 26 22:39:58 2009  error -15 reading relation 76730474
Thu Nov 26 22:40:06 2009  error -15 reading relation 77615673
Thu Nov 26 22:40:18 2009  error -11 reading relation 78886058
Thu Nov 26 22:40:29 2009  error -15 reading relation 80065667
Thu Nov 26 22:40:31 2009  error -15 reading relation 80257632
Thu Nov 26 22:40:31 2009  error -15 reading relation 80289278
Thu Nov 26 22:40:35 2009  error -5 reading relation 80739459
Thu Nov 26 22:40:36 2009  error -15 reading relation 80813499
Thu Nov 26 22:40:38 2009  error -9 reading relation 81009455
Thu Nov 26 22:40:38 2009  error -11 reading relation 81009466
Thu Nov 26 22:40:53 2009  error -15 reading relation 82668862
Thu Nov 26 22:40:53 2009  error -9 reading relation 82683063
Thu Nov 26 22:40:58 2009  error -9 reading relation 83225110
Thu Nov 26 22:41:02 2009  error -15 reading relation 83629496
Thu Nov 26 22:41:06 2009  error -9 reading relation 84004849
Thu Nov 26 22:41:06 2009  error -15 reading relation 84019522
Thu Nov 26 22:41:13 2009  error -9 reading relation 84820494
Thu Nov 26 22:41:27 2009  error -9 reading relation 86279356
Thu Nov 26 22:41:27 2009  error -9 reading relation 86286930
Thu Nov 26 22:41:45 2009  error -9 reading relation 88229805
Thu Nov 26 22:41:45 2009  error -5 reading relation 88237485
Thu Nov 26 22:42:04 2009  error -9 reading relation 90292083
Thu Nov 26 22:42:53 2009  error -15 reading relation 95546114
Thu Nov 26 22:42:54 2009  error -11 reading relation 95663440
Thu Nov 26 22:43:11 2009  error -15 reading relation 97555771
Thu Nov 26 22:43:18 2009  found 18531139 hash collisions in 98264717 relations
Thu Nov 26 22:43:41 2009  added 1 free relations
Thu Nov 26 22:43:41 2009  commencing duplicate removal, pass 2
Thu Nov 26 22:44:56 2009  found 18305751 duplicates and 79958967 unique relations
Thu Nov 26 22:44:56 2009  memory use: 660.8 MB
Thu Nov 26 22:44:56 2009  reading ideals above 720000
Thu Nov 26 22:44:57 2009  commencing singleton removal, initial pass
Thu Nov 26 23:03:20 2009  memory use: 2756.0 MB
Thu Nov 26 23:03:21 2009  reading all ideals from disk
Thu Nov 26 23:03:27 2009  memory use: 2944.2 MB
Thu Nov 26 23:03:48 2009  keeping 81907235 ideals with weight <= 200, target excess is 420496
Thu Nov 26 23:04:11 2009  commencing in-memory singleton removal
Thu Nov 26 23:04:29 2009  begin with 79958967 relations and 81907235 unique ideals
Thu Nov 26 23:07:40 2009  reduce to 39200401 relations and 35596299 ideals in 19 passes
Thu Nov 26 23:07:40 2009  max relations containing the same ideal: 134
Thu Nov 26 23:08:24 2009  removing 3629644 relations and 3229644 ideals in 400000 cliques
Thu Nov 26 23:08:28 2009  commencing in-memory singleton removal
Thu Nov 26 23:08:36 2009  begin with 35570757 relations and 35596299 unique ideals
Thu Nov 26 23:09:49 2009  reduce to 35317319 relations and 32109565 ideals in 9 passes
Thu Nov 26 23:09:49 2009  max relations containing the same ideal: 128
Thu Nov 26 23:10:28 2009  removing 2673168 relations and 2273168 ideals in 400000 cliques
Thu Nov 26 23:10:31 2009  commencing in-memory singleton removal
Thu Nov 26 23:10:38 2009  begin with 32644151 relations and 32109565 unique ideals
Thu Nov 26 23:11:45 2009  reduce to 32491803 relations and 29682207 ideals in 9 passes
Thu Nov 26 23:11:45 2009  max relations containing the same ideal: 118
Thu Nov 26 23:12:21 2009  removing 2366440 relations and 1966440 ideals in 400000 cliques
Thu Nov 26 23:12:24 2009  commencing in-memory singleton removal
Thu Nov 26 23:12:30 2009  begin with 30125363 relations and 29682207 unique ideals
Thu Nov 26 23:13:25 2009  reduce to 29993353 relations and 27582220 ideals in 8 passes
Thu Nov 26 23:13:25 2009  max relations containing the same ideal: 110
Thu Nov 26 23:13:58 2009  removing 2206498 relations and 1806498 ideals in 400000 cliques
Thu Nov 26 23:14:01 2009  commencing in-memory singleton removal
Thu Nov 26 23:14:07 2009  begin with 27786855 relations and 27582220 unique ideals
Thu Nov 26 23:15:04 2009  reduce to 27665060 relations and 25652382 ideals in 9 passes
Thu Nov 26 23:15:04 2009  max relations containing the same ideal: 102
Thu Nov 26 23:15:35 2009  removing 2096725 relations and 1696725 ideals in 400000 cliques
Thu Nov 26 23:15:37 2009  commencing in-memory singleton removal
Thu Nov 26 23:15:43 2009  begin with 25568335 relations and 25652382 unique ideals
Thu Nov 26 23:16:29 2009  reduce to 25446757 relations and 23832524 ideals in 8 passes
Thu Nov 26 23:16:29 2009  max relations containing the same ideal: 97
Thu Nov 26 23:16:57 2009  removing 2022002 relations and 1622002 ideals in 400000 cliques
Thu Nov 26 23:17:00 2009  commencing in-memory singleton removal
Thu Nov 26 23:17:05 2009  begin with 23424755 relations and 23832524 unique ideals
Thu Nov 26 23:17:47 2009  reduce to 23300592 relations and 22084668 ideals in 8 passes
Thu Nov 26 23:17:47 2009  max relations containing the same ideal: 89
Thu Nov 26 23:18:13 2009  removing 1974033 relations and 1574033 ideals in 400000 cliques
Thu Nov 26 23:18:15 2009  commencing in-memory singleton removal
Thu Nov 26 23:18:20 2009  begin with 21326559 relations and 22084668 unique ideals
Thu Nov 26 23:18:58 2009  reduce to 21196656 relations and 20378855 ideals in 8 passes
Thu Nov 26 23:18:58 2009  max relations containing the same ideal: 83
Thu Nov 26 23:19:22 2009  removing 1656990 relations and 1326965 ideals in 330025 cliques
Thu Nov 26 23:19:24 2009  commencing in-memory singleton removal
Thu Nov 26 23:19:28 2009  begin with 19539666 relations and 20378855 unique ideals
Thu Nov 26 23:19:59 2009  reduce to 19437929 relations and 18948678 ideals in 7 passes
Thu Nov 26 23:19:59 2009  max relations containing the same ideal: 78
Thu Nov 26 23:20:28 2009  relations with 0 large ideals: 14445
Thu Nov 26 23:20:28 2009  relations with 1 large ideals: 6220
Thu Nov 26 23:20:28 2009  relations with 2 large ideals: 86100
Thu Nov 26 23:20:28 2009  relations with 3 large ideals: 559802
Thu Nov 26 23:20:28 2009  relations with 4 large ideals: 1973251
Thu Nov 26 23:20:28 2009  relations with 5 large ideals: 4114171
Thu Nov 26 23:20:28 2009  relations with 6 large ideals: 5298159
Thu Nov 26 23:20:28 2009  relations with 7+ large ideals: 7385781
Thu Nov 26 23:20:28 2009  commencing 2-way merge
Thu Nov 26 23:20:57 2009  reduce to 12106757 relation sets and 11617506 unique ideals
Thu Nov 26 23:20:57 2009  commencing full merge
Thu Nov 26 23:26:40 2009  memory use: 1424.6 MB
Thu Nov 26 23:26:43 2009  found 6358076 cycles, need 6291706
Thu Nov 26 23:26:47 2009  weight of 6291706 cycles is about 440672317 (70.04/cycle)
Thu Nov 26 23:26:47 2009  distribution of cycle lengths:
Thu Nov 26 23:26:47 2009  1 relations: 826579
Thu Nov 26 23:26:47 2009  2 relations: 770877
Thu Nov 26 23:26:47 2009  3 relations: 748633
Thu Nov 26 23:26:47 2009  4 relations: 676227
Thu Nov 26 23:26:47 2009  5 relations: 612398
Thu Nov 26 23:26:47 2009  6 relations: 533265
Thu Nov 26 23:26:47 2009  7 relations: 463017
Thu Nov 26 23:26:47 2009  8 relations: 390741
Thu Nov 26 23:26:47 2009  9 relations: 318530
Thu Nov 26 23:26:47 2009  10+ relations: 951439
Thu Nov 26 23:26:47 2009  heaviest cycle: 21 relations
Thu Nov 26 23:26:49 2009  commencing cycle optimization
Thu Nov 26 23:27:06 2009  start with 34372455 relations
Thu Nov 26 23:28:31 2009  pruned 753746 relations
Thu Nov 26 23:28:32 2009  memory use: 1143.5 MB
Thu Nov 26 23:28:32 2009  distribution of cycle lengths:
Thu Nov 26 23:28:32 2009  1 relations: 826579
Thu Nov 26 23:28:32 2009  2 relations: 785791
Thu Nov 26 23:28:32 2009  3 relations: 771707
Thu Nov 26 23:28:32 2009  4 relations: 690566
Thu Nov 26 23:28:32 2009  5 relations: 625482
Thu Nov 26 23:28:32 2009  6 relations: 539725
Thu Nov 26 23:28:32 2009  7 relations: 467763
Thu Nov 26 23:28:32 2009  8 relations: 390486
Thu Nov 26 23:28:32 2009  9 relations: 314993
Thu Nov 26 23:28:32 2009  10+ relations: 878614
Thu Nov 26 23:28:32 2009  heaviest cycle: 21 relations
Thu Nov 26 23:28:48 2009  RelProcTime: 3659
Thu Nov 26 23:28:52 2009  elapsed time 01:01:06
Fri Nov 27 06:31:15 2009  
Fri Nov 27 06:31:15 2009  
Fri Nov 27 06:31:15 2009  Msieve v. 1.43
Fri Nov 27 06:31:15 2009  random seeds: a6634281 eaabb899
Fri Nov 27 06:31:15 2009  factoring 8500620332853352373100619494859864036219623065828944278551768110817378446210927884562453439711314210424131541144585190430418520177440149893041637577056204111557942429485079430082059275669583801816757447529 (205 digits)
Fri Nov 27 06:31:18 2009  no P-1/P+1/ECM available, skipping
Fri Nov 27 06:31:18 2009  commencing number field sieve (205-digit input)
Fri Nov 27 06:31:18 2009  R0: -100000000000000000000000000000000000000
Fri Nov 27 06:31:18 2009  R1:  1
Fri Nov 27 06:31:18 2009  A0: -35
Fri Nov 27 06:31:18 2009  A1:  0
Fri Nov 27 06:31:18 2009  A2:  0
Fri Nov 27 06:31:18 2009  A3:  0
Fri Nov 27 06:31:18 2009  A4:  0
Fri Nov 27 06:31:18 2009  A5:  0
Fri Nov 27 06:31:18 2009  A6:  8
Fri Nov 27 06:31:18 2009  skew 1.28, size 3.592136e-11, alpha -0.268121, combined = 1.602160e-12
Fri Nov 27 06:31:18 2009  
Fri Nov 27 06:31:18 2009  commencing linear algebra
Fri Nov 27 06:31:19 2009  read 6291706 cycles
Fri Nov 27 06:31:36 2009  cycles contain 19079877 unique relations
Fri Nov 27 06:34:56 2009  read 19079877 relations
Fri Nov 27 06:35:41 2009  using 20 quadratic characters above 1073739740
Fri Nov 27 06:37:59 2009  building initial matrix
Fri Nov 27 06:44:18 2009  memory use: 2469.6 MB
Fri Nov 27 06:44:25 2009  read 6291706 cycles
Fri Nov 27 06:44:33 2009  matrix is 6291525 x 6291706 (1892.8 MB) with weight 559610983 (88.94/col)
Fri Nov 27 06:44:33 2009  sparse part has weight 426984476 (67.86/col)
Fri Nov 27 06:47:09 2009  filtering completed in 2 passes
Fri Nov 27 06:47:11 2009  matrix is 6285857 x 6286038 (1892.4 MB) with weight 559440693 (89.00/col)
Fri Nov 27 06:47:11 2009  sparse part has weight 426933495 (67.92/col)
Fri Nov 27 06:47:59 2009  read 6286038 cycles
Fri Nov 27 06:48:07 2009  matrix is 6285857 x 6286038 (1892.4 MB) with weight 559440693 (89.00/col)
Fri Nov 27 06:48:07 2009  sparse part has weight 426933495 (67.92/col)
Fri Nov 27 06:48:07 2009  saving the first 48 matrix rows for later
Fri Nov 27 06:48:13 2009  matrix is 6285809 x 6286038 (1807.3 MB) with weight 443908792 (70.62/col)
Fri Nov 27 06:48:13 2009  sparse part has weight 410917321 (65.37/col)
Fri Nov 27 06:48:13 2009  matrix includes 64 packed rows
Fri Nov 27 06:48:13 2009  using block size 65536 for processor cache size 6144 kB
Fri Nov 27 06:48:50 2009  commencing Lanczos iteration (4 threads)
Fri Nov 27 06:48:50 2009  memory use: 1958.3 MB
Fri Nov 27 06:49:32 2009  linear algebra at 0.0%, ETA 90h 4m
Tue Dec  1 00:58:29 2009  lanczos halted after 99407 iterations (dim = 6285808)
Tue Dec  1 00:58:46 2009  recovered 35 nontrivial dependencies
Tue Dec  1 00:58:47 2009  BLanczosTime: 325649
Tue Dec  1 00:58:47 2009  elapsed time 90:27:32
Tue Dec  1 05:38:10 2009  
Tue Dec  1 05:38:10 2009  
Tue Dec  1 05:38:10 2009  Msieve v. 1.43
Tue Dec  1 05:38:10 2009  random seeds: 505cf7ae 6f367940
Tue Dec  1 05:38:10 2009  factoring 8500620332853352373100619494859864036219623065828944278551768110817378446210927884562453439711314210424131541144585190430418520177440149893041637577056204111557942429485079430082059275669583801816757447529 (205 digits)
Tue Dec  1 05:38:13 2009  no P-1/P+1/ECM available, skipping
Tue Dec  1 05:38:13 2009  commencing number field sieve (205-digit input)
Tue Dec  1 05:38:13 2009  R0: -100000000000000000000000000000000000000
Tue Dec  1 05:38:13 2009  R1:  1
Tue Dec  1 05:38:13 2009  A0: -35
Tue Dec  1 05:38:13 2009  A1:  0
Tue Dec  1 05:38:13 2009  A2:  0
Tue Dec  1 05:38:13 2009  A3:  0
Tue Dec  1 05:38:13 2009  A4:  0
Tue Dec  1 05:38:13 2009  A5:  0
Tue Dec  1 05:38:13 2009  A6:  8
Tue Dec  1 05:38:13 2009  skew 1.28, size 3.592136e-11, alpha -0.268121, combined = 1.602160e-12
Tue Dec  1 05:38:13 2009  
Tue Dec  1 05:38:13 2009  commencing square root phase
Tue Dec  1 05:38:13 2009  reading relations for dependency 1
Tue Dec  1 05:38:14 2009  read 3143635 cycles
Tue Dec  1 05:38:23 2009  cycles contain 9541566 unique relations
Tue Dec  1 05:40:18 2009  read 9541566 relations
Tue Dec  1 05:41:36 2009  multiplying 9541566 relations
Tue Dec  1 05:55:44 2009  multiply complete, coefficients have about 259.73 million bits
Tue Dec  1 05:55:47 2009  initial square root is modulo 2093935903
Tue Dec  1 06:21:29 2009  reading relations for dependency 2
Tue Dec  1 06:21:31 2009  read 3142476 cycles
Tue Dec  1 06:21:39 2009  cycles contain 9540940 unique relations
Tue Dec  1 06:23:34 2009  read 9540940 relations
Tue Dec  1 06:24:53 2009  multiplying 9540940 relations
Tue Dec  1 06:39:00 2009  multiply complete, coefficients have about 259.72 million bits
Tue Dec  1 06:39:03 2009  initial square root is modulo 2091413101
Tue Dec  1 07:04:46 2009  sqrtTime: 5193
Tue Dec  1 07:04:46 2009  prp89 factor: 43313501227448011000083463763352610564812589301818962273432249121716141326899324578414523
Tue Dec  1 07:04:46 2009  prp117 factor: 196257981736799913361304440989775990019643124662452497442014310394640589026238986779888915065494733438722007484724523
Tue Dec  1 07:04:46 2009  elapsed time 01:26:36

Dec 4, 2009 (2nd)

By Jo Yeong Uk / GGNFS, Msieve v1.39 / Dec 4, 2009

2·10196-1 = 1(9)196<197> = 7 · 21786481 · C189

C189 = P49 · P141

P49 = 1184519727783750416654949243024504531875874583481<49>

P141 = 110714007151192388668548159387672871512485358734847066883913445369139729551089568055349728260200404587217820110723312598003341429367614469537<141>

Number: 19999_196
N=131142925612578605184432623935130099388567747914078328797438322285405208067201989029015614906195399667475309246001814480404483076323471291341504066542130284503364396349408476883308637918297
  ( 189 digits)
SNFS difficulty: 196 digits.
Divisors found:
 r1=1184519727783750416654949243024504531875874583481
 r2=110714007151192388668548159387672871512485358734847066883913445369139729551089568055349728260200404587217820110723312598003341429367614469537
Version: 
Total time: 216.90 hours.
Scaled time: 517.51 units (timescale=2.386).
Factorization parameters were as follows:
n: 131142925612578605184432623935130099388567747914078328797438322285405208067201989029015614906195399667475309246001814480404483076323471291341504066542130284503364396349408476883308637918297
m: 1000000000000000000000000000000000000000
deg: 5
c5: 20
c0: -1
skew: 0.55
type: snfs
lss: 1
rlim: 13000000
alim: 13000000
lpbr: 29
lpba: 29
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
Factor base limits: 13000000/13000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 55/55
Sieved rational special-q in [6500000, 11500001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 33192013
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2453224 x 2453471
Total sieving time: 190.58 hours.
Total relation processing time: 8.58 hours.
Matrix solve time: 17.00 hours.
Time per square root: 0.74 hours.
Prototype def-par.txt line would be:
snfs,196,5,0,0,0,0,0,0,0,0,13000000,13000000,29,29,55,55,2.5,2.5,100000
total time: 216.90 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346)
Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338)
Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)

Dec 4, 2009

By Tyler Cadigan / PRIMO 3.0.8 / Dec 4, 2009

(103146+71)/9 = (1)31459<3146> is prime.

Dec 3, 2009 (2nd)

By Dmitry Domanov / GGNFS/msieve / Dec 3, 2009

(67·10192-13)/9 = 7(4)1913<193> = 32 · 19 · C191

C191 = P51 · P140

P51 = 787727404219372459895283453175496131491118165296769<51>

P140 = 55266279425876806713988680815949088304298679361056635098361971746667025608752182148801770835356409734239678567210927995967156095265795663057<140>

N=43534762833008447043534762833008447043534762833008447043534762833008447043534762833008447043534762833008447043534762833008447043534762833008447043534762833008447043534762833008447043534762833
  ( 191 digits)
SNFS difficulty: 195 digits.
Divisors found:
 r1=787727404219372459895283453175496131491118165296769 (pp51)
 r2=55266279425876806713988680815949088304298679361056635098361971746667025608752182148801770835356409734239678567210927995967156095265795663057 (pp140)
Version: Msieve-1.40
Total time: 559.66 hours.
Scaled time: 1017.47 units (timescale=1.818).
Factorization parameters were as follows:
n: 43534762833008447043534762833008447043534762833008447043534762833008447043534762833008447043534762833008447043534762833008447043534762833008447043534762833008447043534762833008447043534762833
m: 500000000000000000000000000000000000000
deg: 5
c5: 268
c0: -1625
skew: 1.43
type: snfs
lss: 1
rlim: 12900000
alim: 12900000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5Factor base limits: 12900000/12900000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved rational special-q in [6450000, 15050001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2349315 x 2349540
Total sieving time: 550.85 hours.
Total relation processing time: 0.27 hours.
Matrix solve time: 7.58 hours.
Time per square root: 0.97 hours.
Prototype def-par.txt line would be:
snfs,195.000,5,0,0,0,0,0,0,0,0,12900000,12900000,28,28,55,55,2.5,2.5,100000
total time: 559.66 hours.
 --------- CPU info (if available) ----------

Dec 3, 2009

By Sinkiti Sibata / Msieve / Dec 3, 2009

(67·10165-13)/9 = 7(4)1643<166> = 32 · 82021 · 24823583623<11> · 3186822091492756524752069<25> · C126

C126 = P47 · P79

P47 = 27450936085202690749136049312900466734576169433<47>

P79 = 4643925759015711078530301624300186286501864834476494327623680463657883765250197<79>

Number: 74443_165
N=127480109195166678118588816514385867213041373151950439735287023737133488529901544404868525808710084307279871580450709108628301
  ( 126 digits)
SNFS difficulty: 166 digits.
Divisors found:
 r1=27450936085202690749136049312900466734576169433 (pp47)
 r2=4643925759015711078530301624300186286501864834476494327623680463657883765250197 (pp79)
Version: Msieve-1.40
Total time: 43.58 hours.
Scaled time: 146.26 units (timescale=3.356).
Factorization parameters were as follows:
name: 74443_165
n: 127480109195166678118588816514385867213041373151950439735287023737133488529901544404868525808710084307279871580450709108628301
m: 1000000000000000000000000000000000
deg: 5
c5: 67
c0: -13
skew: 0.72
type: snfs
lss: 1
rlim: 4200000
alim: 4200000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 4200000/4200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [2100000, 4400001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 817860 x 818108
Total sieving time: 41.98 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 1.26 hours.
Time per square root: 0.25 hours.
Prototype def-par.txt line would be:
snfs,166.000,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000
total time: 43.58 hours.
 --------- CPU info (if available) ----------

Dec 2, 2009

By Jo Yeong Uk / GGNFS, Msieve v1.39 / Dec 2, 2009

(83·10165+7)/9 = 9(2)1643<166> = 107 · 15031 · 42197 · C156

C156 = P71 · P85

P71 = 43567788308512159678025627034514610908398268888666684424948010635688847<71>

P85 = 3119010528746029397719209328603357416174022932664142751039778863736466253498609584641<85>

Number: 92223_165
N=135888390448427588923536357204315898704325886989730889174813579864244032329645737188860895257825731028016278138812310117354155861528825745060357373586198927
  ( 156 digits)
SNFS difficulty: 166 digits.
Divisors found:
 r1=43567788308512159678025627034514610908398268888666684424948010635688847
 r2=3119010528746029397719209328603357416174022932664142751039778863736466253498609584641
Version: 
Total time: 24.53 hours.
Scaled time: 58.48 units (timescale=2.384).
Factorization parameters were as follows:
n: 135888390448427588923536357204315898704325886989730889174813579864244032329645737188860895257825731028016278138812310117354155861528825745060357373586198927
m: 1000000000000000000000000000000000
deg: 5
c5: 83
c0: 7
skew: 0.61
type: snfs
lss: 1
rlim: 4400000
alim: 4400000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 4400000/4400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [2200000, 4200001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 9785094
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 781690 x 781938
Total sieving time: 22.13 hours.
Total relation processing time: 0.96 hours.
Matrix solve time: 1.36 hours.
Time per square root: 0.08 hours.
Prototype def-par.txt line would be:
snfs,166,5,0,0,0,0,0,0,0,0,4400000,4400000,27,27,51,51,2.4,2.4,100000
total time: 24.53 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346)
Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338)
Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)

Dec 1, 2009 (3rd)

By Sinkiti Sibata / Msieve / Dec 1, 2009

(64·10165+17)/9 = 7(1)1643<166> = 3 · 107 · 109 · 9250127060715581<16> · C146

C146 = P61 · P86

P61 = 1337660330747353211919119280339282908153321059315073880180853<61>

P86 = 16425265109434527326510048349197230485054669946738941787287566019735622487230213930669<86>

Number: 71113_165
N=21971425558899150573132387261603048300262553608841156778721836305533945757037303446237424248823445658589807526596416410732844148519978705723280657
  ( 146 digits)
SNFS difficulty: 166 digits.
Divisors found:
 r1=1337660330747353211919119280339282908153321059315073880180853 (pp61)
 r2=16425265109434527326510048349197230485054669946738941787287566019735622487230213930669 (pp86)
Version: Msieve-1.40
Total time: 38.63 hours.
Scaled time: 129.65 units (timescale=3.356).
Factorization parameters were as follows:
name: 71113_165
n: 21971425558899150573132387261603048300262553608841156778721836305533945757037303446237424248823445658589807526596416410732844148519978705723280657
m: 2000000000000000000000000000000000
deg: 5
c5: 2
c0: 17
skew: 1.53
type: snfs
lss: 1
rlim: 4200000
alim: 4200000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 4200000/4200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [2100000, 4200001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 759798 x 760046
Total sieving time: 37.36 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 1.09 hours.
Time per square root: 0.10 hours.
Prototype def-par.txt line would be:
snfs,166.000,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000
total time: 38.63 hours.
 --------- CPU info (if available) ----------

Dec 1, 2009 (2nd)

By Wataru Sakai / GMP-ECM 6.2.1 / Dec 1, 2009

(52·10185-43)/9 = 5(7)1843<186> = 32 · 7 · 30000315797<11> · 232490372587643<15> · 174803429130286213921446816952979<33> · C127

C127 = P43 · P85

P43 = 2498583802588221247133294103735572473992083<43>

P85 = 3010548420930010766455598533165141367485402944008309486583965145761377674886330486493<85>

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=259561072
Step 1 took 38282ms
Step 2 took 13917ms
********** Factor found in step 2: 2498583802588221247133294103735572473992083
Found probable prime factor of 43 digits: 2498583802588221247133294103735572473992083
Probable prime cofactor 3010548420930010766455598533165141367485402944008309486583965145761377674886330486493 has 85 digits

Dec 1, 2009

By JPascoa / ggnfs, Msieve / Dec 1, 2009

(26·10185-71)/9 = 2(8)1841<186> = 29 · 5503 · 10169 · 71875359003529<14> · 1394709746073037<16> · 2877363597220133641<19> · C129

C129 = P57 · P73

P57 = 426635400523700719380560824023990687589207990696100701579<57>

P73 = 1446570433676351806454922108543228604497249940075625639596510848668340941<73>

Number: 28881_185
N=617158156357253800238573566333189314432699040441120387582829934582368592193389049441631037244285202522375613719835416916069045839
  ( 129 digits)
Divisors found:
 r1=426635400523700719380560824023990687589207990696100701579 (pp57)
 r2=1446570433676351806454922108543228604497249940075625639596510848668340941 (pp73)
Version: Msieve v. 1.43
Total time: 141.61 hours.
Scaled time: 423.57 units (timescale=2.991).
Factorization parameters were as follows:
# Murphy_E = 9.098144e-11, selected by Jeff Gilchrist
n: 617158156357253800238573566333189314432699040441120387582829934582368592193389049441631037244285202522375613719835416916069045839
Y0: -6966184159841423360708233
Y1: 179572073106863
c0: 451869833669647240802733941550960
c1: 6137113730802307406338953288
c2: 909117430681584103700
c3: -61431158639424524
c4: 9830138349
c5: 37620
skew: 580327.33
type: gnfs
# selected mechanically
rlim: 9100000
alim: 9100000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5Factor base limits: 9100000/9100000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved algebraic special-q in [4550000, 9150001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1356361 x 1356592
Total sieving time: 139.42 hours.
Total relation processing time: 0.08 hours.
Matrix solve time: 1.99 hours.
Time per square root: 0.13 hours.
Prototype def-par.txt line would be:
gnfs,128,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,9100000,9100000,28,28,53,53,2.5,2.5,100000
total time: 141.61 hours.
 --------- CPU info (if available) ----------

November 2009

Nov 30, 2009 (2nd)

By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 30, 2009

(65·10165-11)/9 = 7(2)1641<166> = 3 · 1627 · 1117427261<10> · C154

C154 = P45 · P110

P45 = 113006746106565909443027295307940874726468067<45>

P110 = 11717592946789296253681058279544472082801984835493741742797532427363964872859069731881552804947725855354637643<110>

Number: 72221_165
N=1324167051117905466116290415486962399951869164503675847313184589279820521464612022488971168097567147466746257583242944662193031062572818924125189995646081
  ( 154 digits)
SNFS difficulty: 166 digits.
Divisors found:
 r1=113006746106565909443027295307940874726468067
 r2=11717592946789296253681058279544472082801984835493741742797532427363964872859069731881552804947725855354637643
Version: 
Total time: 24.57 hours.
Scaled time: 58.62 units (timescale=2.386).
Factorization parameters were as follows:
n: 1324167051117905466116290415486962399951869164503675847313184589279820521464612022488971168097567147466746257583242944662193031062572818924125189995646081
m: 1000000000000000000000000000000000
deg: 5
c5: 65
c0: -11
skew: 0.70
type: snfs
lss: 1
rlim: 4400000
alim: 4400000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 4400000/4400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [2200000, 4200001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 9909831
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 750797 x 751045
Total sieving time: 22.18 hours.
Total relation processing time: 0.97 hours.
Matrix solve time: 1.26 hours.
Time per square root: 0.16 hours.
Prototype def-par.txt line would be:
snfs,166,5,0,0,0,0,0,0,0,0,4400000,4400000,27,27,51,51,2.4,2.4,100000
total time: 24.57 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346)
Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338)
Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)

Nov 30, 2009

By Sinkiti Sibata / Msieve / Nov 30, 2009

(62·10164-71)/9 = 6(8)1631<165> = 3 · 8819 · 51539 · 85667 · 791251537184711<15> · C136

C136 = P39 · P97

P39 = 992475357917463346229619663566535046949<39>

P97 = 7509737163976481080866171857101385836152469516008259754713441097351260965314523929224542143986219<97>

Number: 68881_164
N=7453229079683634188103196101922610125639868950413398574507032854609890070168290130051336575627502110007583354854997020130458699173995831
  ( 136 digits)
SNFS difficulty: 166 digits.
Divisors found:
 r1=992475357917463346229619663566535046949 (pp39)
 r2=7509737163976481080866171857101385836152469516008259754713441097351260965314523929224542143986219 (pp97)
Version: Msieve-1.40
Total time: 43.13 hours.
Scaled time: 144.79 units (timescale=3.357).
Factorization parameters were as follows:
name: 68881_164
n: 7453229079683634188103196101922610125639868950413398574507032854609890070168290130051336575627502110007583354854997020130458699173995831
m: 1000000000000000000000000000000000
deg: 5
c5: 31
c0: -355
skew: 1.63
type: snfs
lss: 1
rlim: 4200000
alim: 4200000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 4200000/4200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [2100000, 4400001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 801871 x 802119
Total sieving time: 41.78 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 1.21 hours.
Time per square root: 0.05 hours.
Prototype def-par.txt line would be:
snfs,166.000,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000
total time: 43.13 hours.
 --------- CPU info (if available) ----------

Nov 29, 2009 (4th)

By Wataru Sakai / GMP-ECM 6.2.1, Msieve / Nov 29, 2009

(5·10174+31)/9 = (5)1739<174> = 23 · 1259 · 2729 · 92569625550097<14> · C152

C152 = P36 · P41 · P76

P36 = 319209987870288110798004201214022531<36>

P41 = 29918625098920000052618788688979657934147<41>

P76 = 7952135702568029913397518486410342950297753828903848797089446457106865919507<76>

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3191334078
Step 1 took 12315ms
Step 2 took 5559ms
********** Factor found in step 2: 319209987870288110798004201214022531
Found probable prime factor of 36 digits: 319209987870288110798004201214022531
Composite cofactor 237916966820869688084184098718279133319024623800428369609709957288403959046532171004082771755032730649929947208705529 has 117 digits
------------------------------
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1509897548
Step 1 took 10661ms
Step 2 took 4556ms
********** Factor found in step 2: 29918625098920000052618788688979657934147
Found probable prime factor of 41 digits: 29918625098920000052618788688979657934147
Probable prime cofactor 7952135702568029913397518486410342950297753828903848797089446457106865919507 has 76 digits

(47·10200+61)/9 = 5(2)1999<201> = 23 · 29 · C198

C198 = P49 · P150

P49 = 1821402884526033038533370786121841309816963740679<49>

P150 = 429856496359875945099381474633284382898100856895829070340592911058234885519310144276396296060479619834175215447282578435029435921107042424727017527353<150>

Number: 52229_200
N=782941862402132267199733466600033316674995835415625520573046809928369148758953856405130767949358654006330168249208728968848908878893886390138264201232716974845910378144261202731967349658504081292687
  ( 198 digits)
SNFS difficulty: 201 digits.
Divisors found:
 r1=1821402884526033038533370786121841309816963740679
 r2=429856496359875945099381474633284382898100856895829070340592911058234885519310144276396296060479619834175215447282578435029435921107042424727017527353
Version: 
Total time: 879.42 hours.
Scaled time: 1768.52 units (timescale=2.011).
Factorization parameters were as follows:
n: 782941862402132267199733466600033316674995835415625520573046809928369148758953856405130767949358654006330168249208728968848908878893886390138264201232716974845910378144261202731967349658504081292687
m: 10000000000000000000000000000000000000000
deg: 5
c5: 47
c0: 61
skew: 1.05
type: snfs
lss: 1
rlim: 16100000
alim: 16100000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6Factor base limits: 16100000/16100000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved rational special-q in [8050000, 17750001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 3153324 x 3153572
Total sieving time: 879.42 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,201,5,0,0,0,0,0,0,0,0,16100000,16100000,29,29,56,56,2.6,2.6,100000
total time: 879.42 hours.
 --------- CPU info (if available) ----------

Nov 29, 2009 (3rd)

By JPascoa / ggnfs, Msieve / Nov 29, 2009

(65·10165+7)/9 = 7(2)1643<166> = 709 · 67751 · 1829671 · C152

C152 = P75 · P78

P75 = 312974659587106130775379744870042305659798659750210394695905699474058989043<75>

P78 = 262558886508076207744801887760311254273758547653064352203241793866965567029249<78>

Number: 72223_165
N=82174278126434783823391208352460875362453913579954847715282054703599326256843388185088845857667117607706749934491923336032382214386373130028033751518707
  ( 152 digits)
SNFS difficulty: 166 digits.
Divisors found:
 r1=312974659587106130775379744870042305659798659750210394695905699474058989043 (pp75)
 r2=262558886508076207744801887760311254273758547653064352203241793866965567029249 (pp78)
Version: Msieve v. 1.43
Total time: 48.54 hours.
Scaled time: 138.34 units (timescale=2.850).
Factorization parameters were as follows:
n: 82174278126434783823391208352460875362453913579954847715282054703599326256843388185088845857667117607706749934491923336032382214386373130028033751518707
m: 1000000000000000000000000000000000
deg: 5
c5: 65
c0: 7
skew: 0.64
type: snfs
lss: 1
rlim: 4200000
alim: 4200000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4Factor base limits: 4200000/4200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [2100000, 4200001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 816606 x 816831
Total sieving time: 47.76 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.67 hours.
Time per square root: 0.07 hours.
Prototype def-par.txt line would be:
snfs,166.000,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000
total time: 48.54 hours.
 --------- CPU info (if available) ----------

Nov 29, 2009 (2nd)

By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 29, 2009

(65·10164+61)/9 = 7(2)1639<165> = 34 · 319001 · 17439599 · C151

C151 = P76 · P76

P76 = 1097127491350443004053837025887267310248050259027019551554425722997887106267<76>

P76 = 1460831723951703039628220676876044203673473878553552062390817891003524106873<76>

Number: 72229_164
N=1602718644584274818803163723477909962133415966700972038765533352034751949940452264830643947910679050139435670063108805415833738405346671012673616073091
  ( 151 digits)
SNFS difficulty: 166 digits.
Divisors found:
 r1=1097127491350443004053837025887267310248050259027019551554425722997887106267
 r2=1460831723951703039628220676876044203673473878553552062390817891003524106873
Version: 
Total time: 28.82 hours.
Scaled time: 68.70 units (timescale=2.384).
Factorization parameters were as follows:
n: 1602718644584274818803163723477909962133415966700972038765533352034751949940452264830643947910679050139435670063108805415833738405346671012673616073091
m: 1000000000000000000000000000000000
deg: 5
c5: 13
c0: 122
skew: 1.56
type: snfs
lss: 1
rlim: 4400000
alim: 4400000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 4400000/4400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [2200000, 4600001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 10149598
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 782891 x 783139
Total sieving time: 26.18 hours.
Total relation processing time: 1.18 hours.
Matrix solve time: 1.37 hours.
Time per square root: 0.08 hours.
Prototype def-par.txt line would be:
snfs,166,5,0,0,0,0,0,0,0,0,4400000,4400000,27,27,51,51,2.4,2.4,100000
total time: 28.82 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346)
Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338)
Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)

Nice split. :-)

Nov 29, 2009

By Dmitry Domanov / GGNFS/msieve / Nov 29, 2009

(59·10167+31)/9 = 6(5)1669<168> = 1609 · 1613 · 8969 · C158

C158 = P45 · P114

P45 = 180807571184022017815614490573920266850012827<45>

P114 = 155760902333919403469684574721889190589532983161655736580938118674989762881341704303010429704566137565650015823529<114>

Number: s158
N=28162750436427633795391345241974761470071604276095120931948649687067221159896234746405373333713070886324764143370807972283060862326022280203040781466618406483
  ( 158 digits)
SNFS difficulty: 169 digits.
Divisors found:
 r1=180807571184022017815614490573920266850012827 (pp45)
 r2=155760902333919403469684574721889190589532983161655736580938118674989762881341704303010429704566137565650015823529 (pp114)
Version: Msieve-1.40
Total time: 63.41 hours.
Scaled time: 119.39 units (timescale=1.883).
Factorization parameters were as follows:
n: 28162750436427633795391345241974761470071604276095120931948649687067221159896234746405373333713070886324764143370807972283060862326022280203040781466618406483
m: 2000000000000000000000000000000000
deg: 5
c5: 1475
c0: 248
skew: 0.70
type: snfs
lss: 1
rlim: 4700000
alim: 4700000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4Factor base limits: 4700000/4700000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2350000, 5950001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1020495 x 1020720
Total sieving time: 61.85 hours.
Total relation processing time: 0.11 hours.
Matrix solve time: 1.31 hours.
Time per square root: 0.14 hours.
Prototype def-par.txt line would be:
snfs,169.000,5,0,0,0,0,0,0,0,0,4700000,4700000,27,27,52,52,2.4,2.4,100000
total time: 63.41 hours.
 --------- CPU info (if available) ----------

Nov 28, 2009 (4th)

By Sinkiti Sibata / Msieve / Nov 28, 2009

(26·10163-11)/3 = 8(6)1623<164> = 2239 · 8719 · 195407 · 879139434150694749919804433<27> · C125

C125 = P46 · P79

P46 = 5211438645737500317674537589757818163406227579<46>

P79 = 4958791117901422260553490157272046951176263951871311374087740608923515632809707<79>

Number: 86663_163
N=25842435667971333293845691995925430935046775646627219316454740930177241830087326929025122361662134281077043238993181242309353
  ( 125 digits)
SNFS difficulty: 165 digits.
Divisors found:
 r1=5211438645737500317674537589757818163406227579 (pp46)
 r2=4958791117901422260553490157272046951176263951871311374087740608923515632809707 (pp79)
Version: Msieve-1.40
Total time: 39.13 hours.
Scaled time: 131.36 units (timescale=3.357).
Factorization parameters were as follows:
name: 86663_163
n: 25842435667971333293845691995925430935046775646627219316454740930177241830087326929025122361662134281077043238993181242309353
m: 500000000000000000000000000000000
deg: 5
c5: 208
c0: -275
skew: 1.06
type: snfs
lss: 1
rlim: 4100000
alim: 4100000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 4100000/4100000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [2050000, 4150001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 757161 x 757409
Total sieving time: 37.91 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 1.08 hours.
Time per square root: 0.05 hours.
Prototype def-par.txt line would be:
snfs,165.000,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000
total time: 39.13 hours.
 --------- CPU info (if available) ----------

(65·10164-11)/9 = 7(2)1631<165> = 7 · 642113 · 1373173 · 4123318093<10> · 4443565537<10> · 4462792390541<13> · C121

C121 = P52 · P69

P52 = 1551622602733807349047209724184123573558714451797777<52>

P69 = 922284432714733061874653609820085576890214786673481956403908905108631<69>

Number: 72221_164
N=1431037371949707131839284966982399894566209201602764234918449603635050483060354978307759067701589405764384099117429313287
  ( 121 digits)
SNFS difficulty: 166 digits.
Divisors found:
 r1=1551622602733807349047209724184123573558714451797777 (pp52)
 r2=922284432714733061874653609820085576890214786673481956403908905108631 (pp69)
Version: Msieve v. 1.42
Total time: 2.07 hours.
Scaled time: 1.41 units (timescale=0.681).
Factorization parameters were as follows:
name: 72221_163
n: 1431037371949707131839284966982399894566209201602764234918449603635050483060354978307759067701589405764384099117429313287
m: 1000000000000000000000000000000000
deg: 5
c5: 13
c0: -22
skew: 1.11
type: snfs
lss: 1
rlim: 4100000
alim: 4100000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 4100000/4100000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [2050000, 4050001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 730980 x 731209
Total sieving time: 0.00 hours.
Total relation processing time: 0.11 hours.
Matrix solve time: 1.74 hours.
Time per square root: 0.22 hours.
Prototype def-par.txt line would be:
snfs,166.000,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000
total time: 2.07 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
CPU1: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.19 BogoMIPS (lpj=1860598)
Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860574)
Total of 2 processors activated (7442.34 BogoMIPS).

