Previous month前月 | September 2003 2003 年 9 月 | December 12 月 January 1 月 February 2 月 March 2018 2018 年 3 月 April 4 月 May 5 月 June 6 月 | Recent changes 最近の更新 | Next month翌月

March 31, 2018 2018 年 3 月 31 日 (Makoto Kamada)

n=162570: c43324(1544075440......) = 41825521719138931 * c43307(3691706347......)

n=162600: c43185(3326685638......) = 17477124739201 * 101849068653601 * c43158(1868894196......)

n=162840: c40827(1535400492......) = 4845240013175470561 * c40808(3168884282......)

n=162918: c46431(9369649168......) = 154264874132658997 * c46414(6073741168......)

n=162930: c43410(2726132797......) = 10728855615425161 * c43394(2540935301......)

n=162954: c49304(8842228186......) = 41500577206465858238077 * c49282(2130627760......)

n=163002: c46539(3786328128......) = 186660742084369100731 * c46519(2028454449......)

# P-1 B1=1e6

March 29, 2018 2018 年 3 月 29 日 (Makoto Kamada)

n=162096: c48953(4745525645......) = 12588299800246369 * c48937(3769790774......)

n=162204: c46308(8588913179......) = 11576501248701126109 * c46289(7419265108......)

n=162282: c48385(1098901098......) = 4783848290968593733 * c48366(2297106914......)

n=162288: c44352(9999999999......) = 2474605763225675119306815697 * c44325(4041047729......)

n=162318: c49908(1776868508......) = 2235639129607183 * c49892(7947921846......)

n=162372: c46368(9901000000......) = 160355032714439210761 * c46348(6174424233......)

n=162474: c49962(1513755462......) = 469247726052842413 * c49944(3225919655......)

# P-1 B1=1e6

# 140010 of 200000 Φn(10) factorization were cracked. 200000 個中 140010 個の Φn(10) の素因数が見つかりました。

March 28, 2018 2018 年 3 月 28 日 (Makoto Kamada)

n=161658: c46144(3948702165......) = 3795698505021571 * c46129(1040309750......)

n=161742: c46194(3125690497......) = 686645454701750746357 * c46173(4552117073......)

n=161790: c43123(1934403556......) = 128901646734661531 * c43106(1500681803......)

n=161928: c49536(9999999999......) = 277692772971199249 * c49519(3601101999......)

n=162036: c46224(9999990000......) = 3880278931771640161 * c46206(2577131741......)

# P-1 B1=1e6

# 140007 of 200000 Φn(10) factorization were cracked. 200000 個中 140007 個の Φn(10) の素因数が見つかりました。

March 28, 2018 2018 年 3 月 28 日 (Alfred Reich)

n=16458: c5016(4254754071......) = 7680624666089700021997 * c4994(5539593791......)

# ECM B1=250000, sigma=0:249276448652239109

March 27, 2018 2018 年 3 月 27 日 (Makoto Kamada)

n=161196: c43159(5195350958......) = 335941296412429 * c43145(1546505599......)

n=161310: c40599(1911201767......) = 75151166899385461411 * c40579(2543143169......)

n=161382: c49632(9100000000......) = 2826410862370725502237 * c49611(3219630988......)

n=161406: c45335(3735863848......) = 60978609102423853 * c45318(6126515352......)

n=161568: c46073(1599313779......) = 287962367833502209 * c46055(5553898557......)

n=161616: c41457(1552227740......) = 700170420152113 * c41442(2216928472......)

# P-1 B1=1e6

# 140005 of 200000 Φn(10) factorization were cracked. 200000 個中 140005 個の Φn(10) の素因数が見つかりました。

March 26, 2018 2018 年 3 月 26 日 (Makoto Kamada)

n=160836: c49434(2198556693......) = 34630170408890054287381 * c49411(6348674197......)

n=160902: c45931(6208715810......) = 301154537413451611 * c45914(2061637810......)

n=160908: c45761(1009998990......) = 258123491118449560984249 * c45737(3912851889......)

n=160920: c42624(9999999999......) = 12185239274641 * c42611(8206650501......)

n=160950: c40308(1168836983......) = 2784432543264350401 * c40289(4197756510......)

n=160974: c48587(4179547586......) = 218800402269152044573 * c48567(1910210192......)

n=161154: c46008(9990010000......) = 7731400966075333 * c45993(1292134510......)

# P-1 B1=1e6

# 140004 of 200000 Φn(10) factorization were cracked. 200000 個中 140004 個の Φn(10) の素因数が見つかりました。

March 26, 2018 2018 年 3 月 26 日 (Alfred Reich)

n=17096: c8514(2044474909......) = 222643183971085825418215361 * c8487(9182741967......)

# ECM B1=250000, sigma=1:884659451

n=17186: c7877(4606500669......) = 288415103445712439279085419 * c7851(1597177337......)

# ECM B1=250000, sigma=1:1624146151

n=17374: x6864(1194189389......) = 23580990287149131994053677157259 * c6832(5064203729......)

# ECM

March 25, 2018 2018 年 3 月 25 日 (Alfred Reich)

n=16688: c7105(1000000009......) = 1300386881663860941933430561 * c7077(7690019209......)

# ECM B1=250000, sigma=1:213200277

n=16728: c5101(4929146682......) = 4428704254379093176538857 * c5077(1112999739......)

# ECM B1=250000, sigma=1:2239698485

n=16938: c5624(3400520066......) = 57638349893121349771 * p5604(5899752635......)

# ECM B1=250000, sigma=1:1541522191

makoto@betelgeuse /cygdrive/c/factorize/Phin10
$ ./pfgw64 -tc -q"(10^3+1)*(10^8469+1)/(10^9+1)/(10^2823+1)/29436673782679903/57638349893121349771"
PFGW Version 3.8.3.64BIT.20161203.Win_Dev [GWNUM 28.6]

Primality testing (10^3+1)*(10^8469+1)/(10^9+1)/(10^2823+1)/29436673782679903/57638349893121349771 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 2
Running N+1 test using discriminant 5, base 5+sqrt(5)
Calling N-1 BLS with factored part 0.11% and helper 0.01% (0.34% proof)
(10^3+1)*(10^8469+1)/(10^9+1)/(10^2823+1)/29436673782679903/57638349893121349771 is Fermat and Lucas PRP! (2.1626s+0.0484s)

n=17094: c4310(1284526228......) = 411775539153223053733 * c4289(3119481626......)

# ECM B1=250000, sigma=1:144322933

n=17374: c6883(4216715142......) = 35310271386581712361 * x6864(1194189389......)

