11...11 (Repunit) 11...11 (レピュニット) | 100...001 | Φn(10)
Download: ダウンロード: Phin10.txt (9953KB) | Phin10.txt.lz (4031KB) | Phin10.txt.gz (4594KB)
Appendix: 付録: PRP factors おそらく素数の因数 (56KB) | Repunit note レピュニットノート (702KB)
Changes: 更新履歴: Recent changes 最近の更新 (42KB) | Past changes 過去の更新Past changes 過去の更新
2017 2017 年 September 9 月 August 8 月 July 7 月 June 6 月 May 5 月 April 4 月 March 3 月 February 2 月 January 1 月
2016 2016 年 December 12 月 November 11 月 October 10 月 September 9 月 August 8 月 July 7 月 June 6 月 May 5 月 April 4 月 March 3 月 February 2 月 January 1 月
2015 2015 年 December 12 月 November 11 月 October 10 月 September 9 月 August 8 月 July 7 月 June 6 月 May 5 月 April 4 月 March 3 月 February 2 月 January 1 月
2014 2014 年 December 12 月 November 11 月 October 10 月 September 9 月 August 8 月 July 7 月 June 6 月 May 5 月 April 4 月 March 3 月 February 2 月 January 1 月
2013 2013 年 December 12 月 November 11 月 October 10 月 September 9 月 August 8 月 July 7 月 June 6 月 May 5 月 April 4 月 March 3 月 February 2 月 January 1 月
2012 2012 年 December 12 月 November 11 月 October 10 月 September 9 月 August 8 月 July 7 月 June 6 月 May 5 月 April 4 月 March 3 月 February 2 月 January 1 月
2011 2011 年 December 12 月 November 11 月 October 10 月 September 9 月 August 8 月 July 7 月 June 6 月 May 5 月 April 4 月 March 3 月 February 2 月 January 1 月
2010 2010 年 December 12 月 November 11 月 October 10 月 September 9 月 August 8 月 July 7 月 June 6 月 May 5 月 April 4 月 March 3 月 February 2 月 January 1 月
2009 2009 年 December 12 月 November 11 月 October 10 月 September 9 月 August 8 月 July 7 月 June 6 月 May 5 月 April 4 月 March 3 月 February 2 月 January 1 月
2008 2008 年 December 12 月 November 11 月 October 10 月 September 9 月 August 8 月 July 7 月 June 6 月 May 5 月 April 4 月 March 3 月 February 2 月 January 1 月
2007 2007 年 December 12 月 November 11 月 October 10 月 September 9 月 August 8 月 July 7 月 June 6 月 May 5 月 April 4 月 March 3 月 February 2 月 January 1 月
2006 2006 年 December 12 月 November 11 月 October 10 月 September 9 月 August 8 月 July 7 月 June 6 月 May 5 月 April 4 月 March 3 月 February 2 月 January 1 月
2005 2005 年 December 12 月 November 11 月 October 10 月 September 9 月 August 8 月 July 7 月 June 6 月 May 5 月 April 4 月 March 3 月 February 2 月 January 1 月
2004 2004 年 December 12 月 November 11 月 October 10 月 September 9 月 August 8 月 July 7 月 June 6 月 May 5 月 April 4 月 March 3 月 February 2 月 January 1 月
2003 2003 年 December 12 月 November 11 月 October 10 月 September 9 月
Summary 概要
Last updated: 最終更新日:
Wed, 18 Oct 2017 12:45:23 GMT 2017 年 10 月 18 日 (水) 21 時 45 分 23 秒 (日本時間)
Status: 状態:
1134 of 200000 Φn(10) factorization were finished. 200000 個中 1134 個の Φn(10) の素因数分解が終わりました。
139549 of 200000 Φn(10) factorization were cracked. 200000 個中 139549 個の Φn(10) の素因数が見つかりました。
119 of 17984 Rprime factorization were finished. 17984 個中 119 個の Rprime の素因数分解が終わりました。
13837 of 17984 Rprime factorization were cracked. 17984 個中 13837 個の Rprime の素因数が見つかりました。
249120 (probable) prime factors were discovered. 249120 個の (おそらく) 素数の因数が見つかりました。
203747 composite factors are remaining. 203747 個の合成数の因数が残っています。
0 factors are unidentified. 0 個の因数が未確定です。
Editor: 編集者:
Makoto Kamada
Sources: 情報源:
Kurt Beschorner
Richard Brent
Greg Childers
Torbjörn Granlund
Wilfrid Keller
Yousuke Koide
Alfred Reich
Maksym Voznyy
Sam Wagstaff
Paul Zimmermann
NFS@Home
yoyo@home
Henri & Renaud Lifchitz
Φn(10) which is hoped to be factored 分解が期待される Φn(10)