Total time: 38 hours.

Nov 28, 2009 (3rd)

By Wataru Sakai / GMP-ECM 6.2.1 / Nov 28, 2009

(43·10188+11)/9 = 4(7)1879<189> = 8387 · 200015330041<12> · 73294994688491<14> · 86021662446856582196340817<26> · C134

C134 = P38 · P96

P38 = 60652757993607889981105524809786581043<38>

P96 = 744771959182400709766779466077945682530064054931570187406997451913632109458468682650603381975097<96>

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2151625036
Step 1 took 38024ms
Step 2 took 14497ms
********** Factor found in step 2: 60652757993607889981105524809786581043
Found probable prime factor of 38 digits: 60652757993607889981105524809786581043
Probable prime cofactor 744771959182400709766779466077945682530064054931570187406997451913632109458468682650603381975097 has 96 digits

Nov 28, 2009 (2nd)

By Dmitry Domanov / GGNFS/msieve 1.42 / Nov 28, 2009

(26·10200-11)/3 = 8(6)1993<201> = C201

C201 = P99 · P103

P99 = 219631702931061976134369747885808367899858190913021959949302323867094375889693220762080723420749513<99>

P103 = 3945999849296329038851146075899153593764462405886868527184422610760144041919822331667205447984131245551<103>

Sieving took 39 days on Xeon E5310 1.86GHz (Windows 2003 Server SP2)
Postprocessing took 23.5 hours (8 cores)

Wed Nov 25 07:01:39 2009  Msieve v. 1.42
Wed Nov 25 07:01:39 2009  random seeds: 0016d1ec c3a03c82
Wed Nov 25 07:01:39 2009  factoring 866666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666663 (201 digits)
Wed Nov 25 07:01:42 2009  searching for 15-digit factors
Wed Nov 25 07:01:44 2009  commencing number field sieve (201-digit input)
Wed Nov 25 07:01:44 2009  R0: -10000000000000000000000000000000000000000
Wed Nov 25 07:01:44 2009  R1:  1
Wed Nov 25 07:01:44 2009  A0: -11
Wed Nov 25 07:01:44 2009  A1:  0
Wed Nov 25 07:01:44 2009  A2:  0
Wed Nov 25 07:01:44 2009  A3:  0
Wed Nov 25 07:01:44 2009  A4:  0
Wed Nov 25 07:01:44 2009  A5:  26
Wed Nov 25 07:01:44 2009  skew 0.84, size 5.578690e-014, alpha 1.471114, combined = 1.386997e-011
Wed Nov 25 07:01:44 2009  
Wed Nov 25 07:01:44 2009  commencing relation filtering
Wed Nov 25 07:01:44 2009  estimated available RAM is 4095.0 MB
Wed Nov 25 07:01:44 2009  commencing duplicate removal, pass 1
Wed Nov 25 07:13:10 2009  found 5943338 hash collisions in 42007041 relations
Wed Nov 25 07:14:27 2009  commencing duplicate removal, pass 2
Wed Nov 25 07:18:36 2009  found 5764474 duplicates and 36242567 unique relations
Wed Nov 25 07:18:36 2009  memory use: 197.2 MB
Wed Nov 25 07:18:36 2009  reading ideals above 18284544
Wed Nov 25 07:18:44 2009  commencing singleton removal, initial pass
Wed Nov 25 07:27:59 2009  memory use: 596.8 MB
Wed Nov 25 07:27:59 2009  reading all ideals from disk
Wed Nov 25 07:28:12 2009  memory use: 661.3 MB
Wed Nov 25 07:28:17 2009  commencing in-memory singleton removal
Wed Nov 25 07:28:22 2009  begin with 36242567 relations and 36728595 unique ideals
Wed Nov 25 07:29:15 2009  reduce to 14764672 relations and 11920362 ideals in 21 passes
Wed Nov 25 07:29:15 2009  max relations containing the same ideal: 49
Wed Nov 25 07:29:19 2009  reading ideals above 720000
Wed Nov 25 07:29:20 2009  commencing singleton removal, initial pass
Wed Nov 25 07:34:45 2009  memory use: 298.4 MB
Wed Nov 25 07:34:45 2009  reading all ideals from disk
Wed Nov 25 07:34:54 2009  memory use: 501.5 MB
Wed Nov 25 07:34:59 2009  commencing in-memory singleton removal
Wed Nov 25 07:35:03 2009  begin with 14764763 relations and 14140030 unique ideals
Wed Nov 25 07:35:45 2009  reduce to 14760399 relations and 14135240 ideals in 10 passes
Wed Nov 25 07:35:45 2009  max relations containing the same ideal: 189
Wed Nov 25 07:36:05 2009  removing 2180612 relations and 1935203 ideals in 245409 cliques
Wed Nov 25 07:36:06 2009  commencing in-memory singleton removal
Wed Nov 25 07:36:10 2009  begin with 12579787 relations and 14135240 unique ideals
Wed Nov 25 07:36:49 2009  reduce to 12325260 relations and 11939746 ideals in 11 passes
Wed Nov 25 07:36:49 2009  max relations containing the same ideal: 164
Wed Nov 25 07:37:05 2009  removing 1622619 relations and 1377210 ideals in 245409 cliques
Wed Nov 25 07:37:07 2009  commencing in-memory singleton removal
Wed Nov 25 07:37:10 2009  begin with 10702641 relations and 11939746 unique ideals
Wed Nov 25 07:37:40 2009  reduce to 10529753 relations and 10386055 ideals in 10 passes
Wed Nov 25 07:37:40 2009  max relations containing the same ideal: 149
Wed Nov 25 07:37:54 2009  removing 107501 relations and 98145 ideals in 9356 cliques
Wed Nov 25 07:37:55 2009  commencing in-memory singleton removal
Wed Nov 25 07:37:57 2009  begin with 10422252 relations and 10386055 unique ideals
Wed Nov 25 07:38:15 2009  reduce to 10421333 relations and 10286989 ideals in 6 passes
Wed Nov 25 07:38:15 2009  max relations containing the same ideal: 147
Wed Nov 25 07:38:21 2009  relations with 0 large ideals: 2845
Wed Nov 25 07:38:21 2009  relations with 1 large ideals: 240
Wed Nov 25 07:38:21 2009  relations with 2 large ideals: 6154
Wed Nov 25 07:38:21 2009  relations with 3 large ideals: 65255
Wed Nov 25 07:38:21 2009  relations with 4 large ideals: 363951
Wed Nov 25 07:38:21 2009  relations with 5 large ideals: 1202136
Wed Nov 25 07:38:21 2009  relations with 6 large ideals: 2522194
Wed Nov 25 07:38:21 2009  relations with 7+ large ideals: 6258558
Wed Nov 25 07:38:21 2009  commencing 2-way merge
Wed Nov 25 07:38:42 2009  reduce to 6106240 relation sets and 5971895 unique ideals
Wed Nov 25 07:38:42 2009  commencing full merge
Wed Nov 25 07:42:16 2009  memory use: 632.6 MB
Wed Nov 25 07:42:18 2009  found 3166995 cycles, need 3150095
Wed Nov 25 07:42:18 2009  weight of 3150095 cycles is about 220790303 (70.09/cycle)
Wed Nov 25 07:42:18 2009  distribution of cycle lengths:
Wed Nov 25 07:42:18 2009  1 relations: 431731
Wed Nov 25 07:42:18 2009  2 relations: 392606
Wed Nov 25 07:42:18 2009  3 relations: 386090
Wed Nov 25 07:42:18 2009  4 relations: 345382
Wed Nov 25 07:42:18 2009  5 relations: 293444
Wed Nov 25 07:42:18 2009  6 relations: 254531
Wed Nov 25 07:42:18 2009  7 relations: 215315
Wed Nov 25 07:42:18 2009  8 relations: 176756
Wed Nov 25 07:42:18 2009  9 relations: 145428
Wed Nov 25 07:42:18 2009  10+ relations: 508812
Wed Nov 25 07:42:18 2009  heaviest cycle: 24 relations
Wed Nov 25 07:42:21 2009  commencing cycle optimization
Wed Nov 25 07:42:30 2009  start with 17464318 relations
Wed Nov 25 07:43:23 2009  pruned 322260 relations
Wed Nov 25 07:43:23 2009  memory use: 477.8 MB
Wed Nov 25 07:43:23 2009  distribution of cycle lengths:
Wed Nov 25 07:43:23 2009  1 relations: 431731
Wed Nov 25 07:43:23 2009  2 relations: 400095
Wed Nov 25 07:43:23 2009  3 relations: 397367
Wed Nov 25 07:43:23 2009  4 relations: 350474
Wed Nov 25 07:43:23 2009  5 relations: 298352
Wed Nov 25 07:43:23 2009  6 relations: 255742
Wed Nov 25 07:43:23 2009  7 relations: 215378
Wed Nov 25 07:43:23 2009  8 relations: 175429
Wed Nov 25 07:43:23 2009  9 relations: 143520
Wed Nov 25 07:43:23 2009  10+ relations: 482007
Wed Nov 25 07:43:23 2009  heaviest cycle: 24 relations
Wed Nov 25 07:43:43 2009  RelProcTime: 2519
Wed Nov 25 07:43:43 2009  
Wed Nov 25 07:43:43 2009  commencing linear algebra
Wed Nov 25 07:43:48 2009  read 3150095 cycles
Wed Nov 25 07:43:57 2009  cycles contain 10285527 unique relations
Wed Nov 25 07:55:13 2009  read 10285527 relations
Wed Nov 25 07:55:43 2009  using 20 quadratic characters above 536869410
Wed Nov 25 07:57:06 2009  building initial matrix
Wed Nov 25 08:00:39 2009  memory use: 1151.5 MB
Wed Nov 25 08:00:57 2009  read 3150095 cycles
Wed Nov 25 08:06:32 2009  matrix is 3149918 x 3150095 (902.9 MB) with weight 279978388 (88.88/col)
Wed Nov 25 08:06:32 2009  sparse part has weight 214627921 (68.13/col)
Wed Nov 25 08:08:10 2009  filtering completed in 2 passes
Wed Nov 25 08:08:11 2009  matrix is 3146755 x 3146931 (902.7 MB) with weight 279889156 (88.94/col)
Wed Nov 25 08:08:11 2009  sparse part has weight 214604908 (68.19/col)
Wed Nov 25 08:08:46 2009  read 3146931 cycles
Wed Nov 25 08:37:25 2009  matrix is 3146755 x 3146931 (902.7 MB) with weight 279889156 (88.94/col)
Wed Nov 25 08:37:25 2009  sparse part has weight 214604908 (68.19/col)
Wed Nov 25 08:37:25 2009  saving the first 48 matrix rows for later
Wed Nov 25 08:37:28 2009  matrix is 3146707 x 3146931 (855.2 MB) with weight 221919681 (70.52/col)
Wed Nov 25 08:37:28 2009  sparse part has weight 205309780 (65.24/col)
Wed Nov 25 08:37:28 2009  matrix includes 64 packed rows
Wed Nov 25 08:37:28 2009  using block size 65536 for processor cache size 4096 kB
Wed Nov 25 08:38:02 2009  commencing Lanczos iteration (8 threads)
Wed Nov 25 08:38:02 2009  memory use: 1068.7 MB
Thu Nov 26 05:51:48 2009  lanczos halted after 49761 iterations (dim = 3146707)
Thu Nov 26 05:51:57 2009  recovered 37 nontrivial dependencies
Thu Nov 26 05:51:58 2009  BLanczosTime: 79695
Thu Nov 26 05:51:58 2009  
Thu Nov 26 05:51:58 2009  commencing square root phase
Thu Nov 26 05:51:58 2009  reading relations for dependency 1
Thu Nov 26 05:52:01 2009  read 1574926 cycles
Thu Nov 26 05:52:06 2009  cycles contain 6243919 unique relations
Thu Nov 26 06:01:37 2009  read 6243919 relations
Thu Nov 26 06:02:38 2009  multiplying 5147940 relations
Thu Nov 26 06:13:47 2009  multiply complete, coefficients have about 145.85 million bits
Thu Nov 26 06:13:49 2009  initial square root is modulo 171541
Thu Nov 26 06:32:30 2009  sqrtTime: 2432
Thu Nov 26 06:32:30 2009  prp99 factor: 219631702931061976134369747885808367899858190913021959949302323867094375889693220762080723420749513
Thu Nov 26 06:32:30 2009  prp103 factor: 3945999849296329038851146075899153593764462405886868527184422610760144041919822331667205447984131245551
Thu Nov 26 06:32:30 2009  elapsed time 23:30:51

Nov 28, 2009

By Erik Branger / GGNFS, Msieve / Nov 28, 2009

(64·10205-1)/9 = 7(1)205<206> = 431 · 37940267 · 45453581976434362961<20> · 3413498540067034957579963393050135213037<40> · C137

C137 = P52 · P85

P52 = 5021904639112661884279481420515331308570490020937987<52>

P85 = 5581147687333324553148372632272707694103863113163794664870316102823081173696895306077<85>

Number: 71111_205
N=28027991462592126727645456941213879374870484455341245911407229100340608719858666765731412775742675529856705668542399476690203589001246999
  ( 137 digits)
Divisors found:
 r1=5021904639112661884279481420515331308570490020937987 (pp52)
 r2=5581147687333324553148372632272707694103863113163794664870316102823081173696895306077 (pp85)
Version: Msieve v. 1.43
Total time: 379.42 hours.
Scaled time: 380.18 units (timescale=1.002).
Factorization parameters were as follows:
# Murphy_E = 3.341821e-11, selected by Jeff Gilchrist
n: 28027991462592126727645456941213879374870484455341245911407229100340608719858666765731412775742675529856705668542399476690203589001246999
Y0: -200712814366335223924707637
Y1: 1865037990862081
c0: 42756225136356909361925341794202800
c1: 271117863504155830697150367460
c2: -599164415210628480558292
c3: -255405301427474975
c4: 342673420962
c5: 86040
skew: 1286946.34
type: gnfs
# selected mechanically
rlim: 14600000
alim: 14600000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.6
alambda: 2.6
Factor base limits: 14600000/14600000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved algebraic special-q in [7300000, 18600001)
Primes: , , 
Relations: 23161909 relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2131553 x 2131777
Total sieving time: 365.37 hours.
Total relation processing time: 0.57 hours.
Matrix solve time: 12.50 hours.
Time per square root: 0.99 hours.
Prototype def-par.txt line would be:
gnfs,136,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,14600000,14600000,28,28,55,55,2.6,2.6,100000
total time: 379.42 hours.
 --------- CPU info (if available) ----------

Nov 27, 2009 (4th)

By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 27, 2009

(22·10164-7)/3 = 7(3)1631<165> = 23 · 53901767 · 139612857686202560949310679923<30> · C127

C127 = P49 · P78

P49 = 6754321484568289172985434187887056943790139178677<49>

P78 = 627282892180425272457203747632461341968295653636265909025507998427062127369821<78>

Number: 73331_164
N=4236870315556380098039369903323088181940804099761376480634290491976797824420141498514838608126730235966130123927245727176506817
  ( 127 digits)
SNFS difficulty: 166 digits.
Divisors found:
 r1=6754321484568289172985434187887056943790139178677
 r2=627282892180425272457203747632461341968295653636265909025507998427062127369821
Version: 
Total time: 18.55 hours.
Scaled time: 44.21 units (timescale=2.383).
Factorization parameters were as follows:
n: 4236870315556380098039369903323088181940804099761376480634290491976797824420141498514838608126730235966130123927245727176506817
m: 1000000000000000000000000000000000
deg: 5
c5: 11
c0: -35
skew: 1.26
type: snfs
lss: 1
rlim: 4200000
alim: 4200000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 4200000/4200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [2100000, 3600001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 9469802
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 701714 x 701962
Total sieving time: 16.64 hours.
Total relation processing time: 0.71 hours.
Matrix solve time: 1.12 hours.
Time per square root: 0.08 hours.
Prototype def-par.txt line would be:
snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000
total time: 18.55 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346)
Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338)
Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)

Nov 27, 2009 (3rd)

By Wataru Sakai / GMP-ECM 6.2.1 / Nov 27, 2009

(22·10172-7)/3 = 7(3)1711<173> = 48214384732603<14> · 4064286759125334773<19> · C141

C141 = P34 · P108

P34 = 2528431516575789096617651796309427<34>

P108 = 148009386868021114014136141181083786229874235422605861967736289169789771857161756134774694674396272086829287<108>

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=897477864
Step 1 took 42495ms
Step 2 took 14659ms
********** Factor found in step 2: 2528431516575789096617651796309427
Found probable prime factor of 34 digits: 2528431516575789096617651796309427
Probable prime cofactor 148009386868021114014136141181083786229874235422605861967736289169789771857161756134774694674396272086829287 has 108 digits

Nov 27, 2009 (2nd)

By Sinkiti Sibata / Msieve / Nov 27, 2009

(59·10184+31)/9 = 6(5)1839<185> = 3 · 13 · 41 · C182

C182 = P64 · P118

P64 = 6813977917155969100374090114813988981026000167458606630278080087<64>

P118 = 6016727141523583670134963894843856668867307701321458618205426905018934714457542819286019955552910616372334350104724943<118>

Number: 65559_184
N=40997845875894656382461260510040997845875894656382461260510040997845875894656382461260510040997845875894656382461260510040997845875894656382461260510040997845875894656382461260510041
  ( 182 digits)
SNFS difficulty: 186 digits.
Divisors found:
 r1=6813977917155969100374090114813988981026000167458606630278080087 (pp64)
 r2=6016727141523583670134963894843856668867307701321458618205426905018934714457542819286019955552910616372334350104724943 (pp118)
Version: Msieve v. 1.42
Total time: 12.43 hours.
Scaled time: 9.89 units (timescale=0.796).
Factorization parameters were as follows:
name: 65559_184
n: 40997845875894656382461260510040997845875894656382461260510040997845875894656382461260510040997845875894656382461260510040997845875894656382461260510040997845875894656382461260510041
m: 10000000000000000000000000000000000000
deg: 5
c5: 59
c0: 310
skew: 1.39
type: snfs
lss: 1
rlim: 9100000
alim: 9100000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
Factor base limits: 9100000/9100000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved rational special-q in [4550000, 8150001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1832409 x 1832638
Total sieving time: 0.00 hours.
Total relation processing time: 0.22 hours.
Matrix solve time: 11.85 hours.
Time per square root: 0.36 hours.
Prototype def-par.txt line would be:
snfs,186.000,5,0,0,0,0,0,0,0,0,9100000,9100000,28,28,54,54,2.5,2.5,100000
total time: 12.43 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
CPU1: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.19 BogoMIPS (lpj=1860598)
Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860574)
Total of 2 processors activated (7442.34 BogoMIPS).

Total time: 224 hours.

Nov 27, 2009

By Dmitry Domanov / GGNFS/msieve / Nov 27, 2009

(67·10166-31)/9 = 7(4)1651<167> = 1361 · C164

C164 = P56 · P109

P56 = 36877280473198598114033606344601705893521134287453029239<56>

P109 = 1483253158041523948079442997084179518478110622805970858351989516224667268559875468140693529675012634339151679<109>

N=54698342721854845293493346395624132582251612376520532288350069393419871009878357416931994448526410319209731406645440444117887174463221487468364764470569026042942281
  ( 164 digits)
SNFS difficulty: 169 digits.
Divisors found:
 r1=36877280473198598114033606344601705893521134287453029239 (pp56)
 r2=1483253158041523948079442997084179518478110622805970858351989516224667268559875468140693529675012634339151679 (pp109)
Version: Msieve-1.40
Total time: 71.53 hours.
Scaled time: 66.81 units (timescale=0.934).
Factorization parameters were as follows:
n: 54698342721854845293493346395624132582251612376520532288350069393419871009878357416931994448526410319209731406645440444117887174463221487468364764470569026042942281
m: 2000000000000000000000000000000000
deg: 5
c5: 335
c0: -496
skew: 1.08
type: snfs
lss: 1
rlim: 4600000
alim: 4600000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4Factor base limits: 4600000/4600000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2300000, 5100001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 881679 x 881908
Total sieving time: 69.81 hours.
Total relation processing time: 0.14 hours.
Matrix solve time: 1.42 hours.
Time per square root: 0.17 hours.
Prototype def-par.txt line would be:
snfs,169.000,5,0,0,0,0,0,0,0,0,4600000,4600000,27,27,52,52,2.4,2.4,100000
total time: 71.53 hours.
 --------- CPU info (if available) ----------

Nov 26, 2009 (2nd)

By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 26, 2009

(64·10164+17)/9 = 7(1)1633<165> = 17597 · 83719 · 553157761307<12> · C144

C144 = P45 · P100

P45 = 170993170796291589495847649921540863092737789<45>

P100 = 5103252092711526530908951977517372031589485749269566130240786228969544705813538735808435514565812117<100>

Number: 71113_164
N=872621256705554537562497017054806961902356913310789643713475531853359484917297314630534101155105898937701858021584802387719938765947681719989313
  ( 144 digits)
SNFS difficulty: 166 digits.
Divisors found:
 r1=170993170796291589495847649921540863092737789
 r2=5103252092711526530908951977517372031589485749269566130240786228969544705813538735808435514565812117
Version: 
Total time: 19.82 hours.
Scaled time: 47.16 units (timescale=2.379).
Factorization parameters were as follows:
n: 872621256705554537562497017054806961902356913310789643713475531853359484917297314630534101155105898937701858021584802387719938765947681719989313
m: 2000000000000000000000000000000000
deg: 5
c5: 1
c0: 85
skew: 2.43
type: snfs
lss: 1
rlim: 4200000
alim: 4200000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 4200000/4200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [2100000, 3700001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 9460398
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 747913 x 748161
Total sieving time: 17.75 hours.
Total relation processing time: 0.75 hours.
Matrix solve time: 1.25 hours.
Time per square root: 0.08 hours.
Prototype def-par.txt line would be:
snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000
total time: 19.82 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346)
Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338)
Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)

Nov 26, 2009

By Sinkiti Sibata / Msieve / Nov 26, 2009

(64·10168+17)/9 = 7(1)1673<169> = 3 · 20327 · 127507 · 605117 · 67091077 · 28921206504282603801987443<26> · C120

C120 = P50 · P71

P50 = 27517303792264798529463417344429815937905759318469<50>

P71 = 28306260058824912668648377802778355092603705182291293454402273353147913<71>

Number: 71113_168
N=778911957261536368479252748237453420091363555395653283447916728689860273052859142998360002144908357965800974034629705197
  ( 120 digits)
SNFS difficulty: 170 digits.
Divisors found:
 r1=27517303792264798529463417344429815937905759318469 (pp50)
 r2=28306260058824912668648377802778355092603705182291293454402273353147913 (pp71)
Version: Msieve-1.40
Total time: 53.36 hours.
Scaled time: 178.43 units (timescale=3.344).
Factorization parameters were as follows:
name: 71113_168
n: 778911957261536368479252748237453420091363555395653283447916728689860273052859142998360002144908357965800974034629705197
m: 4000000000000000000000000000000000
deg: 5
c5: 125
c0: 34
skew: 0.77
type: snfs
lss: 1
rlim: 4800000
alim: 4800000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4
Factor base limits: 4800000/4800000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2400000, 5100001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 963415 x 963663
Total sieving time: 51.24 hours.
Total relation processing time: 0.10 hours.
Matrix solve time: 1.77 hours.
Time per square root: 0.25 hours.
Prototype def-par.txt line would be:
snfs,170.000,5,0,0,0,0,0,0,0,0,4800000,4800000,27,27,52,52,2.4,2.4,100000
total time: 53.36 hours.
 --------- CPU info (if available) ----------

Nov 25, 2009 (5th)

By Lionel Debroux / GMP-ECM 6.2.3 / Nov 25, 2009

(64·10295-1)/9 = 7(1)295<296> = 138283 · 215123 · C286

C286 = P41 · C245

P41 = 27821253425770631779688809196979341911471<41>

C245 = [85922149607726026782156764348422317355098680473279943458089419000214805543256458905381333491902976675767807884711080103009541396355333130708765008447187044809202021290263519849408848513151067396999960418817775487954720426652016355985801204889849<245>]

$ echo 2390461899123524468141610636053234044959304079492194303969631663827271671500068555117428139137024327411407816062631071776594231652495314678420709429643785806299647702800471669183303102305194978145426958761047443438144237490094595452807414027153931517127656700294869702783643631664557879 | ecm -c 10 11e7
GMP-ECM 6.2.3 [powered by GMP 4.2.2] [ECM]
Input number is 2390461899123524468141610636053234044959304079492194303969631663827271671500068555117428139137024327411407816062631071776594231652495314678420709429643785806299647702800471669183303102305194978145426958761047443438144237490094595452807414027153931517127656700294869702783643631664557879 (286 digits)
Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=3203913405
Step 1 took 1851787ms
Step 2 took 612963ms
Run 2 out of 10:
Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=4242926597
Step 1 took 1853684ms
Step 2 took 610135ms
Run 3 out of 10:
Using B1=110000000, B2=776278396540, polynomial Dickson(30), sigma=594201858
Step 1 took 1851104ms
Step 2 took 615097ms
********** Factor found in step 2: 27821253425770631779688809196979341911471
Found probable prime factor of 41 digits: 27821253425770631779688809196979341911471
Composite cofactor 85922149607726026782156764348422317355098680473279943458089419000214805543256458905381333491902976675767807884711080103009541396355333130708765008447187044809202021290263519849408848513151067396999960418817775487954720426652016355985801204889849 has 245 digits

Nov 25, 2009 (4th)

By Dmitry Domanov / GGNFS/msieve, ECMNET, GMP-ECM / Nov 25, 2009

(67·10190-13)/9 = 7(4)1893<191> = 137 · C189

C189 = P67 · P123

P67 = 1071541119796023713943872177373953979517368086289326500970465961839<67>

P123 = 507110828875460829568417893845099794914673688551241728438396231258250485605676876586330307290817717364311369996839606707501<123>

N=543390105433901054339010543390105433901054339010543390105433901054339010543390105433901054339010543390105433901054339010543390105433901054339010543390105433901054339010543390105433901054339
  ( 189 digits)
SNFS difficulty: 191 digits.
Divisors found:
 r1=1071541119796023713943872177373953979517368086289326500970465961839 (pp67)
 r2=507110828875460829568417893845099794914673688551241728438396231258250485605676876586330307290817717364311369996839606707501 (pp123)
Version: Msieve-1.40
Total time: 365.07 hours.
Scaled time: 701.66 units (timescale=1.922).
Factorization parameters were as follows:
n: 543390105433901054339010543390105433901054339010543390105433901054339010543390105433901054339010543390105433901054339010543390105433901054339010543390105433901054339010543390105433901054339
m: 100000000000000000000000000000000000000
deg: 5
c5: 67
c0: -13
skew: 0.72
type: snfs
lss: 1
rlim: 11000000
alim: 11000000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5Factor base limits: 11000000/11000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved rational special-q in [5500000, 11300001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1986673 x 1986899
Total sieving time: 359.24 hours.
Total relation processing time: 0.24 hours.
Matrix solve time: 5.10 hours.
Time per square root: 0.49 hours.
Prototype def-par.txt line would be:
snfs,191.000,5,0,0,0,0,0,0,0,0,11000000,11000000,28,28,54,54,2.5,2.5,100000
total time: 365.07 hours.
 --------- CPU info (if available) ----------

(64·10337-1)/9 = 7(1)337<338> = 641 · 10305987443<11> · 128091342428974354289<21> · 1573635359835609855768700526548279<34> · C272

C272 = P44 · P229

P44 = 23999825294513644566371981203556549145331093<44>

P229 = 2225142674642345175756085094630621961303073772087561224909653062753168834580195174703734595980867983796542324738572237891366967450081957758673889677981721953767769280970762737157451510595720274177628529785960348826659378796242959<229>

Factor=23999825294513644566371981203556549145331093  Method=ECM  B1=11000000  Sigma=3143255858

Nov 25, 2009 (3rd)

By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 25, 2009

2·10195-1 = 1(9)195<196> = 5899211 · 14379834023187049<17> · C173

C173 = P61 · P112

P61 = 8005520506168541677107500091857021276142810375469214148691261<61>

P112 = 2945049630407235486850246768492493463787273516148281573264435077057996480481973645153052764487171176571079917881<112>

Number: 19999_195
N=23576655207909208424624202624006807544095893996706242465497479933717817335301260997188669857591848828615161079849847110159737109007441407916694060960678075171144655502337941
  ( 173 digits)
SNFS difficulty: 195 digits.
Divisors found:
 r1=8005520506168541677107500091857021276142810375469214148691261
 r2=2945049630407235486850246768492493463787273516148281573264435077057996480481973645153052764487171176571079917881
Version: 
Total time: 209.06 hours.
Scaled time: 499.43 units (timescale=2.389).
Factorization parameters were as follows:
n: 23576655207909208424624202624006807544095893996706242465497479933717817335301260997188669857591848828615161079849847110159737109007441407916694060960678075171144655502337941
m: 1000000000000000000000000000000000000000
deg: 5
c5: 2
c0: -1
skew: 0.87
type: snfs
lss: 1
rlim: 12000000
alim: 12000000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5
Factor base limits: 12000000/12000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved rational special-q in [6000000, 11100001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 22757439
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2150669 x 2150917
Total sieving time: 189.52 hours.
Total relation processing time: 6.29 hours.
Matrix solve time: 12.68 hours.
Time per square root: 0.57 hours.
Prototype def-par.txt line would be:
snfs,195,5,0,0,0,0,0,0,0,0,12000000,12000000,28,28,55,55,2.5,2.5,100000
total time: 209.06 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346)
Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338)
Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)

Nov 25, 2009 (2nd)

By juno1369 / GMP-ECM + Alpertron ECM (http://www.alpertron.com.ar/ECM.HTM) / Nov 25, 2009

(59·10158+13)/9 = 6(5)1577<159> = 3 · 547 · 19577 · 20921 · 20562679 · 40037148484895545334741569<26> · C115

C115 = P33 · P41 · P41

P33 = 714946817551994226795999183397417<33>

P41 = 18512159506965237722555703148040570906717<41>

P41 = 89515591408513589807357573543702422736479<41>

********** Factor found in step 2: 714946817551994226795999183397417
Found probable prime factor of 33 digits: 714946817551994226795999183397417
Composite cofactor 1657126906514730606466839738594265639188592255458992054267231
172851540589382029443 has 82 digits

From Alpertron ECM (http://www.alpertron.com.ar/ECM.HTM)

Factors found for 1657126906514730606466839738594265639188592255458992054267231
172851540589382029443 (82 digits):

prp41: 18512159506965237722555703148040570906717 
prp41: 89515591408513589807357573543702422736479

Nov 25, 2009

By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 25, 2009

(22·10163+17)/3 = 7(3)1629<164> = 41 · 127 · 233861 · 206092781 · 799041773 · C138

C138 = P68 · P70

P68 = 42195990389398706948573405544460493579875597777044234523676722681367<68>

P70 = 8666676725845304738171565873149213256863607609495312249724267546417367<70>

Number: 73339_163
N=365699007831793930864297489675417334693538526289939085369313738587375155136237648640690605141401806350384006471083639028582599730736100689
  ( 138 digits)
SNFS difficulty: 166 digits.
Divisors found:
 r1=42195990389398706948573405544460493579875597777044234523676722681367
 r2=8666676725845304738171565873149213256863607609495312249724267546417367
Version: 
Total time: 23.26 hours.
Scaled time: 55.59 units (timescale=2.390).
Factorization parameters were as follows:
n: 365699007831793930864297489675417334693538526289939085369313738587375155136237648640690605141401806350384006471083639028582599730736100689
m: 1000000000000000000000000000000000
deg: 5
c5: 11
c0: 850
skew: 2.39
type: snfs
lss: 1
rlim: 4400000
alim: 4400000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 4400000/4400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [2200000, 4100001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 9997905
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 704228 x 704476
Total sieving time: 20.98 hours.
Total relation processing time: 0.95 hours.
Matrix solve time: 1.17 hours.
Time per square root: 0.16 hours.
Prototype def-par.txt line would be:
snfs,166,5,0,0,0,0,0,0,0,0,4400000,4400000,27,27,51,51,2.4,2.4,100000
total time: 23.26 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346)
Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338)
Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)

Nov 24, 2009 (3rd)

By Wataru Sakai / GMP-ECM 6.2.1, Msieve v. 1.43 / Nov 24, 2009

(44·10188+1)/9 = 4(8)1879<189> = 3 · 67 · 12367047777863<14> · 57831123768707<14> · 457613923500905847935719079<27> · C133

C133 = P43 · P44 · P47

P43 = 3845433339200043771803433770523203501433697<43>

P44 = 39455414314368368652823846825558613685063769<44>

P47 = 48981864669302978213702667920212673671860980707<47>

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3869374597
Step 1 took 38192ms
Step 2 took 14250ms
********** Factor found in step 2: 39455414314368368652823846825558613685063769
Found probable prime factor of 44 digits: 39455414314368368652823846825558613685063769
Composite cofactor 188356495415522399273375625775546911031815645086058261222593402241002941614660946956683779 has 90 digits
-------------------------------------
Tue Nov 24 14:30:17 2009  Msieve v. 1.43
Tue Nov 24 14:30:17 2009  random seeds: 05499020 7dd90afa
Tue Nov 24 14:30:17 2009  factoring 188356495415522399273375625775546911031815645086058261222593402241002941614660946956683779 (90 digits)
Tue Nov 24 14:30:18 2009  searching for 15-digit factors
Tue Nov 24 14:30:19 2009  commencing quadratic sieve (90-digit input)
Tue Nov 24 14:30:19 2009  using multiplier of 1
Tue Nov 24 14:30:19 2009  using 64kb Pentium 3 sieve core
Tue Nov 24 14:30:19 2009  sieve interval: 18 blocks of size 65536
Tue Nov 24 14:30:19 2009  processing polynomials in batches of 6
Tue Nov 24 14:30:19 2009  using a sieve bound of 1571777 (59667 primes)
Tue Nov 24 14:30:19 2009  using large prime bound of 125742160 (26 bits)
Tue Nov 24 14:30:19 2009  using double large prime bound of 379372269960400 (42-49 bits)
Tue Nov 24 14:30:19 2009  using trial factoring cutoff of 49 bits
Tue Nov 24 14:30:19 2009  polynomial 'A' values have 11 factors
Tue Nov 24 16:15:50 2009  59769 relations (16430 full + 43339 combined from 626554 partial), need 59763
Tue Nov 24 16:15:51 2009  begin with 642984 relations
Tue Nov 24 16:15:51 2009  reduce to 143182 relations in 9 passes
Tue Nov 24 16:15:51 2009  attempting to read 143182 relations
Tue Nov 24 16:15:53 2009  recovered 143182 relations
Tue Nov 24 16:15:53 2009  recovered 115145 polynomials
Tue Nov 24 16:15:53 2009  attempting to build 59769 cycles
Tue Nov 24 16:15:53 2009  found 59769 cycles in 6 passes
Tue Nov 24 16:15:53 2009  distribution of cycle lengths:
Tue Nov 24 16:15:53 2009     length 1 : 16430
Tue Nov 24 16:15:53 2009     length 2 : 11866
Tue Nov 24 16:15:53 2009     length 3 : 10611
Tue Nov 24 16:15:53 2009     length 4 : 7899
Tue Nov 24 16:15:53 2009     length 5 : 5480
Tue Nov 24 16:15:53 2009     length 6 : 3258
Tue Nov 24 16:15:53 2009     length 7 : 1952
Tue Nov 24 16:15:53 2009     length 9+: 2273
Tue Nov 24 16:15:53 2009  largest cycle: 18 relations
Tue Nov 24 16:15:54 2009  matrix is 59667 x 59769 (14.5 MB) with weight 3574237 (59.80/col)
Tue Nov 24 16:15:54 2009  sparse part has weight 3574237 (59.80/col)
Tue Nov 24 16:15:55 2009  filtering completed in 4 passes
Tue Nov 24 16:15:55 2009  matrix is 55137 x 55201 (13.6 MB) with weight 3340434 (60.51/col)
Tue Nov 24 16:15:55 2009  sparse part has weight 3340434 (60.51/col)
Tue Nov 24 16:15:55 2009  saving the first 48 matrix rows for later
Tue Nov 24 16:15:55 2009  matrix is 55089 x 55201 (9.8 MB) with weight 2725857 (49.38/col)
Tue Nov 24 16:15:55 2009  sparse part has weight 2231393 (40.42/col)
Tue Nov 24 16:15:55 2009  matrix includes 64 packed rows
Tue Nov 24 16:15:55 2009  using block size 22080 for processor cache size 1024 kB
Tue Nov 24 16:15:56 2009  commencing Lanczos iteration
Tue Nov 24 16:15:56 2009  memory use: 9.3 MB
Tue Nov 24 16:16:23 2009  lanczos halted after 872 iterations (dim = 55085)
Tue Nov 24 16:16:23 2009  recovered 15 nontrivial dependencies
Tue Nov 24 16:16:23 2009  prp43 factor: 3845433339200043771803433770523203501433697
Tue Nov 24 16:16:23 2009  prp47 factor: 48981864669302978213702667920212673671860980707
Tue Nov 24 16:16:23 2009  elapsed time 01:46:06