# ECM B1=250000, sigma=1:563327412

# 1139 of 200000 Φn(10) factorization were finished. 200000 個中 1139 個の Φn(10) の素因数分解が終わりました。

# 140001 of 200000 Φn(10) factorization were cracked. 200000 個中 140001 個の Φn(10) の素因数が見つかりました。

March 25, 2018 2018 年 3 月 25 日 (Makoto Kamada)

n=160284: c49248(9999999999......) = 48256671342349 * c49235(2072252337......)

n=160350: c42720(9999900001......) = 51715023641647456683823801 * c42695(1933654728......)

n=160368: c49152(9999999900......) = 4065074491472593 * c49137(2459979496......)

n=160410: c42762(3545635969......) = 21811718115228992873011 * c42740(1625564731......)

n=160470: c42759(3113357137......) = 34929250555051 * c42745(8913323614......)

n=160482: c45812(8071726729......) = 13190680777891 * c45799(6119264703......)

n=160530: c42789(6454814021......) = 118800248332081 * c42775(5433333778......)

n=160566: c45834(1549308689......) = 201676581769493562838219 * 2223321711597494076180529 * c45786(3455255571......)

n=160734: c44353(1098900989......) = 2181210769108913053 * c44334(5038032108......)

n=160758: c49248(9999999990......) = 270459065383724881 * c49231(3697417195......)

# P-1 B1=1e6

# 1400000 of 200000 Φn(10) factorization were cracked. 200000 個中 1400000 個の Φn(10) の素因数が見つかりました。

March 24, 2018 2018 年 3 月 24 日 (Makoto Kamada)

n=159870: c42036(8391889870......) = 54191737035793681 * c42020(1548555246......)

n=159978: c42043(6869032741......) = 57273992383063 * c42030(1199328430......)

n=160110: c42624(9999999990......) = 259648399214432872455900601 * c42598(3851362080......)

n=160188: c45744(9901000000......) = 12559350287066611350001 * c45722(7883369580......)

n=160200: c42235(3121088885......) = 229629029749293114001 * c42215(1359187420......)

n=160212: c48661(8958490493......) = 117994264160449 * c48647(7592310149......)

# P-1 B1=1e6

# 139995 of 200000 Φn(10) factorization were cracked. 200000 個中 139995 個の Φn(10) の素因数が見つかりました。

March 23, 2018 2018 年 3 月 23 日 (Makoto Kamada)

n=159324: c44787(5988862104......) = 11721432425341 * c44774(5109326135......)

n=159360: c41972(5672666611......) = 17430559245553921 * c41956(3254437526......)

n=159426: c49920(9990010000......) = 13399499241596899 * c49904(7455509955......)

n=159456: c47981(4814194752......) = 12098952022081 * c47968(3979017971......)

n=159588: c43192(2253197249......) = 4134086925205258595424709 * c43167(5450289967......)

n=159654: c46401(1098901098......) = 479239748402669510359819 * c46377(2293009088......)

n=159684: c45570(8141196676......) = 2260469997947455575121 * c45549(3601550422......)

n=159690: c42547(4525668793......) = 3801761085734188081 * c42529(1190413782......)

n=159726: c45617(4631916123......) = 54826510789587009103 * c45597(8448314613......)

n=159732: c48384(9999999999......) = 69089089979095252669 * c48365(1447406530......)

n=159750: c42000(9999999999......) = 317405370620251 * c41986(3150545304......)

n=159768: c45504(9999999999......) = 1973050674159601 * c45489(5068293547......)

n=159786: c48232(3240999763......) = 1126526577883038091 * c48214(2876984731......)

n=159822: c49097(5435399847......) = 7277596623228944077183 * c49075(7468674246......)

n=159852: c41271(2314070520......) = 32324974303678602584809 * c41248(7158769868......)

# P-1 B1=1e6

# 139993 of 200000 Φn(10) factorization were cracked. 200000 個中 139993 個の Φn(10) の素因数が見つかりました。

March 22, 2018 2018 年 3 月 22 日 (Makoto Kamada)

n=159012: c45360(9999990000......) = 2247193335594204901 * c45342(4449990947......)

n=159042: c48889(4355898295......) = 1323520136675757931 * c48871(3291146220......)

n=159054: c45342(3742638141......) = 7509553664138272321 * c45323(4983835669......)

n=159126: c48194(9531221033......) = 1400998878700807 * c48179(6803161071......)

n=159240: c42418(1185006313......) = 12432282998899921 * c42401(9531687090......)

n=159258: c45361(1098901098......) = 19890301763641 * c45347(5524808582......)

# P-1 B1=1e6

# 139988 of 200000 Φn(10) factorization were cracked. 200000 個中 139988 個の Φn(10) の素因数が見つかりました。

March 21, 2018 2018 年 3 月 21 日 (Makoto Kamada)

n=158508: c41473(1000000999......) = 59124183490256221 * c41456(1691356972......)

n=158598: c47501(9509145299......) = 1469021320624969 * c47486(6473115921......)

n=158634: c45281(5997639009......) = 80771003376376699 * c45264(7425485334......)

n=158880: c42228(8364886421......) = 34823892093544202881 * c42209(2402053853......)

# P-1 B1=1e6

# 139986 of 200000 Φn(10) factorization were cracked. 200000 個中 139986 個の Φn(10) の素因数が見つかりました。

March 20, 2018 2018 年 3 月 20 日 (Makoto Kamada)

n=158160: c42092(4525234825......) = 85801816132321 * c42078(5274054826......)

n=158202: c44161(1000999998......) = 2262847153860619129 * c44142(4423630634......)

n=158250: c42000(9999999999......) = 262527651566429251 * c41983(3809122559......)

n=158280: c42176(9999000100......) = 11496176245294230481 * c42157(8697674676......)

n=158310: c42174(3781941702......) = 53006149161630525961 * c42154(7134911256......)

n=158346: c49861(2330361311......) = 182984474938685144717791567 * c49835(1273529523......)

n=158418: c48667(6306068085......) = 67840085617646872410973 * c48644(9295489573......)

n=158430: c42226(2264820002......) = 1150738686316561 * c42211(1968144488......)

# P-1 B1=1e6

# 139985 of 200000 Φn(10) factorization were cracked. 200000 個中 139985 個の Φn(10) の素因数が見つかりました。

March 19, 2018 2018 年 3 月 19 日 (Makoto Kamada)

n=157692: c49408(9901000000......) = 18714236626463093092896400249 * c49380(5290624564......)

n=157752: c44916(7436921540......) = 21695065442547527521 * c44897(3427932292......)

n=158028: c48560(2607367636......) = 733947105267805191361 * c48539(3552527992......)