First composite factor: 最初の合成数の因数:
n=323 (c271), n=337 (c268), n=353 (c328), n=365 (c288), n=371 (c255),
n=377 (c311), n=383 (c230), n=389 (c270), n=391 (c312), n=401 (c308)
Smallest composite factor: 最小の合成数の因数:
n=1620L (c185), n=1980M (c187), n=1030 (c199), n=507 (c200), n=1740M (c204),
n=834 (c205), n=2100L (c215), n=407 (c216), n=2820M (c219), n=2460L (c220)
First blank Φn(10): 素因数が見つかっていない最初の Φn(10):
n=365 (c288), n=469 (c396), n=509 (c509), n=557 (c557), n=589 (c540),
n=625 (c501), n=647 (c647), n=649 (c580), n=657 (c432), n=671 (c600)
Smallest blank Φn(10): 素因数が見つかっていない最小の Φn(10):
n=1340L (c265), n=365 (c288), n=730 (c289), n=920 (c353), n=776 (c384),
n=469 (c396), n=808 (c400), n=1078 (c421), n=657 (c432), n=1512 (c433)
Smallest blank Rprime: 素因数が見つかっていない最小の Rprime:
n=509 (c509), n=557 (c557), n=647 (c647), n=991 (c991), n=1117 (c1117),
n=1259 (c1259), n=1373 (c1373), n=1447 (c1447), n=1607 (c1607), n=1637 (c1637)
Φn(10) has the biggest parcentage of factored part: 分解された部分の割合が最大の Φn(10):
n=1030 (c199), n=2420L (c246), n=2820M (c219), n=407 (c216), n=383 (c230),
n=507 (c200), n=884 (c249), n=621 (c260), n=1062 (c235), n=2460L (c220)
Format 表示形式
10n+1=value... 値...<length> <桁数>=(probable) prime factor... (おそらく) 素数の因数...<length> <桁数>exponent 指数
[composite factor... 合成数の因数...<length> <桁数>]
(unidentified factor... 未確定の因数...<length> <桁数>)
×...(percentage of factored part) (分解された部分の割合)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | 1000 | Next page → 次のページ →
remove soft hyphens ソフトハイフンを取り除く | plain text version プレーンテキスト版
101+1 = 11 = 11 (100.00%)
102+1 = 101 = 101 (100.00%)
103+1 = 1001 = 7 × 11 × 13 (100.00%)
104+1 = 10001 = 73 × 137 (100.00%)
105+1 = 100001 = 11 × 9091 (100.00%)
106+1 = 1000001 = 101 × 9901 (100.00%)
107+1 = 10000001 = 11 × 909091 (100.00%)
108+1 = 100000001 = 17 × 5882353 (100.00%)
109+1 = 1000000001<10> = 7 × 11 × 13 × 19 × 52579 (100.00%)
1010+1 = 10000000001<11> = 101 × 3541 × 27961 (100.00%)
1011+1 = 100000000001<12> = 112 × 23 × 4093 × 8779 (100.00%)
1012+1 = 1000000000001<13> = 73 × 137 × 99990001 (100.00%)
1013+1 = 10000000000001<14> = 11 × 859 × 1058313049<10>(100.00%)
1014+1 = 100000000000001<15> = 29 × 101 × 281 × 121499449 (100.00%)
1015+1 = 1000000000000001<16> = 7 × 11 × 13 × 211 × 241 × 2161 × 9091 (100.00%)
1016+1 = 10000000000000001<17> = 353 × 449 × 641 × 1409 × 69857 (100.00%)
1017+1 = 100000000000000001<18> = 11 × 103 × 4013 × 21993833369<11>(100.00%)
1018+1 = 1000000000000000001<19> = 101 × 9901 × 999999000001<12>(100.00%)
1019+1 = 10000000000000000001<20> = 11 × 909090909090909091<18>(100.00%)
1020+1 = 100000000000000000001<21> = 73 × 137 × 1676321 × 5964848081<10>(100.00%)
1021+1 = 1000000000000000000001<22> = 72 × 11 × 13 × 127 × 2689 × 459691 × 909091 (100.00%)
1022+1 = 10000000000000000000001<23> = 89 × 101 × 1052788969<10> × 1056689261<10>(100.00%)
1023+1 = 100000000000000000000001<24> = 11 × 47 × 139 × 2531 × 549797184491917<15>(100.00%)
1024+1 = 1000000000000000000000001<25> = 17 × 5882353 × 9999999900000001<16>(100.00%)
1025+1 = 10000000000000000000000001<26> = 11 × 251 × 5051 × 9091 × 78875943472201<14>(100.00%)
1026+1 = 100000000000000000000000001<27> = 101 × 521 × 1900381976777332243781<22>(100.00%)
1027+1 = 1000000000000000000000000001<28> = 7 × 11 × 13 × 19 × 52579 × 70541929 × 14175966169<11>(100.00%)