Nov 24, 2009 (2nd)

By Lionel Debroux / ggnfs-lasieve4I14e on the RSALS grid + msieve 1.44 SVN / Nov 24, 2009

(2·10190-17)/3 = (6)1891<190> = 586961 · C185

C185 = P73 · P112

P73 = 3522100398505110525113530527897751734365915827795335855724148825683062971<73>

P112 = 3224762712419591738492616930735227996266954799592039711609720258477080717575085454686644775301672161668689243631<112>

Mon Nov 23 14:28:19 2009  
Mon Nov 23 14:28:19 2009  
Mon Nov 23 14:28:19 2009  Msieve v. 1.44
Mon Nov 23 14:28:19 2009  random seeds: b070f7b1 fdfdedbf
Mon Nov 23 14:28:19 2009  factoring 11357938034497465192179151028205735417969280184998094705894713050214011947415018487883635653248966569613086161885826599495821130648657520119167485857947404796343652587934576005333687701 (185 digits)
Mon Nov 23 14:28:24 2009  searching for 15-digit factors
Mon Nov 23 14:28:26 2009  commencing number field sieve (185-digit input)
Mon Nov 23 14:28:26 2009  R0: -100000000000000000000000000000000000000
Mon Nov 23 14:28:26 2009  R1:  1
Mon Nov 23 14:28:26 2009  A0: -17
Mon Nov 23 14:28:26 2009  A1:  0
Mon Nov 23 14:28:26 2009  A2:  0
Mon Nov 23 14:28:26 2009  A3:  0
Mon Nov 23 14:28:26 2009  A4:  0
Mon Nov 23 14:28:26 2009  A5:  2
Mon Nov 23 14:28:26 2009  skew 1.53, size 3.675878e-13, alpha 1.784858, combined = 4.412690e-11
Mon Nov 23 14:28:26 2009  
Mon Nov 23 14:28:26 2009  commencing linear algebra
Mon Nov 23 14:28:27 2009  read 1227138 cycles
Mon Nov 23 14:28:32 2009  cycles contain 3011522 unique relations
Mon Nov 23 14:30:07 2009  read 3011522 relations
Mon Nov 23 14:30:19 2009  using 20 quadratic characters above 268432140
Mon Nov 23 14:31:05 2009  building initial matrix
Mon Nov 23 14:33:20 2009  memory use: 395.9 MB
Mon Nov 23 14:33:21 2009  read 1227138 cycles
Mon Nov 23 14:33:28 2009  matrix is 1226938 x 1227138 (388.8 MB) with weight 114097390 (92.98/col)
Mon Nov 23 14:33:28 2009  sparse part has weight 88420184 (72.05/col)
Mon Nov 23 14:33:56 2009  filtering completed in 1 passes
Mon Nov 23 14:33:57 2009  matrix is 1226938 x 1227138 (388.8 MB) with weight 114097390 (92.98/col)
Mon Nov 23 14:33:57 2009  sparse part has weight 88420184 (72.05/col)
Mon Nov 23 14:34:18 2009  read 1227138 cycles
Mon Nov 23 14:34:25 2009  matrix is 1226938 x 1227138 (388.8 MB) with weight 114097390 (92.98/col)
Mon Nov 23 14:34:25 2009  sparse part has weight 88420184 (72.05/col)
Mon Nov 23 14:34:25 2009  saving the first 48 matrix rows for later
Mon Nov 23 14:34:27 2009  matrix is 1226890 x 1227138 (368.4 MB) with weight 91302722 (74.40/col)
Mon Nov 23 14:34:27 2009  sparse part has weight 84297943 (68.69/col)
Mon Nov 23 14:34:27 2009  matrix includes 64 packed rows
Mon Nov 23 14:34:27 2009  using block size 65536 for processor cache size 4096 kB
Mon Nov 23 14:34:42 2009  commencing Lanczos iteration
Mon Nov 23 14:34:42 2009  memory use: 361.6 MB
Mon Nov 23 14:35:04 2009  linear algebra at 0.1%, ETA 9h 0m
Mon Nov 23 14:35:44 2009  lanczos halted after 37 iterations (dim = 2338)
Mon Nov 23 14:35:44 2009  BLanczosTime: 438
Mon Nov 23 14:35:44 2009  elapsed time 00:07:25
Mon Nov 23 14:35:51 2009  
Mon Nov 23 14:35:51 2009  
Mon Nov 23 14:35:51 2009  Msieve v. 1.44
Mon Nov 23 14:35:51 2009  random seeds: 6b3576c1 3d110add
Mon Nov 23 14:35:51 2009  factoring 11357938034497465192179151028205735417969280184998094705894713050214011947415018487883635653248966569613086161885826599495821130648657520119167485857947404796343652587934576005333687701 (185 digits)
Mon Nov 23 14:35:55 2009  searching for 15-digit factors
Mon Nov 23 14:35:57 2009  commencing number field sieve (185-digit input)
Mon Nov 23 14:35:57 2009  R0: -100000000000000000000000000000000000000
Mon Nov 23 14:35:57 2009  R1:  1
Mon Nov 23 14:35:57 2009  A0: -17
Mon Nov 23 14:35:57 2009  A1:  0
Mon Nov 23 14:35:57 2009  A2:  0
Mon Nov 23 14:35:57 2009  A3:  0
Mon Nov 23 14:35:57 2009  A4:  0
Mon Nov 23 14:35:57 2009  A5:  2
Mon Nov 23 14:35:57 2009  skew 1.53, size 3.675878e-13, alpha 1.784858, combined = 4.412690e-11
Mon Nov 23 14:35:57 2009  
Mon Nov 23 14:35:57 2009  commencing linear algebra
Mon Nov 23 14:36:01 2009  read 1227138 cycles
Mon Nov 23 14:36:09 2009  matrix is 1226938 x 1227138 (388.8 MB) with weight 114097390 (92.98/col)
Mon Nov 23 14:36:09 2009  sparse part has weight 88420184 (72.05/col)
Mon Nov 23 14:36:09 2009  saving the first 48 matrix rows for later
Mon Nov 23 14:36:10 2009  matrix is 1226890 x 1227138 (368.4 MB) with weight 91302722 (74.40/col)
Mon Nov 23 14:36:10 2009  sparse part has weight 84297943 (68.69/col)
Mon Nov 23 14:36:10 2009  matrix includes 64 packed rows
Mon Nov 23 14:36:10 2009  using block size 65536 for processor cache size 4096 kB
Mon Nov 23 14:36:25 2009  commencing Lanczos iteration (2 threads)
Mon Nov 23 14:36:25 2009  memory use: 371.0 MB
Mon Nov 23 14:36:25 2009  restarting at iteration 37 (dim = 2338)
Mon Nov 23 14:36:40 2009  linear algebra at 0.3%, ETA 6h44m
Mon Nov 23 21:47:28 2009  lanczos halted after 19405 iterations (dim = 1226888)
Mon Nov 23 21:47:32 2009  recovered 36 nontrivial dependencies
Mon Nov 23 21:47:32 2009  BLanczosTime: 25895
Mon Nov 23 21:47:32 2009  elapsed time 07:11:41
Mon Nov 23 21:49:52 2009  
Mon Nov 23 21:49:52 2009  
Mon Nov 23 21:49:52 2009  Msieve v. 1.44
Mon Nov 23 21:49:52 2009  random seeds: 2800b6ca f4df187c
Mon Nov 23 21:49:52 2009  factoring 11357938034497465192179151028205735417969280184998094705894713050214011947415018487883635653248966569613086161885826599495821130648657520119167485857947404796343652587934576005333687701 (185 digits)
Mon Nov 23 21:49:57 2009  searching for 15-digit factors
Mon Nov 23 21:49:59 2009  commencing number field sieve (185-digit input)
Mon Nov 23 21:49:59 2009  R0: -100000000000000000000000000000000000000
Mon Nov 23 21:49:59 2009  R1:  1
Mon Nov 23 21:49:59 2009  A0: -17
Mon Nov 23 21:49:59 2009  A1:  0
Mon Nov 23 21:49:59 2009  A2:  0
Mon Nov 23 21:49:59 2009  A3:  0
Mon Nov 23 21:49:59 2009  A4:  0
Mon Nov 23 21:49:59 2009  A5:  2
Mon Nov 23 21:49:59 2009  skew 1.53, size 3.675878e-13, alpha 1.784858, combined = 4.412690e-11
Mon Nov 23 21:49:59 2009  
Mon Nov 23 21:49:59 2009  commencing square root phase
Mon Nov 23 21:49:59 2009  reading relations for dependency 1
Mon Nov 23 21:50:03 2009  read 612889 cycles
Mon Nov 23 21:50:05 2009  cycles contain 1503182 unique relations
Mon Nov 23 21:51:23 2009  read 1503182 relations
Mon Nov 23 21:51:43 2009  multiplying 1503182 relations
Mon Nov 23 21:57:34 2009  multiply complete, coefficients have about 37.19 million bits
Mon Nov 23 21:57:35 2009  initial square root is modulo 219041
Mon Nov 23 22:05:37 2009  reading relations for dependency 2
Mon Nov 23 22:05:41 2009  read 613137 cycles
Mon Nov 23 22:05:42 2009  cycles contain 1505808 unique relations
Mon Nov 23 22:06:57 2009  read 1505808 relations
Mon Nov 23 22:07:09 2009  multiplying 1505808 relations
Mon Nov 23 22:10:11 2009  multiply complete, coefficients have about 37.26 million bits
Mon Nov 23 22:10:11 2009  initial square root is modulo 223781
Mon Nov 23 22:16:18 2009  reading relations for dependency 3
Mon Nov 23 22:16:22 2009  read 612903 cycles
Mon Nov 23 22:16:24 2009  cycles contain 1504284 unique relations
Mon Nov 23 22:17:40 2009  read 1504284 relations
Mon Nov 23 22:17:52 2009  multiplying 1504284 relations
Mon Nov 23 22:20:53 2009  multiply complete, coefficients have about 37.22 million bits
Mon Nov 23 22:20:54 2009  initial square root is modulo 221101
Mon Nov 23 22:26:51 2009  reading relations for dependency 4
Mon Nov 23 22:26:56 2009  read 612973 cycles
Mon Nov 23 22:26:58 2009  cycles contain 1504386 unique relations
Mon Nov 23 22:28:13 2009  read 1504386 relations
Mon Nov 23 22:28:24 2009  multiplying 1504386 relations
Mon Nov 23 22:31:25 2009  multiply complete, coefficients have about 37.22 million bits
Mon Nov 23 22:31:25 2009  initial square root is modulo 221201
Mon Nov 23 22:37:27 2009  reading relations for dependency 5
Mon Nov 23 22:37:32 2009  read 614430 cycles
Mon Nov 23 22:37:33 2009  cycles contain 1508298 unique relations
Mon Nov 23 22:38:49 2009  read 1508298 relations
Mon Nov 23 22:39:00 2009  multiplying 1508298 relations
Mon Nov 23 22:42:00 2009  multiply complete, coefficients have about 37.32 million bits
Mon Nov 23 22:42:01 2009  initial square root is modulo 228451
Mon Nov 23 22:48:03 2009  reading relations for dependency 6
Mon Nov 23 22:48:08 2009  read 613942 cycles
Mon Nov 23 22:48:09 2009  cycles contain 1506000 unique relations
Mon Nov 23 22:49:24 2009  read 1506000 relations
Mon Nov 23 22:49:36 2009  multiplying 1506000 relations
Mon Nov 23 22:52:36 2009  multiply complete, coefficients have about 37.27 million bits
Mon Nov 23 22:52:37 2009  initial square root is modulo 224261
Mon Nov 23 22:58:35 2009  sqrtTime: 4116
Mon Nov 23 22:58:35 2009  prp73 factor: 3522100398505110525113530527897751734365915827795335855724148825683062971
Mon Nov 23 22:58:35 2009  prp112 factor: 3224762712419591738492616930735227996266954799592039711609720258477080717575085454686644775301672161668689243631
Mon Nov 23 22:58:35 2009  elapsed time 01:08:43

Nov 24, 2009

By Erik Branger / GGNFS, Msieve / Nov 24, 2009

(65·10168+61)/9 = 7(2)1679<169> = 7 · 263 · 55893627458327<14> · C152

C152 = P71 · P82

P71 = 16686719216640258914430547376206697539119714819396999595221215196753619<71>

P82 = 4206140780347737673879122417993167985752911241206637624428896147475792512758851313<82>

Number: 72229_168
N=70186690187322848534813391255912423242710432254098754707341062929635389927685614871669166935399377870972333874531367371664986282656059306612965115651747
  ( 152 digits)
SNFS difficulty: 170 digits.
Divisors found:
 r1=16686719216640258914430547376206697539119714819396999595221215196753619 (pp71)
 r2=4206140780347737673879122417993167985752911241206637624428896147475792512758851313 (pp82)
Version: Msieve v. 1.43
Total time: 123.43 hours.
Scaled time: 97.51 units (timescale=0.790).
Factorization parameters were as follows:
n: 70186690187322848534813391255912423242710432254098754707341062929635389927685614871669166935399377870972333874531367371664986282656059306612965115651747
m: 5000000000000000000000000000000000
deg: 5
c5: 104
c0: 305
skew: 1.24
type: snfs
lss: 1
rlim: 4900000
alim: 4900000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4
Factor base limits: 4900000/4900000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2450000, 5650001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 952088 x 952313
Total sieving time: 116.58 hours.
Total relation processing time: 0.39 hours.
Matrix solve time: 5.86 hours.
Time per square root: 0.60 hours.
Prototype def-par.txt line would be:
snfs,170.000,5,0,0,0,0,0,0,0,0,4900000,4900000,27,27,52,52,2.4,2.4,100000
total time: 123.43 hours.
 --------- CPU info (if available) ----------

Nov 23, 2009 (4th)

By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 23, 2009

(65·10163+7)/9 = 7(2)1623<164> = 23291 · 214849 · 16175813 · C147

C147 = P69 · P79

P69 = 813256512052658243117005216012106187806335489002678159581152113487081<69>

P79 = 1097123981090889200601269157296277423248544642116547145585024451148021609609649<79>

Number: 72223_163
N=892243222151303127585237134646888700719111322344662705134948669982776787671783703532461989654078209429613406012214041099368896840129135168614444569
  ( 147 digits)
SNFS difficulty: 166 digits.
Divisors found:
 r1=813256512052658243117005216012106187806335489002678159581152113487081
 r2=1097123981090889200601269157296277423248544642116547145585024451148021609609649
Version: 
Total time: 24.00 hours.
Scaled time: 57.32 units (timescale=2.388).
Factorization parameters were as follows:
n: 892243222151303127585237134646888700719111322344662705134948669982776787671783703532461989654078209429613406012214041099368896840129135168614444569
m: 1000000000000000000000000000000000
deg: 5
c5: 13
c0: 140
skew: 1.61
type: snfs
lss: 1
rlim: 4200000
alim: 4200000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 4200000/4200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [2100000, 4100001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 9802166
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 762660 x 762908
Total sieving time: 21.69 hours.
Total relation processing time: 0.96 hours.
Matrix solve time: 1.27 hours.
Time per square root: 0.08 hours.
Prototype def-par.txt line would be:
snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000
total time: 24.00 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346)
Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338)
Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)

Nov 23, 2009 (3rd)

By Sinkiti Sibata / Msieve / Nov 23, 2009

(65·10161-11)/9 = 7(2)1601<162> = 20084017 · 191866891 · C147

C147 = P69 · P78

P69 = 311840341079435138195582161480994283224403261766637618030009178235597<69>

P78 = 601018626647427049816918876130796226415550083819651184343799035882306940635219<78>

Number: 72221_161
N=187421853528827335653389337039146572529035106115131310350823349232846759604043170270164712568736461349957588460504114904477258557263588332817690743
  ( 147 digits)
SNFS difficulty: 164 digits.
Divisors found:
 r1=311840341079435138195582161480994283224403261766637618030009178235597 (pp69)
 r2=601018626647427049816918876130796226415550083819651184343799035882306940635219 (pp78)
Version: Msieve-1.40
Total time: 29.98 hours.
Scaled time: 100.61 units (timescale=3.356).
Factorization parameters were as follows:
name: 72221_161
n: 187421853528827335653389337039146572529035106115131310350823349232846759604043170270164712568736461349957588460504114904477258557263588332817690743
m: 200000000000000000000000000000000
deg: 5
c5: 325
c0: -176
skew: 0.88
type: snfs
lss: 1
rlim: 3800000
alim: 3800000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 3800000/3800000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [1900000, 3500001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 661825 x 662073
Total sieving time: 28.97 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 0.82 hours.
Time per square root: 0.10 hours.
Prototype def-par.txt line would be:
snfs,164.000,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,51,51,2.4,2.4,100000
total time: 29.98 hours.
 --------- CPU info (if available) ----------

Nov 23, 2009 (2nd)

By Wataru Sakai / GMP-ECM 6.2.1 / Nov 23, 2009

(67·10197+41)/9 = 7(4)1969<198> = 6271 · C195

C195 = P32 · C163

P32 = 14804814301257493957368027068209<32>

C163 = [8018488822340487237390691124028521224201676513048994685760860292500214647027078234420861913727315979617472630756131310269280591852145065737118488621600044708379791<163>]

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2933211590
Step 1 took 75324ms
Step 2 took 22413ms
********** Factor found in step 2: 14804814301257493957368027068209
Found probable prime factor of 32 digits: 14804814301257493957368027068209
Composite cofactor 8018488822340487237390691124028521224201676513048994685760860292500214647027078234420861913727315979617472630756131310269280591852145065737118488621600044708379791 has 163 digits

(22·10195-7)/3 = 7(3)1941<196> = 3137 · C193

C193 = P42 · P151

P42 = 865705014948683820695382200352934286953759<42>

P151 = 2700330825097480678864281228686638696675856044230083140116407966903315950254431328829179821478217319803331163711026706022488383947812078822791851974157<151>

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2548502624
Step 1 took 70148ms
Step 2 took 21764ms
********** Factor found in step 2: 865705014948683820695382200352934286953759
Found probable prime factor of 42 digits: 865705014948683820695382200352934286953759
Probable prime cofactor 2700330825097480678864281228686638696675856044230083140116407966903315950254431328829179821478217319803331163711026706022488383947812078822791851974157 has 151 digits

Nov 23, 2009

By Dmitry Domanov / ECMNET, GMP-ECM / Nov 23, 2009

(65·10171+61)/9 = 7(2)1709<172> = 59 · 103231 · 288734940313<12> · C154

C154 = P37 · P117

P37 = 5341730797111883898281272847651922239<37>

P117 = 768824761082780205497364438889436595941143966789197894042997226025202898341403395396514044299198931236559010774835143<117>

Factor=5341730797111883898281272847651922239  Method=ECM  B1=11000000  Sigma=3634509346

(26·10167-11)/3 = 8(6)1663<168> = 7 · 17 · 691 · 229656809 · C155

C155 = P34 · C122

P34 = 1622000506706154937986411401046767<34>

C122 = [28294157895160621844921147954393461978100031316274893426210418177756993778953017327769043546792385145405456209408807687549<122>]

Factor=1622000506706154937986411401046767  Method=ECM  B1=11000000  Sigma=420641482

Nov 22, 2009 (2nd)

By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 22, 2009

(65·10162-11)/9 = 7(2)1611<163> = 3 · 59 · 1999 · 4773779 · C151

C151 = P74 · P77

P74 = 70720939585198509430447494622061780717823615546513973846559159308700434243<74>

P77 = 60460878757510508486907856776275737477095178737018964166774638595681693266091<77>

Number: 72221_162
N=4275850153877912590311748739884690843676410802291770101508765288141718738539635449718707640413237336721787300567069698882361479787286593316820647154113
  ( 151 digits)
SNFS difficulty: 165 digits.
Divisors found:
 r1=70720939585198509430447494622061780717823615546513973846559159308700434243
 r2=60460878757510508486907856776275737477095178737018964166774638595681693266091
Version: 
Total time: 24.47 hours.
Scaled time: 58.51 units (timescale=2.391).
Factorization parameters were as follows:
n: 4275850153877912590311748739884690843676410802291770101508765288141718738539635449718707640413237336721787300567069698882361479787286593316820647154113
m: 500000000000000000000000000000000
deg: 5
c5: 52
c0: -275
skew: 1.40
type: snfs
lss: 1
rlim: 4200000
alim: 4200000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 4200000/4200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [2100000, 4100001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 9691817
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 780277 x 780525
Total sieving time: 21.87 hours.
Total relation processing time: 0.95 hours.
Matrix solve time: 1.40 hours.
Time per square root: 0.25 hours.
Prototype def-par.txt line would be:
snfs,165,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000
total time: 24.47 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346)
Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338)
Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)

Nov 22, 2009

By Sinkiti Sibata / Msieve / Nov 22, 2009

(64·10161+17)/9 = 7(1)1603<162> = 13 · 47 · 73 · 971 · 3258491 · 17762837059301<14> · C135

C135 = P61 · P75

P61 = 1045053944364224676875037140958936245274636458765532056637397<61>

P75 = 271447969722802002620888132932935879664564355019942468315186681947716233563<75>

Number: 71113_161
N=283677771448474868630729904666453613625367285272102371126053240308003259939380549919808427192636724065025504641791378151488079652355511
  ( 135 digits)
SNFS difficulty: 162 digits.
Divisors found:
 r1=1045053944364224676875037140958936245274636458765532056637397 (pp61)
 r2=271447969722802002620888132932935879664564355019942468315186681947716233563 (pp75)
Version: Msieve-1.40
Total time: 27.72 hours.
Scaled time: 93.03 units (timescale=3.356).
Factorization parameters were as follows:
name: 71113_161
n: 283677771448474868630729904666453613625367285272102371126053240308003259939380549919808427192636724065025504641791378151488079652355511
m: 200000000000000000000000000000000
deg: 5
c5: 20
c0: 17
skew: 0.97
type: snfs
lss: 1
rlim: 3600000
alim: 3600000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 3600000/3600000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [1800000, 3300001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 613486 x 613734
Total sieving time: 26.85 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 0.70 hours.
Time per square root: 0.09 hours.
Prototype def-par.txt line would be:
snfs,162.000,5,0,0,0,0,0,0,0,0,3600000,3600000,27,27,51,51,2.4,2.4,100000
total time: 27.72 hours.
 --------- CPU info (if available) ----------

Nov 21, 2009 (3rd)

By Jo Yeong Uk / GMP-ECM / Nov 20, 2009

(59·10161+31)/9 = 6(5)1609<162> = 210347 · 322840801 · C148

C148 = P44 · P105

P44 = 16143737774649079582774376407801783420888231<44>

P105 = 597971752607197952577929926186380895991725103128877040652814302508296522632908336217817296076502480481187<105>

GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM]
Input number is 9653499170737935827020930703101546284142908607431751644711794372056984430617103889827634872490523601821211444382589425755902035305126233259825210197 (148 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=5772938245
Step 1 took 4633ms
Step 2 took 4586ms
********** Factor found in step 2: 16143737774649079582774376407801783420888231
Found probable prime factor of 44 digits: 16143737774649079582774376407801783420888231
Probable prime cofactor 597971752607197952577929926186380895991725103128877040652814302508296522632908336217817296076502480481187 has 105 digits

By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 21, 2009

(59·10161+13)/9 = 6(5)1607<162> = 3 · 7 · 53 · 743 · 196771241 · 2740438472617133<16> · C133

C133 = P52 · P81

P52 = 5709310195720236828643845210386126013088462671987029<52>

P81 = 257489903231838133471085108012293074391834736416021232004557239035900683554813379<81>

Number: 65557_161
N=1470089729816550615327746631666522054342149372565640256703912340728756124298045838952847268330437311459786713438678509201299203660991
  ( 133 digits)
SNFS difficulty: 162 digits.
Divisors found:
 r1=5709310195720236828643845210386126013088462671987029
 r2=257489903231838133471085108012293074391834736416021232004557239035900683554813379
Version: 
Total time: 23.22 hours.
Scaled time: 54.90 units (timescale=2.365).
Factorization parameters were as follows:
n: 1470089729816550615327746631666522054342149372565640256703912340728756124298045838952847268330437311459786713438678509201299203660991
m: 100000000000000000000000000000000
deg: 5
c5: 590
c0: 13
skew: 0.47
type: snfs
lss: 1
rlim: 3800000
alim: 3800000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 3800000/3800000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [1900000, 3900001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 9714777
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 739625 x 739873
Total sieving time: 20.93 hours.
Total relation processing time: 0.95 hours.
Matrix solve time: 1.24 hours.
Time per square root: 0.10 hours.
Prototype def-par.txt line would be:
snfs,162,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,51,51,2.4,2.4,100000
total time: 23.22 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346)
Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338)
Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)

Nov 21, 2009 (2nd)

By Dmitry Domanov / GGNFS/msieve, ECMNET, GMP-ECM / Nov 21, 2009

(19·10188+11)/3 = 6(3)1877<189> = 7 · 13 · 43 · C186

C186 = P73 · P113

P73 = 5821078419106027523809386387218682764306133231192700907154676066616935391<73>

P113 = 27804753444740559479686096411255814898532711759314529476640305709597762933252999828353482262529345803167942993039<113>

N=161853650225743248999062952551324644347900161853650225743248999062952551324644347900161853650225743248999062952551324644347900161853650225743248999062952551324644347900161853650225743249
  ( 186 digits)
SNFS difficulty: 190 digits.
Divisors found:
 r1=5821078419106027523809386387218682764306133231192700907154676066616935391 (pp73)
 r2=27804753444740559479686096411255814898532711759314529476640305709597762933252999828353482262529345803167942993039 (pp113)
Version: Msieve-1.40
Total time: 302.13 hours.
Scaled time: 570.42 units (timescale=1.888).
Factorization parameters were as follows:
n: 161853650225743248999062952551324644347900161853650225743248999062952551324644347900161853650225743248999062952551324644347900161853650225743248999062952551324644347900161853650225743249
m: 50000000000000000000000000000000000000
deg: 5
c5: 152
c0: 275
skew: 1.13
type: snfs
lss: 1
rlim: 10500000
alim: 10500000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
Factor base limits: 10500000/10500000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved rational special-q in [5250000, 9950001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1979065 x 1979290
Total sieving time: 295.46 hours.
Total relation processing time: 0.24 hours.
Matrix solve time: 5.00 hours.
Time per square root: 1.43 hours.
Prototype def-par.txt line would be:
snfs,190.000,5,0,0,0,0,0,0,0,0,10500000,10500000,28,28,54,54,2.5,2.5,100000
total time: 302.13 hours.
 --------- CPU info (if available) ----------

(22·10165+17)/3 = 7(3)1649<166> = 862139 · 42698939 · C153

C153 = P39 · P114

P39 = 364142907767587768742722435741327326329<39>

P114 = 547060294841478817301959720522487529530706748367558955882874997756231160054020556062246281597883447113999513409771<114>

Factor=364142907767587768742722435741327326329  Method=ECM  B1=11000000  Sigma=2604005257

Nov 21, 2009

By Sinkiti Sibata / Msieve / Nov 21, 2009

(67·10160+41)/9 = 7(4)1599<161> = 109 · 66347 · 90637257619<11> · 58054843192433<14> · C130

C130 = P61 · P69

P61 = 6458162601207874684709389465413979594157825818758560151613079<61>

P69 = 302921652034106781572164003165353167420092868163923517757663653696611<69>

Number: 74449_160
N=1956317284262773736098062881121294614246555144986523186725985290723465938887825663867140407665727444773244943801461623492925575269
  ( 130 digits)
SNFS difficulty: 161 digits.
Divisors found:
 r1=6458162601207874684709389465413979594157825818758560151613079 (pp61)
 r2=302921652034106781572164003165353167420092868163923517757663653696611 (pp69)
Version: Msieve-1.40
Total time: 27.61 hours.
Scaled time: 91.71 units (timescale=3.322).
Factorization parameters were as follows:
name: 74449_160
n: 1956317284262773736098062881121294614246555144986523186725985290723465938887825663867140407665727444773244943801461623492925575269
m: 100000000000000000000000000000000
deg: 5
c5: 67
c0: 41
skew: 0.91
type: snfs
lss: 1
rlim: 3500000
alim: 3500000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 3500000/3500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [1750000, 3250001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 621450 x 621698
Total sieving time: 26.76 hours.
Total relation processing time: 0.08 hours.
Matrix solve time: 0.72 hours.
Time per square root: 0.05 hours.
Prototype def-par.txt line would be:
snfs,161.000,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000
total time: 27.61 hours.
 --------- CPU info (if available) ----------

Nov 20, 2009 (3rd)

By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 20, 2009

(26·10161-11)/3 = 8(6)1603<162> = 7 · 181 · 17387 · 11596073 · 58262188035421<14> · C134

C134 = P48 · P87

P48 = 456470417364139674264780752174404710974590776491<48>

P87 = 127567620784121598321005285879102169613744974602163293210674456685787644756891735053249<87>

Number: 86663_161
N=58230845101478284843358896477726731596932608490207254663143255682978657099665099256090779442717396787440080924159907391956186142369259
  ( 134 digits)
SNFS difficulty: 162 digits.
Divisors found:
 r1=456470417364139674264780752174404710974590776491
 r2=127567620784121598321005285879102169613744974602163293210674456685787644756891735053249
Version: 
Total time: 16.77 hours.
Scaled time: 39.99 units (timescale=2.385).
Factorization parameters were as follows:
n: 58230845101478284843358896477726731596932608490207254663143255682978657099665099256090779442717396787440080924159907391956186142369259
m: 100000000000000000000000000000000
deg: 5
c5: 260
c0: -11
skew: 0.53
type: snfs
lss: 1
rlim: 3800000
alim: 3800000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 3800000/3800000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [1900000, 3300001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 9344646
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 671327 x 671575
Total sieving time: 15.03 hours.
Total relation processing time: 0.64 hours.
Matrix solve time: 0.94 hours.
Time per square root: 0.16 hours.
Prototype def-par.txt line would be:
snfs,162,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,51,51,2.4,2.4,100000
total time: 16.77 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346)
Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338)
Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)

Nov 20, 2009 (2nd)

By Wataru Sakai / GMP-ECM 6.2.1 / Nov 20, 2009

(67·10181-13)/9 = 7(4)1803<182> = 127 · 15370583931178846189<20> · 2253776873153776657897948451534279<34> · C128

C128 = P41 · P87

P41 = 29200237533398076379310161749061933957963<41>

P87 = 579483271331262398610183787231750323193470397486915683574230974601792989962677800929853<87>

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4221356910
Step 1 took 38433ms
Step 2 took 13993ms
********** Factor found in step 2: 29200237533398076379310161749061933957963
Found probable prime factor of 41 digits: 29200237533398076379310161749061933957963
Probable prime cofactor 579483271331262398610183787231750323193470397486915683574230974601792989962677800929853 has 87 digits

(64·10198+71)/9 = 7(1)1979<199> = 3 · 2179 · C196

C196 = P36 · P160

P36 = 650785158455981940062100473969000731<36>

P160 = 1671557573283360183804878381813370410004043685577428419417647214928170607746446482254417566351134107881259634051566957814751822022316355735422517371501836929077<160>

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=68033887
Step 1 took 75578ms
Step 2 took 22441ms
********** Factor found in step 2: 650785158455981940062100473969000731
Found probable prime factor of 36 digits: 650785158455981940062100473969000731
Probable prime cofactor 1671557573283360183804878381813370410004043685577428419417647214928170607746446482254417566351134107881259634051566957814751822022316355735422517371501836929077 has 160 digits

Nov 20, 2009

By Markus Tervooren / Msieve / Nov 20, 2009

(67·10161+41)/9 = 7(4)1609<162> = 107 · 3701 · 610339 · 33303780809228167275307<23> · C128

C128 = P38 · P91

P38 = 75535187214103326538317201830040895523<38>

P91 = 1224377835729844775852488587301078768602817876340329293496172248138770697175289478200468733<91>

Sieving took ~50 Core2 2,66Ghz-hours.

Msieve v. 1.43
Thu Nov 19 23:37:53 2009
random seeds: 33e3b9eb 433b3587
factoring 92483609042652474194535864343706609135442894008901028868852650839468327428630927857786325232318759223661128228852786657681182359 (128 digits)
searching for 15-digit factors
commencing number field sieve (128-digit input)
R0: -10000000000000000000000000000000000000000
R1:  1
A0:  41
A1:  0
A2:  0
A3:  0
A4:  670
skew 0.49, size 6.343425e-17, alpha -0.256694, combined = 2.982526e-10

commencing relation filtering
estimated available RAM is 8010.2 MB
commencing duplicate removal, pass 1
found 954666 hash collisions in 4340988 relations
added 1374 free relations
commencing duplicate removal, pass 2
found 962823 duplicates and 3379539 unique relations
memory use: 22.6 MB
reading ideals above 100000
commencing singleton removal, initial pass
memory use: 94.1 MB
reading all ideals from disk
memory use: 120.5 MB
keeping 3494492 ideals with weight <= 200, target excess is 20944
commencing in-memory singleton removal
begin with 3379539 relations and 3494492 unique ideals
reduce to 2114129 relations and 1996280 ideals in 11 passes
max relations containing the same ideal: 148
removing 238747 relations and 191970 ideals in 46777 cliques
commencing in-memory singleton removal
begin with 1875382 relations and 1996280 unique ideals
reduce to 1859093 relations and 1787574 ideals in 7 passes
max relations containing the same ideal: 135
removing 178875 relations and 132098 ideals in 46777 cliques
commencing in-memory singleton removal
begin with 1680218 relations and 1787574 unique ideals
reduce to 1669207 relations and 1644169 ideals in 6 passes
max relations containing the same ideal: 128
relations with 0 large ideals: 1163
relations with 1 large ideals: 16
relations with 2 large ideals: 354
relations with 3 large ideals: 4469
relations with 4 large ideals: 29966
relations with 5 large ideals: 168469
relations with 6 large ideals: 284122
relations with 7+ large ideals: 1180648
commencing 2-way merge
reduce to 1229772 relation sets and 1204734 unique ideals
commencing full merge
memory use: 153.3 MB
found 628615 cycles, need 624934
weight of 624934 cycles is about 43940256 (70.31/cycle)
distribution of cycle lengths:
1 relations: 41923
2 relations: 67759
3 relations: 78031
4 relations: 75883
5 relations: 67754
6 relations: 59751
7 relations: 50497
8 relations: 41772
9 relations: 33672
10+ relations: 107892
heaviest cycle: 24 relations
commencing cycle optimization
start with 3747573 relations
pruned 139208 relations
memory use: 109.3 MB
distribution of cycle lengths:
1 relations: 41923
2 relations: 69513
3 relations: 82026
4 relations: 78704
5 relations: 70580
6 relations: 61436
7 relations: 51233
8 relations: 41576
9 relations: 33373
10+ relations: 94570
heaviest cycle: 23 relations
RelProcTime: 129

commencing linear algebra
read 624934 cycles
cycles contain 1653741 unique relations
read 1653741 relations
using 20 quadratic characters above 33554250
building initial matrix
memory use: 212.7 MB
read 624934 cycles
matrix is 624757 x 624934 (186.0 MB) with weight 56594097 (90.56/col)
sparse part has weight 41878845 (67.01/col)
filtering completed in 2 passes
matrix is 624708 x 624885 (186.0 MB) with weight 56592419 (90.56/col)
sparse part has weight 41878378 (67.02/col)
read 624885 cycles
matrix is 624708 x 624885 (186.0 MB) with weight 56592419 (90.56/col)
sparse part has weight 41878378 (67.02/col)
saving the first 48 matrix rows for later
matrix is 624660 x 624885 (177.1 MB) with weight 44687252 (71.51/col)
sparse part has weight 40186863 (64.31/col)
matrix includes 64 packed rows
using block size 65536 for processor cache size 4096 kB
commencing Lanczos iteration (4 threads)
memory use: 186.9 MB
linear algebra at 0.2%, ETA 0h27m624885 dimensions (0.2%, ETA 0h27m)
linear algebra completed 624534 of 624885 dimensions (99.9%, ETA 0h 0m)
lanczos halted after 9879 iterations (dim = 624658)
recovered 37 nontrivial dependencies
BLanczosTime: 1716

commencing square root phase
reading relations for dependency 1
read 312907 cycles
cycles contain 828596 unique relations
read 828596 relations
multiplying 828596 relations
multiply complete, coefficients have about 25.82 million bits
initial square root is modulo 26105269
reading relations for dependency 2
read 312740 cycles
cycles contain 828130 unique relations
read 828130 relations
multiplying 828130 relations
multiply complete, coefficients have about 25.81 million bits
initial square root is modulo 25855117
reading relations for dependency 3
read 312584 cycles
cycles contain 827416 unique relations
read 827416 relations
multiplying 827416 relations
multiply complete, coefficients have about 25.79 million bits
initial square root is modulo 25473181
sqrtTime: 243
prp38 factor: 75535187214103326538317201830040895523
prp91 factor: 1224377835729844775852488587301078768602817876340329293496172248138770697175289478200468733
elapsed time 00:34:49

Nov 19, 2009 (5th)

By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 19, 2009

(67·10160-13)/9 = 7(4)1593<161> = 223 · 2790386777<10> · 1084302893662699352989<22> · C129

C129 = P51 · P78

P51 = 363065558163129755586591876057933957697079245966993<51>

P78 = 303897660134854542414694170874725162056604936336714237480477623856561460344929<78>

Number: 74443_160
N=110334773601330070711761593600846340762094802874387964650626689471684650737015293850889407842085069929569671853321483121928928497
  ( 129 digits)
SNFS difficulty: 161 digits.
Divisors found:
 r1=363065558163129755586591876057933957697079245966993
 r2=303897660134854542414694170874725162056604936336714237480477623856561460344929
Version: 
Total time: 18.57 hours.
Scaled time: 44.30 units (timescale=2.386).
Factorization parameters were as follows:
n: 110334773601330070711761593600846340762094802874387964650626689471684650737015293850889407842085069929569671853321483121928928497
m: 100000000000000000000000000000000
deg: 5
c5: 67
c0: -13
skew: 0.72
type: snfs
lss: 1
rlim: 3400000
alim: 3400000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 3400000/3400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [1700000, 3300001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 9630508
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 632716 x 632964
Total sieving time: 16.59 hours.
Total relation processing time: 0.74 hours.
Matrix solve time: 0.86 hours.
Time per square root: 0.38 hours.
Prototype def-par.txt line would be:
snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000
total time: 18.57 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346)
Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338)
Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)

Nov 19, 2009 (4th)

By Dmitry Domanov / GGNFS/msieve / Nov 19, 2009

(65·10167+61)/9 = 7(2)1669<168> = 3 · 3163 · 1283549 · 1810364976295258400527<22> · 6731034634722746219253576990142331<34> · C103