# P-1 B1=1e6

# 139982 of 200000 Φn(10) factorization were cracked. 200000 個中 139982 個の Φn(10) の素因数が見つかりました。

March 18, 2018 2018 年 3 月 18 日 (Makoto Kamada)

n=157356: c49657(4257827968......) = 60803769568609 * c49643(7002572370......)

n=157386: c49331(1255981442......) = 7681765201109173 * c49315(1635016704......)

n=157434: c49661(1099644667......) = 17449894107647738250072555926437 * c49629(6301726877......)

n=157458: c42763(3489494022......) = 698705604002014561 * c42745(4994226470......)

n=157470: c40321(1098890109......) = 12011328324571 * c40307(9148780886......)

n=157662: c49680(9990010000......) = 3387406647835329859 * c49662(2949161715......)

n=157668: c45019(6279611083......) = 25548860646094929501905149 * c44994(2457883023......)

# P-1 B1=1e6

# 139981 of 200000 Φn(10) factorization were cracked. 200000 個中 139981 個の Φn(10) の素因数が見つかりました。

March 17, 2018 2018 年 3 月 17 日 (Makoto Kamada)

n=156930: c41827(2546081392......) = 43111861073041 * c41813(5905756162......)

n=157014: c43186(7914798512......) = 4354926004727483329 * c43168(1817435819......)

n=157146: c47561(7546481591......) = 56635640447299 * c47548(1332461596......)

n=157200: c41600(9999999999......) = 1508069080521948001 * c41582(6630995973......)

n=157212: c47507(3990814066......) = 355459820387915629 * c47490(1122718754......)

n=157230: c41899(1588436385......) = 13507305406201 * c41886(1175983171......)

n=157278: c47640(9100000000......) = 305005667771641 * c47626(2983551114......)

n=157284: c49152(9999990000......) = 1498163764704645225391921 * c49128(6674831040......)

# P-1 B1=1e6

# 139979 of 200000 Φn(10) factorization were cracked. 200000 個中 139979 個の Φn(10) の素因数が見つかりました。

March 16, 2018 2018 年 3 月 16 日 (Alfred Reich)

n=17366: c8162(2048810769......) = 52601832472617475839289969733 * c8133(3894941816......)

# ECM B1=250000, sigma=1:2062320711

n=17372: c8377(3505350003......) = 1875381309678833620681 * c8356(1869139884......)

# ECM B1=250000, sigma=1:4190866240

March 16, 2018 2018 年 3 月 16 日 (Makoto Kamada)

n=156576: c44518(4654655272......) = 1937655019413325336321 * c44497(2402210520......)

n=156684: c47440(9901000000......) = 965727234152765213251849 * c47417(1025237732......)

n=156810: c41783(9285553988......) = 13228029480931 * c41770(7019604849......)

n=156858: c48217(5627588676......) = 1451674095916337034613 * c48196(3876619891......)

n=156864: c48369(3261634964......) = 3041308371114403199827393 * c48345(1072444674......)

# P-1 B1=1e6

# 139976 of 200000 Φn(10) factorization were cracked. 200000 個中 139976 個の Φn(10) の素因数が見つかりました。

March 15, 2018 2018 年 3 月 15 日 (Alfred Reich)

n=17080: c5738(2324567527......) = 235349973250099425140641 * c5714(9877067312......)

# ECM B1=250000, sigma=1:699829181

n=17082: c5142(3989663139......) = 1067163336298023935023 * x5121(3738568411......)

# ECM B1=250000, sigma=1:4221820796

n=17082: x5121(3738568411......) = 73719568324522432698858415477 * c5092(5071337904......)

# ECM B1=250000, sigma=1:4119167844

n=17084: c8512(4852290587......) = 266215992123509651599661 * c8489(1822689369......)

# ECM B1=250000, sigma=1:3675897961

n=17348: c8661(4386459897......) = 2109448938942154604257361 * c8637(2079434024......)

# ECM B1=250000, sigma=1:3582728946

n=17350: c6916(1921211888......) = 24858923219916166553801 * c6893(7728459802......)

# ECM B1=250000, sigma=1:2225112800

March 15, 2018 2018 年 3 月 15 日 (Makoto Kamada)

n=156216: c49632(9999000100......) = 18707684679101186137 * c49613(5344862430......)

n=156312: c47782(1019814896......) = 1329244716912314714929 * c47760(7672138048......)

n=156324: c44607(6510668725......) = 1953897838126501 * c44592(3332143881......)

n=156366: c41453(3814420253......) = 141290645421997 * c41439(2699697663......)

n=156408: c42316(7591527603......) = 533364431723089 * c42302(1423328432......)

n=156486: c47393(9692026795......) = 8269022370775108801 * c47375(1172088592......)

n=156520: c48362(5423643132......) = 570756309120663121 * c48344(9502554848......)

n=156522: c49370(7996990180......) = 89214172272649 * c49356(8963811439......)

# P-1 B1=1e6

# 139975 of 200000 Φn(10) factorization were cracked. 200000 個中 139975 個の Φn(10) の素因数が見つかりました。

March 14, 2018 2018 年 3 月 14 日 (Makoto Kamada)

n=155910: c41562(8338219542......) = 105753895813561 * 21074131290686155291 * c41529(3741340793......)

n=155958: c44161(1098901098......) = 1156306559749040041 * c44142(9503544623......)

n=156066: c47940(2360912746......) = 494995052070360139 * c47922(4769568376......)

n=156078: c44353(1000999998......) = 46949193345449540742013 * c44330(2132092007......)

# P-1 B1=1e6

# 139974 of 200000 Φn(10) factorization were cracked. 200000 個中 139974 個の Φn(10) の素因数が見つかりました。

March 13, 2018 2018 年 3 月 13 日 (Alfred Reich)

n=17338: c8662(3855398052......) = 1514374183038588238921572980557 * c8632(2545868845......)

# ECM B1=250000, sigma=1:3907143658

March 13, 2018 2018 年 3 月 13 日 (Makoto Kamada)

n=155490: c40305(9933475287......) = 1178454731477371 * c40290(8429237901......)

n=155574: c49896(9999999990......) = 220141597186801 * c49882(4542530860......)

n=155640: c41447(4373329863......) = 23673099064077121 * c41431(1847383754......)

n=155652: c41451(1943282492......) = 31075423272232254889 * c41431(6253438531......)

n=155664: c48576(9999999999......) = 92070314616742348177 * c48557(1086126406......)

n=155766: c47897(7212464216......) = 1345440837698063731 * c47879(5360669911......)