1028+1 = 10000000000000000000000000001<29> = 73 × 137 × 7841 × 127522001020150503761<21>(100.00%)
1029+1 = 100000000000000000000000000001<30> = 11 × 59 × 154083204930662557781201849<27>(100.00%)
1030+1 = 1000000000000000000000000000001<31> = 61 × 101 × 3541 × 9901 × 27961 × 4188901 × 39526741 (100.00%)
1031+1 = 10000000000000000000000000000001<32> = 11 × 909090909090909090909090909091<30>(100.00%)
1032+1 = 100000000000000000000000000000001<33> = 19841 × 976193 × 6187457 × 834427406578561<15>(100.00%)
1033+1 = 1000000000000000000000000000000001<34> = 7 × 112 × 13 × 23 × 4093 × 8779 × 599144041 × 183411838171<12>(100.00%)
1034+1 = 10000000000000000000000000000000001<35> = 101 × 28559389 × 1491383821<10> × 2324557465671829<16>(100.00%)
1035+1 = 100000000000000000000000000000000001<36> = 11 × 9091 × 909091 × 4147571 × 265212793249617641<18>(100.00%)
1036+1 = 1000000000000000000000000000000000001<37> = 73 × 137 × 3169 × 98641 × 99990001 × 3199044596370769<16>(100.00%)
1037+1 = 10000000000000000000000000000000000001<38> = 11 × 7253 × 422650073734453<15> × 296557347313446299<18>(100.00%)
1038+1 = 100000000000000000000000000000000000001<39> = 101 × 722817036322379041<18> × 1369778187490592461<19>(100.00%)
1039+1 = 1000000000000000000000000000000000000001<40> = 7 × 11 × 132 × 157 × 859 × 6397 × 216451 × 1058313049<10> × 388847808493<12>(100.00%)
1040+1 = 1000000000000000000000000000000000000000­1<41> = 17 × 5070721 × 5882353 × 19721061166646717498359681<26>(100.00%)
1041+1 = 1000000000000000000000000000000000000000­01<42> = 11 × 2670502781396266997<19> × 3404193829806058997303<22>(100.00%)
1042+1 = 1000000000000000000000000000000000000000­001<43> = 29 × 101 × 281 × 9901 × 226549 × 121499449 × 4458192223320340849<19>(100.00%)
1043+1 = 1000000000000000000000000000000000000000­0001<44> = 11 × 57009401 × 2182600451<10> × 7306116556571817748755241<25>(100.00%)
1044+1 = 1000000000000000000000000000000000000000­00001<45> = 73 × 137 × 617 × 16205834846012967584927082656402106953<38>(100.00%)
1045+1 = 1000000000000000000000000000000000000000­000001<46> = 7 × 11 × 13 × 19 × 211 × 241 × 2161 × 9091 × 29611 × 52579 × 3762091 × 8985695684401<13>(100.00%)
1046+1 = 1000000000000000000000000000000000000000­0000001<47> = 101 × 1289 × 18371524594609<14> × 4181003300071669867932658901<28>(100.00%)
1047+1 = 1000000000000000000000000000000000000000­00000001<48> = 11 × 6299 × 4855067598095567<16> × 297262705009139006771611927<27>(100.00%)
1048+1 = 1000000000000000000000000000000000000000­000000001<49> = 97 × 353 × 449 × 641 × 1409 × 69857 × 206209 × 66554101249<11> × 75118313082913<14>(100.00%)
1049+1 = 1000000000000000000000000000000000000000­0000000001<50> = 11 × 197 × 909091 × 5076141624365532994918781726395939035533<40>(100.00%)
1050+1 = 1000000000000000000000000000000000000000­00000000001<51> = 101 × 3541 × 27961 × 60101 × 7019801 × 14103673319201<14> × 1680588011350901<16>(100.00%)
1051+1 = 1000000000000000000000000000000000000000­000000000001<52> = 7 × 11 × 13 × 103 × 4013 × 21993833369<11> × 291078844423<12> × 377526955309799110357<21>(100.00%)
1052+1 = 1000000000000000000000000000000000000000­0000000000001<53> = 73 × 137 × 1580801 × 6325274402021507450906224122454439230492­01<42>(100.00%)
1053+1 = 1000000000000000000000000000000000000000­00000000000001<54> = 11 × 9090909090909090909090909090909090909090­909090909091<52>(100.00%)