C103 = P41 · P63

P41 = 43887433213139645955484994448382146047239<41>

P63 = 110879128047013805011879885468739184560992940355555347685320723<63>

N=4866200326894477313327351434330702713602820686731038277709376544750901688090575230106979546318423633797
  ( 103 digits)
Divisors found:
 r1=43887433213139645955484994448382146047239 (pp41)
 r2=110879128047013805011879885468739184560992940355555347685320723 (pp63)
Version: Msieve-1.40
Total time: 6.11 hours.
Scaled time: 11.18 units (timescale=1.829).
Factorization parameters were as follows:
name: gg103
n: 4866200326894477313327351434330702713602820686731038277709376544750901688090575230106979546318423633797
skew: 3105.38
# norm 1.91e+014
c5: 1392300
c4: 5986291355
c3: -32719573776586
c2: -35617074683990928
c1: 196103299995263016226
c0: -71023059451757055174092
# alpha -6.16
Y1: 84365831159
Y0: -20355880109292170055
# Murphy_E 2.38e-009
# M 1588861051919919182070347774998276303263568046023222671646578452552654468614274410016547985992962233523
type: gnfs
rlim: 2300000
alim: 2300000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 2300000/2300000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved algebraic special-q in [1150000, 1850001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 220234 x 220457
Polynomial selection time: 0.56 hours.
Total sieving time: 5.26 hours.
Total relation processing time: 0.04 hours.
Matrix solve time: 0.14 hours.
Time per square root: 0.11 hours.
Prototype def-par.txt line would be:
gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000
total time: 6.11 hours.
 --------- CPU info (if available) ----------

Nov 19, 2009 (3rd)

By Wataru Sakai / GMP-ECM 6.2.1 / Nov 19, 2009

(59·10170+13)/9 = 6(5)1697<171> = 3 · 31 · 73 · 229 · 2371 · 136027 · C157

C157 = P33 · C124

P33 = 233155008560892980603136314014073<33>

C124 = [5607467793672916357063206022743587336819544589797022881608229298842144002627748832647796629860992889557912488547520943964517<124>]

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3871599622
Step 1 took 52361ms
Step 2 took 17180ms
********** Factor found in step 2: 233155008560892980603136314014073
Found probable prime factor of 33 digits: 233155008560892980603136314014073
Composite cofactor 5607467793672916357063206022743587336819544589797022881608229298842144002627748832647796629860992889557912488547520943964517 has 124 digits

(59·10171+31)/9 = 6(5)1709<172> = 7 · 1319207906438579<16> · C156

C156 = P37 · P120

P37 = 2356463302077488153069650734241665823<37>

P120 = 301257269819596050498849046453150412524164514988049351771398639204280300958087733288868202951958003834996085783952664261<120>

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2957564567
Step 1 took 52204ms
Step 2 took 17141ms
********** Factor found in step 2: 2356463302077488153069650734241665823
Found probable prime factor of 37 digits: 2356463302077488153069650734241665823
Probable prime cofactor 301257269819596050498849046453150412524164514988049351771398639204280300958087733288868202951958003834996085783952664261 has 120 digits

(22·10172+17)/3 = 7(3)1719<173> = 7 · 241 · 3371 · 14678148955213<14> · C153

C153 = P34 · C120

P34 = 4675036528889963296972072581793651<34>

C120 = [187919259193893023850805073342750434538681070849906401604520432741490252970095903458623817348949668880171189653291036289<120>]

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2243017104
Step 1 took 47067ms
********** Factor found in step 1: 4675036528889963296972072581793651
Found probable prime factor of 34 digits: 4675036528889963296972072581793651
Composite cofactor 187919259193893023850805073342750434538681070849906401604520432741490252970095903458623817348949668880171189653291036289 has 120 digits

Nov 19, 2009 (2nd)

By Sinkiti Sibata / Msieve / Nov 19, 2009

(65·10160+7)/9 = 7(2)1593<161> = 89 · 691 · 1063 · 30689 · 80147 · 345231714617358424861<21> · C124

C124 = P47 · P77

P47 = 20357986503829909242696372348001111417687352381<47>

P77 = 63907821471927606482939461715126003027541213468536152840468146898123845327793<77>

Number: 72223_160
N=1301034567014673497892919265231793046878598035690062464234773174782366433468283011049257436954506807102849869231615244025133
  ( 124 digits)
SNFS difficulty: 161 digits.
Divisors found:
 r1=20357986503829909242696372348001111417687352381 (pp47)
 r2=63907821471927606482939461715126003027541213468536152840468146898123845327793 (pp77)
Version: Msieve-1.40
Total time: 26.08 hours.
Scaled time: 86.65 units (timescale=3.322).
Factorization parameters were as follows:
name: 72223_160
n: 1301034567014673497892919265231793046878598035690062464234773174782366433468283011049257436954506807102849869231615244025133
m: 100000000000000000000000000000000
deg: 5
c5: 65
c0: 7
skew: 0.64
type: snfs
lss: 1
rlim: 3500000
alim: 3500000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 3500000/3500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [1750000, 3150001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 611722 x 611970
Total sieving time: 25.21 hours.
Total relation processing time: 0.08 hours.
Matrix solve time: 0.69 hours.
Time per square root: 0.10 hours.
Prototype def-par.txt line would be:
snfs,161.000,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000
total time: 26.08 hours.
 --------- CPU info (if available) ----------

Nov 19, 2009

By Robert Backstrom / Msieve / Nov 19, 2009

(10229-7)/3 = (3)2281<229> = 3814997 · C222

C222 = P101 · P122

P101 = 32956293259679429768656597360038775832848835783382963927693572571464416807016576796602091743934862861<101>

P122 = 26512225547078900430922693339363341417936176675074791272188321866779709375923927312831198488509643069134973196513414342243<122>

Sieving ~ 220 CPU days + 161 hrs Lanczos with Msieve 1.42

Thu Nov 12 23:11:10 2009  
Thu Nov 12 23:11:10 2009  
Thu Nov 12 23:11:10 2009  Msieve v. 1.42
Thu Nov 12 23:11:10 2009  random seeds: a862287b 37faa132
Thu Nov 12 23:11:10 2009  factoring 873744680096297148682773101350625789046055169462343832336783838449501620403196472587877089636855109803057075361614526389754260182467596523230118748018237847456586029643885259499111882219916118763221395281132156416724137223 (222 digits)
Thu Nov 12 23:11:12 2009  no P-1/P+1/ECM available, skipping
Thu Nov 12 23:11:12 2009  commencing number field sieve (222-digit input)
Thu Nov 12 23:11:12 2009  R0: -100000000000000000000000000000000000000
Thu Nov 12 23:11:12 2009  R1:  1
Thu Nov 12 23:11:12 2009  A0: -7
Thu Nov 12 23:11:12 2009  A1:  0
Thu Nov 12 23:11:12 2009  A2:  0
Thu Nov 12 23:11:12 2009  A3:  0
Thu Nov 12 23:11:12 2009  A4:  0
Thu Nov 12 23:11:12 2009  A5:  0
Thu Nov 12 23:11:12 2009  A6:  10
Thu Nov 12 23:11:12 2009  skew 1.00, size 2.833444e-11, alpha 1.102701, combined = 1.358953e-12
Thu Nov 12 23:11:12 2009  
Thu Nov 12 23:11:12 2009  commencing relation filtering
Thu Nov 12 23:11:12 2009  estimated available RAM is 7923.9 MB
Thu Nov 12 23:11:12 2009  commencing duplicate removal, pass 1
Thu Nov 12 23:12:12 2009  error -6 reading relation 9929150
Thu Nov 12 23:13:31 2009  error -11 reading relation 23649746
Thu Nov 12 23:14:21 2009  error -6 reading relation 32916487
Thu Nov 12 23:15:00 2009  error -15 reading relation 40211731
Thu Nov 12 23:15:15 2009  error -11 reading relation 42932952
Thu Nov 12 23:16:49 2009  error -11 reading relation 60575181
Thu Nov 12 23:17:56 2009  error -11 reading relation 69579752
Thu Nov 12 23:18:42 2009  error -6 reading relation 77528636
Thu Nov 12 23:19:27 2009  error -6 reading relation 85390839
Thu Nov 12 23:19:48 2009  found 13696326 hash collisions in 89183073 relations
Thu Nov 12 23:20:04 2009  commencing duplicate removal, pass 2
Thu Nov 12 23:21:33 2009  found 12651851 duplicates and 76531222 unique relations
Thu Nov 12 23:21:33 2009  memory use: 426.4 MB
Thu Nov 12 23:21:33 2009  reading ideals above 91291648
Thu Nov 12 23:21:33 2009  commencing singleton removal, initial pass
Thu Nov 12 23:30:15 2009  memory use: 1193.5 MB
Thu Nov 12 23:30:22 2009  reading all ideals from disk
Thu Nov 12 23:30:27 2009  memory use: 1232.8 MB
Thu Nov 12 23:30:34 2009  commencing in-memory singleton removal
Thu Nov 12 23:30:42 2009  begin with 76531222 relations and 70805144 unique ideals
Thu Nov 12 23:31:54 2009  reduce to 35000016 relations and 23227703 ideals in 19 passes
Thu Nov 12 23:31:54 2009  max relations containing the same ideal: 28
Thu Nov 12 23:31:58 2009  reading ideals above 720000
Thu Nov 12 23:31:58 2009  commencing singleton removal, initial pass
Thu Nov 12 23:37:32 2009  memory use: 596.8 MB
Thu Nov 12 23:37:32 2009  reading all ideals from disk
Thu Nov 12 23:37:41 2009  memory use: 1301.4 MB
Thu Nov 12 23:37:50 2009  keeping 33583094 ideals with weight <= 200, target excess is 181953
Thu Nov 12 23:37:59 2009  commencing in-memory singleton removal
Thu Nov 12 23:38:07 2009  begin with 35000019 relations and 33583094 unique ideals
Thu Nov 12 23:40:13 2009  reduce to 34608397 relations and 33189936 ideals in 15 passes
Thu Nov 12 23:40:13 2009  max relations containing the same ideal: 200
Thu Nov 12 23:40:50 2009  removing 3807449 relations and 3407449 ideals in 400000 cliques
Thu Nov 12 23:40:51 2009  commencing in-memory singleton removal
Thu Nov 12 23:40:59 2009  begin with 30800948 relations and 33189936 unique ideals
Thu Nov 12 23:42:28 2009  reduce to 30471081 relations and 29447150 ideals in 12 passes
Thu Nov 12 23:42:28 2009  max relations containing the same ideal: 190
Thu Nov 12 23:43:00 2009  removing 2782167 relations and 2382167 ideals in 400000 cliques
Thu Nov 12 23:43:02 2009  commencing in-memory singleton removal
Thu Nov 12 23:43:09 2009  begin with 27688914 relations and 29447150 unique ideals
Thu Nov 12 23:44:02 2009  reduce to 27489440 relations and 26862722 ideals in 8 passes
Thu Nov 12 23:44:02 2009  max relations containing the same ideal: 181
Thu Nov 12 23:44:31 2009  removing 2450585 relations and 2050585 ideals in 400000 cliques
Thu Nov 12 23:44:33 2009  commencing in-memory singleton removal
Thu Nov 12 23:44:39 2009  begin with 25038855 relations and 26862722 unique ideals
Thu Nov 12 23:45:51 2009  reduce to 24871942 relations and 24642751 ideals in 12 passes
Thu Nov 12 23:45:51 2009  max relations containing the same ideal: 166
Thu Nov 12 23:46:17 2009  removing 176554 relations and 158429 ideals in 18125 cliques
Thu Nov 12 23:46:18 2009  commencing in-memory singleton removal
Thu Nov 12 23:46:24 2009  begin with 24695388 relations and 24642751 unique ideals
Thu Nov 12 23:46:53 2009  reduce to 24694507 relations and 24483440 ideals in 5 passes
Thu Nov 12 23:46:53 2009  max relations containing the same ideal: 166
Thu Nov 12 23:47:06 2009  relations with 0 large ideals: 6717
Thu Nov 12 23:47:06 2009  relations with 1 large ideals: 1179
Thu Nov 12 23:47:06 2009  relations with 2 large ideals: 8333
Thu Nov 12 23:47:06 2009  relations with 3 large ideals: 89276
Thu Nov 12 23:47:06 2009  relations with 4 large ideals: 546118
Thu Nov 12 23:47:06 2009  relations with 5 large ideals: 2010219
Thu Nov 12 23:47:06 2009  relations with 6 large ideals: 4602823
Thu Nov 12 23:47:06 2009  relations with 7+ large ideals: 17429842
Thu Nov 12 23:47:06 2009  commencing 2-way merge
Thu Nov 12 23:47:41 2009  reduce to 15238596 relation sets and 15027528 unique ideals
Thu Nov 12 23:47:41 2009  commencing full merge
Thu Nov 12 23:54:19 2009  memory use: 1908.0 MB
Thu Nov 12 23:54:22 2009  found 8200658 cycles, need 8173728
Thu Nov 12 23:54:26 2009  weight of 8173728 cycles is about 572210818 (70.01/cycle)
Thu Nov 12 23:54:26 2009  distribution of cycle lengths:
Thu Nov 12 23:54:26 2009  1 relations: 1219496
Thu Nov 12 23:54:26 2009  2 relations: 1113256
Thu Nov 12 23:54:26 2009  3 relations: 1026751
Thu Nov 12 23:54:26 2009  4 relations: 875887
Thu Nov 12 23:54:26 2009  5 relations: 745030
Thu Nov 12 23:54:26 2009  6 relations: 624485
Thu Nov 12 23:54:26 2009  7 relations: 527618
Thu Nov 12 23:54:26 2009  8 relations: 437123
Thu Nov 12 23:54:26 2009  9 relations: 358263
Thu Nov 12 23:54:26 2009  10+ relations: 1245819
Thu Nov 12 23:54:26 2009  heaviest cycle: 24 relations
Thu Nov 12 23:54:29 2009  commencing cycle optimization
Thu Nov 12 23:54:48 2009  start with 43758680 relations
Thu Nov 12 23:56:16 2009  pruned 944312 relations
Thu Nov 12 23:56:16 2009  memory use: 1460.4 MB
Thu Nov 12 23:56:16 2009  distribution of cycle lengths:
Thu Nov 12 23:56:16 2009  1 relations: 1219496
Thu Nov 12 23:56:16 2009  2 relations: 1134660
Thu Nov 12 23:56:16 2009  3 relations: 1058293
Thu Nov 12 23:56:16 2009  4 relations: 890629
Thu Nov 12 23:56:16 2009  5 relations: 757989
Thu Nov 12 23:56:16 2009  6 relations: 628845
Thu Nov 12 23:56:16 2009  7 relations: 528837
Thu Nov 12 23:56:16 2009  8 relations: 434588
Thu Nov 12 23:56:16 2009  9 relations: 353251
Thu Nov 12 23:56:16 2009  10+ relations: 1167140
Thu Nov 12 23:56:16 2009  heaviest cycle: 24 relations
Thu Nov 12 23:56:34 2009  RelProcTime: 2722
Thu Nov 12 23:56:34 2009  
Thu Nov 12 23:56:34 2009  commencing linear algebra
Thu Nov 12 23:56:41 2009  read 8173728 cycles
Thu Nov 12 23:56:58 2009  cycles contain 24518900 unique relations
Thu Nov 12 23:59:32 2009  read 24518900 relations
Fri Nov 13 00:00:18 2009  using 20 quadratic characters above 1073741312
Fri Nov 13 00:02:20 2009  building initial matrix
Fri Nov 13 00:07:17 2009  memory use: 3126.0 MB
Fri Nov 13 00:07:22 2009  read 8173728 cycles
Fri Nov 13 00:07:31 2009  matrix is 8173551 x 8173728 (2459.0 MB) with weight 723523108 (88.52/col)
Fri Nov 13 00:07:31 2009  sparse part has weight 554695601 (67.86/col)
Fri Nov 13 00:09:44 2009  filtering completed in 2 passes
Fri Nov 13 00:09:46 2009  matrix is 8170702 x 8170878 (2458.8 MB) with weight 723445965 (88.54/col)
Fri Nov 13 00:09:46 2009  sparse part has weight 554678395 (67.88/col)
Fri Nov 13 00:10:31 2009  read 8170878 cycles
Fri Nov 13 00:10:36 2009  matrix is 8170702 x 8170878 (2458.8 MB) with weight 723445965 (88.54/col)
Fri Nov 13 00:10:36 2009  sparse part has weight 554678395 (67.88/col)
Fri Nov 13 00:10:36 2009  saving the first 48 matrix rows for later
Fri Nov 13 00:10:39 2009  matrix is 8170654 x 8170878 (2351.5 MB) with weight 572916754 (70.12/col)
Fri Nov 13 00:10:39 2009  sparse part has weight 534727936 (65.44/col)
Fri Nov 13 00:10:39 2009  matrix includes 64 packed rows
Fri Nov 13 00:10:39 2009  using block size 65536 for processor cache size 6144 kB
Fri Nov 13 00:11:12 2009  commencing Lanczos iteration (4 threads)
Fri Nov 13 00:11:12 2009  memory use: 2546.0 MB
Thu Nov 19 17:11:02 2009  lanczos halted after 129209 iterations (dim = 8170651)
Thu Nov 19 17:11:17 2009  recovered 34 nontrivial dependencies
Thu Nov 19 17:11:17 2009  BLanczosTime: 580483
Thu Nov 19 17:11:17 2009  
Thu Nov 19 17:11:17 2009  commencing square root phase
Thu Nov 19 17:11:17 2009  reading relations for dependency 1
Thu Nov 19 17:11:19 2009  read 4087359 cycles
Thu Nov 19 17:11:28 2009  cycles contain 14942110 unique relations
Thu Nov 19 17:13:16 2009  read 14942110 relations
Thu Nov 19 17:14:47 2009  multiplying 12262068 relations
Thu Nov 19 17:52:42 2009  multiply complete, coefficients have about 340.41 million bits
Thu Nov 19 17:52:45 2009  initial square root is modulo 1283017
Thu Nov 19 18:37:22 2009  sqrtTime: 5165
Thu Nov 19 18:37:22 2009  prp101 factor: 32956293259679429768656597360038775832848835783382963927693572571464416807016576796602091743934862861
Thu Nov 19 18:37:22 2009  prp122 factor: 26512225547078900430922693339363341417936176675074791272188321866779709375923927312831198488509643069134973196513414342243
Thu Nov 19 18:37:22 2009  elapsed time 163:26:12

C222 is the fourth largest composite number factored by snfs in our tables so far, and P101 is the third largest prime factor found by nfs in our tables so far. Congratulations!

Nov 18, 2009 (4th)

By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Nov 18, 2009

(67·10160-31)/9 = 7(4)1591<161> = 61982719611999597353<20> · 143698186760416432999<21> · C121

C121 = P58 · P64

P58 = 5184273162643458694917399313243984064834873060204015700713<58>

P64 = 1612213304015942235676505728696547693838364040958693307596122831<64>

Number: 74441_160
N=8358154164466588821090554087275649937241803372935761744857267124951914706311950912111526869642631543490919504968482278503
  ( 121 digits)
SNFS difficulty: 161 digits.
Divisors found:
 r1=5184273162643458694917399313243984064834873060204015700713
 r2=1612213304015942235676505728696547693838364040958693307596122831
Version: 
Total time: 17.49 hours.
Scaled time: 41.84 units (timescale=2.392).
Factorization parameters were as follows:
n: 8358154164466588821090554087275649937241803372935761744857267124951914706311950912111526869642631543490919504968482278503
m: 100000000000000000000000000000000
deg: 5
c5: 67
c0: -31
skew: 0.86
type: snfs
lss: 1
rlim: 3400000
alim: 3400000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 3400000/3400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [1700000, 3200001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 9409654
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 652517 x 652764
Total sieving time: 15.59 hours.
Total relation processing time: 0.68 hours.
Matrix solve time: 0.91 hours.
Time per square root: 0.30 hours.
Prototype def-par.txt line would be:
snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000
total time: 17.49 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346)
Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338)
Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)

(65·10162+61)/9 = 7(2)1619<163> = 7 · 433 · 40118289197111849803<20> · C140

C140 = P35 · P106

P35 = 13579168028242955813092310115106577<35>

P106 = 4373904977664475284540946690165627879231370447085692210555464579063477417774709742461792175457447644986089<106>

GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM]
Input number is 59393990631274162535471601057877005972838099309322799817876122604451444243295438344356023518048699407876740752099950221084230446649917407353 (140 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4563230118
Step 1 took 3998ms
********** Factor found in step 1: 13579168028242955813092310115106577
Found probable prime factor of 35 digits: 13579168028242955813092310115106577
Probable prime cofactor 4373904977664475284540946690165627879231370447085692210555464579063477417774709742461792175457447644986089 has 106 digits

Nov 18, 2009 (3rd)

By Sinkiti Sibata / Msieve / Nov 18, 2009

(67·10158-13)/9 = 7(4)1573<159> = 137 · 367 · 27749 · 723919956530258273<18> · C132

C132 = P63 · P70

P63 = 323406167861964574204330095340435316519039701961176025430412333<63>

P70 = 2279079514444156964263123471753688115851723190657786980680661703364237<70>

Number: 74443_158
N=737068372019091742604361880412597109475278063530233380153041578836135503206432728522468364755483999138828375954292978546680195934921
  ( 132 digits)
SNFS difficulty: 161 digits.
Divisors found:
 r1=323406167861964574204330095340435316519039701961176025430412333 (pp63)
 r2=2279079514444156964263123471753688115851723190657786980680661703364237 (pp70)
Version: Msieve-1.40
Total time: 27.12 hours.
Scaled time: 89.14 units (timescale=3.287).
Factorization parameters were as follows:
name: 74443_158
n: 737068372019091742604361880412597109475278063530233380153041578836135503206432728522468364755483999138828375954292978546680195934921
m: 50000000000000000000000000000000
deg: 5
c5: 536
c0: -325
skew: 0.90
type: snfs
lss: 1
rlim: 3400000
alim: 3400000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 3400000/3400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [1700000, 3200001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 587928 x 588176
Total sieving time: 26.34 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 0.64 hours.
Time per square root: 0.05 hours.
Prototype def-par.txt line would be:
snfs,161.000,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000
total time: 27.12 hours.
 --------- CPU info (if available) ----------

Nov 18, 2009 (2nd)

By Wataru Sakai / GMP-ECM 6.2.1 / Nov 18, 2009

(65·10167+61)/9 = 7(2)1669<168> = 3 · 3163 · 1283549 · 1810364976295258400527<22> · C137

C137 = P34 · C103

P34 = 6731034634722746219253576990142331<34>

C103 = [4866200326894477313327351434330702713602820686731038277709376544750901688090575230106979546318423633797<103>]

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2647962607
Step 1 took 42548ms
Step 2 took 14762ms
********** Factor found in step 2: 6731034634722746219253576990142331
Found probable prime factor of 34 digits: 6731034634722746219253576990142331
Composite cofactor 4866200326894477313327351434330702713602820686731038277709376544750901688090575230106979546318423633797 has 103 digits

Nov 18, 2009

By Erik Branger / GGNFS, Msieve / Nov 18, 2009

(59·10172-41)/9 = 6(5)1711<173> = 42787 · 31693768213<11> · 2536830201015107<16> · 139446318301636885367<21> · C123

C123 = P58 · P65

P58 = 6709643923662083287600130339490360747447730333693040348921<58>

P65 = 20366943698391295213823441988462062034872745975969857861877209429<65>

Number: 65551_172
N=136654940029478911849727109316279734444197648667253976171378912414680437926200903241898447268360383419731066103731951176109
  ( 123 digits)
Divisors found:
 r1=6709643923662083287600130339490360747447730333693040348921 (pp58)
 r2=20366943698391295213823441988462062034872745975969857861877209429 (pp65)
Version: Msieve v. 1.43
Total time: 60.19 hours.
Scaled time: 58.44 units (timescale=0.971).
Factorization parameters were as follows:
n: 136654940029478911849727109316279734444197648667253976171378912414680437926200903241898447268360383419731066103731951176109
skew: 772856.50
#skew 772856.50, size 9.317641e-012, alpha -7.085631, combined = 2.065199e-010
c5: 600
c4: -431270722
c3: 325013098061919
c2: -1039884277173083768092
c1: -378596922670397322214778260
c0: -1308313376079945581025641373600
Y1: 9213761994587
Y0: -743867510048013670888093
type: gnfs
rlim: 6000000
alim: 6000000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.5
alambda: 2.5
Factor base limits: 6000000/6000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved algebraic special-q in [3000000, 5400001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 880216 x 880442
Total sieving time: 57.70 hours.
Total relation processing time: 0.25 hours.
Matrix solve time: 1.86 hours.
Time per square root: 0.37 hours.
Prototype def-par.txt line would be:
gnfs,122,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,6000000,6000000,27,27,52,52,2.5,2.5,100000
total time: 60.19 hours.
 --------- CPU info (if available) ----------

Nov 17, 2009 (4th)

By Sinkiti Sibata / Msieve / Nov 17, 2009

(67·10176+41)/9 = 7(4)1759<177> = 7 · C177

C177 = P36 · P42 · P43 · P57

P36 = 381496638149806557062385644326745051<36>

P42 = 803770627877673149683896774769690484334047<42>

P43 = 2540492572298568949029546317256747678065197<43>

P57 = 136519118946285151795581433335283513926057235634807181623<57>

Number: 74449_176
N=106349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349207
  ( 177 digits)
SNFS difficulty: 177 digits.
Divisors found:
 r1=381496638149806557062385644326745051 (pp36)
 r2=803770627877673149683896774769690484334047 (pp42)
 r3=2540492572298568949029546317256747678065197 (pp43)
 r4=136519118946285151795581433335283513926057235634807181623 (pp57)
Version: Msieve-1.40
Total time: 151.29 hours.
Scaled time: 507.89 units (timescale=3.357).
Factorization parameters were as follows:
name: 74449_176
n: 106349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349207
m: 100000000000000000000000000000000000
deg: 5
c5: 670
c0: 41
skew: 0.57
type: snfs
lss: 1
rlim: 6400000
alim: 6400000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 6400000/6400000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3200000, 8900001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1407232 x 1407479
Total sieving time: 146.77 hours.
Total relation processing time: 0.17 hours.
Matrix solve time: 3.89 hours.
Time per square root: 0.46 hours.
Prototype def-par.txt line would be:
snfs,177.000,5,0,0,0,0,0,0,0,0,6400000,6400000,28,28,53,53,2.5,2.5,100000
total time: 151.29 hours.
 --------- CPU info (if available) ----------

(62·10159-71)/9 = 6(8)1581<160> = 7 · 367 · 397 · 1427 · 1295003 · 27044153094400533691<20> · C126

C126 = P48 · P78

P48 = 637642494412674002793864923763006295921649455939<48>

P78 = 211957692852734056509800472053686387750176129582452776229614596712235602760093<78>

Number: 68881_159
N=135153231980572748044136445861801829429050962561946223951226838695412239454479728772981461313692290146394175213660440191042327
  ( 126 digits)
SNFS difficulty: 161 digits.
Divisors found:
 r1=637642494412674002793864923763006295921649455939 (pp48)
 r2=211957692852734056509800472053686387750176129582452776229614596712235602760093 (pp78)
Version: Msieve v. 1.42
Total time: 1.59 hours.
Scaled time: 1.08 units (timescale=0.681).
Factorization parameters were as follows:
name: 68881_159
n: 135153231980572748044136445861801829429050962561946223951226838695412239454479728772981461313692290146394175213660440191042327
m: 100000000000000000000000000000000
deg: 5
c5: 31
c0: -355
skew: 1.63
type: snfs
lss: 1
rlim: 3400000
alim: 3400000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 3400000/3400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [1700000, 3200001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 652571 x 652797
Total sieving time: 0.00 hours.
Total relation processing time: 0.10 hours.
Matrix solve time: 1.37 hours.
Time per square root: 0.11 hours.
Prototype def-par.txt line would be:
snfs,161.000,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000
total time: 1.59 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
CPU1: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.19 BogoMIPS (lpj=1860598)
Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860574)
Total of 2 processors activated (7442.34 BogoMIPS).

Total time: 27.7 hours

Nov 17, 2009 (3rd)

By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 17, 2009

(59·10159+31)/9 = 6(5)1589<160> = 7 · 41 · 118759055073185934621037<24> · C135

C135 = P55 · P80

P55 = 2549878433376721403304445956812713905944758972355130839<55>

P80 = 75429529077254560793474090742639833438562153315193101308443515089992511037341899<80>

Number: 65559_159
N=192336129433853713462743799811065807296497118520268229199178231611199978210902456189888686092410750956991535069761582060175816921723261
  ( 135 digits)
SNFS difficulty: 161 digits.
Divisors found:
 r1=2549878433376721403304445956812713905944758972355130839
 r2=75429529077254560793474090742639833438562153315193101308443515089992511037341899
Version: 
Total time: 17.49 hours.
Scaled time: 41.79 units (timescale=2.390).
Factorization parameters were as follows:
n: 192336129433853713462743799811065807296497118520268229199178231611199978210902456189888686092410750956991535069761582060175816921723261
m: 100000000000000000000000000000000
deg: 5
c5: 59
c0: 310
skew: 1.39
type: snfs
lss: 1
rlim: 3600000
alim: 3600000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 3600000/3600000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [1800000, 3300001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 9616962
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 621680 x 621928
Total sieving time: 15.89 hours.
Total relation processing time: 0.71 hours.
Matrix solve time: 0.80 hours.
Time per square root: 0.08 hours.
Prototype def-par.txt line would be:
snfs,161,5,0,0,0,0,0,0,0,0,3600000,3600000,27,27,51,51,2.4,2.4,100000
total time: 17.49 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792)
Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346)
Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672338)
Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672382)

Nov 17, 2009 (2nd)

By Ignacio Santos / GGNFS, Msieve / Nov 17, 2009

(64·10178+71)/9 = 7(1)1779<179> = 229 · C177

C177 = P38 · P139

P38 = 33350205132654546757222414370710831411<38>

P139 = 9311153207174220903648886531701264110925845510393319781488890048252156953150920948299831365494816188137632384373019136801433203324125922001<139>

Number: 71119_178
N=310528869480834546336729742843279961183891314895681707908782144590004852013585638039786511402231926249393498301795245026686074721009218825812712275594371664240659873847646773411
  ( 177 digits)
SNFS difficulty: 180 digits.
Divisors found:
 r1=33350205132654546757222414370710831411 (pp38)
 r2=9311153207174220903648886531701264110925845510393319781488890048252156953150920948299831365494816188137632384373019136801433203324125922001 (pp139)
Version: Msieve v. 1.43
Total time: 134.74 hours.
Scaled time: 234.99 units (timescale=1.744).
Factorization parameters were as follows:
n: 310528869480834546336729742843279961183891314895681707908782144590004852013585638039786511402231926249393498301795245026686074721009218825812712275594371664240659873847646773411
m: 400000000000000000000000000000000000
deg: 5
c5: 125
c0: 142
skew: 1.03
type: snfs
lss: 1
rlim: 7000000
alim: 7000000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 7000000/7000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3500000, 10100001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1578565 x 1578790
Total sieving time: 130.38 hours.
Total relation processing time: 0.20 hours.
Matrix solve time: 3.56 hours.
Time per square root: 0.61 hours.
Prototype def-par.txt line would be:
snfs,180.000,5,0,0,0,0,0,0,0,0,7000000,7000000,28,28,53,53,2.5,2.5,100000
total time: 134.74 hours.

Nov 17, 2009

By Dmitry Domanov / GGNFS/msieve, ECMNET, GMP-ECM / Nov 17, 2009

(59·10164+13)/9 = 6(5)1637<165> = 32 · 89 · 967 · C159

C159 = P48 · P112

P48 = 172494834689383932407753106094143525376103225653<48>

P112 = 4906529533010920434450031087476390453047270898213110900861533572593100963811674429717024242278907331943447184807<112>

N=846351000695298864469510778997240465389766870465118647651598319519880856730993646199173932733456957959163707665773981534916353983006706399259916257154714253971
  ( 159 digits)
SNFS difficulty: 166 digits.
Divisors found:
 r1=172494834689383932407753106094143525376103225653 (pp48)
 r2=4906529533010920434450031087476390453047270898213110900861533572593100963811674429717024242278907331943447184807 (pp112)
Version: Msieve-1.40
Total time: 42.70 hours.
Scaled time: 78.56 units (timescale=1.840).
Factorization parameters were as follows:
n: 846351000695298864469510778997240465389766870465118647651598319519880856730993646199173932733456957959163707665773981534916353983006706399259916257154714253971
m: 1000000000000000000000000000000000
deg: 5
c5: 59
c0: 130
skew: 1.17
type: snfs
lss: 1
rlim: 4200000
alim: 4200000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4Factor base limits: 4200000/4200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [2100000, 4500001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 705092 x 705317
Total sieving time: 41.83 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 0.64 hours.
Time per square root: 0.14 hours.
Prototype def-par.txt line would be:
snfs,166.000,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000
total time: 42.70 hours.
 --------- CPU info (if available) ----------

(62·10190-71)/9 = 6(8)1891<191> = 17 · C190

C190 = P39 · C152

P39 = 159056495352762286480580492048359527989<39>

C152 = [25477033004606382089474543221740888076315860678491961319226765661507788975891994600263548413995024764740782104709424866797319890147044298005667883592637<152>]

Factor=159056495352762286480580492048359527989  Method=ECM  B1=11000000  Sigma=3757089473

Nov 16, 2009 (3rd)

By Wataru Sakai / Msieve / Nov 16, 2009

(55·10189+17)/9 = 6(1)1883<190> = 19 · C189

C189 = P72 · P117

P72 = 743141132482156367337598193227260139629402238122971076355782741496332829<72>

P117 = 432807999506483598225778604308585057267632076708114307439969977345662831173299530582744403436363128148721417709214863<117>

Number: 61113_189
N=321637426900584795321637426900584795321637426900584795321637426900584795321637426900584795321637426900584795321637426900584795321637426900584795321637426900584795321637426900584795321637427
  ( 189 digits)
SNFS difficulty: 191 digits.
Divisors found:
 r1=743141132482156367337598193227260139629402238122971076355782741496332829
 r2=432807999506483598225778604308585057267632076708114307439969977345662831173299530582744403436363128148721417709214863
Version: 
Total time: 424.41 hours.
Scaled time: 854.34 units (timescale=2.013).
Factorization parameters were as follows:
n: 321637426900584795321637426900584795321637426900584795321637426900584795321637426900584795321637426900584795321637426900584795321637426900584795321637426900584795321637426900584795321637427
m: 100000000000000000000000000000000000000
deg: 5
c5: 11
c0: 34
skew: 1.25
type: snfs
lss: 1
rlim: 10700000
alim: 10700000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5Factor base limits: 10700000/10700000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved rational special-q in [5350000, 9650001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1681268 x 1681516
Total sieving time: 424.41 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,191,5,0,0,0,0,0,0,0,0,10700000,10700000,28,28,54,54,2.5,2.5,100000
total time: 424.41 hours.
 --------- CPU info (if available) ----------

Nov 16, 2009 (2nd)

By Dmitry Domanov / GGNFS/msieve / Nov 16, 2009

(59·10160+13)/9 = 6(5)1597<161> = 7039 · 3404279 · C151

C151 = P38 · P113

P38 = 68865197719831614457352449825567313491<38>

P113 = 39725886046607481763744275688874905087926689678309758721166697739496395380193756474563848842063050364299554448367<113>

N=2735730997195124102012431130315542645538784010106985048370417728523108614122498641061319159171101423248972776136570302361644318198903522689622662019197
  ( 151 digits)
SNFS difficulty: 161 digits.
Divisors found:
 r1=68865197719831614457352449825567313491 (pp38)
 r2=39725886046607481763744275688874905087926689678309758721166697739496395380193756474563848842063050364299554448367 (pp113)
Version: Msieve-1.40
Total time: 22.07 hours.
Scaled time: 40.59 units (timescale=1.839).
Factorization parameters were as follows:
n: 2735730997195124102012431130315542645538784010106985048370417728523108614122498641061319159171101423248972776136570302361644318198903522689622662019197
m: 100000000000000000000000000000000
deg: 5
c5: 59
c0: 13
skew: 0.74
type: snfs
lss: 1
rlim: 3500000
alim: 3500000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4Factor base limits: 3500000/3500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [1750000, 2950001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 582651 x 582876
Total sieving time: 21.30 hours.
Total relation processing time: 0.08 hours.
Matrix solve time: 0.43 hours.
Time per square root: 0.26 hours.
Prototype def-par.txt line would be:
snfs,161.000,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000
total time: 22.07 hours.
 --------- CPU info (if available) ----------

(61·10169-43)/9 = 6(7)1683<170> = 3 · 7 · 41 · 3907 · C164

C164 = P47 · P56 · P61

P47 = 94208236204350919120277255087982042989012675453<47>

P56 = 27857142756307349104741327554515339623983588929075998349<56>

P61 = 7677420362824464519085906573888170277526604508620017795302867<61>

N=20148409218683335808945252907621888875049243868186728718482231563817460300945227936806529326521585568824108780534707732295551531819144047352328923242917512115387099
  ( 164 digits)
SNFS difficulty: 171 digits.
Divisors found:
 r1=94208236204350919120277255087982042989012675453 (pp47)
 r2=27857142756307349104741327554515339623983588929075998349 (pp56)
 r3=7677420362824464519085906573888170277526604508620017795302867 (pp61)
Version: Msieve-1.40
Total time: 57.58 hours.
Scaled time: 107.10 units (timescale=1.860).
Factorization parameters were as follows:
n: 20148409218683335808945252907621888875049243868186728718482231563817460300945227936806529326521585568824108780534707732295551531819144047352328923242917512115387099
m: 10000000000000000000000000000000000
deg: 5
c5: 61
c0: -430
skew: 1.48
type: snfs
lss: 1
rlim: 5100000
alim: 5100000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4Factor base limits: 5100000/5100000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2550000, 5650001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 902518 x 902749
Total sieving time: 56.18 hours.
Total relation processing time: 0.10 hours.
Matrix solve time: 1.02 hours.
Time per square root: 0.29 hours.
Prototype def-par.txt line would be:
snfs,171.000,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.4,2.4,100000
total time: 57.58 hours.
 --------- CPU info (if available) ----------

(59·10171-41)/9 = 6(5)1701<172> = 17 · 197 · 2423 · C165

C165 = P42 · P124

P42 = 115282334389384451975024500292983441235287<42>

P124 = 7007743196898658551854826666555383080225449060710447335296189818414329538606806627654954847443983562896198346607513316876499<124>

N=807868994539805163632974818874059837322843743225111339751729260698680981338459001942486765633904744550249266608995774612382744832948643918636747635542034840979820213
  ( 165 digits)
SNFS difficulty: 172 digits.
Divisors found:
 r1=115282334389384451975024500292983441235287 (pp42)
 r2=7007743196898658551854826666555383080225449060710447335296189818414329538606806627654954847443983562896198346607513316876499 (pp124)
Version: Msieve-1.40
Total time: 99.95 hours.
Scaled time: 93.55 units (timescale=0.936).
Factorization parameters were as follows:
n: 807868994539805163632974818874059837322843743225111339751729260698680981338459001942486765633904744550249266608995774612382744832948643918636747635542034840979820213
m: 10000000000000000000000000000000000
deg: 5
c5: 590
c0: -41
skew: 0.59
type: snfs
lss: 1
rlim: 5300000
alim: 5300000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4Factor base limits: 5300000/5300000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2650000, 6550001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1033831 x 1034061
Total sieving time: 97.83 hours.
Total relation processing time: 0.14 hours.
Matrix solve time: 1.79 hours.
Time per square root: 0.18 hours.
Prototype def-par.txt line would be:
snfs,172.000,5,0,0,0,0,0,0,0,0,5300000,5300000,27,27,52,52,2.4,2.4,100000
total time: 99.95 hours.
 --------- CPU info (if available) ----------

Nov 16, 2009

By Sinkiti Sibata / Msieve / Nov 16, 2009

(41·10198+13)/9 = 4(5)1977<199> = 3 · 31 · C197

C197 = P66 · P132

P66 = 429273887712751328262058289867997079191088552925834213834435798699<66>

P132 = 114110058266774921221247378607450666721138374033977704640115321152455033337303110382308778010226239545436861604901232470700565846651<132>

Number: 45557_198
N=48984468339307048984468339307048984468339307048984468339307048984468339307048984468339307048984468339307048984468339307048984468339307048984468339307048984468339307048984468339307048984468339307049
  ( 197 digits)
SNFS difficulty: 201 digits.
Divisors found:
 r1=429273887712751328262058289867997079191088552925834213834435798699 (pp66)
 r2=114110058266774921221247378607450666721138374033977704640115321152455033337303110382308778010226239545436861604901232470700565846651 (pp132)
Version: Msieve v. 1.42
Total time: 51.51 hours.
Scaled time: 43.47 units (timescale=0.844).
Factorization parameters were as follows:
name: 45557_198
n: 48984468339307048984468339307048984468339307048984468339307048984468339307048984468339307048984468339307048984468339307048984468339307048984468339307048984468339307048984468339307048984468339307049
m: 5000000000000000000000000000000000000000
deg: 5
c5: 328
c0: 325
skew: 1.00
type: snfs
rlim:  9500000
alim:  9500000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6
Factor base limits: 9500000/9500000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved rational special-q in [4750000, 15250001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 3000927 x 3001153
Total sieving time: 0.00 hours.
Total relation processing time: 0.42 hours.
Matrix solve time: 48.31 hours.
Time per square root: 2.78 hours.
Prototype def-par.txt line would be:
snfs,201.000,5,0,0,0,0,0,0,0,0,9500000,9500000,29,29,56,56,2.6,2.6,100000
total time: 51.51 hours.
 --------- CPU info (if available) ----------
CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 5600+ stepping 02
CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 5600+ stepping 02
Memory: 3886124k/4718592k available (3786k kernel code, 656964k absent, 175504k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 5827.16 BogoMIPS (lpj=2913583)
Calibrating delay using timer specific routine.. 5826.53 BogoMIPS (lpj=2913268)
Total of 2 processors activated (11653.70 BogoMIPS).