# P-1 B1=1e6

# 139972 of 200000 Φn(10) factorization were cracked. 200000 個中 139972 個の Φn(10) の素因数が見つかりました。

March 12, 2018 2018 年 3 月 12 日 (Alfred Eichhorn)

# via Kurt Beschorner

n=22511: c22489(1468632009......) = 133597932869817732503685853 * c22463(1099292464......)

# ECM B1=5e4, sigma=13021235081596185428

March 12, 2018 2018 年 3 月 12 日 (Makoto Kamada)

n=155070: c41315(7405366197......) = 37661409099171405709507081 * c41290(1966300883......)

n=155106: c44274(1431280481......) = 161907871328407 * 31037222238855841 * c44243(2848222677......)

n=155124: c49665(7445081700......) = 357228923988248886709 * c49645(2084120629......)

n=155130: c41348(3344877774......) = 47873019783954162481 * c41328(6986978866......)

n=155148: c44283(3021295564......) = 18094963377865512601 * c44264(1669688687......)

n=155160: c41280(9999999999......) = 103005016758098641 * c41263(9708265009......)

n=155166: c46985(4150529551......) = 2314281726971535619 * c46967(1793441785......)

n=155208: c49728(9999000100......) = 1741832868692147809 * c49710(5740504889......)

n=155364: c46616(2603271412......) = 2084636488775566000047961 * c46592(1248789141......)

n=155388: c49407(1209026577......) = 124738834810149349 * c49389(9692463295......)

# P-1 B1=1e6

# 139970 of 200000 Φn(10) factorization were cracked. 200000 個中 139970 個の Φn(10) の素因数が見つかりました。

March 11, 2018 2018 年 3 月 11 日 (Makoto Kamada)

n=154818: c49672(1393870788......) = 101363237719902135547161474088567 * c49640(1375124571......)

n=154854: c44208(9990010000......) = 3749606132476933 * c44193(2664282499......)

n=154890: c41280(9990010000......) = 20328475009771 * c41267(4914293863......)

n=154908: c47473(4158118044......) = 54759857946301 * c47459(7593368939......)

n=154938: c40314(1075699088......) = 34440126681703 * c40300(3123388884......)

n=154968: c46880(9999000100......) = 872538217406054233 * c46863(1145967007......)

n=154974: c49368(9100000000......) = 2521436856338047 * c49353(3609053297......)

n=155010: c41322(1334237918......) = 2543226324972853561 * c41303(5246241378......)

n=155034: c45360(9999999999......) = 33835232854369 * c45347(2955499092......)

# P-1 B1=1e6

# 139968 of 200000 Φn(10) factorization were cracked. 200000 個中 139968 個の Φn(10) の素因数が見つかりました。

March 10, 2018 2018 年 3 月 10 日 (Alfred Reich)

n=16490: c6139(6125556730......) = 1305910854369128351032983761 * c6112(4690639265......)

# ECM B1=250000-250000, sigma=0:13247188305347159374

n=17200: c6697(2919629651......) = 124882753201313745713270401 * c6671(2337896608......)

# ECM B1=250000, sigma=1:1621678987

March 10, 2018 2018 年 3 月 10 日 (Makoto Kamada)

n=154518: c40599(5734397030......) = 11671912512360325376971 * c40577(4912988359......)

n=154572: c46800(9901000000......) = 1041744723910309 * c46785(9504247799......)

n=154638: c46200(9999999999......) = 103277109856035555814573 * c46177(9682687687......)

n=154674: c47492(4342413219......) = 20954859934015780579 * c47473(2072270219......)

n=154728: c44056(5585958780......) = 15276588458625649 * c44040(3656548578......)

# P-1 B1=1e6

# 139963 of 200000 Φn(10) factorization were cracked. 200000 個中 139963 個の Φn(10) の素因数が見つかりました。

March 9, 2018 2018 年 3 月 9 日 (Alfred Reich)

n=17204: c6983(7982714615......) = 5584551059656041277300132051361 * c6953(1429428172......)

# ECM B1=250000, sigma=1:1082311996

March 9, 2018 2018 年 3 月 9 日 (Makoto Kamada)

n=154080: c40668(1580520177......) = 86680286993422081 * c40651(1823390567......)

n=154164: c49492(2362549363......) = 744370244391429181 * c49474(3173890119......)

n=154170: c41040(9999999990......) = 297938144694793357081531 * c41017(3356401376......)

n=154284: c44334(1213947557......) = 9518373272236141 * c44318(1275372925......)

n=154362: c47460(7109293779......) = 140967633388531 * c47446(5043209997......)

# P-1 B1=1e6

# 139961 of 200000 Φn(10) factorization were cracked. 200000 個中 139961 個の Φn(10) の素因数が見つかりました。

March 8, 2018 2018 年 3 月 8 日 (Alfred Reich)

n=16168: c7697(5887908149......) = 2867443649364054475343041995521 * c7667(2053364902......)

# ECM B1=250000, sigma=1:2811823498

n=16230: c4273(4191424655......) = 589078118316588764011 * c4252(7115227209......)

# ECM B1=250000, sigma=1:3734150031

n=16436: c7033(1009999999......) = 62739436032911903633697449 * c7007(1609832768......)

# ECM B1=250000, sigma=1:2546826578

n=17136: c4608(9999999999......) = 47218150865452646579473 * c4586(2117829651......)

# ECM B1=250000, sigma=0:5926389835484624200

# 139960 of 200000 Φn(10) factorization were cracked. 200000 個中 139960 個の Φn(10) の素因数が見つかりました。

March 8, 2018 2018 年 3 月 8 日 (Makoto Kamada)

n=153762: c43848(9999999000......) = 287100365231257196448859 * c43825(3483102152......)

n=153790: c48660(1590302501......) = 670184020657820864343331 * c48636(2372934078......)

n=153816: c42972(1910948256......) = 31562150752662139960619553649 * c42943(6054556519......)

n=153840: c40928(2555147231......) = 1774807920713977790881 * c40907(1439675359......)

n=153894: c47328(9100000000......) = 26043032185961779 * c47312(3494216777......)

n=153912: c45742(9151978244......) = 262875151439091507889 * c45722(3481492333......)

n=153978: c46640(9100000000......) = 32554019675299 * c46627(2795353720......)

n=154044: c46532(6859987603......) = 142177281663195655858081 * c46509(4824953412......)

# P-1 B1=1e6

# 139958 of 200000 Φn(10) factorization were cracked. 200000 個中 139958 個の Φn(10) の素因数が見つかりました。

March 7, 2018 2018 年 3 月 7 日 (Alfred Reich)

n=16038: c4846(2565624066......) = 632621329531962976471138687 * c4819(4055544679......)

# ECM B1=250000, sigma=1:2866331856

n=16190: c6468(2264703218......) = 2700673176690155379491 * x6446(8385698935......)