1054+1 = 1000000000000000000000000000000000000000­000000000000001<55> = 101 × 109 × 9901 × 153469 × 999999000001<12> × 59779577156334533866654838281<29>(100.00%)
1055+1 = 1000000000000000000000000000000000000000­0000000000000001<56> = 112 × 23 × 331 × 4093 × 5171 × 8779 × 9091 × 20163494891<11> × 318727841165674579776721<24>(100.00%)
1056+1 = 1000000000000000000000000000000000000000­00000000000000001<57> = 17 × 113 × 5882353 × 73765755896403138401<20> × 119968369144846370226083377<27>(100.00%)
1057+1 = 1000000000000000000000000000000000000000­000000000000000001<58> = 7 × 11 × 13 × 1458973 × 909090909090909091<18> × 753201806271328462547977919407<30>(100.00%)
1058+1 = 1000000000000000000000000000000000000000­0000000000000000001<59> = 101 × 349 × 38861 × 618049 × 1181180637520183640867963573625866958318­7541<44>(100.00%)
1059+1 = 1000000000000000000000000000000000000000­00000000000000000001<60> = 11 × 1889 × 1090805842068098677837<22> × 4411922770996074109644535362851087<34>(100.00%)
1060+1 = 1000000000000000000000000000000000000000­000000000000000000001<61> = 73 × 137 × 1676321 × 99990001 × 5964848081<10> × 100009999999899989999000000010001<33>(100.00%)
1061+1 = 1000000000000000000000000000000000000000­0000000000000000000001<62> = 11 × 81131 × 1120522253011683685532152825789043757514­5023592596037161<56>(100.00%)
1062+1 = 1000000000000000000000000000000000000000­00000000000000000000001<63> = 101 × 2049349 × 4831285495545122373055545883590398223973­07149685578249<54>(100.00%)
1063+1 = 1000000000000000000000000000000000000000­000000000000000000000001<64> = 72 × 11 × 13 × 19 × 127 × 2689 × 52579 × 459691 × 909091 × 5274739 × 189772422673235585874485732659<30>(100.00%)
1064+1 = 1000000000000000000000000000000000000000­0000000000000000000000001<65> = 1265011073<10> × 15343168188889137818369<23> × 515217525265213267447869906815873<33>(100.00%)
1065+1 = 1000000000000000000000000000000000000000­00000000000000000000000001<66> = 11 × 131 × 859 × 9091 × 1058313049<10> × 8396862596258693901610602298557167100076­327481<46>(100.00%)
1066+1 = 1000000000000000000000000000000000000000­000000000000000000000000001<67> = 89 × 101 × 9901 × 1052788969<10> × 1056689261<10> × 5419170769<10> × 789390798020221<15> × 2361000305507449<16>(100.00%)
1067+1 = 1000000000000000000000000000000000000000­0000000000000000000000000001<68> = 11 × 9090909090909090909090909090909090909090­90909090909090909090909091<66>(100.00%)
1068+1 = 1000000000000000000000000000000000000000­00000000000000000000000000001<69> = 73 × 137 × 152533657 × 6555274617188258326423007086888436687780­3237222654400793<56>(100.00%)
1069+1 = 1000000000000000000000000000000000000000­000000000000000000000000000001<70> = 7 × 11 × 13 × 47 × 139 × 2531 × 31051 × 143574021480139<15> × 549797184491917<15> × 24649445347649059192745899<26>(100.00%)
1070+1 = 1000000000000000000000000000000000000000­0000000000000000000000000000001<71> = 29 × 101 × 281 × 421 × 3541 × 27961 × 3471301 × 13489841 × 121499449 × 60368344121<11> × 848654483879497562821<21>(100.00%)
1071+1 = 1000000000000000000000000000000000000000­00000000000000000000000000000001<72> = 11 × 290249 × 3132106946418106835541520932340538954170­6979493156189716729115659<65>(100.00%)
1072+1 = 1000000000000000000000000000000000000000­000000000000000000000000000000001<73> = 17 × 8929 × 5882353 × 9999999900000001<16> × 1119946242580356142905139433307201254339­79169<45>(100.00%)