Total time: 19 days 1 hour.

(26·10158-11)/3 = 8(6)1573<159> = 61 · 7727 · 429686857 · 106162330928491<15> · C131

C131 = P61 · P71

P61 = 2841721909924726851632106444328355405349356896512142306774663<61>

P71 = 14184278665349773058410239428622656980638132940212009488758588338764809<71>

Number: 86663_158
N=40307775459802312601143666500637781443565300545471354124635599565639079211034939946642064287574656020645475561982776791182117234367
  ( 131 digits)
SNFS difficulty: 160 digits.
Divisors found:
 r1=2841721909924726851632106444328355405349356896512142306774663 (pp61)
 r2=14184278665349773058410239428622656980638132940212009488758588338764809 (pp71)
Version: Msieve v. 1.42
Total time: 1.48 hours.
Scaled time: 0.99 units (timescale=0.668).
Factorization parameters were as follows:
name: 86663_158
n: 40307775459802312601143666500637781443565300545471354124635599565639079211034939946642064287574656020645475561982776791182117234367
m: 50000000000000000000000000000000
deg: 5
c5: 208
c0: -275
skew: 1.06
type: snfs
lss: 1
rlim: 3400000
alim: 3400000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 3400000/3400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [1700000, 3100001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 626336 x 626562
Total sieving time: 0.00 hours.
Total relation processing time: 0.10 hours.
Matrix solve time: 1.27 hours.
Time per square root: 0.11 hours.
Prototype def-par.txt line would be:
snfs,160.000,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000
total time: 1.48 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
CPU1: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.19 BogoMIPS (lpj=1860598)
Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860574)
Total of 2 processors activated (7442.34 BogoMIPS).

Total time: 25 hours 51 min.

Nov 15, 2009 (6th)

By Dmitry Domanov / GGNFS/msieve / Nov 15, 2009

(62·10170-71)/9 = 6(8)1691<171> = 35 · 5417 · C165

C165 = P83 · P83

P83 = 15602471926924933938592663806430212082428034579139978305230145191169585707783895579<83>

P83 = 33542131793373349803791167429073588671109887449475537586566666088049681406989340969<83>

N=523340169675323979218668320421602840690440997658559198931643248460219267713735290659331800959552642070185150155157698853015608451741156964995042195989374168722676051
  ( 165 digits)
SNFS difficulty: 171 digits.
Divisors found:
 r1=15602471926924933938592663806430212082428034579139978305230145191169585707783895579 (pp83)
 r2=33542131793373349803791167429073588671109887449475537586566666088049681406989340969 (pp83)
Version: Msieve-1.40
Total time: 69.39 hours.
Scaled time: 129.34 units (timescale=1.864).
Factorization parameters were as follows:
n: 523340169675323979218668320421602840690440997658559198931643248460219267713735290659331800959552642070185150155157698853015608451741156964995042195989374168722676051
m: 10000000000000000000000000000000000
deg: 5
c5: 62
c0: -71
skew: 1.03
type: snfs
lss: 1
rlim: 5100000
alim: 5100000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4Factor base limits: 5100000/5100000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2550000, 6350001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1047650 x 1047883
Total sieving time: 67.68 hours.
Total relation processing time: 0.10 hours.
Matrix solve time: 1.38 hours.
Time per square root: 0.23 hours.
Prototype def-par.txt line would be:
snfs,171.000,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.4,2.4,100000
total time: 69.39 hours.
 --------- CPU info (if available) ----------

Nice split!

Nov 15, 2009 (5th)

By Ignacio Santos / GGNFS, Msieve / Nov 15, 2009

(59·10179+13)/9 = 6(5)1787<180> = 3 · 7 · 313 · C176

C176 = P47 · P130

P47 = 34227787132453009430793852808645752930870611989<47>

P130 = 2913849035609246999052003284781673297721777732911788271360592562809210825744751320660074392479293423943525018257580230618885051381<130>

Number: 65557_179
N=99734604526936795307402336156329766553408725932687594029447064590834558885677096539716348023057288233007082847338438392751491793025339351217945467146745102016667511875179606809
  ( 176 digits)
SNFS difficulty: 181 digits.
Divisors found:
 r1=34227787132453009430793852808645752930870611989 (pp47)
 r2=2913849035609246999052003284781673297721777732911788271360592562809210825744751320660074392479293423943525018257580230618885051381 (pp130)
Version: Msieve v. 1.43
Total time: 134.63 hours.
Scaled time: 234.12 units (timescale=1.739).
Factorization parameters were as follows:
n: 99734604526936795307402336156329766553408725932687594029447064590834558885677096539716348023057288233007082847338438392751491793025339351217945467146745102016667511875179606809
m: 1000000000000000000000000000000000000
deg: 5
c5: 59
c0: 130
skew: 1.17
type: snfs
lss: 1
rlim: 7500000
alim: 7500000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
Factor base limits: 7500000/7500000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3750000, 10050001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1572029 x 1572254
Total sieving time: 129.41 hours.
Total relation processing time: 0.20 hours.
Matrix solve time: 3.56 hours.
Time per square root: 1.46 hours.
Prototype def-par.txt line would be:
snfs,181.000,5,0,0,0,0,0,0,0,0,7500000,7500000,28,28,53,53,2.5,2.5,100000
total time: 134.63 hours.

Nov 15, 2009 (4th)

By Sinkiti Sibata / Msieve / Nov 15, 2009

(22·10158-7)/3 = 7(3)1571<159> = 4938931 · 116721612901<12> · 1004920243404713858972261<25> · C118

C118 = P47 · P72

P47 = 12009077923370648080337714781707462324113111259<47>

P72 = 105408571886886114038898047458864072059719907211055171359755427498953899<72>

Number: 73331_158
N=1265859753580831970140805253178104479059768213757511408464260680420987308767554609998630957690867230291891172698848841
  ( 118 digits)
SNFS difficulty: 160 digits.
Divisors found:
 r1=12009077923370648080337714781707462324113111259 (pp47)
 r2=105408571886886114038898047458864072059719907211055171359755427498953899 (pp72)
Version: Msieve v. 1.42
Total time: 1.74 hours.
Scaled time: 1.38 units (timescale=0.796).
Factorization parameters were as follows:
name: 73331_158
n: 1265859753580831970140805253178104479059768213757511408464260680420987308767554609998630957690867230291891172698848841
m: 50000000000000000000000000000000
deg: 5
c5: 176
c0: -175
skew: 1.00
type: snfs
lss: 1
rlim: 3300000
alim: 3300000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 3300000/3300000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [1650000, 3050001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 641091 x 641316
Total sieving time: 0.00 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 1.32 hours.
Time per square root: 0.33 hours.
Prototype def-par.txt line would be:
snfs,160.000,5,0,0,0,0,0,0,0,0,3300000,3300000,27,27,51,51,2.4,2.4,100000
total time: 1.74 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
CPU1: Intel(R) Core(TM)2 CPU          6300  @ 1.86GHz stepping 02
Memory: 4005920k/4980736k available (3786k kernel code, 795360k absent, 179456k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 3721.19 BogoMIPS (lpj=1860598)
Calibrating delay using timer specific routine.. 3721.14 BogoMIPS (lpj=1860574)
Total of 2 processors activated (7442.34 BogoMIPS).

Total time: 25 hours 57 min.

Nov 15, 2009 (3rd)

By Markus Tervooren / Msieve / Nov 15, 2009

(59·10158+31)/9 = 6(5)1579<159> = 6007 · 2562185297819003<16> · 81019181804777423<17> · C123

C123 = P58 · P66

P58 = 1812636648515138557638066389371724168451964749993906970903<58>

P66 = 290029868680170784800973912514904723261070414310744029102462787291<66>

N=525718769133710523653027683631105261421509093029825731752283277983185064180697266071063641221234058361239671692676215193773
  ( 123 digits)
SNFS difficulty: 161 digits.
Divisors found:
 r1=1812636648515138557638066389371724168451964749993906970903 (pp58)
 r2=290029868680170784800973912514904723261070414310744029102462787291 (pp66)
Version: Msieve-1.41
Total time: 24.56 hours.
Scaled time: 0.00 units (timescale=0.000).
Factorization parameters were as follows:
n: 525718769133710523653027683631105261421509093029825731752283277983185064180697266071063641221234058361239671692676215193773
m: 50000000000000000000000000000000
deg: 5
c5: 472
c0: 775
skew: 1.10
type: snfs
lss: 1
rlim: 2000000
alim: 2000000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.5
alambda: 2.5

Factor base limits: 2000000/2000000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved rational special-q in [1000000, 5000001)
Primes: , ,
Relations: relations
Max relations in full relation-set:
Initial matrix:
Pruned matrix : 543990 x 544236
Total sieving time: 23.95 hours.
Total relation processing time: 0.15 hours.
Matrix solve time: 0.34 hours.
Time per square root: 0.12 hours.
Prototype def-par.txt line would be:
snfs,161,5,0,0,0,0,0,0,0,0,2000000,2000000,29,29,56,56,2.5,2.5,800000
total time: 24.56 hours.
 --------- CPU info (if available) ----------
[    0.144009] CPU0: Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
[    0.236014] CPU1: Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
[    0.333347] CPU2: Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
[    0.432500] CPU3: Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
[    0.004000] Memory: 8197988k/10485760k available (2226k kernel code, 189848k reserved, 1082k data, 392k init)
[    0.083990] Calibrating delay using timer specific routine.. 5337.18 BogoMIPS (lpj=10674366)
[    0.156009] Calibrating delay using timer specific routine.. 5333.33 BogoMIPS (lpj=10666675)
[    0.256016] Calibrating delay using timer specific routine.. 5333.38 BogoMIPS (lpj=10666763)
[    0.352018] Calibrating delay using timer specific routine.. 5333.36 BogoMIPS (lpj=10666735)
[    0.437221] Total of 4 processors activated (21337.26 BogoMIPS).

Nov 15, 2009 (2nd)

By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Nov 15, 2009

(22·10157+17)/3 = 7(3)1569<158> = 792 · 89 · 1795517 · 6590261 · 61755013 · C132

C132 = P55 · P77

P55 = 7950796688233200437719771201150520016921625896700384781<55>

P77 = 22723866813249437260181466059833062612216418676176293743449524658347563807251<77>

Number: 73339_157
N=180672845002635955973650145697540511621150710038462470711407017816799667146364223424285574886806960321200674321681732470921017847031
  ( 132 digits)
SNFS difficulty: 158 digits.
Divisors found:
 r1=7950796688233200437719771201150520016921625896700384781
 r2=22723866813249437260181466059833062612216418676176293743449524658347563807251
Version: 
Total time: 13.93 hours.
Scaled time: 33.24 units (timescale=2.386).
Factorization parameters were as follows:
n: 180672845002635955973650145697540511621150710038462470711407017816799667146364223424285574886806960321200674321681732470921017847031
m: 20000000000000000000000000000000
deg: 5
c5: 275
c0: 68
skew: 0.76
type: snfs
lss: 1
rlim: 3200000
alim: 3200000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 3200000/3200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1600000, 2800001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 8288002
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 569108 x 569356
Total sieving time: 12.50 hours.
Total relation processing time: 0.50 hours.
Matrix solve time: 0.78 hours.
Time per square root: 0.16 hours.
Prototype def-par.txt line would be:
snfs,158,5,0,0,0,0,0,0,0,0,3200000,3200000,27,27,50,50,2.4,2.4,100000
total time: 13.93 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

(26·10157-11)/3 = 8(6)1563<158> = 13874719638668432738273<23> · C136

C136 = P46 · P90

P46 = 7990330801087736129609580208900348960160370121<46>

P90 = 781741409377590402464709803977736132137659344702928238702437054957380692407818254347964111<90>

Number: 86663_157
N=6246372461835497797590085235144227805300158049988539661664127319813743185508874489362779286942419837673553038815625648251966340584727431
  ( 136 digits)
SNFS difficulty: 159 digits.
Divisors found:
 r1=7990330801087736129609580208900348960160370121
 r2=781741409377590402464709803977736132137659344702928238702437054957380692407818254347964111
Version: 
Total time: 13.93 hours.
Scaled time: 33.31 units (timescale=2.391).
Factorization parameters were as follows:
n: 6246372461835497797590085235144227805300158049988539661664127319813743185508874489362779286942419837673553038815625648251966340584727431
m: 20000000000000000000000000000000
deg: 5
c5: 325
c0: -44
skew: 0.67
type: snfs
lss: 1
rlim: 3200000
alim: 3200000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 3200000/3200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1600000, 2800001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 8533070
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 529316 x 529564
Total sieving time: 12.61 hours.
Total relation processing time: 0.52 hours.
Matrix solve time: 0.68 hours.
Time per square root: 0.13 hours.
Prototype def-par.txt line would be:
snfs,159,5,0,0,0,0,0,0,0,0,3200000,3200000,27,27,50,50,2.4,2.4,100000
total time: 13.93 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

(65·10157+7)/9 = 7(2)1563<158> = 9679 · 1876797653<10> · C145

C145 = P72 · P74

P72 = 340269928723054252687708121264854816897562029160532745490903501797972559<72>

P74 = 11684209505564680196886999355587721293576873890219180545631517614669025331<74>

Number: 72223_157
N=3975785135643726702230450539778066801184587100157871451338767600314164799713954972226106445526223512112153625343514325724755468276601912413892029
  ( 145 digits)
SNFS difficulty: 160 digits.
Divisors found:
 r1=340269928723054252687708121264854816897562029160532745490903501797972559
 r2=11684209505564680196886999355587721293576873890219180545631517614669025331
Version: 
Total time: 16.06 hours.
Scaled time: 38.37 units (timescale=2.389).
Factorization parameters were as follows:
n: 3975785135643726702230450539778066801184587100157871451338767600314164799713954972226106445526223512112153625343514325724755468276601912413892029
m: 50000000000000000000000000000000
deg: 5
c5: 52
c0: 175
skew: 1.27
type: snfs
lss: 1
rlim: 3200000
alim: 3200000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 3200000/3200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [1600000, 3000001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 9396692
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 601720 x 601968
Total sieving time: 14.61 hours.
Total relation processing time: 0.65 hours.
Matrix solve time: 0.73 hours.
Time per square root: 0.07 hours.
Prototype def-par.txt line would be:
snfs,160,5,0,0,0,0,0,0,0,0,3200000,3200000,27,27,51,51,2.4,2.4,100000
total time: 16.06 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

(62·10162-71)/9 = 6(8)1611<163> = 291727 · 40998522161<11> · 538331911170192824177<21> · C127

C127 = P41 · P86

P41 = 13293896052923584707628730999104405807681<41>

P86 = 80482590851823351939562778795885505113611415145477307256905540960132767325450472770079<86>

GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM]
Input number is 1069927196854118265491844218314408607974802302696835461705048222248058295906490484465975989906304815245214369775644395405176799 (127 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4381793230
Step 1 took 3319ms
Step 2 took 2107ms
********** Factor found in step 2: 13293896052923584707628730999104405807681
Found probable prime factor of 41 digits: 13293896052923584707628730999104405807681
Probable prime cofactor 80482590851823351939562778795885505113611415145477307256905540960132767325450472770079 has 86 digits

Nov 15, 2009

By juno1369 / GGNFS + Msieve / Nov 15, 2009

(61·10146+11)/9 = 6(7)1459<147> = 72 · 859 · 5557 · 275800236853<12> · 43877517103969019<17> · C111

C111 = P41 · P70

P41 = 47018556761287004919324019214769957965617<41>

P70 = 5092742427046728561746607640479066938348493902951058681904891312864643<70>

Number: 67779_146
N=239453398876711150609255320785377692625826392338235113766506874627069551944324667803564622358785358784768979731
  (111 digits)
Divisors found:
 r1=47018556761287004919324019214769957965617 (pp41)
 r2=5092742427046728561746607640479066938348493902951058681904891312864643 (pp70)
Version: Msieve-1.40
Total time: 213.24 hours.
Scaled time: 369.96 units (timescale=1.735).
Factorization parameters were as follows:
name: 67779_146
n: 239453398876711150609255320785377692625826392338235113766506874627069551944324667803564622358785358784768979731
skew: 62268.21
# norm 6.79e+015
c5: 1740
c4: 571107120
c3: 191509397222949
c2: -1689229856928126946
c1: -167460861686685303277376
c0: 366141206224433326132512000
# alpha -5.54
Y1: 357727841273
Y0: -2677506553543671180733
# Murphy_E 7.08e-010
# M 4169860093312916150953838170334394543046091236561083577223534810475410377208532554651542786886462863183822802
type: gnfs
rlim: 3200000
alim: 3200000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 3200000/3200000
Large primes per side: 2
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved algebraic special-q in [1600000, 2600001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 466836 x 467084
Total sieving time: 211.86 hours.
Total relation processing time: 0.15 hours.
Matrix solve time: 1.07 hours.
Time per square root: 0.15 hours.
Prototype def-par.txt line would be:
gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000
total time: 213.24 hours.
 --------- CPU info (if available) ----------

Nov 14, 2009 (6th)

By Robert Backstrom / GGNFS, Msieve / Nov 14, 2009

(22·10178-7)/3 = 7(3)1771<179> = 17 · C178

C178 = P48 · P62 · P69

P48 = 248547605560480925622741006789238584355839363443<48>

P62 = 52256505242291123397545087983645084835369273482120400731461829<62>

P69 = 332125758345610575600565424353848439016390715672904492677915743077469<69>

Number: n
N=4313725490196078431372549019607843137254901960784313725490196078431372549019607843137254901960784313725490196078431372549019607843137254901960784313725490196078431372549019607843
  ( 178 digits)
SNFS difficulty: 180 digits.
Divisors found:

Sat Nov 14 06:46:51 2009  prp48 factor: 248547605560480925622741006789238584355839363443
Sat Nov 14 06:46:51 2009  prp62 factor: 52256505242291123397545087983645084835369273482120400731461829
Sat Nov 14 06:46:51 2009  prp69 factor: 332125758345610575600565424353848439016390715672904492677915743077469
Sat Nov 14 06:46:51 2009  elapsed time 05:12:36 (Msieve 1.43 - dependency 5)

Version: GGNFS-0.77.1-20051202-athlon
Total time: 111.82 hours.
Scaled time: 203.84 units (timescale=1.823).
Factorization parameters were as follows:
name: KA_7_3_177_1
n: 4313725490196078431372549019607843137254901960784313725490196078431372549019607843137254901960784313725490196078431372549019607843137254901960784313725490196078431372549019607843
m: 500000000000000000000000000000000000
deg: 5
c5: 176
c0: -175
skew: 1.00
type: snfs
lss: 1
rlim: 7200000
alim: 7200000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.5
alambda: 2.5
qintsize: 50000
Factor base limits: 7200000/7200000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 56/56
Sieved  special-q in [3600000, 5400823)
Primes: RFBsize:489319, AFBsize:489694, largePrimes:20744051 encountered
Relations: rels:20484312, finalFF:986940
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 1849522 hash collisions in 21701103 relations
Msieve: matrix is 1291973 x 1292197 (348.9 MB)

Total sieving time: 111.13 hours.
Total relation processing time: 0.68 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,180,5,0,0,0,0,0,0,0,0,7200000,7200000,28,28,56,56,2.5,2.5,100000
total time: 111.82 hours.
 --------- CPU info (if available) ----------

(67·10154-31)/9 = 7(4)1531<155> = 131 · 397 · 983 · C148

C148 = P38 · P47 · P64

P38 = 19770670872949815347485142394152319553<38>

P47 = 70311137559137507052774831616250832259377569867<47>

P64 = 1047541994464449155489159844448139419478733450739365527434608811<64>

Number: n
N=1456186407891301048633085534526984980452186261655411095560996346126198256401951299349589559407742385341006983633110278828856387112542511922292572761
  ( 148 digits)
SNFS difficulty: 156 digits.
Divisors found:

Sat Nov 14 18:58:09 2009  prp38 factor: 19770670872949815347485142394152319553
Sat Nov 14 18:58:09 2009  prp47 factor: 70311137559137507052774831616250832259377569867
Sat Nov 14 18:58:09 2009  prp64 factor: 1047541994464449155489159844448139419478733450739365527434608811
Sat Nov 14 18:58:09 2009  elapsed time 00:55:11 (Msieve 1.43 - dependency 4)

Version: GGNFS-0.77.1-20051202-athlon
Total time: 21.59 hours.
Scaled time: 39.25 units (timescale=1.818).
Factorization parameters were as follows:
name: KA_7_4_153_1
n: 1456186407891301048633085534526984980452186261655411095560996346126198256401951299349589559407742385341006983633110278828856387112542511922292572761
m: 10000000000000000000000000000000
deg: 5
c5: 67
c0: -310
skew: 1.36
type: snfs
lss: 1
rlim: 2900000
alim: 2900000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
qintsize: 50000
Factor base limits: 2900000/2900000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved  special-q in [1450000, 2750249)
Primes: RFBsize:210109, AFBsize:210215, largePrimes:7718909 encountered
Relations: rels:7439444, finalFF:438767
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 935880 hash collisions in 8065056 relations
Msieve: matrix is 535005 x 535232 (143.1 MB)

Total sieving time: 21.47 hours.
Total relation processing time: 0.12 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,156,5,0,0,0,0,0,0,0,0,2900000,2900000,27,27,50,50,2.4,2.4,100000
total time: 21.59 hours.
 --------- CPU info (if available) ----------

Nov 14, 2009 (5th)

By Sinkiti Sibata / Msieve / Nov 14, 2009

(62·10158-71)/9 = 6(8)1571<159> = 3 · 17 · 67 · 337 · 3559 · C150

C150 = P54 · P97

P54 = 132575299431508438665738676848358063462718878204534843<54>

P97 = 1267896186810585277293654903308370039889900735456986092170954192488322227543251134228508640175997<97>

Number: 68881_158
N=168091716614481103463083594268062800883645758833805202718252499935061086452976721473033496538452942958137049236729866564856854058353995213907038763471
  ( 150 digits)
SNFS difficulty: 161 digits.
Divisors found:
 r1=132575299431508438665738676848358063462718878204534843 (pp54)
 r2=1267896186810585277293654903308370039889900735456986092170954192488322227543251134228508640175997 (pp97)
Version: Msieve-1.40
Total time: 44.43 hours.
Scaled time: 89.71 units (timescale=2.019).
Factorization parameters were as follows:
name: 68881_158
n: 168091716614481103463083594268062800883645758833805202718252499935061086452976721473033496538452942958137049236729866564856854058353995213907038763471
m: 50000000000000000000000000000000
deg: 5
c5: 496
c0: -1775
skew: 1.29
type: snfs
lss: 1
rlim: 3400000
alim: 3400000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4
Factor base limits: 3400000/3400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [1700000, 3500001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 631071 x 631319
Total sieving time: 42.50 hours.
Total relation processing time: 0.18 hours.
Matrix solve time: 1.46 hours.
Time per square root: 0.29 hours.
Prototype def-par.txt line would be:
snfs,161.000,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000
total time: 44.43 hours.
 --------- CPU info (if available) ----------

Nov 14, 2009 (4th)

By Dmitry Domanov / ggnfs/msieve, GGNFS/msieve / Nov 14, 2009

(67·10162-13)/9 = 7(4)1613<163> = 3 · 1951 · 57493 · C155

C155 = P72 · P84

P72 = 173168441496788451919618027345869704057432823437379661717120302268074707<72>

P84 = 127752688946810654048296217810573665123434033505277792306486178869161540657839807481<84>

Number: s155
N=22122734041943193454188356756799938477403047488699526672317387471683928142875481754603472922346907701289933796334883132221319974580476696915572905405483067
  ( 155 digits)
SNFS difficulty: 165 digits.
Divisors found:
 r1=173168441496788451919618027345869704057432823437379661717120302268074707 (pp72)
 r2=127752688946810654048296217810573665123434033505277792306486178869161540657839807481 (pp84)
Version: Msieve-1.40
Total time: 42.12 hours.
Scaled time: 78.35 units (timescale=1.860).
Factorization parameters were as follows:
n: 22122734041943193454188356756799938477403047488699526672317387471683928142875481754603472922346907701289933796334883132221319974580476696915572905405483067
m: 500000000000000000000000000000000
deg: 5
c5: 268
c0: -1625
skew: 1.43
type: snfs
lss: 1
rlim: 4100000
alim: 4100000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4Factor base limits: 4100000/4100000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [2050000, 4450001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 794129 x 794355
Total sieving time: 41.11 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 0.83 hours.
Time per square root: 0.09 hours.
Prototype def-par.txt line would be:
snfs,165.000,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,51,51,2.4,2.4,100000
total time: 42.12 hours.
 --------- CPU info (if available) ----------

(22·10188-7)/3 = 7(3)1871<189> = C189

C189 = P67 · P123

P67 = 1439804239664097685685896347039690976177416861734275651404144103963<67>

P123 = 509328499758007349074189685847253363748278305932331944594971040870874995118639499429499748714681777407393380275849433840937<123>

N=733333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333331
  ( 189 digits)
SNFS difficulty: 190 digits.
Divisors found:
 r1=1439804239664097685685896347039690976177416861734275651404144103963 (pp67)
 r2=509328499758007349074189685847253363748278305932331944594971040870874995118639499429499748714681777407393380275849433840937 (pp123)
Version: Msieve-1.40
Total time: 480.46 hours.
Scaled time: 446.35 units (timescale=0.929).
Factorization parameters were as follows:
n: 733333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333331
m: 50000000000000000000000000000000000000
deg: 5
c5: 176
c0: -175
skew: 1.00
type: snfs
lss: 1
rlim: 10600000
alim: 10600000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5Factor base limits: 10600000/10600000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved rational special-q in [5300000, 10500001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1872355 x 1872580
Total sieving time: 468.26 hours.
Total relation processing time: 0.39 hours.
Matrix solve time: 11.41 hours.
Time per square root: 0.40 hours.
Prototype def-par.txt line would be:
snfs,190.000,5,0,0,0,0,0,0,0,0,10600000,10600000,28,28,54,54,2.5,2.5,100000
total time: 480.46 hours.
 --------- CPU info (if available) ----------

Nov 14, 2009 (3rd)

By Wataru Sakai / GMP-ECM 6.2.1 / Nov 14, 2009

(62·10169-71)/9 = 6(8)1681<170> = 3505219 · 1779396887<10> · 2788933419652123<16> · 49618119210892708709<20> · C119

C119 = P38 · P81

P38 = 82660081394313266012448446052941500919<38>

P81 = 965577024280041750953286497287634496570237721902454230853822326500051858350496669<81>

Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1887201488
Step 1 took 126018ms
Step 2 took 42743ms
********** Factor found in step 2: 82660081394313266012448446052941500919
Found probable prime factor of 38 digits: 82660081394313266012448446052941500919
Probable prime cofactor 965577024280041750953286497287634496570237721902454230853822326500051858350496669 has 81 digits

(62·10171-71)/9 = 6(8)1701<172> = 7 · 19 · 4349 · 9319 · C163

C163 = P40 · P123

P40 = 1600606687685207079981972189175964607847<40>

P123 = 798461890260203983777865595532676387857491818084310489921571287545918302724829696269195481540944560007643355765101773720401<123>

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=484386855
Step 1 took 52247ms
********** Factor found in step 1: 1600606687685207079981972189175964607847
Found probable prime factor of 40 digits: 1600606687685207079981972189175964607847
Probable prime cofactor 798461890260203983777865595532676387857491818084310489921571287545918302724829696269195481540944560007643355765101773720401 has 123 digits

Nov 14, 2009 (2nd)

By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 14, 2009

(83·10156+7)/9 = 9(2)1553<157> = 528078673 · 2354032321<10> · 54455392027<11> · C129

C129 = P38 · P91

P38 = 29549430643279790678513909646388049663<38>

P91 = 4610356690548903466239224249245927737326743875914578310194061475922915915676673744740852531<91>

Number: 92223_156
N=136233415268155771401978069668754675273317569461066738883978525382951633384097934807394773511147684886619441567552049872987247053
  ( 129 digits)
SNFS difficulty: 157 digits.
Divisors found:
 r1=29549430643279790678513909646388049663
 r2=4610356690548903466239224249245927737326743875914578310194061475922915915676673744740852531
Version: 
Total time: 13.30 hours.
Scaled time: 31.81 units (timescale=2.392).
Factorization parameters were as follows:
n: 136233415268155771401978069668754675273317569461066738883978525382951633384097934807394773511147684886619441567552049872987247053
m: 10000000000000000000000000000000
deg: 5
c5: 830
c0: 7
skew: 0.38
type: snfs
lss: 1
rlim: 3000000
alim: 3000000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1500000, 2700001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 8688640
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 495054 x 495302
Total sieving time: 12.20 hours.
Total relation processing time: 0.52 hours.
Matrix solve time: 0.52 hours.
Time per square root: 0.06 hours.
Prototype def-par.txt line would be:
snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000
total time: 13.30 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

(67·10156-31)/9 = 7(4)1551<157> = 197 · 100616918774894708640648612559<30> · C126

C126 = P38 · P44 · P44

P38 = 80153664603958430270698294749615024437<38>

P44 = 53243536433576582261971256661042578792061799<44>

P44 = 88004479143123417579377741641004702435368009<44>

Number: 74441_156
N=375573596903421635313913662354161350696820930953190410603725173618920376118848018490033787713031094858628432879290956933623467
  ( 126 digits)
SNFS difficulty: 157 digits.
Divisors found:
 r1=80153664603958430270698294749615024437
 r2=53243536433576582261971256661042578792061799
 r3=88004479143123417579377741641004702435368009
Version: 
Total time: 14.44 hours.
Scaled time: 34.20 units (timescale=2.368).
Factorization parameters were as follows:
n: 375573596903421635313913662354161350696820930953190410603725173618920376118848018490033787713031094858628432879290956933623467
m: 10000000000000000000000000000000
deg: 5
c5: 670
c0: -31
skew: 0.54
type: snfs
lss: 1
rlim: 3000000
alim: 3000000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1500000, 2800001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 8551031
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 530012 x 530260
Total sieving time: 13.13 hours.
Total relation processing time: 0.55 hours.
Matrix solve time: 0.61 hours.
Time per square root: 0.15 hours.
Prototype def-par.txt line would be:
snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000
total time: 14.44 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

Nov 14, 2009

By Erik Branger / GGNFS, Msieve / Nov 14, 2009

(59·10164+31)/9 = 6(5)1639<165> = 41 · 257 · 5763713135701<13> · 632793202179705926119343697193231<33> · C116

C116 = P50 · P66

P50 = 34802044557813893139042598653269252013977947167193<50>

P66 = 490143898602442290601560520700188756718313923047228378482398716229<66>

Number: 65559_164
N=17058009798902811382752770514092749096039916701396886379742470377517403076500372505435723966037254679924690425475197
  ( 116 digits)
Divisors found:
 r1=34802044557813893139042598653269252013977947167193 (pp50)
 r2=490143898602442290601560520700188756718313923047228378482398716229 (pp66)
Version: Msieve v. 1.43
Total time: 32.74 hours.
Scaled time: 30.19 units (timescale=0.922).
Factorization parameters were as follows:
name: 65559_164
n: 17058009798902811382752770514092749096039916701396886379742470377517403076500372505435723966037254679924690425475197
skew: 28874.31
# norm 6.29e+015
c5: 38700
c4: 4290288453
c3: 226518079060538
c2: -3620472774476150580
c1: -58323442579984867482546
c0: 430888104406967566430909160
# alpha -5.57
Y1: 782134821337
Y0: -13453736550076462582111
# Murphy_E 4.89e-010
# M 1490207370408176870324831131388133250549360282891275986372669753761505327303758919313473708023388505821334417351020
type: gnfs
rlim: 3400000
alim: 3400000
lpbr: 27
lpba: 27
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5
qintsize: 100000
Factor base limits: 3400000/3400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 53/53
Sieved algebraic special-q in [1700000, 3000001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 530195 x 530424
Polynomial selection time: 3.13 hours.
Total sieving time: 28.46 hours.
Total relation processing time: 0.16 hours.
Matrix solve time: 0.62 hours.
Time per square root: 0.38 hours.
Prototype def-par.txt line would be:
gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3400000,3400000,27,27,53,53,2.5,2.5,100000
total time: 32.74 hours.
 --------- CPU info (if available) ----------

Nov 13, 2009 (5th)

By Erik Branger / GGNFS, Msieve / Nov 13, 2009

(64·10157+71)/9 = 7(1)1569<158> = 79 · 270163 · 131876297221<12> · C140

C140 = P67 · P73

P67 = 9964004601390419339148197840705296103238041512903134110631263792189<67>

P73 = 2535618074861695477526155884291998519175671403992482425103587424791058763<73>

Number: 71119_157
N=25264910165290650509851238117231571124114862434002665400453091269791075424520683131999659561821303788450380878240060216801402515711719402207
  ( 140 digits)
SNFS difficulty: 158 digits.
Divisors found:
 r1=9964004601390419339148197840705296103238041512903134110631263792189 (pp67)
 r2=2535618074861695477526155884291998519175671403992482425103587424791058763 (pp73)
Version: Msieve v. 1.43
Total time: 24.74 hours.
Scaled time: 21.77 units (timescale=0.880).
Factorization parameters were as follows:
n: 25264910165290650509851238117231571124114862434002665400453091269791075424520683131999659561821303788450380878240060216801402515711719402207
m: 20000000000000000000000000000000
deg: 5
c5: 200
c0: 71
skew: 0.81
type: snfs
lss: 1
rlim: 3100000
alim: 3100000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 3100000/3100000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1550000, 2650001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 518813 x 519045
Total sieving time: 23.40 hours.
Total relation processing time: 0.13 hours.
Matrix solve time: 0.62 hours.
Time per square root: 0.60 hours.
Prototype def-par.txt line would be:
snfs,158.000,5,0,0,0,0,0,0,0,0,3100000,3100000,27,27,50,50,2.4,2.4,100000
total time: 24.74 hours.
 --------- CPU info (if available) ----------

Nov 13, 2009 (4th)

By Dmitry Domanov / GGNFS/msieve / Nov 13, 2009

(62·10191-71)/9 = 6(8)1901<192> = 3 · 67 · 887 · 2539 · 9337 · 39719 · 1602440276322618158898151<25> · 517452552714882800113775903751182527043<39> · C112

C112 = P54 · P59

P54 = 231966688952782810983569504127235672501575217898942363<54>

P59 = 21334532365287813355167771978525860077741292728723571466821<59>

N=4948900833131795948779300436802723663715157264908054857089072914253472322653488429767164518431236683340445838023
  ( 112 digits)
Divisors found:
 r1=231966688952782810983569504127235672501575217898942363 (pp54)
 r2=21334532365287813355167771978525860077741292728723571466821 (pp59)
Version: Msieve-1.40
Total time: 20.06 hours.
Scaled time: 39.49 units (timescale=1.969).
Factorization parameters were as follows:
name: 112-1
n: 4948900833131795948779300436802723663715157264908054857089072914253472322653488429767164518431236683340445838023
skew: 35745.19
# norm 5.68e+015
c5: 20520
c4: 7874928393
c3: -125171518425754
c2: -10002823683309029156
c1: 186591281683383709662296
c0: -10471410601966863892978464
# alpha -6.73
Y1: 577849820273
Y0: -2995434647356879034675
# Murphy_E 7.92e-010
# M 1904396237109010344233056436440516679725570088245749401332422872741388847060985884113432289929434595461246543295
type: gnfs
rlim: 3500000
alim: 3500000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 3500000/3500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved algebraic special-q in [1750000, 2650001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 392267 x 392493
Polynomial selection time: 1.84 hours.
Total sieving time: 17.36 hours.
Total relation processing time: 0.07 hours.
Matrix solve time: 0.50 hours.
Time per square root: 0.29 hours.
Prototype def-par.txt line would be:
gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000
total time: 20.06 hours.
 --------- CPU info (if available) ----------

(65·10159+7)/9 = 7(2)1583<160> = 23 · 971 · 18793 · C152

C152 = P40 · P112

P40 = 1953853962358201528535638767049885845979<40>

P112 = 8807153537009589409364235375690005448212234630799533315826453435493873992751942939736651790454264854292839358073<112>

N=17207891835383235758484443528762219892183657200193172828691880569359507978042076647634841544083820217197423030516824039230894905196218677170418908238467
  ( 152 digits)
SNFS difficulty: 161 digits.
Divisors found:
 r1=1953853962358201528535638767049885845979 (pp40)
 r2=8807153537009589409364235375690005448212234630799533315826453435493873992751942939736651790454264854292839358073 (pp112)
Version: Msieve-1.40
Total time: 22.98 hours.
Scaled time: 43.39 units (timescale=1.888).
Factorization parameters were as follows:
n: 17207891835383235758484443528762219892183657200193172828691880569359507978042076647634841544083820217197423030516824039230894905196218677170418908238467
m: 100000000000000000000000000000000
deg: 5
c5: 13
c0: 14
skew: 1.01
type: snfs
lss: 1
rlim: 3400000
alim: 3400000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4Factor base limits: 3400000/3400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [1700000, 3000001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 645407 x 645633
Total sieving time: 22.28 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 0.55 hours.
Time per square root: 0.07 hours.
Prototype def-par.txt line would be:
snfs,161.000,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000
total time: 22.98 hours.
 --------- CPU info (if available) ----------