# ECM B1=250000, sigma=1:3513594035

n=16190: x6446(8385698935......) = 4943998794769991229999491 * c6422(1696136929......)

# ECM B1=250000, sigma=1:855911063

n=16256: c8036(1263221370......) = 159598692016900681330817 * c8012(7914985735......)

# ECM B1=250000-250000, sigma=0:5108786768302511055

n=16274: c7952(2253036478......) = 251125701386549663111897441 * c7925(8971747878......)

# ECM B1=250000-250000, sigma=0:8123448816578401622

n=16294: c8133(4127958209......) = 5695555331329833707303 * x8111(7247683447......)

# ECM B1=250000-250000, sigma=0:17633294815459824539

n=16294: x8111(7247683447......) = 20056881577150959212650877 * c8086(3613564461......)

# ECM B1=250000-250000, sigma=0:14570416647069809728

n=16300M: c3240(9900498007......) = 2348108119553742714216401 * c3216(4216372289......)

# ECM B1=250000-250000, sigma=0:14699060916705927554

n=16350: c4320(9999900001......) = 574007732417758476986851 * c4297(1742119389......)

# ECM B1=250000-250000, sigma=0:4401062188028755201

n=16370: c6545(1099989000......) = 4275155963843845114583010529681 * c6514(2572979815......)

# ECM B1=250000-250000, sigma=0:15477894646544287633

n=16394: c6992(3186988360......) = 62619650659347901679260093 * c6966(5089438102......)

# ECM B1=250000-250000, sigma=0:10681665212088446754

n=16444: c8210(5850407940......) = 507129613949013184875341 * c8187(1153631690......)

# ECM B1=250000-250000, sigma=0:12714713872335694143

n=16450: c5500(3081615765......) = 5846123145569130040199062201 * c5472(5271212543......)

# ECM B1=250000-250000, sigma=0:9373502411554936843

n=16940L: c2624(1971324441......) = 2287270309951026739223501 * c2599(8618677175......)

# ECM B1=250000, sigma=1:3696217493

# 139955 of 200000 Φn(10) factorization were cracked. 200000 個中 139955 個の Φn(10) の素因数が見つかりました。

March 7, 2018 2018 年 3 月 7 日 (Makoto Kamada)

n=153342: c43755(5646566985......) = 9393678471822373 * c43739(6011028589......)

n=153390: c40896(9100090999......) = 30027489548025272174033611 * c40871(3030586684......)

n=153402: c49671(8413169823......) = 36360417160014978191688741967 * c49643(2313826540......)

n=153408: c47104(9999999999......) = 9449521576493549569 * 8943699219233867906497 * c47064(1183240411......)

n=153468: c42325(1179552869......) = 77703973015539529 * c42308(1518008441......)

n=153480: c40896(9999000100......) = 6955036233209761 * 1912522386198759121 * c40862(7517105553......)

n=153504: c46080(9999999999......) = 205081371630721 * c46066(4876113281......)

n=153594: c41185(1000999998......) = 11356341469009489 * c41168(8814458439......)

n=153630: c40885(3295896623......) = 122637868710550651 * c40868(2687503181......)

n=153672: c48379(2168900517......) = 1630117525886309041 * c48361(1330517881......)

# P-1 B1=1e6

# 139953 of 200000 Φn(10) factorization were cracked. 200000 個中 139953 個の Φn(10) の素因数が見つかりました。

March 6, 2018 2018 年 3 月 6 日 (Alfred Reich)

n=17270: c6200(8197709958......) = 1093556839976954432135308422721 * c6170(7496372990......)

# ECM B1=250000-250000, sigma=1:1417224189

n=17310: c4584(1156414623......) = 8630876792933119771 * x4565(1339857642......)

# ECM B1=250000-250000, sigma=1:2832294275

n=17310: x4565(1339857642......) = 752305527241387590228865561 * c4538(1781001992......)

# ECM B1=250000-250000, sigma=1:2144166504

March 6, 2018 2018 年 3 月 6 日 (Makoto Kamada)

n=153054: c46294(4164100244......) = 270646083065161 * c46280(1538577686......)

n=153174: c43670(1314990959......) = 86610246731653 * c43656(1518285663......)

n=153186: c46191(1117389287......) = 19673391523252303 * c46174(5679698320......)

n=153192: c47031(1073342537......) = 4874991722020369 * c47015(2201732021......)

n=153230: c47513(6467277450......) = 13277782771375800371 * c47494(4870751060......)

n=153252: c45342(2441190995......) = 24880211687959219978849 * c45319(9811777432......)

n=153258: c42216(3855355168......) = 1113683910779413 * c42201(3461803777......)

n=153306: c47793(1207148397......) = 18935333342533 * c47779(6375110361......)

# P-1 B1=1e6

March 5, 2018 2018 年 3 月 5 日 (Alfred Reich)

n=17034: c5294(3029772684......) = 468050676471121869635828809 * c5267(6473172322......)

# ECM B1=250000-250000, sigma=1:553783766

n=17230: c6838(1072521629......) = 73331644452092467901067450590055432841 * c6800(1462563178......)

# ECM B1=250000-250000, sigma=1:2415909547

n=17240: c6860(1180202202......) = 5381302483421972729318561 * c6835(2193153434......)

# ECM B1=250000-250000, sigma=1:1941082674

n=17324: c8362(1451068629......) = 3441258196864690388214123812749 * c8331(4216680488......)

# ECM B1=250000-250000, sigma=1:1977753111

n=17328: c5473(1000000000......) = 575678083838722267402282417 * c5446(1737081935......)

# ECM B1=250000-250000, sigma=1:3561021051

# 139948 of 200000 Φn(10) factorization were cracked. 200000 個中 139948 個の Φn(10) の素因数が見つかりました。

March 5, 2018 2018 年 3 月 5 日 (Makoto Kamada)

n=152694: c47808(9990010000......) = 17376474704052790819 * c47789(5749158083......)

n=152706: c49186(8636662874......) = 16638479284198764077203081 * c49161(5190776588......)

n=152712: c43176(2394381466......) = 303704195383552321 * c43158(7883926210......)

n=152724: c42213(5609023720......) = 2923877413159561 * c42198(1918351192......)

n=152754: c43614(2637114143......) = 671002030205809 * 10917978338516772276517 * c43577(3599671466......)

n=152772: c49049(2880399756......) = 7808755147318597669 * c49030(3688679824......)

n=152802: c46944(9990010000......) = 8714921821371213231527682823 * c46917(1146310914......)

n=152838: c43632(9990010000......) = 189327341396070952046698573 * c43606(5276580723......)

n=152844: c49673(2591138609......) = 25472246166049 * c49660(1017239937......)

n=152874: c47937(1159934180......) = 125023913507863 * c47922(9277698545......)

n=152892: c48932(1776242796......) = 296341887590569 * c48917(5993897152......)

n=152898: c47928(2400839124......) = 35438516032687 * c47914(6774660434......)

n=152910: c40752(9990010000......) = 680229628876081 * c40738(1468623178......)

n=152964: c43622(1300046614......) = 215622908717029799329 * c43601(6029260165......)

n=152994: c49722(3130496644......) = 810904529483301406148647 * c49698(3860499640......)