1073+1 = 1000000000000000000000000000000000000000­0000000000000000000000000000000001<74> = 11 × 293 × 10826684964539959837294043117<29> × 2865788889761949979999225923309086021030­11<42>(100.00%)
1074+1 = 1000000000000000000000000000000000000000­00000000000000000000000000000000001<75> = 101 × 149 × 3109 × 111149 × 708840373781<12> × 669031686661427842829<21> × 40548140514062774758071840361<29>(100.00%)
1075+1 = 1000000000000000000000000000000000000000­000000000000000000000000000000000001<76> = 7 × 11 × 13 × 211 × 241 × 251 × 2161 × 5051 × 9091 × 78875943472201<14> × 1000009999999998999989999900000000010000­1<41>(100.00%)
1076+1 = 1000000000000000000000000000000000000000­0000000000000000000000000000000000001<77> = 73 × 137 × 457 × 1403417 × 5240808656722481737<19> × 2974783307863656284148053052903024835550­43017<45>(100.00%)
1077+1 = 1000000000000000000000000000000000000000­00000000000000000000000000000000000001<78> = 112 × 23 × 463 × 4093 × 8779 × 24179 × 590437 × 909091 × 7444361 × 4539402627853030477<19> × 4924630160315726207887<22>(100.00%)
1078+1 = 1000000000000000000000000000000000000000­000000000000000000000000000000000000001<79> = 101 × 521 × 3121 × 9901 × 53397071018461<14> × 1900381976777332243781<22> × 6060517860310398033985611921721<31>(100.00%)
1079+1 = 1000000000000000000000000000000000000000­0000000000000000000000000000000000000001<80> = 11 × 1423 × 9615060929<10> × 6644317454149057909799751015802107695839­2938976011506949065646573<65>(100.00%)
1080+1 = 1000000000000000000000000000000000000000­0000000000000000000000000000000000000000­1<81> = 353 × 449 × 641 × 1409 × 69857 × 1634881 × 18453761 × 947147262401<12> × 349954396040122577928041596214187605761<39>(100.00%)
1081+1 = 1000000000000000000000000000000000000000­0000000000000000000000000000000000000000­01<82> = 7 × 11 × 13 × 19 × 1459 × 52579 × 70541929 × 2458921051<10> × 14175966169<11> × 456502382570032651<18> × 610600386089858349939139<24>(100.00%)
1082+1 = 1000000000000000000000000000000000000000­0000000000000000000000000000000000000000­001<83> = 101 × 68389 × 1447745997018511893740076606031686237538­345362413531560645573104006506749609<76>(100.00%)
1083+1 = 1000000000000000000000000000000000000000­0000000000000000000000000000000000000000­0001<84> = 11 × 167 × 997 × 3565183 × 2097307081<10> × 7742098247001476863<19> × 9431769031413300684826029009602942998788­41<42>(100.00%)
1084+1 = 1000000000000000000000000000000000000000­0000000000000000000000000000000000000000­00001<85> = 73 × 137 × 7841 × 99990001 × 11189053009<11> × 603812429055411913<18> × 127522001020150503761<21> × 148029423400750506553<21>(100.00%)
1085+1 = 1000000000000000000000000000000000000000­0000000000000000000000000000000000000000­000001<86> = 11 × 103 × 4013 × 9091 × 87211 × 787223761 × 21993833369<11> × 1602207948210144520667419183035809176643­86555934641<51>(100.00%)
1086+1 = 1000000000000000000000000000000000000000­0000000000000000000000000000000000000000­0000001<87> = 101 × 338669 × 2923500556298303355222653948542706598448­925085853709961673200056984872843366529<79>(100.00%)
1087+1 = 1000000000000000000000000000000000000000­0000000000000000000000000000000000000000­00000001<88> = 7 × 11 × 13 × 59 × 638453709757<12> × 135080726389891<15> × 154083204930662557781201849<27> × 1274194732898148471766404179653<31>(100.00%)