(22·10160-7)/3 = 7(3)1591<161> = 419726063 · C153

C153 = P38 · P48 · P67

P38 = 62892293150312003950256891682691118047<38>

P48 = 963980414783305788992504638378182452100686241977<48>

P67 = 2881839886247664950088754545652096672709151792121416684401536364123<67>

N=174717130523613286633890384198832402107308102364215903679379884811521302486601441601050476899580413554955564752082915883480253008099078501430427810563037
  ( 153 digits)
SNFS difficulty: 161 digits.
Divisors found:
 r1=62892293150312003950256891682691118047 (pp38)
 r2=963980414783305788992504638378182452100686241977 (pp48)
 r3=2881839886247664950088754545652096672709151792121416684401536364123 (pp67)
Version: Msieve-1.40
Total time: 19.92 hours.
Scaled time: 36.76 units (timescale=1.845).
Factorization parameters were as follows:
n: 174717130523613286633890384198832402107308102364215903679379884811521302486601441601050476899580413554955564752082915883480253008099078501430427810563037
m: 100000000000000000000000000000000
deg: 5
c5: 22
c0: -7
skew: 0.80
type: snfs
lss: 1
rlim: 3400000
alim: 3400000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4Factor base limits: 3400000/3400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [1700000, 2800001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 683391 x 683639
Total sieving time: 19.13 hours.
Total relation processing time: 0.08 hours.
Matrix solve time: 0.58 hours.
Time per square root: 0.14 hours.
Prototype def-par.txt line would be:
snfs,161.000,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000
total time: 19.92 hours.
 --------- CPU info (if available) ----------

Nov 13, 2009 (3rd)

By Wataru Sakai / Msieve / Nov 13, 2009

(22·10166+17)/3 = 7(3)1659<167> = 7 · 21629000599603<14> · C153

C153 = P51 · P102

P51 = 641923119296141775585479279443339644024656140218061<51>

P102 = 754542863764954247166210709332774211904122796445876029066108488793031852354112276874269887328583596219<102>

Number: 73339_166
N=484358508750643176663936835681906593235838524767765001810069448234657396117754486652019637082863748781456555081996193969222446620209155086837402235111359
  ( 153 digits)
SNFS difficulty: 168 digits.
Divisors found:
 r1=641923119296141775585479279443339644024656140218061
 r2=754542863764954247166210709332774211904122796445876029066108488793031852354112276874269887328583596219
Version: 
Total time: 64.38 hours.
Scaled time: 129.54 units (timescale=2.012).
Factorization parameters were as follows:
n: 484358508750643176663936835681906593235838524767765001810069448234657396117754486652019637082863748781456555081996193969222446620209155086837402235111359
m: 2000000000000000000000000000000000
deg: 5
c5: 55
c0: 136
skew: 1.20
type: snfs
lss: 1
rlim: 4500000
alim: 4500000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4Factor base limits: 4500000/4500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2250000, 4450001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 744654 x 744902
Total sieving time: 64.38 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,168,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,52,52,2.4,2.4,100000
total time: 64.38 hours.
 --------- CPU info (if available) ----------

(25·10198-43)/9 = 2(7)1973<199> = 5869 · C195

C195 = P58 · P138

P58 = 1451404622524480716557996312602451817462320347463899152439<58>

P138 = 326095561617768087884395065941298852407265226525174381101383715053134023745318575170785592323285897166994765718293103718772301298550007303<138>

Number: 27773_198
N=473296605516745233903182446375494594952764998769428825656462391851725639423714053122811003199485053293197781185513337498343461880691391681338861437685768917665322504306999110202381628518960262017
  ( 195 digits)
SNFS difficulty: 199 digits.
Divisors found:
 r1=1451404622524480716557996312602451817462320347463899152439
 r2=326095561617768087884395065941298852407265226525174381101383715053134023745318575170785592323285897166994765718293103718772301298550007303
Version: 
Total time: 721.86 hours.
Scaled time: 1454.54 units (timescale=2.015).
Factorization parameters were as follows:
n: 473296605516745233903182446375494594952764998769428825656462391851725639423714053122811003199485053293197781185513337498343461880691391681338861437685768917665322504306999110202381628518960262017
m: 5000000000000000000000000000000000000000
deg: 5
c5: 8
c0: -43
skew: 1.40
type: snfs
lss: 1
rlim: 14700000
alim: 14700000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5Factor base limits: 14700000/14700000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved rational special-q in [7350000, 15150001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2531515 x 2531763
Total sieving time: 721.86 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,199,5,0,0,0,0,0,0,0,0,14700000,14700000,28,28,55,55,2.5,2.5,100000
total time: 721.86 hours.
 --------- CPU info (if available) ----------

Nov 13, 2009 (2nd)

By Ignacio Santos / GGNFS, Msieve / Nov 13, 2009

(62·10168-71)/9 = 6(8)1671<169> = 12579647 · C162

C162 = P69 · P94

P69 = 417996494895948005785248123398354871614766916243498866195380490935959<69>

P94 = 1310110977341236383525940660843416170256038120437603143534793254416808586880932126433244177097<94>

Number: 68881_168
N=547621796453341567445325682738862933823889405552388623376227400410272950337071373218094982227155411347304808226247436743565927477049943363982223737191424281531023
  ( 162 digits)
SNFS difficulty: 171 digits.
Divisors found:
 r1=417996494895948005785248123398354871614766916243498866195380490935959 (pp69)
 r2=1310110977341236383525940660843416170256038120437603143534793254416808586880932126433244177097 (pp94)
Version: Msieve v. 1.43
Total time: 71.81 hours.
Scaled time: 124.87 units (timescale=1.739).
Factorization parameters were as follows:
n: 547621796453341567445325682738862933823889405552388623376227400410272950337071373218094982227155411347304808226247436743565927477049943363982223737191424281531023
m: 5000000000000000000000000000000000
deg: 5
c5: 496
c0: -1775
skew: 1.29
type: snfs
lss: 1
rlim: 5000000
alim: 5000000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.4
alambda: 2.4
Factor base limits: 5000000/5000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved rational special-q in [2500000, 6400001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1056436 x 1056661
Total sieving time: 69.24 hours.
Total relation processing time: 0.12 hours.
Matrix solve time: 1.46 hours.
Time per square root: 0.98 hours.
Prototype def-par.txt line would be:
snfs,171.000,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000
total time: 71.81 hours.

Nov 13, 2009

By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 13, 2009

(65·10156-11)/9 = 7(2)1551<157> = 3 · 149 · 2909 · 484061 · 1869071 · C139

C139 = P48 · P91

P48 = 924547593040272577001488578136091171063098712873<48>

P91 = 6639944322588482605733024627603148158770302262895769428985277259280354195849327659562685229<91>

Number: 72221_156
N=6138944541370604791669877501056223782086626050274386084745206959694754003758284585091174261445808018016007420619027077079856127009549252917
  ( 139 digits)
SNFS difficulty: 157 digits.
Divisors found:
 r1=924547593040272577001488578136091171063098712873
 r2=6639944322588482605733024627603148158770302262895769428985277259280354195849327659562685229
Version: 
Total time: 12.28 hours.
Scaled time: 28.83 units (timescale=2.347).
Factorization parameters were as follows:
n: 6138944541370604791669877501056223782086626050274386084745206959694754003758284585091174261445808018016007420619027077079856127009549252917
m: 10000000000000000000000000000000
deg: 5
c5: 650
c0: -11
skew: 0.44
type: snfs
lss: 1
rlim: 3000000
alim: 3000000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1500000, 2500001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 8015116
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 554586 x 554834
Total sieving time: 11.01 hours.
Total relation processing time: 0.42 hours.
Matrix solve time: 0.77 hours.
Time per square root: 0.08 hours.
Prototype def-par.txt line would be:
snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000
total time: 12.28 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

(61·10160-43)/9 = 6(7)1593<161> = 3 · 258846753455803<15> · 61739694542088436121217926517233<32> · C115

C115 = P46 · P69

P46 = 1817926149208691502729521475457905515096473051<46>

P69 = 777647240937270328992484826480769491945261040621892507628864171690359<69>

Number: 67773_160
N=1413705254159855371061936185876921103504280730923166822583108539086549753629478508296087325967444560737441760015309
  ( 115 digits)
Divisors found:
 r1=1817926149208691502729521475457905515096473051
 r2=777647240937270328992484826480769491945261040621892507628864171690359
Version: 
Total time: 15.79 hours.
Scaled time: 37.44 units (timescale=2.371).
Factorization parameters were as follows:
name: 67773_160
n: 1413705254159855371061936185876921103504280730923166822583108539086549753629478508296087325967444560737441760015309
skew: 50536.77
# norm 4.80e+15
c5: 25380
c4: -614505552
c3: -47647136645839
c2: 5452395569024831359
c1: 140859291886924652868131
c0: -4324536369697488192023050839
# alpha -6.16
Y1: 2826537573989
Y0: -8895576914842352240720
# Murphy_E 5.57e-10
# M 161569964661124522022265799579816433730413328407547361845111517972008345354236704372972149102516328162387493120225
type: gnfs
rlim: 2800000
alim: 2800000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.6
alambda: 2.6
qintsize: 70000
Factor base limits: 2800000/2800000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved algebraic special-q in [1400000, 2450001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 9221835
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 496281 x 496529
Polynomial selection time: 1.36 hours.
Total sieving time: 12.88 hours.
Total relation processing time: 0.69 hours.
Matrix solve time: 0.56 hours.
Time per square root: 0.30 hours.
Prototype def-par.txt line would be:
gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2800000,2800000,27,27,52,52,2.6,2.6,70000
total time: 15.79 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

Nov 12, 2009 (6th)

By Jo Yeong Uk / GMP-ECM, GGNFS, Msieve v1.39 / Nov 12, 2009

(59·10156+31)/9 = 6(5)1559<157> = 211 · 1277 · 204371 · 8456385102374933467647900354881<31> · C116

C116 = P34 · P82

P34 = 3012983645866773188165757444214891<34>

P82 = 4672349839242065027594979758740290110260235772594442708775254177171296529449693617<82>

GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM]
Input number is 14077713653404588690555756672692970008608629107471571113503341492890083842753884124196001195304510019047009059050747 (116 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=5651182032
Step 1 took 2692ms
Step 2 took 1917ms
********** Factor found in step 2: 3012983645866773188165757444214891
Found probable prime factor of 34 digits: 3012983645866773188165757444214891
Probable prime cofactor 4672349839242065027594979758740290110260235772594442708775254177171296529449693617 has 82 digits

(64·10156+17)/9 = 7(1)1553<157> = 3 · 23 · 1476527597<10> · 4262940271<10> · 19870321428695636593969<23> · C114

C114 = P55 · P60

P55 = 1982357395654855011440038146861915074032606554692317687<55>

P60 = 415671941297055391986742820832969759498307762414593330759457<60>

Number: 71113_156
N=824010346996428501902929446579336446349065675339870767096387628080340800443117481808771174671282885478191223615959
  ( 114 digits)
SNFS difficulty: 157 digits.
Divisors found:
 r1=1982357395654855011440038146861915074032606554692317687
 r2=415671941297055391986742820832969759498307762414593330759457
Version: 
Total time: 12.24 hours.
Scaled time: 28.40 units (timescale=2.321).
Factorization parameters were as follows:
n: 824010346996428501902929446579336446349065675339870767096387628080340800443117481808771174671282885478191223615959
m: 20000000000000000000000000000000
deg: 5
c5: 20
c0: 17
skew: 0.97
type: snfs
lss: 1
rlim: 2800000
alim: 2800000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 2800000/2800000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1400000, 2500001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 8481172
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 485933 x 486180
Total sieving time: 11.15 hours.
Total relation processing time: 0.46 hours.
Matrix solve time: 0.51 hours.
Time per square root: 0.11 hours.
Prototype def-par.txt line would be:
snfs,157,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000
total time: 12.24 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

(65·10159+61)/9 = 7(2)1589<160> = 167 · 455921 · 4001016979670712233<19> · 5379908203555946771<19> · C115

C115 = P53 · P62

P53 = 96383262843725875562456351579696025282506312998383983<53>

P62 = 45721228945729185309354981526914135704408442080201681269449463<62>

Number: 72229_159
N=4406761227014383772744992246241231961679312963933611928862215622302455615422271185419516893972781051599907087151129
  ( 115 digits)
Divisors found:
 r1=96383262843725875562456351579696025282506312998383983
 r2=45721228945729185309354981526914135704408442080201681269449463
Version: 
Total time: 15.08 hours.
Scaled time: 36.03 units (timescale=2.389).
Factorization parameters were as follows:
name: 72229_159
n: 4406761227014383772744992246241231961679312963933611928862215622302455615422271185419516893972781051599907087151129
skew: 17359.92
# norm 2.35e+15
c5: 36540
c4: 5231062026
c3: -130362871646254
c2: -1226930863844106788
c1: 8425729364406378361539
c0: 53716536162268136384847162
# alpha -5.10
Y1: 159695469967
Y0: -10381736553568680581705
# Murphy_E 5.72e-10
# M 827678952077618632955342287148713937231119215230854811599520325539777306026637345719092699824163303916063189669290
type: gnfs
rlim: 2800000
alim: 2800000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.6
alambda: 2.6
qintsize: 70000
Factor base limits: 2800000/2800000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved algebraic special-q in [1400000, 2450001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 9155069
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 523806 x 524054
Polynomial selection time: 1.34 hours.
Total sieving time: 12.38 hours.
Total relation processing time: 0.67 hours.
Matrix solve time: 0.58 hours.
Time per square root: 0.12 hours.
Prototype def-par.txt line would be:
gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2800000,2800000,27,27,52,52,2.6,2.6,70000
total time: 15.08 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

(83·10161+7)/9 = 9(2)1603<162> = 1697 · 2711 · 20543 · 1498481 · 53973738457<11> · 810578820825230269<18> · C117

C117 = P32 · P85

P32 = 65656961003311514015883035936551<32>

P85 = 2266995127807532404937686268783558513717904515654110062784739793001401834333714626621<85>

GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM]
Input number is 148844010701156356756903072727115500377610663976925506749656983744503128054493059428451193698102694635708042011524171 (117 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=6209770295
Step 1 took 3580ms
Step 2 took 2050ms
********** Factor found in step 2: 65656961003311514015883035936551
Found probable prime factor of 32 digits: 65656961003311514015883035936551
Probable prime cofactor 2266995127807532404937686268783558513717904515654110062784739793001401834333714626621 has 85 digits

(67·10163-31)/9 = 7(4)1621<164> = 1093 · 16633 · 26687 · 14657691415107539107<20> · C134

C134 = P37 · P38 · P59

P37 = 2379704242579980728400961963262974523<37>

P38 = 80520601705670054813859962771453621977<38>

P59 = 54631889004741725520371953058841143590754460348049791924251<59>

GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM]
Input number is 10468301293755797423881824808300936684163049041001719203135482913387586546663127409790577743604090731829830211783508368815067239088721 (134 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4672242577
Step 1 took 3327ms
Step 2 took 2201ms
********** Factor found in step 2: 80520601705670054813859962771453621977
Found probable prime factor of 38 digits: 80520601705670054813859962771453621977
Composite cofactor 130007738044742485114119405003336802697164449362326732828807416813930485046568036276242158857273 has 96 digits

Number: 74441_163
N=130007738044742485114119405003336802697164449362326732828807416813930485046568036276242158857273
  ( 96 digits)
Divisors found:
 r1=2379704242579980728400961963262974523
 r2=54631889004741725520371953058841143590754460348049791924251
Version: 
Total time: 1.50 hours.
Scaled time: 3.46 units (timescale=2.313).
Factorization parameters were as follows:
name: 74441_163
n: 130007738044742485114119405003336802697164449362326732828807416813930485046568036276242158857273
skew: 1979.38
# norm 1.96e+13
c5: 273300
c4: 304405751
c3: 365710080704
c2: -4895444318937764
c1: -4512394773361583236
c0: 13984228209751842845
# alpha -6.07
Y1: 14191866557
Y0: -861914766383702208
# Murphy_E 6.01e-09
# M 46998393681213226899223521402912408001520722578974367414646002933959646617795624266321907021062
type: gnfs
rlim: 800000
alim: 800000
lpbr: 26
lpba: 26
mfbr: 48
mfba: 48
rlambda: 2.5
alambda: 2.5
qintsize: 40000
Factor base limits: 800000/800000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 48/48
Sieved algebraic special-q in [400000, 680001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 3482298
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 128893 x 129141
Polynomial selection time: 0.10 hours.
Total sieving time: 1.21 hours.
Total relation processing time: 0.12 hours.
Matrix solve time: 0.04 hours.
Time per square root: 0.02 hours.
Prototype def-par.txt line would be:
gnfs,95,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,800000,800000,26,26,48,48,2.5,2.5,40000
total time: 1.50 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

Nov 12, 2009 (5th)

By Dmitry Domanov / GGNFS/msieve / Nov 12, 2009

(67·10175-31)/9 = 7(4)1741<176> = 269 · 3343 · C170

C170 = P57 · P114

P57 = 393007290755296676600975185335423075552050629797117701609<57>

P114 = 210641059005337681090850353556043252785508344730403422889278293035429519751561094996454076042806528622893752218747<114>

N=82783471921514349402840807507052348684477963101553203269378776764236255132729705909862637508598052018415492222492812973726873603106134712431841093295366609076552841863923
  ( 170 digits)
SNFS difficulty: 176 digits.
Divisors found:
 r1=393007290755296676600975185335423075552050629797117701609 (pp57)
 r2=210641059005337681090850353556043252785508344730403422889278293035429519751561094996454076042806528622893752218747 (pp114)
Version: Msieve-1.40
Total time: 82.62 hours.
Scaled time: 155.56 units (timescale=1.883).
Factorization parameters were as follows:
n: 82783471921514349402840807507052348684477963101553203269378776764236255132729705909862637508598052018415492222492812973726873603106134712431841093295366609076552841863923
m: 100000000000000000000000000000000000
deg: 5
c5: 67
c0: -31
skew: 0.86
type: snfs
lss: 1
rlim: 6200000
alim: 6200000
lpbr: 28
lpba: 28
mfbr: 53
mfba: 53
rlambda: 2.5
alambda: 2.5Factor base limits: 6200000/6200000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 53/53
Sieved rational special-q in [3100000, 7200001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1326117 x 1326348
Total sieving time: 79.81 hours.
Total relation processing time: 0.16 hours.
Matrix solve time: 2.19 hours.
Time per square root: 0.45 hours.
Prototype def-par.txt line would be:
snfs,176.000,5,0,0,0,0,0,0,0,0,6200000,6200000,28,28,53,53,2.5,2.5,100000
total time: 82.62 hours.
 --------- CPU info (if available) ----------

(65·10158-11)/9 = 7(2)1571<159> = 7 · 31 · 3607 · C153

C153 = P41 · P50 · P63

P41 = 83363948032550770439971746177796233984623<41>

P50 = 63165174686566479174510487178756948267564308740641<50>

P63 = 175230215598453693379399967411213917661767959640494153861891613<63>

N=922709455401264339082381061686534020794464197524555073049488031109788087707366529012611450881123650022833510138660518298677075964965999576121471718742259
  ( 153 digits)
SNFS difficulty: 160 digits.
Divisors found:
 r1=83363948032550770439971746177796233984623 (pp41)
 r2=63165174686566479174510487178756948267564308740641 (pp50)
 r3=175230215598453693379399967411213917661767959640494153861891613 (pp63)
Version: Msieve-1.40
Total time: 19.63 hours.
Scaled time: 36.21 units (timescale=1.845).
Factorization parameters were as follows:
n: 922709455401264339082381061686534020794464197524555073049488031109788087707366529012611450881123650022833510138660518298677075964965999576121471718742259
m: 50000000000000000000000000000000
deg: 5
c5: 104
c0: -55
skew: 0.88
type: snfs
lss: 1
rlim: 3300000
alim: 3300000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4Factor base limits: 3300000/3300000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [1650000, 2750001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 618184 x 618411
Total sieving time: 18.94 hours.
Total relation processing time: 0.08 hours.
Matrix solve time: 0.47 hours.
Time per square root: 0.13 hours.
Prototype def-par.txt line would be:
snfs,160.000,5,0,0,0,0,0,0,0,0,3300000,3300000,27,27,51,51,2.4,2.4,100000
total time: 19.63 hours.
 --------- CPU info (if available) ----------

Nov 12, 2009 (4th)

By Wataru Sakai / GMP-ECM 6.2.1 / Nov 12, 2009

(62·10192-71)/9 = 6(8)1911<193> = 807571049183<12> · C181

C181 = P40 · P142

P40 = 2141731664373514704800209804190966929619<40>

P142 = 3982936487128283963654011022855118528252029474284443258175563324282085584199674797758328510237897814911957350790362026615847538823628063665653<142>

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2276662570
Step 1 took 63985ms
********** Factor found in step 1: 2141731664373514704800209804190966929619
Found probable prime factor of 40 digits: 2141731664373514704800209804190966929619
Probable prime cofactor 3982936487128283963654011022855118528252029474284443258175563324282085584199674797758328510237897814911957350790362026615847538823628063665653 has 142 digits

Nov 12, 2009 (3rd)

By Ignacio Santos / GGNFS, Msieve / Nov 12, 2009

(67·10164+41)/9 = 7(4)1639<165> = 7 · 97 · 461 · C160

C160 = P44 · P117

P44 = 10965272962460119234911069404341287975741259<44>

P117 = 216891307273720750758081653250952572647618179283737370490732853103987208380893592346709082214421115917317056152162969<117>

Number: 74449_164
N=2378272387441159943787579809674315119671471841787381738630704348440332517976367071789394396009329927079328872830225783241414880388872382968587991286293945237971
  ( 160 digits)
SNFS difficulty: 166 digits.
Divisors found:
 r1=10965272962460119234911069404341287975741259 (pp44)
 r2=216891307273720750758081653250952572647618179283737370490732853103987208380893592346709082214421115917317056152162969 (pp117)
Version: Msieve v. 1.43
Total time: 44.81 hours.
Scaled time: 77.93 units (timescale=1.739).
Factorization parameters were as follows:
n: 2378272387441159943787579809674315119671471841787381738630704348440332517976367071789394396009329927079328872830225783241414880388872382968587991286293945237971
m: 1000000000000000000000000000000000
deg: 5
c5: 67
c0: 410
skew: 1.44
type: snfs
lss: 1
rlim: 4200000
alim: 4200000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4Factor base limits: 4200000/4200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [2100000, 4600001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 794493 x 794718
Total sieving time: 43.79 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 0.80 hours.
Time per square root: 0.13 hours.
Prototype def-par.txt line would be:
snfs,166.000,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000
total time: 44.81 hours.

Nov 12, 2009 (2nd)

By Sinkiti Sibata / Msieve / Nov 12, 2009

(62·10155-71)/9 = 6(8)1541<156> = 3 · 83 · 1054865761<10> · 5865205252879032365590891631<28> · C117

C117 = P57 · P60

P57 = 690204344660474179997645180103744985808246178066443143733<57>

P60 = 647875762848916317184387762028148718967749699167161314240123<60>

Number: 68881_155
N=447166666318541071021133120076586888737388050135431182917568426080461179199315021134343779030522598595547672164599159
  ( 117 digits)
SNFS difficulty: 156 digits.
Divisors found:
 r1=690204344660474179997645180103744985808246178066443143733 (pp57)
 r2=647875762848916317184387762028148718967749699167161314240123 (pp60)
Version: Msieve-1.40
Total time: 35.60 hours.
Scaled time: 120.13 units (timescale=3.374).
Factorization parameters were as follows:
name: 68881_155
n: 447166666318541071021133120076586888737388050135431182917568426080461179199315021134343779030522598595547672164599159
m: 10000000000000000000000000000000
deg: 5
c5: 62
c0: -71
skew: 1.03
type: snfs
lss: 1
rlim: 2900000
alim: 2900000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 2900000/2900000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1450000, 2750001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 507864 x 508112
Total sieving time: 35.01 hours.
Total relation processing time: 0.07 hours.
Matrix solve time: 0.48 hours.
Time per square root: 0.04 hours.
Prototype def-par.txt line would be:
snfs,156.000,5,0,0,0,0,0,0,0,0,2900000,2900000,27,27,50,50,2.4,2.4,100000
total time: 35.60 hours.
 --------- CPU info (if available) ----------

(62·10152-71)/9 = 6(8)1511<153> = 32 · 23 · 443 · 1061 · 34279360770581<14> · C132

C132 = P36 · P96

P36 = 315834675110482422029126787755351387<36>

P96 = 653984116715282556173259909244692754554281589932741812886644462514507314473058785355215072340543<96>

Number: 68881_152
N=206550861030187082845434344910136822313692781358486124359562932596625872977417209449469207777000587340003595836995580001075491383141
  ( 132 digits)
SNFS difficulty: 154 digits.
Divisors found:
 r1=315834675110482422029126787755351387 (pp36)
 r2=653984116715282556173259909244692754554281589932741812886644462514507314473058785355215072340543 (pp96)
Version: Msieve-1.40
Total time: 26.52 hours.
Scaled time: 55.30 units (timescale=2.085).
Factorization parameters were as follows:
name: 68881_152
n: 206550861030187082845434344910136822313692781358486124359562932596625872977417209449469207777000587340003595836995580001075491383141
m: 2000000000000000000000000000000
deg: 5
c5: 775
c0: -284
skew: 0.82
type: snfs
lss: 1
rlim: 2600000
alim: 2600000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 2600000/2600000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1300000, 2400001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 503235 x 503483
Total sieving time: 25.38 hours.
Total relation processing time: 0.15 hours.
Matrix solve time: 0.88 hours.
Time per square root: 0.11 hours.
Prototype def-par.txt line would be:
snfs,154.000,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000
total time: 26.52 hours.
 --------- CPU info (if available) ----------

Nov 12, 2009

By Erik Branger / GGNFS, Msieve / Nov 12, 2009

(65·10156+61)/9 = 7(2)1559<157> = 73 · 23041 · 290912309 · C142

C142 = P54 · P88

P54 = 605691835518887929525069079127539502706299835330479941<54>

P88 = 5186347188194532049169964537904314800100966481543495236359524310108165939442379395721307<88>

Number: 72229_156
N=3141328148055769408108490574107127310905627536310764350258942664672471270571546787474991776204204338886772516964994368059599955681938189802887
  ( 142 digits)
SNFS difficulty: 157 digits.
Divisors found:
 r1=605691835518887929525069079127539502706299835330479941 (pp54)
 r2=5186347188194532049169964537904314800100966481543495236359524310108165939442379395721307 (pp88)
Version: Msieve v. 1.43
Total time: 29.78 hours.
Scaled time: 25.49 units (timescale=0.856).
Factorization parameters were as follows:
n: 3141328148055769408108490574107127310905627536310764350258942664672471270571546787474991776204204338886772516964994368059599955681938189802887
m: 10000000000000000000000000000000
deg: 5
c5: 650
c0: 61
skew: 0.62
type: snfs
lss: 1
rlim: 3000000
alim: 3000000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 3000000/3000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1500000, 2800001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 628739 x 628971
Total sieving time: 28.49 hours.
Total relation processing time: 0.11 hours.
Matrix solve time: 0.91 hours.
Time per square root: 0.27 hours.
Prototype def-par.txt line would be:
snfs,157.000,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000
total time: 29.78 hours.
 --------- CPU info (if available) ----------

Nov 11, 2009 (6th)

By Wataru Sakai / GMP-ECM 6.2.1 / Nov 11, 2009

(62·10191-71)/9 = 6(8)1901<192> = 3 · 67 · 887 · 2539 · 9337 · 39719 · 1602440276322618158898151<25> · C151

C151 = P39 · C112

P39 = 517452552714882800113775903751182527043<39>

C112 = [4948900833131795948779300436802723663715157264908054857089072914253472322653488429767164518431236683340445838023<112>]

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1659986578
Step 1 took 46926ms
Step 2 took 16405ms
********** Factor found in step 2: 517452552714882800113775903751182527043
Found probable prime factor of 39 digits: 517452552714882800113775903751182527043
Composite cofactor 4948900833131795948779300436802723663715157264908054857089072914253472322653488429767164518431236683340445838023 has 112 digits

Nov 11, 2009 (5th)

By Jo Yeong Uk / GMP-ECM, GGNFS, Msieve v1.39 / Nov 11, 2009

(67·10197-31)/9 = 7(4)1961<198> = 32 · 62765167725817727<17> · 569456850647072222011<21> · 7082290927670325280559<22> · 143654013588585058279631<24> · C115

C115 = P39 · P76

P39 = 876417883079711189730801115665794456501<39>

P76 = 2595419183630539862325486973334714191597155410525075313845472607910755022473<76>

GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM]
Input number is 2274671786621949951263749654269552518055133473554962856563812879331411196076321546565020576595542670694967075946973 (115 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=6695390019
Step 1 took 3447ms
Step 2 took 3775ms
********** Factor found in step 2: 876417883079711189730801115665794456501
Found probable prime factor of 39 digits: 876417883079711189730801115665794456501
Probable prime cofactor 2595419183630539862325486973334714191597155410525075313845472607910755022473 has 76 digits

(67·10155-13)/9 = 7(4)1543<156> = 7 · 709 · 9293712784931<13> · 1383499142474187967<19> · C122

C122 = P49 · P73

P49 = 4878885565302112410069827574733270111997783354663<49>

P73 = 2391108289919426790093946899475837566572606524440706754396837686596322811<73>

Number: 74443_155
N=11665943720762109867469144547912706865819403378906466080397791627463020253271963189327366442949178885904585225639650117693
  ( 122 digits)
SNFS difficulty: 156 digits.
Divisors found:
 r1=4878885565302112410069827574733270111997783354663
 r2=2391108289919426790093946899475837566572606524440706754396837686596322811
Version: 
Total time: 11.86 hours.
Scaled time: 28.30 units (timescale=2.387).
Factorization parameters were as follows:
n: 11665943720762109867469144547912706865819403378906466080397791627463020253271963189327366442949178885904585225639650117693
m: 10000000000000000000000000000000
deg: 5
c5: 67
c0: -13
skew: 0.72
type: snfs
lss: 1
rlim: 2400000
alim: 2400000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 2400000/2400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1200000, 2300001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 8097644
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 498919 x 499167
Total sieving time: 10.82 hours.
Total relation processing time: 0.44 hours.
Matrix solve time: 0.54 hours.
Time per square root: 0.06 hours.
Prototype def-par.txt line would be:
snfs,156,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,50,50,2.4,2.4,100000
total time: 11.86 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

(62·10157-71)/9 = 6(8)1561<158> = 99195219782129<14> · 862777452673465967877176411389<30> · C114

C114 = P35 · P80

P35 = 52297659149807374462667474009984713<35>

P80 = 15391374265113706485561084794199787764149587902549858512746210928097010187565677<80>

GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM]
Input number is 804932845164033586036914469028264065136979055479450569674957239025392866722070247914821612289988269570817453495701 (114 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=8562617314
Step 1 took 2683ms
Step 2 took 1934ms
********** Factor found in step 2: 52297659149807374462667474009984713
Found probable prime factor of 35 digits: 52297659149807374462667474009984713
Probable prime cofactor 15391374265113706485561084794199787764149587902549858512746210928097010187565677 has 80 digits

(62·10193-71)/9 = 6(8)1921<194> = 75960033942817<14> · 4397607999596779171<19> · 369309395407669463317213<24> · 1171702087614980824891741<25> · C114

C114 = P37 · P39 · P39

P37 = 2525698696521822456119491163260313393<37>

P39 = 256813952710105392622923287549523616069<39>

P39 = 734750347974042448663022462026007717303<39>

Number: 68881_193
N=476584546263894187249410686004100765778612480514835230007919231006638024959787696980937702139804608084591272660451
  ( 114 digits)
Divisors found:
 r1=2525698696521822456119491163260313393
 r2=256813952710105392622923287549523616069
 r3=734750347974042448663022462026007717303
Version: 
Total time: 15.21 hours.
Scaled time: 36.34 units (timescale=2.389).
Factorization parameters were as follows:
name: 68881_193
n: 476584546263894187249410686004100765778612480514835230007919231006638024959787696980937702139804608084591272660451
skew: 81967.32
# norm 9.82e+15
c5: 8820
c4: 2345585976
c3: -323570539152345
c2: -15362443811670735002
c1: 597776664594248966729850
c0: 21149383241086351023669060501
# alpha -6.44
Y1: 162832733239
Y0: -8841660780460233148288
# Murphy_E 6.11e-10
# M 113143934203780989554909325109184190545377095444258272813552631118687650210735975240448943877806470142275656860495
type: gnfs
rlim: 2800000
alim: 2800000
lpbr: 27
lpba: 27
mfbr: 52
mfba: 52
rlambda: 2.6
alambda: 2.6
qintsize: 70000
Factor base limits: 2800000/2800000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 52/52
Sieved algebraic special-q in [1400000, 2450001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 9462558
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 455180 x 455428
Polynomial selection time: 1.15 hours.
Total sieving time: 12.32 hours.
Total relation processing time: 0.70 hours.
Matrix solve time: 0.43 hours.
Time per square root: 0.62 hours.
Prototype def-par.txt line would be:
gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2800000,2800000,27,27,52,52,2.6,2.6,70000
total time: 15.21 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

(67·10156+41)/9 = 7(4)1559<157> = 3 · 49722859553004683571304633082687<32> · C125

C125 = P39 · P86

P39 = 977449831415406822625837597217701697963<39>

P86 = 51057608111162517212283211587392025819225649128369502205593083124860984531588715088543<86>

GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM]
Input number is 49906250440729710419014031070881432285557829279347790059994308543147408208496821187368869362262186554536134835916248987737909 (125 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4701809730
Step 1 took 3299ms
********** Factor found in step 1: 977449831415406822625837597217701697963
Found probable prime factor of 39 digits: 977449831415406822625837597217701697963
Probable prime cofactor 51057608111162517212283211587392025819225649128369502205593083124860984531588715088543 has 86 digits

Nov 11, 2009 (4th)

By Sinkiti Sibata / Msieve / Nov 11, 2009

(62·10151-71)/9 = 6(8)1501<152> = 331 · 127037 · 11400881 · 134503558337<12> · C127

C127 = P53 · P74

P53 = 12183800517956357535603106021528312450021649863093099<53>

P74 = 87687157226222913211851853713756716074490652421247217538196733958337598941<74>

Number: 68881_151
N=1068362831630975289536719380978717933839318138065193388152189421002793725428131445533649250405126709847471149909608867206808159
  ( 127 digits)
SNFS difficulty: 153 digits.
Divisors found:
 r1=12183800517956357535603106021528312450021649863093099 (pp53)
 r2=87687157226222913211851853713756716074490652421247217538196733958337598941 (pp74)
Version: Msieve-1.40
Total time: 24.61 hours.
Scaled time: 51.14 units (timescale=2.078).
Factorization parameters were as follows:
name: 68881_151
n: 1068362831630975289536719380978717933839318138065193388152189421002793725428131445533649250405126709847471149909608867206808159
m: 2000000000000000000000000000000
deg: 5
c5: 155
c0: -568
skew: 1.30
type: snfs
lss: 1
rlim: 2600000
alim: 2600000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 2600000/2600000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1300000, 2300001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 451516 x 451764
Total sieving time: 23.54 hours.
Total relation processing time: 0.15 hours.
Matrix solve time: 0.71 hours.
Time per square root: 0.21 hours.
Prototype def-par.txt line would be:
snfs,153.000,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000
total time: 24.61 hours.
 --------- CPU info (if available) ----------

Nov 11, 2009 (3rd)

By Erik Branger / GGNFS, Msieve, GMP-ECM / Nov 11, 2009

(62·10154-71)/9 = 6(8)1531<155> = 43 · 374993 · 2810836267<10> · 11225367031078217<17> · C123

C123 = P50 · P73

P50 = 59456498419297853938720187564291652786173012200777<50>

P73 = 2277309913700930235171299438349941993910174833496615439903369397888974873<73>

Number: 68881_154
N=135400873284210690693774015755123458723863999599882657194440727495833755486367006735978429661363061336140811098682184076321
  ( 123 digits)
SNFS difficulty: 156 digits.
Divisors found:
 r1=59456498419297853938720187564291652786173012200777 (pp50)
 r2=2277309913700930235171299438349941993910174833496615439903369397888974873 (pp73)
Version: Msieve v. 1.43
Total time: 23.11 hours.
Scaled time: 23.09 units (timescale=0.999).
Factorization parameters were as follows:
n: 135400873284210690693774015755123458723863999599882657194440727495833755486367006735978429661363061336140811098682184076321
m: 10000000000000000000000000000000
deg: 5
c5: 31
c0: -355
skew: 1.63
type: snfs
lss: 1
rlim: 2800000
alim: 2800000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 2800000/2800000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1400000, 2500001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 506553 x 506780
Total sieving time: 22.27 hours.
Total relation processing time: 0.12 hours.
Matrix solve time: 0.61 hours.
Time per square root: 0.11 hours.
Prototype def-par.txt line would be:
snfs,156.000,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000
total time: 23.11 hours.
 --------- CPU info (if available) ----------

(67·10177+41)/9 = 7(4)1769<178> = 32 · 13 · 29 · 83 · 4273 · 5393 · 5722060324567079183<19> · 151018584602920158933747156833<30> · C118

C118 = P32 · P86

P32 = 22758430372083446855719889404943<32>

P86 = 58328645933672237511735506021370981038299449338001585648578106455857959995279721987707<86>

GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM]
Input number is 1327468427179387889781842707701047813219909890609691053184956887763212589049476886379634400599684315962049865391035701 (118 digits)
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3389415600
Step 1 took 35225ms
Step 2 took 12183ms
********** Factor found in step 2: 22758430372083446855719889404943
Found probable prime factor of 32 digits: 22758430372083446855719889404943
Probable prime cofactor 58328645933672237511735506021370981038299449338001585648578106455857959995279721987707 has 86 digits

Nov 11, 2009 (2nd)

By matsui / Msieve / Nov 11, 2009

9·10229-1 = 8(9)229<230> = 197 · 208440677 · 1189638653569<13> · 1894742524089853<16> · 81036479966432843<17> · 49931612314311537707693<23> · C153

C153 = P41 · P55 · P57

P41 = 67387210716432592896081650429078156564311<41>

P55 = 6243050577365052581815882169888181821426803805681795893<55>

P57 = 571212953652346708852367194795436478812329554530967996239<57>

N=240310297661166400485936362786332361583251738596432632828490772305058814102347092398830258825622814264893962996338765698926236641973725988355663176866797
  ( 153 digits)
Divisors found:
 r1=67387210716432592896081650429078156564311 (pp41)
 r2=6243050577365052581815882169888181821426803805681795893 (pp55)
 r3=571212953652346708852367194795436478812329554530967996239 (pp57)
Version: Msieve v. 1.43
Total time: 251.99 hours.
Scaled time: 435.68 units (timescale=1.729).
Factorization parameters were as follows:
name: 89999_229
n: 240310297661166400485936362786332361583251738596432632828490772305058814102347092398830258825622814264893962996338765698926236641973725988355663176866797
skew: 767614.43
# norm 1.10e+21
c5: 5687280
c4: -1576344828224
c3: -15992040188510426116
c2: 551458288805369004819659
c1: 3133393285152216531272566657368
c0: 15877934132636447372734593052780585
# alpha -6.25
Y1: 421186069282110373
Y0: -133405467847610273238880604564
# Murphy_E 3.57e-12
# M 94019805174926964203307818923509292211349668657206486672204198932322380976076648921267349291638710915588954585022947785470799284727337408767453363616776
type: gnfs
rlim: 24400000
alim: 24400000
lpbr: 29
lpba: 29
mfbr: 58
mfba: 58
rlambda: 2.6
alambda: 2.6
qintsize: 1600000
Factor base limits: 24400000/24400000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 58/58
Sieved algebraic special-q in [12200000, 45800001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 4602695 x 4602923
Total sieving time: 218.64 hours.
Total relation processing time: 0.36 hours.
Matrix solve time: 28.28 hours.
Time per square root: 4.71 hours.
Prototype def-par.txt line would be:
gnfs,152,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,24400000,24400000,29,29,58,58,2.6,2.6,100000
total time: 251.99 hours.

c153 is the largest composite number which was factored by gnfs in our tables so far. Congratulations!