# P-1 B1=1e6

# 139947 of 200000 Φn(10) factorization were cracked. 200000 個中 139947 個の Φn(10) の素因数が見つかりました。

March 4, 2018 2018 年 3 月 4 日 (Alfred Reich)

n=16240: c5350(2937790061......) = 6786388376709122766807041 * c5325(4328944791......)

# ECM B1=250000-250000, sigma=0:15611763982224638910

n=16330: c6160(9091000000......) = 850431283134665625757531 * c6137(1068987016......)

# ECM B1=250000, sigma=0:634909859114258152

n=16352: c6899(4448761652......) = 11934567408722541302636897 * c6874(3727627068......)

# ECM B1=250000, sigma=0:10130197707834368735

n=16830: c3795(7670939563......) = 1924064610992122440601 * c3774(3986840940......)

# ECM B1=250000, sigma=0:17627494803527835885

n=17022: c5656(6585112081......) = 3427109083569788759205967 * c5632(1921477233......)

# ECM B1=250000, sigma=1:1456175487

n=17198: c8598(9090909090......) = 213875165012817706040647 * x8575(4250567891......)

# ECM B1=250000, sigma=1:2646319238

n=17198: x8575(4250567891......) = 151419622804368547047169 * c8552(2807144683......)

# ECM B1=250000-250000, sigma=1:1221155170

n=17210: c6854(1196806524......) = 1592808435904571324792767891 * c6826(7513813321......)

# ECM B1=250000-250000, sigma=1:2931115876

n=17214: c5400(9100000000......) = 89292770324529415569663379 * c5375(1019119461......)

# ECM B1=250000-250000, sigma=1:4190320218

n=17216: c8564(2082667613......) = 644015315065686843727297 * x8540(3233879016......)

# ECM B1=250000-250000, sigma=1:2309784880

n=17216: x8540(3233879016......) = 4493572781487109417683930625409 * c8509(7196676617......)

# ECM B1=250000-250000, sigma=1:1687448930

# 139943 of 200000 Φn(10) factorization were cracked. 200000 個中 139943 個の Φn(10) の素因数が見つかりました。

March 4, 2018 2018 年 3 月 4 日 (NeuralMiner)

# via yoyo@home

n=845: c624(9999999999......) = 212791029980380683788275402661746746635743222681 * c577(4699446212......)

# ECM B1=110000000, sigma=0:12524453152895746251

# 139940 of 200000 Φn(10) factorization were cracked. 200000 個中 139940 個の Φn(10) の素因数が見つかりました。

March 4, 2018 2018 年 3 月 4 日 (Makoto Kamada)

n=152388: c47216(1303713925......) = 4636852390606662820621 * c47194(2811635600......)

n=152412: c46848(9901000000......) = 24153131344687801 * c46832(4099261440......)

n=152418: c41030(5513796267......) = 19834505053819 * c41017(2779901112......)

n=152514: c49202(9975481611......) = 12987594586819 * c49189(7680776871......)

n=152544: c43383(1696159183......) = 462711331354806389857 * c43362(3665696231......)

n=152628: c41168(1163656412......) = 6554194983562455486662232431148301 * c41134(1775437586......)

n=152646: c44058(1499794935......) = 718881489115687 * c44043(2086289545......)

# P-1 B1=1e6

# 139939 of 200000 Φn(10) factorization were cracked. 200000 個中 139939 個の Φn(10) の素因数が見つかりました。

March 3, 2018 2018 年 3 月 3 日 (Alfred Reich)

n=16194: c5377(3587542561......) = 74717567754635372799249973 * c5351(4801471285......)

# ECM B1=250000-250000, sigma=0:2182184139814400234

n=16198: c6322(2063584677......) = 123474591212464107593251 * c6299(1671262611......)

# ECM B1=250000-250000, sigma=0:5698943383639858213

n=16204: c8091(2299129893......) = 100354903429811405421636841 * c8065(2290999059......)

# ECM B1=250000-250000, sigma=0:9697087980245032695

n=16514: c7856(1094072643......) = 5491049715552009782366423 * c7831(1992465376......)

# ECM B1=250000-250000, sigma=0:11176402196348817129

n=16518: c5494(1133973865......) = 732370516304470909186201 * c5470(1548360891......)

# ECM B1=250000-250000, sigma=0:993059134607135643

n=17026: c8490(1648515368......) = 732845656215897601529 * c8469(2249471433......)

# ECM B1=250000-250000, sigma=1:2565775962

n=17036: c8488(7101305086......) = 21952867430137624204089514169 * x8460(3234796141......)

# ECM B1=250000-250000, sigma=1:1896816322

n=17036: x8460(3234796141......) = 3695354842206787371143295109 * c8432(8753682067......)

# ECM B1=250000-250000, sigma=1:632070827

n=17316: c5164(2787477137......) = 746529631897567973930048341 * c5137(3733913590......)

# ECM B1=250000, sigma=1:4248280601

March 3, 2018 2018 年 3 月 3 日 (Makoto Kamada)

n=152160: c40448(9999999999......) = 92433932647142066881 * c40429(1081853786......)

n=152328: c46057(2442567619......) = 204199005374388345817 * c46037(1196170184......)

n=152358: c49875(7409263626......) = 11229407845965756274813 * c49853(6598089345......)

n=152376: c43488(9999000100......) = 14620653478918369 * c43472(6838955669......)

# P-1 B1=1e6

# 139938 of 200000 Φn(10) factorization were cracked. 200000 個中 139938 個の Φn(10) の素因数が見つかりました。

March 2, 2018 2018 年 3 月 2 日 (Alfred Reich)

n=16464: c4663(5106111317......) = 39643733584880700182008753 * c4638(1287999604......)

# ECM B1=250000-250000, sigma=0:12977839189262809464

n=16474: c8211(1154544939......) = 540652874622656549233457426074884961 * c8175(2135464349......)

# ECM B1=250000-250000, sigma=0:17965012646091508444

n=16504: c8234(9901214767......) = 283129017633964102881883753 * c8208(3497068174......)