1088+1 = 1000000000000000000000000000000000000000­0000000000000000000000000000000000000000­000000001<89> = 17 × 5882353 × 10100113 × 9900879227786858424257223656804730798555­422102713108259184822982673560177<73>(100.00%)
1089+1 = 1000000000000000000000000000000000000000­0000000000000000000000000000000000000000­0000000001<90> = 11 × 179 × 12147237304901893<17> × 4180967272673252032291190917188955510245­874180001164839931077197586653<70>(100.00%)
1090+1 = 1000000000000000000000000000000000000000­0000000000000000000000000000000000000000­00000000001<91> = 61 × 101 × 181 × 3541 × 9901 × 27961 × 4188901 × 39526741 × 999999000001<12> × 4999437541453012143121<22> × 1105097795002994798105101<25>(100.00%)
1091+1 = 1000000000000000000000000000000000000000­0000000000000000000000000000000000000000­000000000001<92> = 11 × 859 × 909091 × 21705503 × 1058313049<10> × 5067838741170388910175912578529043989438­9920385627096501794498837<65>(100.00%)
1092+1 = 1000000000000000000000000000000000000000­0000000000000000000000000000000000000000­0000000000001<93> = 73 × 137 × 2393 × 4178437150016715837818641871709193476807­7726285039694944003301299623485206849143­75257<85>(100.00%)
1093+1 = 1000000000000000000000000000000000000000­0000000000000000000000000000000000000000­00000000000001<94> = 7 × 11 × 13 × 373 × 44641 × 3590254957<10> × 909090909090909090909090909091<30> × 1838190726228124463315819067778696666309­1011<44>(100.00%)
1094+1 = 1000000000000000000000000000000000000000­0000000000000000000000000000000000000000­000000000000001<95> = 101 × 45121 × 2144906157509411684424913774078958939881<40> × 1023037643093214557651333120422980213172­396059301<49>(100.00%)
1095+1 = 1000000000000000000000000000000000000000­0000000000000000000000000000000000000000­0000000000000001<96> = 11 × 9091 × 1812604116731<13> × 121450506296081<15> × 909090909090909091<18> × 4996731930447843676185843959746621491531­100801<46>(100.00%)
1096+1 = 1000000000000000000000000000000000000000­0000000000000000000000000000000000000000­00000000000000001<97> = 193 × 769 × 19841 × 976193 × 6187457 × 834427406578561<15> × 1253224535459902849<19> × 5376349118996722135857554610727903470969­7<41>(100.00%)
1097+1 = 1000000000000000000000000000000000000000­0000000000000000000000000000000000000000­000000000000000001<98> = 11 × 102527361354613106010527<24> × 323338434891034089173475790125293<33> × 2742269936605462168329562307947106658888­1<41>(100.00%)
1098+1 = 1000000000000000000000000000000000000000­0000000000000000000000000000000000000000­0000000000000000001<99> = 29 × 101 × 281 × 121499449 × 9999999999999900000000000000999999999999­9900000000000000999999999999990000000000­0001<84>(100.00%)
1099+1 = 1000000000000000000000000000000000000000­0000000000000000000000000000000000000000­00000000000000000001<100> = 7 × 112 × 13 × 19 × 23 × 4093 × 8779 × 52579 × 599144041 × 7093127053<10> × 183411838171<12> × 1411225248778861822822335393177961449383­05111168717<51>(100.00%)
10100+1 = 1000000000000000000000000000000000000000­0000000000000000000000000000000000000000­000000000000000000001<101> = 73 × 137 × 401 × 1201 × 1601 × 1676321 × 5964848081<10> × 1296944190290577505513857711845642744990­75700947656757821537291527196801<72>(100.00%)
remove soft hyphens ソフトハイフンを取り除く | plain text version プレーンテキスト版
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | 1000 | Next page → 次のページ →