Nov 11, 2009

By Dmitry Domanov / GGNFS/msieve / Nov 11, 2009

(65·10156+7)/9 = 7(2)1553<157> = 103 · 5987 · C152

C152 = P34 · P45 · P73

P34 = 7031297053478820252836704940982133<34>

P45 = 216618954992476495307119418561129767797475183<45>

P73 = 7689400150761544910067260025642464616112812856275284452144717121553857737<73>

Number: s152
N=11711819333835319928165105661331302323679010383699021378394648311182679336332640173810606187552354084695192694563499592518778100483445883917131490757843
  ( 152 digits)
SNFS difficulty: 159 digits.
Divisors found:
 r1=7031297053478820252836704940982133 (pp34)
 r2=216618954992476495307119418561129767797475183 (pp45)
 r3=7689400150761544910067260025642464616112812856275284452144717121553857737 (pp73)
Version: Msieve-1.40
Total time: 20.84 hours.
Scaled time: 39.70 units (timescale=1.905).
Factorization parameters were as follows:
n: 11711819333835319928165105661331302323679010383699021378394648311182679336332640173810606187552354084695192694563499592518778100483445883917131490757843
m: 20000000000000000000000000000000
deg: 5
c5: 325
c0: 112
skew: 0.81
type: snfs
lss: 1
rlim: 3100000
alim: 3100000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4Factor base limits: 3100000/3100000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1550000, 2750001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 563522 x 563750
Total sieving time: 19.98 hours.
Total relation processing time: 0.07 hours.
Matrix solve time: 0.39 hours.
Time per square root: 0.39 hours.
Prototype def-par.txt line would be:
snfs,159.000,5,0,0,0,0,0,0,0,0,3100000,3100000,27,27,50,50,2.4,2.4,100000
total time: 20.84 hours.
 --------- CPU info (if available) ----------

Nov 10, 2009 (7th)

By Lionel Debroux + Jeff Gilchrist / ggnfs + msieve / Nov 10, 2009

(16·10218-7)/9 = 1(7)218<219> = 3 · 31 · 47803226827<11> · 4200791891903<13> · C193

C193 = P84 · P110

P84 = 268323355950355689735829355470693132255531404134917945907444149722706588875965691187<84>

P110 = 35477063645140320608508880041657003639745603152097560923338385031351604960423622458603280891900739184876928587<110>

* Sieving with ggnfs-lasieve4I14e on the RSALS grid
* Relation filtering and matrix creation by Lionel Debroux
* Lanczos iteration and square root phase by Jeff Gilchrist:

Msieve v. 1.43
Sat Nov  7 06:20:12 2009
random seeds: 0a61ba43 4d857a70
factoring 9519324776528409561729990009646664138683276667349926474618191233610006802875690133653956702500176615466439936026117646551454778085624851090212971043848299225331138444034552307364883241094262769
(193 digits)
no P-1/P+1/ECM available, skipping
commencing number field sieve (193-digit input)
R0: -2000000000000000000000000000000000000
R1:  1
A0: -7
A1:  0
A2:  0
A3:  0
A4:  0
A5:  0
A6:  25
skew 0.81, size 8.982341e-11, alpha 0.442034, combined = 3.092508e-12

commencing square root phase
reading relations for dependency 1
read 2344667 cycles
cycles contain 6788734 unique relations
read 6788734 relations
multiplying 6788734 relations
multiply complete, coefficients have about 194.54 million bits
initial square root is modulo 9585991
reading relations for dependency 2
read 2347128 cycles
cycles contain 6786766 unique relations
read 6786766 relations
multiplying 6786766 relations
multiply complete, coefficients have about 194.49 million bits
initial square root is modulo 9541993
reading relations for dependency 3
read 2345872 cycles
cycles contain 6789410 unique relations
read 6789410 relations
multiplying 6789410 relations
multiply complete, coefficients have about 194.56 million bits
initial square root is modulo 9600571
reading relations for dependency 4
read 2346398 cycles
cycles contain 6788602 unique relations
read 6788602 relations
multiplying 6788602 relations
multiply complete, coefficients have about 194.54 million bits
initial square root is modulo 9582763
reading relations for dependency 5
read 2346536 cycles
cycles contain 6786192 unique relations
read 6786192 relations
multiplying 6786192 relations
multiply complete, coefficients have about 194.48 million bits
initial square root is modulo 9533137
sqrtTime: 9409
prp84 factor: 268323355950355689735829355470693132255531404134917945907444149722706588875965691187
prp110 factor: 35477063645140320608508880041657003639745603152097560923338385031351604960423622458603280891900739184876928587
elapsed time 02:36:51

Nov 10, 2009 (6th)

By Dmitry Domanov / GGNFS/msieve, ECMNET, GMP-ECM / Nov 10, 2009

(22·10168+17)/3 = 7(3)1679<169> = 132 · 41 · 8713 · 13669 · 214273369 · 114606497028610906462852186626440387<36> · C114

C114 = P40 · P74

P40 = 4177882563148851956956378400719707432499<40>

P74 = 86614926782716481655642989173611606205822555745723844164409561209012769799<74>

Number: g114
N=361866992313925679835060995464419229628238498308302974917150353218753381622582951726188164535961708450542818297701
  ( 114 digits)
Divisors found:
 r1=4177882563148851956956378400719707432499 (pp40)
 r2=86614926782716481655642989173611606205822555745723844164409561209012769799 (pp74)
Version: Msieve-1.40
Total time: 18.28 hours.
Scaled time: 34.22 units (timescale=1.872).
Factorization parameters were as follows:
# Murphy_E = 6.914749e-10, selected by Erik Branger
n: 361866992313925679835060995464419229628238498308302974917150353218753381622582951726188164535961708450542818297701
Y0: -9358848905036098722083
Y1: 1217111908793
c0: 250679101103598290355518496
c1: -98749734681377813022512
c2: -1818902650774914967
c3: -83088339013152
c4: 558203372
c5: 5040
skew: 74097.95
type: gnfs
# selected mechanically
rlim: 3500000
alim: 3500000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.5
alambda: 2.5Factor base limits: 3500000/3500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved algebraic special-q in [1750000, 2750001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 421885 x 422119
Total sieving time: 17.91 hours.
Total relation processing time: 0.07 hours.
Matrix solve time: 0.23 hours.
Time per square root: 0.07 hours.
Prototype def-par.txt line would be:
gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.5,2.5,100000
total time: 18.28 hours.
 --------- CPU info (if available) ----------

(65·10184+61)/9 = 7(2)1839<185> = C185

C185 = P79 · P106

P79 = 7416636363322081411734736677307481195492064107754843900863362332033982448906537<79>

P106 = 9737867502765395606014252796988801940512562554168295027040851239051448736911790559819965758531428016050317<106>

Number: s185
N=72222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222229
  ( 185 digits)
SNFS difficulty: 186 digits.
Divisors found:
 r1=7416636363322081411734736677307481195492064107754843900863362332033982448906537 (pp79)
 r2=9737867502765395606014252796988801940512562554168295027040851239051448736911790559819965758531428016050317 (pp106)
Version: Msieve-1.40
Total time: 356.27 hours.
Scaled time: 332.76 units (timescale=0.934).
Factorization parameters were as follows:
n: 72222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222229
m: 10000000000000000000000000000000000000
deg: 5
c5: 13
c0: 122
skew: 1.56
type: snfs
lss: 1
rlim: 8900000
alim: 8900000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5Factor base limits: 8900000/8900000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved rational special-q in [4450000, 8550001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1689410 x 1689637
Total sieving time: 349.66 hours.
Total relation processing time: 0.66 hours.
Matrix solve time: 5.48 hours.
Time per square root: 0.48 hours.
Prototype def-par.txt line would be:
snfs,186.000,5,0,0,0,0,0,0,0,0,8900000,8900000,28,28,54,54,2.5,2.5,100000
total time: 356.27 hours.
 --------- CPU info (if available) ----------

(59·10162+31)/9 = 6(5)1619<163> = 11839 · C159

C159 = P64 · P96

P64 = 1603806001192770510753527225209719940802414193940206966754019963<64>

P96 = 345257123130058654867239834949430629892606823120856523120868703933491053735726127484325472092987<96>

Number: s159
N=553725446030539366125141950802901896744282080881455828664207750279209017278110951563101237904853075053260879766496794962036958827228275661420352694953590299481
  ( 159 digits)
SNFS difficulty: 164 digits.
Divisors found:
 r1=1603806001192770510753527225209719940802414193940206966754019963 (pp64)
 r2=345257123130058654867239834949430629892606823120856523120868703933491053735726127484325472092987 (pp96)
Version: Msieve-1.40
Total time: 42.53 hours.
Scaled time: 77.11 units (timescale=1.813).
Factorization parameters were as follows:
n: 553725446030539366125141950802901896744282080881455828664207750279209017278110951563101237904853075053260879766496794962036958827228275661420352694953590299481
m: 200000000000000000000000000000000
deg: 5
c5: 1475
c0: 248
skew: 0.70
type: snfs
lss: 1
rlim: 3900000
alim: 3900000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4Factor base limits: 3900000/3900000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [1950000, 4450001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 832432 x 832658
Total sieving time: 41.20 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 0.90 hours.
Time per square root: 0.34 hours.
Prototype def-par.txt line would be:
snfs,164.000,5,0,0,0,0,0,0,0,0,3900000,3900000,27,27,51,51,2.4,2.4,100000
total time: 42.53 hours.
 --------- CPU info (if available) ----------

(67·10176-31)/9 = 7(4)1751<177> = 3 · 13 · 71 · C174

C174 = P38 · C137

P38 = 14585106125382471096943606647246369289<38>

C137 = [18433157929261372543020550729674096547707466849046376880307345015073860397953606708332537812839756446385684607720942028809690211884235201<137>]

Factor=14585106125382471096943606647246369289  Method=ECM  B1=11000000  Sigma=2392920153

(22·10159-7)/3 = 7(3)1581<160> = 13967 · C156

C156 = P45 · P112

P45 = 324485775047405152706505180736142372790996977<45>

P112 = 1618089837178662448363775067491171510470582401491581751100635227165937052536156327577009094712259852356951106509<112>

N=525047134913247893845015632085153098971384931147227989785446648051359156106059521252476074556693157681200925992219756091740053936660222906374549533424023293
  ( 156 digits)
SNFS difficulty: 161 digits.
Divisors found:
 r1=324485775047405152706505180736142372790996977 (pp45)
 r2=1618089837178662448363775067491171510470582401491581751100635227165937052536156327577009094712259852356951106509 (pp112)
Version: Msieve-1.40
Total time: 18.84 hours.
Scaled time: 35.27 units (timescale=1.872).
Factorization parameters were as follows:
n: 525047134913247893845015632085153098971384931147227989785446648051359156106059521252476074556693157681200925992219756091740053936660222906374549533424023293
m: 100000000000000000000000000000000
deg: 5
c5: 11
c0: -35
skew: 1.26
type: snfs
lss: 1
rlim: 3400000
alim: 3400000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.4
alambda: 2.4Factor base limits: 3400000/3400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved rational special-q in [1700000, 2700001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 637822 x 638049
Total sieving time: 17.98 hours.
Total relation processing time: 0.08 hours.
Matrix solve time: 0.52 hours.
Time per square root: 0.27 hours.
Prototype def-par.txt line would be:
snfs,161.000,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000
total time: 18.84 hours.
 --------- CPU info (if available) ----------

(22·10180-7)/3 = 7(3)1791<181> = 277 · C179

C179 = P38 · C141

P38 = 28341234128475964035151410109192458499<38>

C141 = [934120491618255487715617124498006305942083239924591056032626276482155278960222427194169266237177630746177989763840285711539332572356417301997<141>]

Factor=28341234128475964035151410109192458499  Method=ECM  B1=11000000  Sigma=413036558

Nov 10, 2009 (5th)

By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 10, 2009

(64·10154+17)/9 = 7(1)1533<155> = 7 · 29944451 · 99126724489936082314891547<26> · C121

C121 = P36 · P85

P36 = 371458155915584869438887303244455043<36>

P85 = 9213452798851581780246903010130941751346807705140375743997570945393621607222482291029<85>

Number: 71113_154
N=3422412186276692664840006343775380636492433642471949424208317432860971893505957363340221351729755835795279923807232709247
  ( 121 digits)
SNFS difficulty: 156 digits.
Divisors found:
 r1=371458155915584869438887303244455043
 r2=9213452798851581780246903010130941751346807705140375743997570945393621607222482291029
Version: 
Total time: 9.13 hours.
Scaled time: 21.70 units (timescale=2.377).
Factorization parameters were as follows:
n: 3422412186276692664840006343775380636492433642471949424208317432860971893505957363340221351729755835795279923807232709247
m: 20000000000000000000000000000000
deg: 5
c5: 1
c0: 85
skew: 2.43
type: snfs
lss: 1
rlim: 2600000
alim: 2600000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 2600000/2600000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1300000, 2100001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 8251407
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 418737 x 418985
Total sieving time: 8.36 hours.
Total relation processing time: 0.34 hours.
Matrix solve time: 0.39 hours.
Time per square root: 0.04 hours.
Prototype def-par.txt line would be:
snfs,156,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000
total time: 9.13 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

(26·10154-11)/3 = 8(6)1533<155> = 71 · 9070459 · 259328111441557<15> · C132

C132 = P53 · P79

P53 = 99846047824272537592965345005720564798732938551338279<53>

P79 = 5197374408355423148064024399326141532315371063525619734573070180253227577341089<79>

Number: 86663_154
N=518937293737305764742350084321901012525716106131552754160789873608663212996406969680024139053939523745253009213500521776057405245831
  ( 132 digits)
SNFS difficulty: 156 digits.
Divisors found:
 r1=99846047824272537592965345005720564798732938551338279
 r2=5197374408355423148064024399326141532315371063525619734573070180253227577341089
Version: 
Total time: 10.11 hours.
Scaled time: 24.03 units (timescale=2.376).
Factorization parameters were as follows:
n: 518937293737305764742350084321901012525716106131552754160789873608663212996406969680024139053939523745253009213500521776057405245831
m: 10000000000000000000000000000000
deg: 5
c5: 13
c0: -55
skew: 1.33
type: snfs
lss: 1
rlim: 2400000
alim: 2400000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 2400000/2400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1200000, 2100001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 7809905
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 491291 x 491539
Total sieving time: 9.02 hours.
Total relation processing time: 0.35 hours.
Matrix solve time: 0.50 hours.
Time per square root: 0.24 hours.
Prototype def-par.txt line would be:
snfs,156,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,50,50,2.4,2.4,100000
total time: 10.11 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

(61·10155-43)/9 = 6(7)1543<156> = 19207 · 8129724299<10> · C142

C142 = P50 · P93

P50 = 10773558329235854559383288960393828305859609444921<50>

P93 = 402895859408850435228560980284998721882290483647477062554586284734865868390478708391490598441<93>

Number: 67773_155
N=4340622041948858448170164123031439379962172720964831379039893892595501831032998542728524811238685147412778859492166572369332930590658117968161
  ( 142 digits)
SNFS difficulty: 156 digits.
Divisors found:
 r1=10773558329235854559383288960393828305859609444921
 r2=402895859408850435228560980284998721882290483647477062554586284734865868390478708391490598441
Version: 
Total time: 12.33 hours.
Scaled time: 29.14 units (timescale=2.363).
Factorization parameters were as follows:
n: 4340622041948858448170164123031439379962172720964831379039893892595501831032998542728524811238685147412778859492166572369332930590658117968161
m: 10000000000000000000000000000000
deg: 5
c5: 61
c0: -43
skew: 0.93
type: snfs
lss: 1
rlim: 2600000
alim: 2600000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 2600000/2600000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1300000, 2400001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 8018085
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 546740 x 546988
Total sieving time: 11.04 hours.
Total relation processing time: 0.43 hours.
Matrix solve time: 0.66 hours.
Time per square root: 0.20 hours.
Prototype def-par.txt line would be:
snfs,156,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000
total time: 12.33 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

(67·10154+41)/9 = 7(4)1539<155> = 11800182871<11> · 524297866455971<15> · C131

C131 = P59 · P72

P59 = 13258140745590103120897332331500375538360937115782994093187<59>

P72 = 907575659674699981238661788307594336802623003262472252087994176094758447<72>

Number: 74449_154
N=12032765833238956496135533051537246750802755299151411853583075126019010073293713788119609205211450801525502233723112988192573400589
  ( 131 digits)
SNFS difficulty: 156 digits.
Divisors found:
 r1=13258140745590103120897332331500375538360937115782994093187
 r2=907575659674699981238661788307594336802623003262472252087994176094758447
Version: 
Total time: 14.37 hours.
Scaled time: 34.37 units (timescale=2.392).
Factorization parameters were as follows:
n: 12032765833238956496135533051537246750802755299151411853583075126019010073293713788119609205211450801525502233723112988192573400589
m: 10000000000000000000000000000000
deg: 5
c5: 67
c0: 410
skew: 1.44
type: snfs
lss: 1
rlim: 2800000
alim: 2800000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 2800000/2800000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1400000, 2700001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 8669259
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 493382 x 493630
Total sieving time: 13.16 hours.
Total relation processing time: 0.56 hours.
Matrix solve time: 0.53 hours.
Time per square root: 0.12 hours.
Prototype def-par.txt line would be:
snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000
total time: 14.37 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

Nov 10, 2009 (4th)

By Erik Branger / GGNFS, Msieve / Nov 10, 2009

(22·10161-7)/3 = 7(3)1601<162> = 8988583 · 1473843083<10> · 43685008931<11> · 792899578558552316971997<24> · C112

C112 = P47 · P65

P47 = 97195054545007868780229153979999042837726017679<47>

P65 = 16442360346075195163255521245258464415073491367475255299473133943<65>

Number: 73331_161
N=1598116110685453051884152389093381063570392044919000755814313712121566721546816342185364254479151650919152978297
  ( 112 digits)
Divisors found:
 r1=97195054545007868780229153979999042837726017679 (pp47)
 r2=16442360346075195163255521245258464415073491367475255299473133943 (pp65)
Version: Msieve v. 1.43
Total time: 22.37 hours.
Scaled time: 21.93 units (timescale=0.980).
Factorization parameters were as follows:
name: 73331_161
n: 1598116110685453051884152389093381063570392044919000755814313712121566721546816342185364254479151650919152978297
skew: 18801.73
# norm 1.08e+016
c5: 41040
c4: -11257294188
c3: -442650124089326
c2: 2964052129907482063
c1: -8608213059353517719384
c0: 16835718387366714053310855
# alpha -6.76
Y1: 655947863939
Y0: -2080116740162367855658
# Murphy_E 8.38e-010
# M 1271251820443806534114929805329990668883291174007574987231604085600016271988485379380744146412786916036972965427
type: gnfs
rlim: 3500000
alim: 3500000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 3500000/3500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved algebraic special-q in [1750000, 2550001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 439313 x 439538
Polynomial selection time: 1.84 hours.
Total sieving time: 19.64 hours.
Total relation processing time: 0.11 hours.
Matrix solve time: 0.46 hours.
Time per square root: 0.33 hours.
Prototype def-par.txt line would be:
gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000
total time: 22.37 hours.
 --------- CPU info (if available) ----------

Nov 10, 2009 (3rd)

By Wataru Sakai / GMP-ECM 6.2.1 / Nov 10, 2009

(83·10189+7)/9 = 9(2)1883<190> = 19 · C189

C189 = P34 · C155

P34 = 5990378735789383269628097762672663<34>

C155 = [81026615906465431938041626994478818515681338940598425649469860858583139654675179162239812855902595745749467893554470062276252107338980178289378117466811059<155>]

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3355232220
Step 1 took 69614ms
********** Factor found in step 1: 5990378735789383269628097762672663
Found probable prime factor of 34 digits: 5990378735789383269628097762672663
Composite cofactor 81026615906465431938041626994478818515681338940598425649469860858583139654675179162239812855902595745749467893554470062276252107338980178289378117466811059 has 155 digits

(22·10192+17)/3 = 7(3)1919<193> = 13 · 19 · 47 · C189

C189 = P34 · C156

P34 = 1065586090211622938492027332760513<34>

C156 = [592813482260539816573285099951893028539801844453071033975475976700379685000061841730286610971791510396786665189169314447668289344543691705287196946935621267<156>]

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=485063552
Step 1 took 69609ms
Step 2 took 21858ms
********** Factor found in step 2: 1065586090211622938492027332760513
Found probable prime factor of 34 digits: 1065586090211622938492027332760513
Composite cofactor 592813482260539816573285099951893028539801844453071033975475976700379685000061841730286610971791510396786665189169314447668289344543691705287196946935621267 has 156 digits

Nov 10, 2009 (2nd)

By Serge Batalov / GMP-ECM / Nov 10, 2009

(62·10198-71)/9 = 6(8)1971<199> = 18090491 · 96259713961<11> · 292004497230977<15> · C167

C167 = P29 · C138

P29 = 20703814083710017434203941181<29>

C138 = [654356407770923648465491093265011628500438838155395019040655717408451346641013314886383730589549523068829008515207175565727024831982591463<138>]

Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=4244008742
Step 1 took 7041ms
Step 2 took 3980ms
********** Factor found in step 2: 20703814083710017434203941181
Found probable prime factor of 29 digits: 20703814083710017434203941181
Composite cofactor has 138 digits

Nov 10, 2009

Factorizations of 688...881 have been extended up to n=200. Composite numbers that appeared newly have passed 118 times ECM runs at level 35. Unknown factors have probably 30 digits or more.

Nov 9, 2009 (5th)

By Wataru Sakai / GMP-ECM 6.2.1 / Nov 9, 2009

(59·10168+31)/9 = 6(5)1679<169> = 200353029081433643431<21> · C149

C149 = P36 · P114

P36 = 163345949950143193676363320218134933<36>

P114 = 200311193457135555149111399446648559579409439169411343631410357357163826821990473660434904444886971998129104305533<114>

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2903774802
Step 1 took 47356ms
Step 2 took 16435ms
********** Factor found in step 2: 163345949950143193676363320218134933
Found probable prime factor of 36 digits: 163345949950143193676363320218134933
Probable prime cofactor 200311193457135555149111399446648559579409439169411343631410357357163826821990473660434904444886971998129104305533 has 114 digits

Nov 9, 2009 (4th)

By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Nov 9, 2009

(64·10153+71)/9 = 7(1)1529<154> = 3 · 72 · 107 · 5851141 · 28626107 · 28548860107<11> · C125

C125 = P61 · P65

P61 = 5614634034614379921533744369479856200331498912590870991988599<61>

P65 = 16839270432055405826800110526516344410089090140539090333981785021<65>

Number: 71119_153
N=94546340885893875775565511755890916652169251907705803092120211847812361089925446153997345174676984566004539608391284500975579
  ( 125 digits)
SNFS difficulty: 156 digits.
Divisors found:
 r1=5614634034614379921533744369479856200331498912590870991988599
 r2=16839270432055405826800110526516344410089090140539090333981785021
Version: 
Total time: 12.25 hours.
Scaled time: 29.09 units (timescale=2.374).
Factorization parameters were as follows:
n: 94546340885893875775565511755890916652169251907705803092120211847812361089925446153997345174676984566004539608391284500975579
m: 20000000000000000000000000000000
deg: 5
c5: 1
c0: 3550
skew: 5.13
type: snfs
lss: 1
rlim: 2800000
alim: 2800000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 2800000/2800000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1400000, 2500001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 8225922
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 512102 x 512350
Total sieving time: 11.13 hours.
Total relation processing time: 0.45 hours.
Matrix solve time: 0.59 hours.
Time per square root: 0.09 hours.
Prototype def-par.txt line would be:
snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000
total time: 12.25 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

(59·10152+13)/9 = 6(5)1517<153> = 3 · 1489 · 22639 · 11683159 · 1328096507<10> · 5450109209<10> · C119

C119 = P56 · P64

P56 = 59178572867084914379468698280517827432559633138291908257<56>

P64 = 1295318881695982523785877985646207549117537913160065454433420981<64>

Number: 65557_152
N=76655122826556645524074443634510586228441763475339929480344042662902252605878456624030665388478094256481641219110940117
  ( 119 digits)
SNFS difficulty: 153 digits.
Divisors found:
 r1=59178572867084914379468698280517827432559633138291908257
 r2=1295318881695982523785877985646207549117537913160065454433420981
Version: 
Total time: 13.11 hours.
Scaled time: 30.41 units (timescale=2.319).
Factorization parameters were as follows:
n: 76655122826556645524074443634510586228441763475339929480344042662902252605878456624030665388478094256481641219110940117
m: 1000000000000000000000000000000
deg: 5
c5: 5900
c0: 13
skew: 0.29
type: snfs
lss: 1
rlim: 2400000
alim: 2400000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 2400000/2400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1200000, 2400001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 8453288
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 459884 x 460132
Total sieving time: 11.78 hours.
Total relation processing time: 0.50 hours.
Matrix solve time: 0.46 hours.
Time per square root: 0.38 hours.
Prototype def-par.txt line would be:
snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,50,50,2.4,2.4,100000
total time: 13.11 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

(22·10167-7)/3 = 7(3)1661<168> = 673 · 554010851 · 558911987 · 5945695037<10> · 109820016330048359322910570503010931<36> · C103

C103 = P52 · P52

P52 = 1401391479136958593688939741110720276274288575652677<52>

P52 = 3845750104092990927871071735575755688207468194738649<52>

Number: 73331_167
N=5389401426765989035878493200566942374516146102706060431089988040720698547959542215951996250572612213373
  ( 103 digits)
Divisors found:
 r1=1401391479136958593688939741110720276274288575652677
 r2=3845750104092990927871071735575755688207468194738649
Version: 
Total time: 3.55 hours.
Scaled time: 8.49 units (timescale=2.390).
Factorization parameters were as follows:
name: 73331_167
n: 5389401426765989035878493200566942374516146102706060431089988040720698547959542215951996250572612213373
skew: 4097.75
# norm 1.64e+14
c5: 40320
c4: -1958361504
c3: -17221716378444
c2: 27188414562676651
c1: 33121214055673416898
c0: -33012256189229942644761
# alpha -5.50
Y1: 45693702307
Y0: -42189907306613412250
# Murphy_E 2.46e-09
# M 1997110600840141969487185735223388600956316936391544059751688593970011381357450945414187330994898656216
type: gnfs
rlim: 1500000
alim: 1500000
lpbr: 26
lpba: 26
mfbr: 50
mfba: 50
rlambda: 2.6
alambda: 2.6
qintsize: 50000
Factor base limits: 1500000/1500000
Large primes per side: 3
Large prime bits: 26/26
Max factor residue bits: 50/50
Sieved algebraic special-q in [750000, 1350001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 4676874
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 262876 x 263124
Polynomial selection time: 0.25 hours.
Total sieving time: 2.82 hours.
Total relation processing time: 0.27 hours.
Matrix solve time: 0.15 hours.
Time per square root: 0.06 hours.
Prototype def-par.txt line would be:
gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,50,50,2.6,2.6,50000
total time: 3.55 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

(65·10153-11)/9 = 7(2)1521<154> = 3 · 19 · 3191 · 30851 · 1993529 · C138

C138 = P46 · P92

P46 = 8594630348195199186618987496491138043989264641<46>

P92 = 75119066309768402960586373080898748135184106551828886169635340771025166138551902760422135897<92>

Number: 72221_153
N=645620607034023065579793268856604425328117343665574488428740228244719430439959533731717952309961769144984088201555673934488542847598917977
  ( 138 digits)
SNFS difficulty: 156 digits.
Divisors found:
 r1=8594630348195199186618987496491138043989264641
 r2=75119066309768402960586373080898748135184106551828886169635340771025166138551902760422135897
Version: 
Total time: 9.93 hours.
Scaled time: 23.68 units (timescale=2.385).
Factorization parameters were as follows:
n: 645620607034023065579793268856604425328117343665574488428740228244719430439959533731717952309961769144984088201555673934488542847598917977
m: 10000000000000000000000000000000
deg: 5
c5: 13
c0: -220
skew: 1.76
type: snfs
lss: 1
rlim: 2400000
alim: 2400000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 2400000/2400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1200000, 2100001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 8428433
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 394554 x 394802
Total sieving time: 9.12 hours.
Total relation processing time: 0.39 hours.
Matrix solve time: 0.34 hours.
Time per square root: 0.08 hours.
Prototype def-par.txt line would be:
snfs,156,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,50,50,2.4,2.4,100000
total time: 9.93 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

(67·10153-13)/9 = 7(4)1523<154> = 3 · 73 · 599 · 6375191 · C142

C142 = P69 · P74

P69 = 630815937238830387707045431729321900960152842180793375602167922900551<69>

P74 = 14111250397994772249206335757054905306524045262423288625705324246219742983<74>

Number: 74443_153
N=8901601645422890581068982807068783308967792576347016429003625587988536935014749786660720721784929209055910888848171892379052067704627089083633
  ( 142 digits)
SNFS difficulty: 156 digits.
Divisors found:
 r1=630815937238830387707045431729321900960152842180793375602167922900551
 r2=14111250397994772249206335757054905306524045262423288625705324246219742983
Version: 
Total time: 12.11 hours.
Scaled time: 28.63 units (timescale=2.364).
Factorization parameters were as follows:
n: 8901601645422890581068982807068783308967792576347016429003625587988536935014749786660720721784929209055910888848171892379052067704627089083633
m: 10000000000000000000000000000000
deg: 5
c5: 67
c0: -1300
skew: 1.81
type: snfs
lss: 1
rlim: 2600000
alim: 2600000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 2600000/2600000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1300000, 2400001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 8501534
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 447986 x 448234
Total sieving time: 11.02 hours.
Total relation processing time: 0.47 hours.
Matrix solve time: 0.42 hours.
Time per square root: 0.20 hours.
Prototype def-par.txt line would be:
snfs,156,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000
total time: 12.11 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

(22·10154-7)/3 = 7(3)1531<155> = 29 · 9311791740963623557<19> · C135

C135 = P38 · P97

P38 = 65155738369339103941331630969006793233<38>

P97 = 4167902040813106094398057851557338570627756214904008442532444406520855216370513619157114999436019<97>

GMP-ECM 6.2.3 [powered by GMP 4.3.1] [ECM]
Input number is 271562734920253252721963146431377932001653050860753475858443777890484893804596955592971171231575888296804819144102887980271374745659427 (135 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2666678006
Step 1 took 3359ms
Step 2 took 2155ms
********** Factor found in step 2: 65155738369339103941331630969006793233
Found probable prime factor of 38 digits: 65155738369339103941331630969006793233
Probable prime cofactor 4167902040813106094398057851557338570627756214904008442532444406520855216370513619157114999436019 has 97 digits

Nov 9, 2009 (3rd)

By Erik Branger / GGNFS, Msieve / Nov 9, 2009

(59·10155+13)/9 = 6(5)1547<156> = 32 · 72 · 312 · C151

C151 = P37 · P114

P37 = 3250014503184800505033627409506459859<37>

P114 = 475950980723268548624810965719672919720034989274501070593621650713069860521169953430677781461307623085322624985823<114>

Number: 65557_155
N=1546847590155652194203306635792637477390462871856261678371583728107190770091518320050107374818736991077311180378421843165909366791384530842436793578957
  ( 151 digits)
SNFS difficulty: 156 digits.
Divisors found:
 r1=3250014503184800505033627409506459859 (pp37)
 r2=475950980723268548624810965719672919720034989274501070593621650713069860521169953430677781461307623085322624985823 (pp114)
Version: Msieve v. 1.43
Total time: 19.02 hours.
Scaled time: 19.44 units (timescale=1.022).
Factorization parameters were as follows:
n: 1546847590155652194203306635792637477390462871856261678371583728107190770091518320050107374818736991077311180378421843165909366791384530842436793578957
m: 10000000000000000000000000000000
deg: 5
c5: 59
c0: 13
skew: 0.74
type: snfs
lss: 1
rlim: 2900000
alim: 2900000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 2900000/2900000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1450000, 2250001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 456331 x 456559
Total sieving time: 18.33 hours.
Total relation processing time: 0.12 hours.
Matrix solve time: 0.47 hours.
Time per square root: 0.10 hours.
Prototype def-par.txt line would be:
snfs,156.000,5,0,0,0,0,0,0,0,0,2900000,2900000,27,27,50,50,2.4,2.4,100000
total time: 19.02 hours.
 --------- CPU info (if available) ----------

Nov 9, 2009 (2nd)

By Dmitry Domanov / GGNFS/msieve / Nov 9, 2009

(26·10188-11)/3 = 8(6)1873<189> = C189

C189 = P62 · P128

P62 = 10259291107232450345127225587209152871731029421866962805442781<62>

P128 = 84476272055063943325183359642649984717306070885700898533399372021753856257495399877737223250194400158255639618255431995131856723<128>

N=866666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666663
  ( 189 digits)
SNFS difficulty: 190 digits.
Divisors found:
 r1=10259291107232450345127225587209152871731029421866962805442781 (pp62)
 r2=84476272055063943325183359642649984717306070885700898533399372021753856257495399877737223250194400158255639618255431995131856723 (pp128)
Version: Msieve-1.40
Total time: 356.05 hours.
Scaled time: 660.47 units (timescale=1.855).
Factorization parameters were as follows:
n: 866666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666663
m: 50000000000000000000000000000000000000
deg: 5
c5: 208
c0: -275
skew: 1.06
type: snfs
lss: 1
rlim: 10600000
alim: 10600000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
Factor base limits: 10600000/10600000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved rational special-q in [5300000, 10600001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 1915479 x 1915705
Total sieving time: 349.52 hours.
Total relation processing time: 1.02 hours.
Matrix solve time: 4.72 hours.
Time per square root: 0.79 hours.
Prototype def-par.txt line would be:
snfs,190.000,5,0,0,0,0,0,0,0,0,10600000,10600000,28,28,54,54,2.5,2.5,100000
total time: 356.05 hours.
 --------- CPU info (if available) ----------

Nov 9, 2009

By Robert Backstrom / GGNFS, Msieve / Nov 9, 2009

(59·10173+31)/9 = 6(5)1729<174> = 17 · C173

C173 = P64 · P109

P64 = 4177250313399903945138253417266710121030087934303335833373800887<64>

P109 = 9231453374859386654199536787033338094395429597865246821904001952487028953910042143288170856206510706346989121<109>

Number: n
N=38562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209150327
  ( 173 digits)
SNFS difficulty: 176 digits.
Divisors found:

Mon Nov 09 17:57:11 2009  prp64 factor: 4177250313399903945138253417266710121030087934303335833373800887
Mon Nov 09 17:57:11 2009  prp109 factor: 9231453374859386654199536787033338094395429597865246821904001952487028953910042143288170856206510706346989121
Mon Nov 09 17:57:11 2009  elapsed time 03:30:32 (Msieve 1.43 - dependency 3)

Version: GGNFS-0.77.1-20051202-athlon
Total time: 116.60 hours.
Scaled time: 212.56 units (timescale=1.823).
Factorization parameters were as follows:
name: KA_6_5_172_9
n: 38562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209150327
m: 50000000000000000000000000000000000
deg: 5
c5: 472
c0: 775
skew: 1.10
type: snfs
lss: 1
rlim: 6000000
alim: 6000000
lpbr: 28
lpba: 28
mfbr: 56
mfba: 56
rlambda: 2.5
alambda: 2.5
qintsize: 50000
Factor base limits: 6000000/6000000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 56/56
Sieved  special-q in [3000000, 8200000)
Primes: RFBsize:412849, AFBsize:412487, largePrimes:21228147 encountered
Relations: rels:21095842, finalFF:563665
Max relations in full relation-set: 28
Initial matrix: 
Pruned matrix : 

Msieve: found 3202566 hash collisions in 24388453 relations
Msieve: matrix is 1106425 x 1106655 (295.8 MB)

Total sieving time: 115.54 hours.
Total relation processing time: 1.06 hours.
Matrix solve time: 0.00 hours.
Total square root time: 0.00 hours, sqrts: 0.
Prototype def-par.txt line would be:
snfs,176,5,0,0,0,0,0,0,0,0,6000000,6000000,28,28,56,56,2.5,2.5,100000
total time: 116.60 hours.
 --------- CPU info (if available) ----------

Nov 8, 2009 (5th)

By Erik Branger / GGNFS, Msieve / Nov 8, 2009

(67·10153-31)/9 = 7(4)1521<154> = 7 · 29 · 107 · 1873 · 9283 · 3851031073116400940153<22> · C121

C121 = P37 · P84

P37 = 6384161033655476762880992360445318917<37>

P84 = 801762046385247037048308402141985803146797607769907046767693665075239890836475568119<84>

Number: 74441_153
N=5118578014796569030767959609696286789242595413285599606741445460908841782819618432069526246322988087219996094931712807123
  ( 121 digits)
SNFS difficulty: 156 digits.
Divisors found:
 r1=6384161033655476762880992360445318917 (pp37)
 r2=801762046385247037048308402141985803146797607769907046767693665075239890836475568119 (pp84)
Version: Msieve-1.40
Total time: 26.48 hours.
Scaled time: 26.27 units (timescale=0.992).
Factorization parameters were as follows:
n: 5118578014796569030767959609696286789242595413285599606741445460908841782819618432069526246322988087219996094931712807123
m: 5000000000000000000000000000000
deg: 5
c5: 536
c0: -775
skew: 1.08
type: snfs
lss: 1
rlim: 2800000
alim: 2800000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 2800000/2800000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1400000, 2700001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 517516 x 517745
Total sieving time: 25.51 hours.
Total relation processing time: 0.12 hours.
Matrix solve time: 0.63 hours.
Time per square root: 0.22 hours.
Prototype def-par.txt line would be:
snfs,156.000,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000
total time: 26.48 hours.
 --------- CPU info (if available) ----------

Nov 8, 2009 (4th)

By Wataru Sakai / GMP-ECM 6.2.1 / Nov 8, 2009

(22·10167-7)/3 = 7(3)1661<168> = 673 · 554010851 · 558911987 · 5945695037<10> · C138

C138 = P36 · C103

P36 = 109820016330048359322910570503010931<36>

C103 = [5389401426765989035878493200566942374516146102706060431089988040720698547959542215951996250572612213373<103>]

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4116852324
Step 1 took 42504ms
Step 2 took 14782ms
********** Factor found in step 2: 109820016330048359322910570503010931
Found probable prime factor of 36 digits: 109820016330048359322910570503010931
Composite cofactor 5389401426765989035878493200566942374516146102706060431089988040720698547959542215951996250572612213373 has 103 digits

Nov 8, 2009 (3rd)