# ECM B1=250000-250000, sigma=0:15119683238447195503

n=17152: c8427(2871820306......) = 1529984989095463458336107009 * c8400(1877025151......)

# ECM B1=250000-250000, sigma=1:2171015361

n=17170: c6392(2140050946......) = 3904322378972769065971 * c6370(5481235252......)

# ECM B1=250000-250000, sigma=1:3437273609

March 2, 2018 2018 年 3 月 2 日 (Makoto Kamada)

n=151872: c43008(9999999999......) = 7460381540962538010817 * 2345021424714982829752348126849 * c42956(5715999027......)

n=151878: c47616(9100000000......) = 564226429072467013 * c47599(1612827675......)

n=151902: c48377(1629502891......) = 122986576914049 * c48363(1324943690......)

n=151938: c48289(3518708962......) = 11068263086953331912761 * c48267(3179097691......)

n=151956: c42757(3523883454......) = 202272607450591764409 * c42737(1742145661......)

n=151970: c47783(7476280736......) = 61216371972211 * c47770(1221287785......)

n=152022: c46752(9100000000......) = 365831681624411731 * c46735(2487482756......)

n=152076: c44338(4041382360......) = 60622826905321 * c44324(6666436665......)

# P-1 B1=1e6

# 139936 of 200000 Φn(10) factorization were cracked. 200000 個中 139936 個の Φn(10) の素因数が見つかりました。

March 1, 2018 2018 年 3 月 1 日 (Alfred Reich)

n=16006: c7796(6871993502......) = 31331216296939805936693 * c7774(2193337608......)

# ECM B1=250000, sigma=1:1692572660

n=16010: c6369(8309277317......) = 36056469502959873542851 * c6347(2304517727......)

# ECM B1=250000, sigma=1:2044274976

n=16016: c5760(9999999900......) = 10192257292619783132753 * x5738(9811369172......)

# ECM B1=250000, sigma=1:1251543948

n=16016: x5738(9811369172......) = 370802969045684565847699177937 * c5709(2645979129......)

# ECM B1=250000, sigma=1:624131198

n=16022: c7997(1029988337......) = 4699049100049575534157 * c7975(2191908011......)

# ECM B1=250000, sigma=1:2241329282

n=16030: c5459(2137633180......) = 3182358285538338938011 * c5437(6717135497......)

# ECM B1=250000, sigma=1:4186974136

n=16032: c5308(6237135907......) = 4889387880365043005482522273 * c5281(1275647598......)

# ECM B1=250000, sigma=1:2315868664

n=16034: c7990(2118509429......) = 1138788047438831285179129 * c7966(1860319340......)

# ECM B1=250000, sigma=1:968852479

n=16042: c7367(3416082087......) = 38180660433946868854047802291 * c7338(8947152953......)

# ECM B1=250000, sigma=1:3389151011

n=16052: c8014(7975020914......) = 230434156416919357504854149 * x7988(3460867537......)

# ECM B1=250000, sigma=1:1887233251

n=16052: x7988(3460867537......) = 11220379748436542459729 * c7966(3084447777......)

# ECM B1=250000, sigma=1:1868297124

n=16062: c5346(6054528158......) = 2040052315786969713590983 * x5322(2967829849......)

# ECM B1=250000, sigma=1:648612399

n=16062: x5322(2967829849......) = 105021170017502783605838608705117 * c5290(2825934856......)

# ECM B1=250000, sigma=1:3060904478

n=16072: c6694(2247052814......) = 4180491979461227921009 * c6672(5375091797......)

# ECM B1=250000, sigma=1:1379461342

n=16080: c4202(1135079862......) = 37876619853775060414081 * c4179(2996782361......)

# ECM B1=250000, sigma=1:2916268183

n=16088: c8001(3925597620......) = 4363650688053643382528506481 * c7973(8996131683......)

# ECM B1=250000, sigma=1:1776165986

n=16126: c7307(2790739186......) = 292751774561009766092927 * c7283(9532783158......)

# ECM B1=250000, sigma=1:2530641122

n=16134: c5338(9945840610......) = 1022965860013764807139 * c5317(9722553800......)

# ECM B1=250000, sigma=1:3480733860

n=16158: c5351(2772981890......) = 183008218825360328809 * c5331(1515222599......)

# ECM B1=250000, sigma=0:9578906465559968312

n=16186: c8087(9360780389......) = 1020058097574576146276921 * c8063(9176712985......)

# ECM B1=250000, sigma=0:8068453781860385806

n=16524: c5185(1000000000......) = 12001521923292075594263101 * c5159(8332276576......)

# ECM B1=250000-250000, sigma=0:12181576862441077627

n=16548: c4699(9971900210......) = 32346281503803379241583721 * x4674(3082858290......)

# ECM B1=250000-250000, sigma=0:13999355835835374397

n=16548: x4674(3082858290......) = 3298621327616170685375569 * c4649(9345899345......)

# ECM B1=250000-250000, sigma=0:6792191774225017239

n=16556: c8264(1877485312......) = 538235358686878562668009 * c8240(3488223659......)

# ECM B1=250000, sigma=0:7031106755279275868

n=16566: c4957(1035657644......) = 1357688906722441838874523063 * c4929(7628092411......)

# ECM B1=250000-250000, sigma=0:4170832089266227419

n=16568: c7749(3304066710......) = 276905988738855664805273 * x7726(1193208830......)

# ECM B1=250000-250000, sigma=0:3356940294602559334

n=16568: x7726(1193208830......) = 2127164804291353900635281 * c7701(5609385923......)

# ECM B1=250000-250000, sigma=0:4243762957908830039

n=16676: c7561(1009999999......) = 157554119215176342291178104768749 * c7528(6410495676......)

# ECM B1=250000-250000, sigma=1:3900629765

n=16680: c4382(4649104311......) = 1577791282957615622619601 * c4358(2946590186......)

# ECM B1=250000-250000, sigma=1:461748415

n=16698: c4827(3362480592......) = 207161279808764763865681 * c4804(1623122137......)

# ECM B1=250000, sigma=1:3740494725

n=16708: c8346(3924434095......) = 6578742164811699629 * c8327(5965325889......)

# ECM B1=250000, sigma=1:1624203337

n=16714: c8137(1590965756......) = 2464228151280060400837137059 * c8109(6456243737......)

# ECM B1=250000-250000, sigma=1:2745968886

n=16716: c4739(2649665011......) = 386637311352441829 * c4721(6853102206......)

# ECM B1=250000, sigma=1:3046605128

n=16746: c5562(6853882961......) = 10645716678545974314501997 * c5537(6438160217......)

# ECM B1=250000, sigma=1:3776834404

n=16764: c5015(1838332282......) = 2339304400301882371249 * c4993(7858456908......)

# ECM B1=250000, sigma=1:4263093390

n=16856: c7057(1000000000......) = 2405626602289344572881 * c7035(4156921107......)

# ECM B1=250000, sigma=0:14623581701001952982

n=16874: c6929(1911568367......) = 65600823870089731939 * c6909(2913939574......)

# ECM B1=250000, sigma=1:1281105032

n=16894: c8419(3874432239......) = 6010388677007473625743 * c8397(6446225772......)

# ECM B1=250000, sigma=0:5330408521286173322

n=16898: c6700(1105240189......) = 409041092978637753528614410447 * c6670(2702027273......)

# ECM B1=250000, sigma=0:6310200470403648899

n=16902: c5598(7037792526......) = 411634579360466144779597 * c5575(1709718492......)

# ECM B1=250000, sigma=0:12127719079789464318

n=16906: c8252(8212542806......) = 5126721519633777297539 * c8231(1601909285......)

# ECM B1=250000, sigma=0:13506747111680741728

n=16916: c8432(2196951483......) = 7147413311905406435804929 * c8407(3073771429......)

# ECM B1=250000, sigma=0:2712933621661716308

n=16918: c7675(1548081293......) = 93679391743143854798921 * c7652(1652531325......)

# ECM B1=250000, sigma=1:2231026948

n=16926: c4273(1173599371......) = 15722725511358923161751011 * c4247(7464350697......)

# ECM B1=250000, sigma=0:15711917439945486319

n=16928: c8061(1830357760......) = 726623996021355937 * c8043(2518988872......)

# ECM B1=250000, sigma=0:9089894223506416991

n=16930: c6746(1230453383......) = 426999345760527468705241 * x6722(2881628263......)

# ECM B1=250000, sigma=0:9202866119719851066

n=16930: x6722(2881628263......) = 1530856135667861234316542321 * c6695(1882363859......)

# ECM B1=250000, sigma=0:16253509152663460443

n=16942: c8210(4213728626......) = 38895046571441250889409 * c8188(1083358678......)

# ECM B1=250000, sigma=0:10657818287727525006

n=16946: c8172(3108751501......) = 70578085427987655677 * c8152(4404697977......)

# ECM B1=250000, sigma=0:16399300854986236568

n=16954: c7225(1000000099......) = 4698146048735902707099653 * c7200(2128499390......)

# ECM B1=250000, sigma=0:3379532392286632903

n=16960: c6639(3824949252......) = 66426123964497281 * c6622(5758200274......)

# ECM B1=250000, sigma=0:17491084554378757950

n=16966: c7922(4371362444......) = 127748927532325340999834371 * c7896(3421838858......)

# ECM B1=250000, sigma=0:14932079716548209808

n=16974: c5230(1547436348......) = 26433107030283824775429253 * c5204(5854159886......)

# ECM B1=250000, sigma=0:3258750081765562856

n=16976: c8439(5256116500......) = 473188919557924320913 * c8419(1110786048......)

# ECM B1=250000, sigma=0:9980333324829244551

n=16986: c5315(1168371009......) = 61585627634773013270053 * c5292(1897148822......)

# ECM B1=250000, sigma=0:17608961006392125148

n=16992: c5537(1009414355......) = 320347452644599964461499521 * c5510(3150998540......)

# ECM B1=250000, sigma=0:3932105944619406414

n=17018: c8312(1292733661......) = 2919687748716025279247 * c8290(4427643545......)

# ECM B1=250000, sigma=1:2272843284

n=17046: c5651(3237634198......) = 7644035495340848821447 * c5629(4235503878......)

# ECM B1=250000, sigma=1:1493980054

n=17048: c8506(2728269694......) = 1768381086378088277489 * c8485(1542806420......)

# ECM B1=250000, sigma=1:1351759060

n=17056: c7681(1000000000......) = 98536389177074142741303169 * x7655(1014853505......)

# ECM B1=250000, sigma=1:500037103

n=17056: x7655(1014853505......) = 709345931264051199831070177 * c7628(1430689119......)

# ECM B1=250000, sigma=1:953705450

n=17070: c4528(2868674917......) = 12072422786471320184761 * x4506(2376221383......)

# ECM B1=250000-250000, sigma=1:2028345675

n=17070: x4506(2376221383......) = 7086543628924834660999206331 * c4478(3353145775......)

# ECM B1=250000-250000, sigma=1:265556062

n=17072: c7651(1140949768......) = 27329166027967717937 * c7631(4174842976......)

# ECM B1=250000, sigma=1:1035299424

n=17074: c8529(2755909186......) = 3679596072849140331188066179 * c8501(7489705750......)

# ECM B1=250000-250000, sigma=1:1475395933

n=17196: c5710(9027406413......) = 10188883297749090685321 * c5688(8860054776......)

# ECM B1=250000, sigma=1:3931486450

n=17210: c6873(8767583465......) = 73258152312961492651 * c6854(1196806524......)

# ECM B1=250000, sigma=1:2065340551

n=17230: c6856(1972892628......) = 1839489828264363851 * c6838(1072521629......)

# ECM B1=250000, sigma=1:170520096

n=17240: c6881(1000099999......) = 847397164515256162481 * c6860(1180202202......)

# ECM B1=250000, sigma=1:3133885628

n=17306: c8107(9274591611......) = 34006917375272484810143 * c8085(2727266193......)

# ECM B1=250000, sigma=1:636900997

# 139933 of 200000 Φn(10) factorization were cracked. 200000 個中 139933 個の Φn(10) の素因数が見つかりました。

March 1, 2018 2018 年 3 月 1 日 (Makoto Kamada)

n=151578: c43184(3706085235......) = 3201500597384939391739 * c43163(1157608791......)

n=151632: c46657(1000000000......) = 22652976664657 * c46643(4414430892......)

n=151650: c40315(6594087740......) = 360699332387515201 * c40298(1828139713......)

n=151656: c49280(9999000100......) = 321142791473113 * c49266(3113568283......)

n=151668: c45834(6593337689......) = 53478326657244061 * c45818(1232899026......)

n=151734: c43553(7163565475......) = 96621992614490971 * c43536(7414011325......)

# P-1 B1=1e6

# 139926 of 200000 Φn(10) factorization were cracked. 200000 個中 139926 個の Φn(10) の素因数が見つかりました。

plain text versionプレーンテキスト版
Previous month前月 | September 2003 2003 年 9 月 | December 12 月 January 1 月 February 2 月 March 2018 2018 年 3 月 April 4 月 May 5 月 June 6 月 | Recent changes 最近の更新 | Next month翌月