By shyguy7129 / GGNFS and Msieve v1.40 / Nov 8, 2009

(65·10170+61)/9 = 7(2)1699<171> = 3 · 79 · 2293 · 140130990851<12> · 3757774694852316444096913<25> · 10144116873340791964390133<26> · C105

C105 = P38 · P68

P38 = 21971222154598869664832900623562106017<38>

P68 = 11323613996205652033225521245915447835096235974204481742262021487883<68>

Yes! My first submitted factors! :D

Number: 72229_170
N=248793638703559462811024537742910133006111369698373954144678461344908746356065631383501263120031326892011
  ( 105 digits)
Divisors found:
 r1=21971222154598869664832900623562106017 (pp38)
 r2=11323613996205652033225521245915447835096235974204481742262021487883 (pp68)
Version: Msieve-1.40
Total time: 21.65 hours.
Scaled time: 38.56 units (timescale=1.781).
Factorization parameters were as follows:
name: 72229_170
n: 248793638703559462811024537742910133006111369698373954144678461344908746356065631383501263120031326892011
skew: 60992.32
# norm 3.41e+014
c5: 960
c4: 182155542
c3: -5698389781438
c2: -468425103552598334
c1: 10463967835739232401989
c0: -997954568530928284717567
# alpha -5.04
Y1: 30184793243
Y0: -191739245141787164928
# Murphy_E 1.68e-009
# M 14245238078513029591920117460774843530496924943504703352168798349066508904664795693381848673546224366040
type: gnfs
rlim: 2500000
alim: 2500000
lpbr: 26
lpba: 26
mfbr: 49
mfba: 49
rlambda: 2.6
alambda: 2.6
qintsize: 150000
Factor base limits: 2500000/2500000
Large primes per side: 2
Large prime bits: 26/26
Max factor residue bits: 49/49
Sieved algebraic special-q in [1250000, 2750001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 282011 x 282259
Total sieving time: 21.07 hours.
Total relation processing time: 0.10 hours.
Matrix solve time: 0.41 hours.
Time per square root: 0.07 hours.
Prototype def-par.txt line would be:
gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000
total time: 21.65 hours.
 --------- CPU info (if available) ----------

Nov 8, 2009 (2nd)

By Sinkiti Sibata / Msieve / Nov 8, 2009

(67·10181+41)/9 = 7(4)1809<182> = 53 · 911 · 42131 · 4676297 · 8281979 · 141991566527749086929197<24> · 165108482396811425155660189<27> · C110

C110 = P48 · P63

P48 = 121710843248256603777008924948983385611121242357<48>

P63 = 331160752353019654210539187583083132861767802689536904567422471<63>

Number: 74449_181
N=40305854419613099392933000322931607765920560992330095901788930477410295183773700750837580338887703146798804147
  ( 110 digits)
Divisors found:
 r1=121710843248256603777008924948983385611121242357 (pp48)
 r2=331160752353019654210539187583083132861767802689536904567422471 (pp63)
Version: Msieve-1.40
Total time: 21.25 hours.
Scaled time: 44.16 units (timescale=2.078).
Factorization parameters were as follows:
name: 74449_181
n: 40305854419613099392933000322931607765920560992330095901788930477410295183773700750837580338887703146798804147
skew: 33186.82
# norm 1.64e+15
c5: 30600
c4: 1047455254
c3: -78351538124717
c2: 129431081918751312
c1: 48327712299484053859320
c0: -514868110317796072713683808
# alpha -6.04
Y1: 654077347
Y0: -1056645576467103752827
# Murphy_E 9.67e-10
# M 15796330503120420793036355885019577620524107447618867199386924482341371764583299519964820756277157127611672118
type: gnfs
rlim: 3200000
alim: 3200000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 3200000/3200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved algebraic special-q in [1600000, 2300001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 394960 x 395208
Polynomial selection time: 1.51 hours.
Total sieving time: 18.66 hours.
Total relation processing time: 0.14 hours.
Matrix solve time: 0.54 hours.
Time per square root: 0.41 hours.
Prototype def-par.txt line would be:
gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000
total time: 21.25 hours.
 --------- CPU info (if available) ----------

Nov 8, 2009

By Jo Yeong Uk / GGNFS, Msieve v1.39, GMP-ECM / Nov 8, 2009

(65·10151-11)/9 = 7(2)1501<152> = 2632819547<10> · 359828389017095641457<21> · C122

C122 = P46 · P77

P46 = 4707966628617424628297466037653799757180336867<46>

P77 = 16192762768567533085113383462849628534669727951104188819800098462441995657197<77>

Number: 72221_151
N=76234986739534643662491549126650708645656218262843499744778693818048201701410833734282766803893429828567760567175512981799
  ( 122 digits)
SNFS difficulty: 152 digits.
Divisors found:
 r1=4707966628617424628297466037653799757180336867
 r2=16192762768567533085113383462849628534669727951104188819800098462441995657197
Version: 
Total time: 7.84 hours.
Scaled time: 18.42 units (timescale=2.350).
Factorization parameters were as follows:
n: 76234986739534643662491549126650708645656218262843499744778693818048201701410833734282766803893429828567760567175512981799
m: 1000000000000000000000000000000
deg: 5
c5: 650
c0: -11
skew: 0.44
type: snfs
lss: 1
rlim: 2200000
alim: 2200000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 2200000/2200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1100000, 1800001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 7347944
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 453651 x 453899
Total sieving time: 7.07 hours.
Total relation processing time: 0.26 hours.
Matrix solve time: 0.44 hours.
Time per square root: 0.06 hours.
Prototype def-par.txt line would be:
snfs,152,5,0,0,0,0,0,0,0,0,2200000,2200000,27,27,50,50,2.4,2.4,100000
total time: 7.84 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

(67·10151-31)/9 = 7(4)1501<152> = 1193 · 6254113478800077538215938702699113<34> · C115

C115 = P55 · P61

P55 = 8228829892112628636884835633777315487804386047416617137<55>

P61 = 1212517479021868655624024510948004899355487100786836051889177<61>

Number: 74441_151
N=9977600076084199905958097161900099571496695646133438177125099495316432470281666399300303712370663052339771363026249
  ( 115 digits)
SNFS difficulty: 152 digits.
Divisors found:
 r1=8228829892112628636884835633777315487804386047416617137
 r2=1212517479021868655624024510948004899355487100786836051889177
Version: 
Total time: 9.71 hours.
Scaled time: 23.17 units (timescale=2.387).
Factorization parameters were as follows:
n: 9977600076084199905958097161900099571496695646133438177125099495316432470281666399300303712370663052339771363026249
m: 1000000000000000000000000000000
deg: 5
c5: 670
c0: -31
skew: 0.54
type: snfs
lss: 1
rlim: 2200000
alim: 2200000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 2200000/2200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1100000, 2000001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 7894010
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 428637 x 428885
Total sieving time: 8.86 hours.
Total relation processing time: 0.35 hours.
Matrix solve time: 0.38 hours.
Time per square root: 0.12 hours.
Prototype def-par.txt line would be:
snfs,152,5,0,0,0,0,0,0,0,0,2200000,2200000,27,27,50,50,2.4,2.4,100000
total time: 9.71 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

(59·10155+31)/9 = 6(5)1549<156> = 23 · 31674983 · C147

C147 = P35 · P113

P35 = 82384832793625986764249254072567903<35>

P113 = 10922398337410720857723866317273548007359511055401276844847935368467831986721558208027076999570364927664168943417<113>

GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM]
Input number is 899839960732960711222255438670508322602943884295822813523593072688578946213134106435594072781082341661234885691494267087353195443745889379497344551 (147 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3405593309
Step 1 took 4664ms
Step 2 took 4649ms
********** Factor found in step 2: 82384832793625986764249254072567903
Found probable prime factor of 35 digits: 82384832793625986764249254072567903
Probable prime cofactor 10922398337410720857723866317273548007359511055401276844847935368467831986721558208027076999570364927664168943417 has 113 digits

(65·10152+7)/9 = 7(2)1513<153> = 3 · 241 · 27347519063<11> · 1725333177913<13> · C128

C128 = P38 · P91

P38 = 10514619222825497091683354104111810879<38>

P91 = 2013483581578352610412684711209758302904144260026256812619717594875763736046702067763469301<91>

GMP-ECM 6.2.3 [powered by GMP 4.2.4] [ECM]
Input number is 21171013171707276297284205554612886487286809273598944016623603709651069407896630669000876694960644238838461982364112370634325579 (128 digits)
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=6792566349
Step 1 took 4196ms
Step 2 took 5756ms
********** Factor found in step 2: 10514619222825497091683354104111810879
Found probable prime factor of 38 digits: 10514619222825497091683354104111810879
Probable prime cofactor 2013483581578352610412684711209758302904144260026256812619717594875763736046702067763469301 has 91 digits

Nov 7, 2009 (6th)

By Dmitry Domanov / GGNFS/msieve / Nov 7, 2009

(65·10155+7)/9 = 7(2)1543<156> = 3 · 9007 · 1081789 · 8911250809018619<16> · 142782376236086436331<21> · C110

C110 = P52 · P58

P52 = 7392507812931635296203627398671630725771305605141003<52>

P58 = 2626768526217301127090637292882797495139799918052500317901<58>

N=19418406852824315665554762157458974239206989197334760372678432542908053342430535858752210495531479837429994703
  ( 110 digits)
Divisors found:
 r1=7392507812931635296203627398671630725771305605141003 (pp52)
 r2=2626768526217301127090637292882797495139799918052500317901 (pp58)
Version: Msieve-1.40
Total time: 15.75 hours.
Scaled time: 31.01 units (timescale=1.969).
Factorization parameters were as follows:
name: g110
n: 19418406852824315665554762157458974239206989197334760372678432542908053342430535858752210495531479837429994703
skew: 29767.14
# norm 3.00e+015
c5: 16560
c4: 3825657986
c3: 19567041570883
c2: -2418931829640980736
c1: 30620557498708644779402
c0: -74115411399096749338291340
# alpha -6.43
Y1: 203416736417
Y0: -1032349374499642407141
# Murphy_E 1.04e-009
# M 4165853837495179387505368821618801681724638475605636957434987794044042429718757847059943296685210951731399213
type: gnfs
rlim: 3200000
alim: 3200000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.6
alambda: 2.6
qintsize: 100000
Factor base limits: 3200000/3200000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved algebraic special-q in [1600000, 2300001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 391563 x 391788
Polynomial selection time: 1.42 hours.
Total sieving time: 13.33 hours.
Total relation processing time: 0.06 hours.
Matrix solve time: 0.44 hours.
Time per square root: 0.50 hours.
Prototype def-par.txt line would be:
gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000
total time: 15.75 hours.
 --------- CPU info (if available) ----------

Nov 7, 2009 (5th)

By Sinkiti Sibata / Msieve / Nov 7, 2009

(62·10150-17)/9 = 6(8)1497<151> = 19 · 96457 · 54014052471186550121<20> · C125

C125 = P61 · P64

P61 = 7152115416516333263116824921083071837423457619295848531485227<61>

P64 = 9730172787565460411900025374086137070224048862984493336589028567<64>

Number: 68887_150
N=69591318799314634387182087997398280009882822525775350033620638088104875270633081216732421635499310384553331373497069641479709
  ( 125 digits)
SNFS difficulty: 151 digits.
Divisors found:
 r1=7152115416516333263116824921083071837423457619295848531485227 (pp61)
 r2=9730172787565460411900025374086137070224048862984493336589028567 (pp64)
Version: Msieve-1.40
Total time: 17.64 hours.
Scaled time: 36.65 units (timescale=2.078).
Factorization parameters were as follows:
name: 68887_150
n: 69591318799314634387182087997398280009882822525775350033620638088104875270633081216732421635499310384553331373497069641479709
m: 1000000000000000000000000000000
deg: 5
c5: 62
c0: -17
skew: 0.77
type: snfs
lss: 1
rlim: 2400000
alim: 2400000
lpbr: 27
lpba: 27
mfbr: 49
mfba: 49
rlambda: 2.4
alambda: 2.4
Factor base limits: 2400000/2400000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 49/49
Sieved rational special-q in [1200000, 1900001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 407535 x 407783
Total sieving time: 16.87 hours.
Total relation processing time: 0.12 hours.
Matrix solve time: 0.57 hours.
Time per square root: 0.07 hours.
Prototype def-par.txt line would be:
snfs,151.000,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000
total time: 17.64 hours.
 --------- CPU info (if available) ----------

(83·10190+7)/9 = 9(2)1893<191> = 3 · C191

C191 = P86 · P105

P86 = 31409756452905266401572874729021762403039657905422482493898473135389505774302363727127<86>

P105 = 978700385239610967893947803706059231473265933390451927236545688516093764875631745635126600791366581119683<105>

Number: 92223_190
N=30740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740741
  ( 191 digits)
SNFS difficulty: 191 digits.
Divisors found:
 r1=31409756452905266401572874729021762403039657905422482493898473135389505774302363727127 (pp86)
 r2=978700385239610967893947803706059231473265933390451927236545688516093764875631745635126600791366581119683 (pp105)
Version: Msieve v. 1.42
Total time: 12.72 hours.
Scaled time: 13.02 units (timescale=1.024).
Factorization parameters were as follows:
name: 92223_190
n: 30740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740741
m: 100000000000000000000000000000000000000
deg: 5
c5: 83
c0: 7
skew: 0.61
type: snfs
lss: 1
rlim: 11100000
alim: 11100000
lpbr: 28
lpba: 28
mfbr: 54
mfba: 54
rlambda: 2.5
alambda: 2.5
Factor base limits: 11100000/11100000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 54/54
Sieved rational special-q in [5550000, 10550001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2084496 x 2084721
Total sieving time: 0.00 hours.
Total relation processing time: 0.21 hours.
Matrix solve time: 11.53 hours.
Time per square root: 0.98 hours.
Prototype def-par.txt line would be:
snfs,191.000,5,0,0,0,0,0,0,0,0,11100000,11100000,28,28,54,54,2.5,2.5,100000
total time: 12.72 hours.
 --------- CPU info (if available) ----------
CPU0: Intel(R) Core(TM)2 Quad CPU    Q6600  @ 2.40GHz stepping 0b
CPU1: Intel(R) Core(TM)2 Quad CPU    Q6600  @ 2.40GHz stepping 0b
CPU2: Intel(R) Core(TM)2 Quad CPU    Q6600  @ 2.40GHz stepping 0b
CPU3: Intel(R) Core(TM)2 Quad CPU    Q6600  @ 2.40GHz stepping 0b
Memory: 3057976k/3145344k available (3786k kernel code, 496k absent, 86872k reserved, 2294k data, 1304k init)
Calibrating delay loop (skipped), value calculated using timer frequency.. 4787.88 BogoMIPS (lpj=2393941)
Calibrating delay using timer specific routine.. 4787.76 BogoMIPS (lpj=2393880)
Calibrating delay using timer specific routine.. 4787.77 BogoMIPS (lpj=2393886)
Calibrating delay using timer specific routine.. 4787.78 BogoMIPS (lpj=2393891)
Total of 4 processors activated (19151.19 BogoMIPS).

total time: 9 days 1 hour.

Nov 7, 2009 (4th)

By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 7, 2009

(67·10149+41)/9 = 7(4)1489<150> = 29 · 967 · 10301 · 164117 · 63136961 · 75921228000284137<17> · C112

C112 = P54 · P58

P54 = 658356174664422161569086775878853672793637262114046597<54>

P58 = 4975847405368765597872979135265543799568390928601303262351<58>

Number: 74449_149
N=3275879863512470866831524279102943957767823250262292240603618506109442210271627224143756567808563929798129769547
  ( 112 digits)
SNFS difficulty: 151 digits.
Divisors found:
 r1=658356174664422161569086775878853672793637262114046597
 r2=4975847405368765597872979135265543799568390928601303262351
Version: 
Total time: 9.16 hours.
Scaled time: 21.88 units (timescale=2.390).
Factorization parameters were as follows:
n: 3275879863512470866831524279102943957767823250262292240603618506109442210271627224143756567808563929798129769547
m: 1000000000000000000000000000000
deg: 5
c5: 67
c0: 410
skew: 1.44
type: snfs
lss: 1
rlim: 2000000
alim: 2000000
lpbr: 27
lpba: 27
mfbr: 49
mfba: 49
rlambda: 2.4
alambda: 2.4
Factor base limits: 2000000/2000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 49/49
Sieved rational special-q in [1000000, 1900001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 7095270
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 381891 x 382139
Total sieving time: 8.45 hours.
Total relation processing time: 0.32 hours.
Matrix solve time: 0.31 hours.
Time per square root: 0.08 hours.
Prototype def-par.txt line would be:
snfs,151,5,0,0,0,0,0,0,0,0,2000000,2000000,27,27,49,49,2.4,2.4,100000
total time: 9.16 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

(26·10155-11)/3 = 8(6)1543<156> = 7 · 1279 · 83773 · 865854809489<12> · 1961948617039<13> · 67938871020299<14> · C110

C110 = P53 · P57

P53 = 50356743151076883375850389237566626845654858552124607<53>

P57 = 198824902404933934450436748117874509387381569435016167809<57>

Number: 86663_155
N=10012174542443186661944529159441458449529896878553572027502711511349648695308726206045539833575579812190176063
  ( 110 digits)
Divisors found:
 r1=50356743151076883375850389237566626845654858552124607
 r2=198824902404933934450436748117874509387381569435016167809
Version: 
Total time: 9.20 hours.
Scaled time: 21.96 units (timescale=2.387).
Factorization parameters were as follows:
name: 86663_155
n: 10012174542443186661944529159441458449529896878553572027502711511349648695308726206045539833575579812190176063
skew: 19361.44
# norm 7.28e+14
c5: 36960
c4: -373375372
c3: 24010419126067
c2: 188419687096119335
c1: -10703912390072075189035
c0: -9921381275227903704194995
# alpha -5.79
Y1: 308100795223
Y0: -770122196696138062932
# Murphy_E 1.05e-09
# M 6923705748279385336736257457255098262017080868569703732932894391890534226799406036569569582345272734642801167
type: gnfs
rlim: 2100000
alim: 2100000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.6
alambda: 2.6
qintsize: 50000
Factor base limits: 2100000/2100000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved algebraic special-q in [1050000, 1700001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 7841955
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 402815 x 403063
Polynomial selection time: 0.80 hours.
Total sieving time: 7.42 hours.
Total relation processing time: 0.49 hours.
Matrix solve time: 0.34 hours.
Time per square root: 0.15 hours.
Prototype def-par.txt line would be:
gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2100000,2100000,27,27,51,51,2.6,2.6,50000
total time: 9.20 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

(26·10156-11)/3 = 8(6)1553<157> = 19 · 439 · 4201 · 22108555559<11> · 18897188991137<14> · 19562245823564779<17> · C110

C110 = P54 · P56

P54 = 694703188931333880775047897831384327876136440996742187<54>

P56 = 43561789316255219047093334112623127241673869427391777277<56>

Number: 86663_156
N=30262513953557411191067054802305039488066876688632568417434093173819283820734068340557697961554591668893884799
  ( 110 digits)
Divisors found:
 r1=694703188931333880775047897831384327876136440996742187
 r2=43561789316255219047093334112623127241673869427391777277
Version: 
Total time: 8.76 hours.
Scaled time: 20.90 units (timescale=2.387).
Factorization parameters were as follows:
name: 86663_156
n: 30262513953557411191067054802305039488066876688632568417434093173819283820734068340557697961554591668893884799
skew: 46936.13
# norm 2.00e+15
c5: 4800
c4: -1514434876
c3: -32339594241746
c2: 4238527376382421943
c1: -26343690099191295496866
c0: -124555876330930538048212671
# alpha -6.41
Y1: 329728317391
Y0: -1445236780624805468530
# Murphy_E 1.08e-09
# M 26147608521632649352970030633720039196717174907616904289542536532064184713838448536232324936389216869986608630
type: gnfs
rlim: 2100000
alim: 2100000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.6
alambda: 2.6
qintsize: 50000
Factor base limits: 2100000/2100000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved algebraic special-q in [1050000, 1650001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 7866072
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 385170 x 385418
Polynomial selection time: 0.66 hours.
Total sieving time: 7.20 hours.
Total relation processing time: 0.46 hours.
Matrix solve time: 0.36 hours.
Time per square root: 0.07 hours.
Prototype def-par.txt line would be:
gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2100000,2100000,27,27,51,51,2.6,2.6,50000
total time: 8.76 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

(64·10151+17)/9 = 7(1)1503<152> = 29 · 283 · 134839 · 172147 · 757057201 · C129

C129 = P56 · P74

P56 = 13630504369805610897121892199912194495690789284130587631<56>

P74 = 36174074472493502044830834515488572039115437822520724375951219171660917333<74>

Number: 71113_151
N=493070880170996278534516753255530271753988214548501769867880630567332323531819123807127232541599603419990823093435241101803308123
  ( 129 digits)
SNFS difficulty: 152 digits.
Divisors found:
 r1=13630504369805610897121892199912194495690789284130587631
 r2=36174074472493502044830834515488572039115437822520724375951219171660917333
Version: 
Total time: 8.48 hours.
Scaled time: 20.14 units (timescale=2.374).
Factorization parameters were as follows:
n: 493070880170996278534516753255530271753988214548501769867880630567332323531819123807127232541599603419990823093435241101803308123
m: 2000000000000000000000000000000
deg: 5
c5: 20
c0: 17
skew: 0.97
type: snfs
lss: 1
rlim: 2000000
alim: 2000000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.4
alambda: 2.4
Factor base limits: 2000000/2000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved rational special-q in [1000000, 1800001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 7995257
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 358493 x 358741
Total sieving time: 7.81 hours.
Total relation processing time: 0.33 hours.
Matrix solve time: 0.31 hours.
Time per square root: 0.04 hours.
Prototype def-par.txt line would be:
snfs,152,5,0,0,0,0,0,0,0,0,2000000,2000000,27,27,50,50,2.4,2.4,100000
total time: 8.48 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

Nov 7, 2009 (3rd)

By Wataru Sakai / GMP-ECM 6.2.1 / Nov 7, 2009

(26·10165-11)/3 = 8(6)1643<166> = 83 · 173 · 6255630651772921<16> · 166231483601086409378491<24> · C123

C123 = P41 · P83

P41 = 24162374121281115547743488148094071736559<41>

P83 = 24021709649431187683343098336454103859214433857791311652928195887896967260267801493<83>

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=522846101
Step 1 took 34052ms
Step 2 took 13550ms
********** Factor found in step 2: 24162374121281115547743488148094071736559
Found probable prime factor of 41 digits: 24162374121281115547743488148094071736559
Probable prime cofactor 24021709649431187683343098336454103859214433857791311652928195887896967260267801493 has 83 digits

Nov 7, 2009 (2nd)

By Erik Branger / GGNFS, Msieve / Nov 6, 2009

(67·10184-31)/9 = 7(4)1831<185> = 317 · 809 · 3547 · 33564732315787<14> · 114897340823411617<18> · 60403131124295658838209997353451<32> · C114

C114 = P48 · P67

P48 = 339804285505812771909306394351621065329986786223<48>

P67 = 1033907895700441246559141545237427637530368994032326666507566286553<67>

Number: 74441_184
N=351326333777306830594696036569012983844843250127802988338902578492097989153379793913822350569995529157766770559319
  ( 114 digits)
Divisors found:
 r1=339804285505812771909306394351621065329986786223 (pp48)
 r2=1033907895700441246559141545237427637530368994032326666507566286553 (pp67)
Version: Msieve-1.40
Total time: 23.21 hours.
Scaled time: 22.44 units (timescale=0.967).
Factorization parameters were as follows:
n: 351326333777306830594696036569012983844843250127802988338902578492097989153379793913822350569995529157766770559319
c5: 10800
c4: 1941725750
c3: 81144728246589
c2: -2951244695963751041
c1: 4701141700422248571895
c0: 240834821565109408055254255
Y1: 1235140464791
Y0:-7988311196055664378158
skew: 35675.38
type: gnfs
rlim: 3500000
alim: 3500000
lpbr: 27
lpba: 27
mfbr: 50
mfba: 50
rlambda: 2.6
alambda: 2.6Factor base limits: 3500000/3500000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 50/50
Sieved algebraic special-q in [1750000, 2750001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 525895 x 526143
Total sieving time: 22.16 hours.
Total relation processing time: 0.09 hours.
Matrix solve time: 0.61 hours.
Time per square root: 0.34 hours.
Prototype def-par.txt line would be:
gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000
total time: 23.21 hours.
 --------- CPU info (if available) ----------

Nov 7, 2009

By Erik Branger / PFGW / Nov 7, 2009

7·1014436+3 = 7(0)144353<14437> is PRP.

7·1028338+3 = 7(0)283373<28339> is PRP.

7·1032796+3 = 7(0)327953<32797> is PRP.

7·1038079+3 = 7(0)380783<38080> is PRP.

7·1056779+3 = 7(0)567783<56780> is PRP.

7·1091215+3 = 7(0)912143<91216> is PRP.

PRP91216 is the second largest unprovable quasi-repdigit PRP in our tables so far. Congratulations!

Nov 6, 2009 (8th)

By Jo Yeong Uk / GGNFS, Msieve v1.39 / Nov 6, 2009

(64·10176+17)/9 = 7(1)1753<177> = 18122431 · 827630411 · 618217711189847<15> · 51198705749027445793243239875789577253<38> · C109

C109 = P53 · P56

P53 = 27199328739913350726751375837743051073898498013179701<53>

P56 = 55071379802039998793236341692499167334341927807025765323<56>

Number: 71113_176
N=1497904563396310154769792820729281585688689422098966010957032096218297475296578253879252017930370140253308423
  ( 109 digits)
Divisors found:
 r1=27199328739913350726751375837743051073898498013179701
 r2=55071379802039998793236341692499167334341927807025765323
Version: 
Total time: 7.39 hours.
Scaled time: 17.62 units (timescale=2.385).
Factorization parameters were as follows:
name: 71113_176
n: 1497904563396310154769792820729281585688689422098966010957032096218297475296578253879252017930370140253308423
skew: 37228.70
# norm 1.29e+15
c5: 6720
c4: 1929577034
c3: -28048451333417
c2: -2581066827369582849
c1: 23728062558893855083337
c0: 189889730972645309855811835
# alpha -6.65
Y1: 294450677543
Y0: -740650055075990989806
# Murphy_E 1.28e-09
# M 406037342834116125047075340806279652058520344301271931613697935723559786272925786257733844006528099117428762
type: gnfs
rlim: 2100000
alim: 2100000
lpbr: 27
lpba: 27
mfbr: 51
mfba: 51
rlambda: 2.6
alambda: 2.6
qintsize: 50000
Factor base limits: 2100000/2100000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 51/51
Sieved algebraic special-q in [1050000, 2200001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 8123905
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 371166 x 371414
Polynomial selection time: 0.58 hours.
Total sieving time: 5.59 hours.
Total relation processing time: 0.85 hours.
Matrix solve time: 0.30 hours.
Time per square root: 0.07 hours.
Prototype def-par.txt line would be:
gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2100000,2100000,27,27,51,51,2.6,2.6,50000
total time: 7.39 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

(67·10147-31)/9 = 7(4)1461<148> = 72 · 173 · 1007857 · C138

C138 = P49 · P90

P49 = 3543243945117669927050599146096106098149924350703<49>

P90 = 245917899090014024113532245535836223215750238360235398952104060053448988922276779413690323<90>

Number: 74441_147
N=871347106946750342151715673907223653960159603609685187432378536350270402789209264962140023280103965088548237737624848609941132704889347069
  ( 138 digits)
SNFS difficulty: 148 digits.
Divisors found:
 r1=3543243945117669927050599146096106098149924350703
 r2=245917899090014024113532245535836223215750238360235398952104060053448988922276779413690323
Version: 
Total time: 8.99 hours.
Scaled time: 21.45 units (timescale=2.385).
Factorization parameters were as follows:
n: 871347106946750342151715673907223653960159603609685187432378536350270402789209264962140023280103965088548237737624848609941132704889347069
m: 100000000000000000000000000000
deg: 5
c5: 6700
c0: -31
skew: 0.34
type: snfs
lss: 1
rlim: 3300000
alim: 3300000
lpbr: 27
lpba: 27
mfbr: 49
mfba: 49
rlambda: 2.3
alambda: 2.3
Factor base limits: 3300000/3300000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 49/49
Sieved rational special-q in [1650000, 3375001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 7066652
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 456862 x 457110
Total sieving time: 7.75 hours.
Total relation processing time: 0.74 hours.
Matrix solve time: 0.44 hours.
Time per square root: 0.06 hours.
Prototype def-par.txt line would be:
snfs,148,5,0,0,0,0,0,0,0,0,3300000,3300000,27,27,49,49,2.3,2.3,75000
total time: 8.99 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

(67·10147-13)/9 = 7(4)1463<148> = 34 · 23 · 15032488729<11> · 8212675315501962911<19> · C116

C116 = P50 · P66

P50 = 35712120107599973268429717906238004919995676811669<50>

P66 = 906333983462578850099373864796225485410057952884119428606963987551<66>

Number: 74443_147
N=32367108075015143797053757675227277037681912296576239310580627885454876717201364888999929590596992736623682287532619
  ( 116 digits)
SNFS difficulty: 148 digits.
Divisors found:
 r1=35712120107599973268429717906238004919995676811669
 r2=906333983462578850099373864796225485410057952884119428606963987551
Version: 
Total time: 8.34 hours.
Scaled time: 19.90 units (timescale=2.385).
Factorization parameters were as follows:
n: 32367108075015143797053757675227277037681912296576239310580627885454876717201364888999929590596992736623682287532619
m: 100000000000000000000000000000
deg: 5
c5: 6700
c0: -13
skew: 0.29
type: snfs
lss: 1
rlim: 3150000
alim: 3150000
lpbr: 27
lpba: 27
mfbr: 49
mfba: 49
rlambda: 2.4
alambda: 2.4
Factor base limits: 3150000/3150000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 49/49
Sieved rational special-q in [1575000, 3150001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 7259667
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 442603 x 442851
Total sieving time: 7.15 hours.
Total relation processing time: 0.71 hours.
Matrix solve time: 0.43 hours.
Time per square root: 0.06 hours.
Prototype def-par.txt line would be:
snfs,148,5,0,0,0,0,0,0,0,0,3150000,3150000,27,27,49,49,2.4,2.4,75000
total time: 8.34 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

(67·10149-31)/9 = 7(4)1481<150> = 3 · 127 · 1753489837597<13> · C136

C136 = P44 · P92

P44 = 20881086487350036134625000283626100896654287<44>

P92 = 53364319064384742665900100125286466593148958555660756921564191235935418790516441550676542399<92>

Number: 74441_149
N=1114304961721960173022091383380176976662874322011077839586378960447874153953371814034523514291547521078222901018637342512063392400614513
  ( 136 digits)
SNFS difficulty: 151 digits.
Divisors found:
 r1=20881086487350036134625000283626100896654287
 r2=53364319064384742665900100125286466593148958555660756921564191235935418790516441550676542399
Version: 
Total time: 10.05 hours.
Scaled time: 23.97 units (timescale=2.386).
Factorization parameters were as follows:
n: 1114304961721960173022091383380176976662874322011077839586378960447874153953371814034523514291547521078222901018637342512063392400614513
m: 1000000000000000000000000000000
deg: 5
c5: 67
c0: -310
skew: 1.36
type: snfs
lss: 1
rlim: 2000000
alim: 2000000
lpbr: 27
lpba: 27
mfbr: 49
mfba: 49
rlambda: 2.4
alambda: 2.4
Factor base limits: 2000000/2000000
Large primes per side: 3
Large prime bits: 27/27
Max factor residue bits: 49/49
Sieved rational special-q in [1000000, 2000001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: 7412479
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 371929 x 372177
Total sieving time: 9.35 hours.
Total relation processing time: 0.37 hours.
Matrix solve time: 0.30 hours.
Time per square root: 0.04 hours.
Prototype def-par.txt line would be:
snfs,151,5,0,0,0,0,0,0,0,0,2000000,2000000,27,27,49,49,2.4,2.4,100000
total time: 10.05 hours.
 --------- CPU info (if available) ----------
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Intel(R) Core(TM)2 Quad CPU    Q6700  @ 2.66GHz stepping 0b
Memory: 8046820k/8912896k available (2494k kernel code, 339408k reserved, 1262k data, 200k init)
Calibrating delay using timer specific routine.. 5347.57 BogoMIPS (lpj=2673786)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672341)
Calibrating delay using timer specific routine.. 5284.81 BogoMIPS (lpj=2642406)

Nov 6, 2009 (7th)

By Ignacio Santos / GGNFS, Msieve / Nov 6, 2009

5·10174-7 = 4(9)1733<175> = 876443 · 26652181993<11> · C159

C159 = P68 · P91

P68 = 46574391450747667692326738358784174396260537130314435096266571242987<68>

P91 = 4595855531487340412820083355763538183249547281424390205839848914976852602041592456013124361<91>

Number: 49993_174
N=214049174574575365805581376060199503058514198958035247503679069080324429338324460035489376300752092001338476663839616038201832417706699020583274339297180106307
  ( 159 digits)
SNFS difficulty: 175 digits.
Divisors found:
 r1=46574391450747667692326738358784174396260537130314435096266571242987 (pp68)
 r2=4595855531487340412820083355763538183249547281424390205839848914976852602041592456013124361 (pp91)
Version: Msieve v. 1.43
Total time: 56.13 hours.
Scaled time: 97.62 units (timescale=1.739).
Factorization parameters were as follows:
n: 214049174574575365805581376060199503058514198958035247503679069080324429338324460035489376300752092001338476663839616038201832417706699020583274339297180106307
m: 100000000000000000000000000000000000
deg: 5
c5: 1
c0: -14
skew: 1.70
type: snfs
lss: 1
rlim: 5800000
alim: 5800000
lpbr: 28
lpba: 28
mfbr: 52
mfba: 52
rlambda: 2.5
alambda: 2.5
Factor base limits: 5800000/5800000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 52/52
Sieved rational special-q in [2900000, 5500001)
Primes: , , 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 995237 x 995463
Total sieving time: 54.41 hours.
Total relation processing time: 0.30 hours.
Matrix solve time: 1.30 hours.
Time per square root: 0.13 hours.
Prototype def-par.txt line would be:
snfs,175.000,5,0,0,0,0,0,0,0,0,5800000,5800000,28,28,52,52,2.5,2.5,100000
total time: 56.13 hours.

Nov 6, 2009 (6th)

By Wataru Sakai / GMP-ECM 6.2.1 / Nov 6, 2009

(22·10157-7)/3 = 7(3)1561<158> = 367 · 316304551 · 8534437607<10> · 2443395325355902608359<22> · C116

C116 = P38 · P79

P38 = 23693488595112602719126859782566256591<38>

P79 = 1278592829499304611645554337323796642663523431026589589200118777890584774879621<79>

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=236403890
Step 1 took 31182ms
Step 2 took 13038ms
********** Factor found in step 2: 23693488595112602719126859782566256591
Found probable prime factor of 38 digits: 23693488595112602719126859782566256591
Probable prime cofactor 1278592829499304611645554337323796642663523431026589589200118777890584774879621 has 79 digits

(59·10164+31)/9 = 6(5)1639<165> = 41 · 257 · 5763713135701<13> · C149

C149 = P33 · C116

P33 = 632793202179705926119343697193231<33>

C116 = [17058009798902811382752770514092749096039916701396886379742470377517403076500372505435723966037254679924690425475197<116>]

Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3331270017
Step 1 took 47229ms
Step 2 took 16627ms
********** Factor found in step 2: 632793202179705926119343697193231
Found probable prime factor of 33 digits: 632793202179705926119343697193231
Composite cofactor 17058009798902811382752770514092749096039916701396886379742470377517403076500372505435723966037254679924690425475197 has 116 digits

(35·10198+1)/9 = 3(8)1979<199> = 47 · C197

C197 = P82 · P116

P82 = 6326374989656440646106970407770659705730121493408302755378873328843303115001775919<82>

P116 = 13078945987260134036462322502917867367044969527869559453471699062092522781634351546825345197002805196515382338315673<116>

Number: 38889_198
N=82742316784869976359338061465721040189125295508274231678486997635933806146572104018912529550827423167848699763593380614657210401891252955082742316784869976359338061465721040189125295508274231678487
  ( 197 digits)
SNFS difficulty: 200 digits.
Divisors found:
 r1=6326374989656440646106970407770659705730121493408302755378873328843303115001775919
 r2=13078945987260134036462322502917867367044969527869559453471699062092522781634351546825345197002805196515382338315673
Version: 
Total time: 569.79 hours.
Scaled time: 1133.32 units (timescale=1.989).
Factorization parameters were as follows:
n: 82742316784869976359338061465721040189125295508274231678486997635933806146572104018912529550827423167848699763593380614657210401891252955082742316784869976359338061465721040189125295508274231678487
m: 10000000000000000000000000000000000000000
deg: 5
c5: 7
c0: 20
skew: 1.23
type: snfs
lss: 1
rlim: 15600000
alim: 15600000
lpbr: 29
lpba: 29
mfbr: 56
mfba: 56
rlambda: 2.6
alambda: 2.6Factor base limits: 15600000/15600000
Large primes per side: 3
Large prime bits: 29/29
Max factor residue bits: 56/56
Sieved rational special-q in [7800000, 13500001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2705232 x 2705480
Total sieving time: 569.79 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,200,5,0,0,0,0,0,0,0,0,15600000,15600000,29,29,56,56,2.6,2.6,100000
total time: 569.79 hours.
 --------- CPU info (if available) ----------

(44·10193-71)/9 = 4(8)1921<194> = 6203 · C190

C190 = P43 · P71 · P78

P43 = 1618166115802996840565371152078318243943573<43>

P71 = 18615892194719893987578001772834971645694757182039038565591672722464263<71>

P78 = 261638365738076548906793103513491078188631394698342571980380378304781956600273<78>

Number: 48881_193
N=7881491034803947910509251795726082361581313701255664821681265337560678524728178121697386569222777509090583409461371737689648378024969996596628871334658856825550360936464434771705447185053827
  ( 190 digits)
SNFS difficulty: 194 digits.
Divisors found:
 r1=1618166115802996840565371152078318243943573
 r2=18615892194719893987578001772834971645694757182039038565591672722464263
 r3=261638365738076548906793103513491078188631394698342571980380378304781956600273
Version: 
Total time: 653.71 hours.
Scaled time: 1316.58 units (timescale=2.014).
Factorization parameters were as follows:
n: 7881491034803947910509251795726082361581313701255664821681265337560678524728178121697386569222777509090583409461371737689648378024969996596628871334658856825550360936464434771705447185053827
m: 200000000000000000000000000000000000000
deg: 5
c5: 1375
c0: -71
skew: 0.55
type: snfs
lss: 1
rlim: 12300000
alim: 12300000
lpbr: 28
lpba: 28
mfbr: 55
mfba: 55
rlambda: 2.5
alambda: 2.5Factor base limits: 12300000/12300000
Large primes per side: 3
Large prime bits: 28/28
Max factor residue bits: 55/55
Sieved rational special-q in [6150000, 13250001)
Primes: rational ideals reading, algebraic ideals reading, 
Relations: relations 
Max relations in full relation-set: 
Initial matrix: 
Pruned matrix : 2399210 x 2399457
Total sieving time: 653.71 hours.
Total relation processing time: 0.00 hours.
Matrix solve time: 0.00 hours.
Time per square root: 0.00 hours.
Prototype def-par.txt line would be:
snfs,194,5,0,0,0,0,0,0,0,0,12300000,12300000,28,28,5